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Abstract—To improve compression performance, High Effi-

ciency Video Coding (HEVC) employs a quad-tree based block
representation, namely Coding Tree Unit (CTU), which can sup-

port larger partitions and more coding modes than a traditional

macroblock. Despite its high compression efficiency, the number
of combinations of coding modes increases dramatically, which

results in high computational complexity at the encoder. Here we

propose a flexible framework for HEVC coding mode selection,
with a user-defined global complexity factor. Based on linear

programming, a hierarchical complexity allocation scheme is

developed to allocate computational complexities among frames
and Coding Units (CUs) to maximize the overall Rate-Distortion

(RD) performance. In each CU, with the allocated complexity

factor, a mode mapping based approach is employed for coding
mode selection. Extensive experiments demonstrate that, with

a series of global complexity factors, the proposed model can

achieve good trade-offs between computational complexity and
RD performance.

Index Terms—Complexity allocation, HEVC, linear program-

ming, mode decision, video coding.

I. INTRODUCTION

T HE first edition of High Efficient Video Coding (HEVC)

[1], the test model (HM) of the next generation video

coding standard, developed by the Joint Collaborative Team on

Video Coding (JCT-VC), a joint effort of ITU-T VCEG and

ISO/IEC MPEG standardization organizations, has been final-

ized in January 2013, aiming for a maximum of 50% bit rate re-

duction for equal perceptual quality to the existing video coding

standards [2], [3].

At the core of the coding layer of HEVC is the Coding Tree

Unit (CTU), which could be considered as an extension of mac-

roblock in H.264 [4], but with a size that can be larger than

a macroblock in [2], [3]. In HEVC, the CTU can be split into

smaller Coding Units (CUs) [5] in a quad-tree structure [6], as

shown in Fig. 1(a). A CU consists of one luminance Coding

Block (CB) and two chrominance CBs and syntax elements. To

decide whether to code a CU with inter or intra prediction, the
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Fig. 1. CTU structure in HEVC. (a) CU splitting with luminance size from 64

64 to 8 8. (b) Coding mode partitions for splitting a CB into PBs,

where is supported only when .

CU and associated CBs are further divided into smaller Pre-

diction Units (PUs) and Prediction Blocks (PBs), as shown in

Fig. 1(b). In HEVC, a wide range of PB sizes from 64 64 to

4 4 are supported, which results in a large number of combi-

nations of mode partitions in CTU. Therefore, it is highly desir-

able to optimize the encoding procedure for computational com-

plexity reduction while maintaining the compression efficiency.

1932-4553 © 2013 IEEE
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In recent years, many mode selection algorithms have been

proposed for H.264 and its extensions. Some focused on fast

intra mode selection [7]–[12] and others on fast inter mode

selection [13]–[25]. In these algorithms, to achieve high com-

putational complexity reduction, a variety of techniques are

proposed, including mode classification and dependencies

based on image and coding mode features [13], [14], neigh-

boring prediction [15], [16], early skip mode determination

[17], [18], unnecessary mode skipping based on Rate-Distortion

(RD) cost thresholds [19], [20], All Zero Block (AZB) detec-

tion for early termination [21], [22], and the other optimization

theories [23]–[25]. In some algorithms, more than one of these

techniques are employed to develop hybrid approaches; espe-

cially for neighboring prediction, which is utilized in almost

all mode selection algorithms due to good time reduction

performance and low cost in computation. Although the fun-

damental ideas of these techniques could still be employed to

design mode selection algorithms for HEVC, the above H.264

algorithms cannot be directly used in HEVC encoder due to the

changes in coding structures and neighboring predictions after

CTU is introduced.

Inspired by the aforementioned techniques and fundamental

ideas, some efficient mode selection algorithms have been pro-

posed for HEVC [26]–[36]. Among them, a number of schemes

are developed to reduce the number of intra candidates in Rough

Mode Decision (RMD) [37], and thus to speed up intra pre-

diction mode selection in HEVC [26], [27]–[31]. In [26], intra

direction information is predicted from neighboring blocks to

select the most probable intra prediction modes. In [27], rela-

tionship between block sizes of the current PU and the related

Transform Unit (TU) is studied to determine the intra candi-

dates. In [28], the neighboring direction information is also ex-

ploited, with a gradient-mode histogram. In [29], spatial angular

correlation of intra prediction modes between the current and

neighboring blocks is computed, usingmodulo-N arithmetic op-

erations. In [30], edge direction information of the current PU is

also investigated and employed to decide intra candidates. The

direction information of co-located neighboring block is also

used in [31], together with Sum of Absolute Transformed Dif-

ferences (SATD) threshold prediction from pre-coded PU.

Because there are more inter partitions in HEVC (see

Fig. 1(b)), there is good potential to reduce the computational

complexity by developing advanced inter coding mode se-

lection algorithms [32]–[36]. In [32], Gweon et al. proposed

a Coded Block Flag (CBF) based early termination method,

in which if there exist zero CBFs for all luminance and

chrominance components, the remaining coding partitions of

the current CU could be totally skipped, except CU splitting

and mode. In [33], Choi et al. proposed an early CU

termination method, in which the CU splitting and related

sub-CU coding could be skipped when the best prediction

mode of the current CU is Skip mode. In [34], Teng et al.

presented another early termination scheme for CU merging

and splitting, in which all-zero block detection and RD cost

based early termination are employed to skip unnecessary

coding mode partitions. In [35], Tan et al. exploited the RD

cost thresholds for early terminations of both coding partitions

and CU splitting. In [36], Kim et al. proposed an early skip

mode determination method, using Differential Motion Vectors

(DMVs) and CBF of inter mode.

In this paper, we propose a flexible coding mode selec-

tion method, with a user-defined global complexity factor.

To achieve efficient computational complexity reduction, a

flexible scheme is developed for coding mode selection on CU

level, based on mode mapping [16]. To maximize the overall

RD performance, a complexity allocation scheme is proposed,

which can determine complexity factors for all frames and CUs.

Comprehensive experiments demonstrate the effectiveness and

robustness of our method, with good trade-offs between com-

putational complexity, bit rates and compressed video quality.

The following of the paper is organized as follows. In

Section II, flexible coding mode selection is presented with

mode mapping; in Section III, complexity allocation is ex-

ploited in a Group-Of-Pictures (GOP). The simulation results

are given and discussed in Section IV. Finally, Section V

concludes the paper.

II. FLEXIBLE MODE SELECTION IN CU CODING

To develop a flexible mode selection scheme in CU coding,

an intuitive and effective way is to find a complexity factor,

which is positively correlated with the number of coding modes

to be tested. In such a case, a lower complexity factor represents

fewer candidate mode partitions. Based on the optimal stop-

ping theory [25], to maintain the RD performance with a lim-

ited number of modes, these mode candidates should have the

highest predicted probability. In this work, the mode mapping

assumption [16] is utilized to determine these mode candidates.

A. Flexible Mode Selection by Mode Mapping

By investigating the correlations between Motion Vectors

(MVs) of coding mode partitions, a mode mapping method was

proposed in [16], which uses Euclidean Points (EPs) to repre-

sent different mode partitions, and thus the relevancy between

mode partitions can be measured by Euclidean distance. In

mode mapping method, the following assumptions are made:

(i) Each coding mode partition can be projected to an EP in

a mode space that is Euclidean;

(ii) In the mode space, a smaller Euclidean distance between

two EPs represent a higher correlation between the two

corresponding mode partitions, and vice versa;

(iii) For each CU to be coded, there exists a corresponding CU

Point (CP) in the mode space, which may or may not be

an EP;

(iv) The corresponding EP of the best coding mode, is with

the minimum Euclidean distance to CP among all mode

partitions.

In mode mapping method, there are two related problems yet

to be addressed: how to obtain EPs for all coding modes, and

how to estimate CPs for all CUs to be coded. The following two

sections, II-B, II-C, will focus on the two issues, respectively.

If the predicted CP (denoted as ) is exactly the “real” CP

of the CU to be coded, we can simply select the mode partition

with the nearest EP and skip all the other modes. However, the

“real” CP can only be obtained after the CU is coded. Hence,

there exists prediction error between and the “real” CP. To

avoid potential RD loss, usually more than one mode partitions
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Fig. 2. Flexible mode selection with mode mapping.

should be tested, which is illustrated in Fig. 2. Given , the

minimum and maximum distances between and all EPs

are first computed as and , respectively. With a com-

plexity factor , the search radius is defined as

(1)

With the center at , all coding partitions with the cor-

responding EPs in the search radius are chosen as candidate

modes, and the remaining modes are all skipped. In (1), when

the complexity factor , indicates only the most

probable mode partition is examined. In the other extreme,

when , all candidate modes are examined with full

complexity.

B. Determination of EPs for Coding Modes

In HEVC, a mode partition size consists of two components:

the CU depth in quad-tree, which indicates the size of the cor-

responding CB; and the sizes of PBs, which indicates how the

CB is divided for Motion Estimation (ME). Accordingly, both

the relative Euclidean coordinates of all CU depths and the rel-

ative Euclidean coordinates of all PBs in a CU should be con-

sidered to determine EPs for all coding modes. In [16], the

above relationships are studied with 16 16 and its sub-8 8

blocks, which are extended to different CU sizes in this work.

From [16], the mode partitions , ,

and (or CU splitting when ) constitute a square;

and a CU and its sub-CU can be illustrated as two conjunc-

tive squares in a two-dimensional Euclidean space, as shown

in Fig. 3, where the ratio between sizes of the two squares is

decided to be .

Ulteriorly, the relative positions between all EPs are deter-

mined based on the above observations, with the largest CU size

64 64. We set the EP value for 64 64 mode (i.e., Skip or

mode when CU size is 64 64) as (0, 0), and the

EP value for 4 4 mode (i.e., mode when CU size is

8 8) is (130, 130). The other EPs are consequently determined

and shown in Table I. The asymmetric partition (AMP), such as

, in Fig. 1(b), are with MV distribu-

tion between and the corresponding symmetric parti-

tion, and thus we set the EP as the average of the two. Specif-

ically, the EP of is set to be the average EP of

Fig. 3. Illustration of EPs in 2D Euclidean mode space.

TABLE I

EPS OF ALL CODING MODE PARTITIONS

and ; the EP of is set to be the

average EP of and .

After a CU with depth is coded, the CP can be obtained by

averaging all EPs of its mode partitions, or averaging all CPs of

its sub-CUs if this CU is further divided,

if ,

otherwise,

(2)

where and represent the current and maximum depth of

the CU, respectively; and denotes the number of PBs.

C. Prediction of CPs for CUs

In the mode selection scheme described in Section II-A, the

value of (denoted as ) should be estimated for each CU

depth before the corresponding CU is coded. Due to the fact that

there exist strong correlations between neighboring blocks in

natural video sequences, we predict with the neighboring

CUs, and these CUs can be further classified into two categories.

The temporal CU, with the value of its CP denoted as , is

the co-located CU in the nearest reference frame; and the spatial

CUs, are the upper and left CUs in the same frame, with the

average of the CPs denoted as . To investigate the similarity

between the CP value of a CU (denoted as ) and those of its

neighboring CUs, the average Euclidean distances between ,

and are calculated and normalized by the maximum

distance in mode map (i.e., from Table I) and shown in

Table II, where layer indicates the image temporal layer in a

GOP.
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TABLE II

AVERAGE CP DISTANCES BETWEEN A CU AND

ITS TEMPORAL AND SPATIAL CUS

In Table II, seven 416 240 sequences (BasketballPass,

BlowingBubbles, BQSquare, Flowervase, Keiba, Mobisode2

and RaceHorses), five 832 480 sequences (Flowervase,

Keiba, Mobisode, PartyScene and RaceHorses) and five

1280 720 sequences (FourPeople, Johnny, KristenAndSara,

SlideEditing and SlideShow) are tested with Quantizing param-

eters (Qps) from 10 to 40. The results of Table II demonstrate

that the neighboring CUs have similar CP values and thus

neighboring prediction in mode space is justified. To further

reduce the prediction error for various scenes, we use a linear

combination of and , as

(3)

where is a weight factor, which is set to be 0 if spatial CUs

are not available; otherwise, is set to be adaptive in conse-

quent frames. Let be the current frame index and be a prede-

fined number of frames that are preceding the current frame in

coding order, then the current weight, , can be derived as

(4)

Substitute (3) into (4) and follow the derivations in [16], the

current weight can be determined as

if

otherwise,

(5)

(6)

where is an adaptive rate, which can be approximated by a

constant with a typical value 0.1, , and

(7)

Fig. 4. Prediction structure of a GOP of size 8.

D. The Overall Mode Selection Scheme on CU Level

Finally, with a complexity factor , the flexible coding mode

selection algorithm on CU level is summarized as follows. To

avoid collision to AMP mode skipping algorithm in HM8.0 [1],

these AMP modes are not taken into account in Step 3.

Step 1) Set the initial weight if the current CU belongs

to the first frame. If the current frame is an intra

frame, check all intra modes and go to the next CU;

otherwise go to Step 2.

Step 2) Derive and from the temporal and spatial

CUs, respectively, using (2); obtain the value of

(i.e., ) using (3). Go to Step 3.

Step 3) Determine and with EPs of mode parti-

tions , , and , and

deduce the search radius using complexity factor

and (1). Go to Step 4.

Step 4) Select the candidate mode partitions (including AMP

modes) with Euclidean distances to less than

and test all these modes. Go to Step 5.

Step 5) Derive the value of CP (i.e., ) using (2) and update

using ((5), (6), (7)). If is a candidate

mode with CU size larger than 8 8, split CU into

smaller sizes and repeat Steps 2–5 for all sub-CUs;

otherwise go to the next CU.

III. COMPLEXITY ALLOCATION FOR OPTIMAL

RD PERFORMANCE

To maximize the overall RD performance with one global

complexity factor, we develop a complexity allocation scheme

in a GOP. In HEVC, the hierarchical prediction structure is sup-

ported, similar to temporal scalability in H.264 Scalable Video

Coding (SVC) [38]. An example of a GOP is given in Fig. 4,

where the GOP size is 8 and POC denotes the Picture Order

Count. In a hierarchical GOP, a frame can only be predicted with

frames from the same or lower temporal level.

A. RD Dependency Between Frames

To exploit how to maximize the overall RD performance, the

RD dependency between different frames in a GOP is studied

first. In our work, the relationship between RD costs of an frame

and its nearest reference frame, such as POC2 and POC4 in

Fig. 4, is investigated.We change theQp of lower temporal layer
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TABLE III

CODING PARAMETERS USED IN FIG. 5

Fig. 5. RD cost dependency in a hierarchical GOP.

and observe how the average RD costs of frames in lower and

higher layers are changed. Different sequences with various res-

olutions, Qps, POCs, and temporal layers are studied, as shown

in Table III, where indicates the prediction order, e.g., POCs

4 6 denotes the prediction from POC4 to POC6, and temporal

layers 2 3 represents the prediction from layer 2 to layer 3.

The RD cost dependencies of G.1 to G.8 in Table III are

summarized in Fig. 5, where RDC-L and RDC-H represent the

RD costs of the lower and higher layers, respectively. From the

figure, there exists an approximately linear relationship between

RDC-L and RDC-H, as

(8)

where is the increase in RD cost; and are the indices

of the current and maximum temporal layers, respectively; is

a linear coefficient, typically between 0.1 and 0.5. In this work,

we set based on exhaustive experiments.

The linear relationship illustrated by (8) is consistent with the

observation of [39], in which a linear relationship was observed

between distortions (D) of a frame and its nearest reference in

HBP structure of H.264; besides, it was reported that there is

no explicit dependency between the corresponding bit rates (R).

Therefore, we can draw the conclusion that there exists an ap-

proximately linear relationship between RD costs of a frame and

its nearest reference in HBP structure of H.264. In this work, this

linear relationship is also observed for HBP structure of HEVC.

In a hierarchical GOP, each frame in layer can be the nearest

reference of two layer frames, as shown in Fig. 4. Follow

the derivations in [39], the total RD cost increase in a GOP due

to can be expressed as

(9)

Especially, frames in temporal layer can be used as ref-

erence frames of the consequent frames in the same layer, and

thus,

(10)

where is the number of consequent frames with . Con-

sidering is usually large and is a small value,

(e.g., , , ), we set

(11)

Therefore, to maximize the overall RD performance is identical

to minimize the total RD cost, as

(12)

where
if

otherwise
(13)

B. Complexity Allocation in a GOP

Let and denote the global complexity factor and com-

plexity factor of temporal level , respectively. Another linear

relationship is observed between and for all frames in a

sequence. In Fig. 6, eight frames are tested with different se-

quences, resolutions, Qp settings and temporal layers. From this

figure, can be approximated by a negative linear function of

except when is very small. Hence, (12) can be rewritten as

. Considering in the com-

plexity allocation problem, (12) can be further simplified as

(14)

The constraint of the complexity allocation problem is that

the average value of for all images equals :

(15)

where denotes the number of frames in layer normalized by

the total number of frames in a GOP,

if

otherwise.
(16)

Finally, the complexity allocation problem is summarized as

a linear programming problem by

(17)
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Fig. 6. Relationship between RD costs and complexity factor in a sequence. Horizontal axis: complexity factor. Vertical axis: RD cost. (a) BlowingBubbles,

416 240, ; (b) FourPeople, 1280 720, ; (c) Tennis, 1920 1080, .

TABLE IV

EXAMPLES OF IN COMPLEXITY ALLOCATION

where and are defined in (13) and (16), respectively. Be-

sides, the lower bound in the constraint is set to be instead

of 0 to avoid error propagation due to skipping too many coding

partitions.

Eq. (17) can be addressed with Dantzig’s simplex method

[40], [41], with some examples of s given in Table IV. In sim-

plex method, the constraint conditions define a polytope as a

feasible region; and the algorithm searches all vertices of the

polytope to find the optimum solution. Hence, with a limited

number of variables ( is usually small), the number of ver-

tices is also limited. In such a case, the solution of our algorithm

is highly robust to the accuracy of RD dependency models. For

example, given , , we change the

linear coefficient from 0.3 to 0.4, then the solution of simplex

method is also kept the same to the result as given in Table IV.

In addition, due to a limited number of variables, (17) consumes

a very little computation time and thus its computational com-

plexity is negligible in a video encoder.

To further justify the RD improvement with complexity

allocation, seven 416 240 sequences (BasketballPass, Blow-

ingBubbles, BQSquare, Flowervase, Keiba, Mobisode2 and

RaceHorses) are tested with and Qps from 10 to

40. The improvement of RD performance is summarized in

Fig. 7, in terms of improvement in Bjontegaard average Peak

TABLE V

SIMULATION ENVIRONMENT

Signal-to-Noise Ratio (BDPSNR) and Bjontegaard average Bit

Rate (BDBR) [42]. From the figure, BDPSNR are increased and

BDBR are decreased for all sequences, hence, with complexity

allocation, the overall RD performance of our mode selection

scheme is greatly improved.

IV. EXPERIMENTAL RESULTS

To examine the performance of our method, it is implemented

on the recent HM reference software, HM8.0 [1], with the con-

figuration parameters summarized in Table V. Five 416 240
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Fig. 7. RD performance improvement by complexity allocation. Horizontal

axis: complexity factor . Vertical axis: (a) BDPSNR (dB) increase; (b) BDBR

(%) increase.

sequences, five 832 480 sequences, three 1280 720 se-

quences and three 1920 1080 sequences are tested with the

global complexity factor from 0.5 to 0.95. To measure the

improvement of our method, three evaluation criteria are used

in this section, including Time Saving (TS, %), BDPSNR and

BDBR [42].

A. Simulations With Random Access

The coding results for 416 240 sequences (BasketballPass,

BlowingBubbles, BQsquare, Flowervase and RaceHorses) are

shown in Fig. 8 with random access. From the figure, our

method achieves 20% to 60% complexity reduction in terms

of TS, with the global complexity factor from 0.5 to 0.95.

Nevertheless, the RD performance is less robust for sequences

with fast motion or complex texture, such as BasketballPass

and RaceHorses, when a smaller complexity factor is used.

Similar conclusions could be drawn from Fig. 9, in which

the coding results for 832 480 sequences (BasketballDrill,

BQMall, Keiba, Mobisode2 and PartyScene) are given with

random access, and relatively larger RD losses occur in Bas-

ketballDrill, BQMall, and Keiba, when is small. This fact

might be due to low correlations between neighboring blocks in

fast-motion or complex-texture sequences. In such a case, the

candidate mode selection based on neighboring prediction may

not work well. In spite of this, our method can still be employed

for these sequences, but with a larger global complexity factor.

It can be noticed that, from to , there exists

a large TS change, compared with the other s. The reason is,

there is at least one more mode tested when increases from

0.65 to 0.7. As shown in Table IV, with , the

increases from 0.95 to 1, which will result in one more mode

tested (i.e., the mode with ), based on (1). Another

fact is, there exists RD performance loss in the sequence BQ-

Mall when the global complexity factor increases from 0.55

to 0.6. The reason might be, due to error propagation, to check

more coding modes will not surely increase the overall RD per-

formance. In our method, the coding modes of a CU are pre-

dicted from neighboring CUs. Hence, there exists a probability

that the mode selection error in a CU may cause RD improve-

ment in the consequent CUs. Despite these facts, our method

still works well because we can still use to control the global

complexity and thus result in different complexity reductions

and RD performances to satisfy different user requirements.

In Figs. 10 and 11, the coding results for 1280 720

sequences (FourPeople, Johnny and KristenAndSara) and

1920 1080 sequences (BasketballDrive, BQTerrace and

Cactus) are shown respectively, with random access. Com-

pared with results of low resolution sequences in Figs. 8 and

9, more computational complexity is saved and the coding RD

performance is more robust, even for fast-motion sequence

BasketballDrive and complex-textured sequence Cactus. The

reason may be that, in sequences with larger video resolutions,

the neighboring CUs are more likely to have the same motion

or texture and thus neighboring prediction works better. As a

result, our method is more preferable to High Definition (HD)

sequences, which is the main target of state-of-the-art video

coding standard.

Finally, the average coding results for sequences with dif-

ferent resolutions are summarized in Table VI. From the table

and Figs. 8, 9, 10 and 11, our method can achieve significantly

more complexity reduction, on top of the afore-mentioned fast

mode selection algorithms enabled in the HM reference soft-

ware. For fast-motion or complex-texture sequences with low

resolution, the global complexity factor is suggested to be

0.7 to 0.8, which can result in about 30% complexity reduc-

tion in terms of TS, with negligible loss in RD performance;

and for the other sequences, especially for sequences with HD

or higher resolutions, can be set to be 0.5 or less, which can

achieve 50% or more computational complexity reduction, and

meanwhile the RD performance is almost intact as in the orig-

inal encoder.

B. Comparison With Low Delay and HM Integrated

Algorithms

To justify its efficiency, our flexible method is also tested with

HEVC low delay configuration. Three sequences of different

resolutions, including BlowingBubbles (416 240),Mobisode2

(832 480) and Johnny (1280 720), are tested with the global

complexity factor . The coding results are sum-

marized in Fig. 12, in terms of TS, BDPSNR and BR. Compare

with random access results in Figs. 8, 9 and 10, the simulation

results of low delay case can also achieve similar coding perfor-

mances with a flexible mode selection, which justifies the effec-

tiveness and robustness of our flexible method.

In the HEVC encoder, our flexible method is implemented on

top of several mode selection algorithms, including CBF based

early termination (CbfFastMode), early CU termination (Ear-

lyCU) and early Skip mode decision (EarlySkip), which have
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Fig. 8. Summary of coding results with 416 240 sequences and random access. Horizontal axis: complexity factor . Vertical axis: (a) TS (%); (b) BDPSNR

(dB); (c) BDBR (%).

Fig. 9. Summary of coding results with 832 480 sequences and random access. Horizontal axis: complexity factor . Vertical axis: (a) TS (%); (b) BDPSNR

(dB); (c) BDBR (%).

Fig. 10. Summary of coding results with 1280 720 sequences and random access. Horizontal axis: complexity factor . Vertical axis: (a) TS (%); (b) BDPSNR

(dB); (c) BDBR (%).

Fig. 11. Summary of coding results with 1920 1080 sequences and random access. Horizontal axis: complexity factor . Vertical axis: (a) TS (%); (b) BDPSNR

(dB); (c) BDBR (%).

been integrated in HM 8.0. The flexible method is designed in

the sense that it can be either used individually or combined with

these integrated algorithms for further more complexity reduc-

tion. To compare our flexible method with these aforementioned

algorithms (as well as the combination of the three algorithms,

Combine3), we give the RD performances of these approaches

with a similar TS, in Table VII. From the table, our flexible

method can achieve similar or at least not much worse coding

performances than these integrated algorithms, but meanwhile

support the flexibility in computational complexity reduction,

so that it can satisfy different user requirements.

In our work, the user requirement is expressed as a global

complexity factor . On the other hand, the TS behaves as a

monotonically decreasing function of , from Figs. 8, 9, 10,

11 and 12. Therefore, if the user requirement is represented by

TS, we can still find a function mapping from TS to , and

then employ our flexible method to reduce the computational

complexity to satisfy the user requirement.
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TABLE VI

AVERAGE CODING RESULTS FOR RANDOM ACCESS

Fig. 12. Summary of coding results with low delay. Horizontal axis: complexity factor . Vertical axis: (a) TS (%); (b) BDPSNR (dB); (c) BDBR (%).

TABLE VII

COMPARISON OF HM INTEGRATED MODE SELECTION ALGORITHMS AND OUR FLEXIBLE METHOD

V. CONCLUSION

In this paper, a novel mode selection and complexity alloca-

tion method is presented for HEVC. Based on mode mapping,

a flexible coding mode selection scheme is designed and imple-

mented on CU level; and based on linear programming, a com-

plexity allocation scheme is developed to maximize the overall

RD performance given a limited number of candidate modes.

The experiments demonstrate the effectiveness and robustness

of our method, which can satisfy different requirements with a

user defined global complexity factor.
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