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Flexible modeling and control of capacitive-deionization

processes through a linear-state-space dynamic

Langmuir model
Johan Nordstrand1 and Joydeep Dutta 1✉

While black-box models such as neural networks have been powerful in many applications, direct physical modeling (white box)

remains crucial in many fields where experimental data are difficult or time-consuming to obtain. Here, we demonstrate with an

example from desalination by capacitive deionization (CDI), how an existing physical model could be strengthened by combining a

general modeling framework with physical insights (gray box). Thus, a dynamic Langmuir (DL) model is extended to a linear-state-

space DL model (LDL). Results obtained show the new LDL model could incorporate general structural and operational modes,

including membrane CDI and constant-current operation. The formulation removes the need for direct measurements of detailed

device properties without adding model complexity, and MATLAB code for automatically implementing the model is provided in

the Supplementary Information. We conclude the new LDL model is widely applicable, offering great flexibility in calibration data,

and enabling prediction over general operating modes.
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INTRODUCTION

Although black-box models1, such as neural networks2,3, have
seen widespread success in recent years for modeling complex
systems using a lot of data2, physical modeling (white-box4)
remains a prominent tool in many fields where detailed system
knowledge is required while data for learning is difficult or time-
consuming to extract4. A gray-box model leverages the system’s
known physical behavior to effectively use available data in
generalized fitting methods, making it a trade-off between black
and white-box approaches4,5, and extensive theory and software
exist for systems that can be written in this form6. In this work, we
present an example from desalination modeling, showing how an
existing physical model can be lifted up to a gray-box form,
making it possible to leverage the existing framework to
significantly improve the model performance.
Desalination technologies7–11 such as reverse osmosis (RO)12–14,

are becoming increasingly important owing to the global shortage
of traditional sources of fresh water15–17. However, capacitive
deionization (CDI) is an emerging technology being increasingly
recognized for its efficacy of removing charged species especially
from brackish water and industrial effluents18–20. In CDI, water
passes through a cell comprising of two electrically conducting
porous electrodes separated by a spacer (Fig. 1)18,19,21,22. Upon the
application of an electric potential, the induced electric field pulls
out the ions from water and electro-adsorbs them on the
electrodes, thus producing desalted water. Structural parameters
affecting the desalination process include cell structure23–26,
electrode material23,27–35, and membranes (membrane CDI
(MCDI))36–38. Operational parameters influencing the desalination
process include the inlet ion concentration39 and ionic species in
the water37,40–45, as well as the flow rate46. The applied voltage is
another crucial parameter47, and common operating modes
include charging with a time-invariant voltage (constant-voltage

mode, CV48) or applying a voltage such that the current is uniform
throughout the charging phase (constant-current mode, CC49).
Because CDI is a technology strongly affected by material and

operational conditions, physics-based white-box models24,39,50–52

have been important for describing, predicting, and efficiently
optimizing the operations of CDI systems. One such model is the
dynamic Langmuir (DL)53–55 model, which has been shown to be
applicable to a wide range of CDI systems and could predict
device performance with respect to the applied voltage in CV
mode54, different flow rates54, ion concentration53,54, ion compo-
sition in multi-ion solutions55, and electrode asymmetry53.
Among the various modeling approaches in CDI, the decoupled

nature of the DL model53 makes it a solid base for constructing a
linear-state-space formulation to describe the CDI processes. In
this work, we have constructed such a formulation (termed the
LDL model) in order to take advantage of the existing framework
of such gray-box models and significantly improve the perfor-
mance of the simulations. Crucially, this also enables strong and
flexible control systems for operating the CDI devices.

RESULTS

The DL model describes the salt removal in CDI through the
macroscopic properties of adsorption and desorption strengths
(see the method section). The salt ions are assumed to adsorb on
voltage-induced sites, and the net adsorption is rapid at the
beginning of the desalination process but slows down as the
device approaches saturation.
Models can be valuable for CDI as they make it possible to

describe, predict, and optimize device performance. This section
shows the results when the derived LDL model is applied to
various systems and experiments from the literature, in order to
validate the model performance for describing and predicting CDI
processes.
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Specifically, this section will investigate three key aspects. First,
could the model describe and predict CDI performance under
various operating conditions? Second, could the model be applied
to general systems and operations, including MCDI devices and
operations with time-varying voltages such as the CC operation?
Third, could the state-space formulation enable a basic control
system to be implemented?

Modeling CDI

Hemmatifar et al.51 used a two-dimensional porous electrode
model to investigate CDI dynamics, and their work includes data
for effluent ion concentration over time, depending on the
applied voltage. For operation at 1 V, Fig. 2a demonstrates that the
LDL model gives a great fit to data in the desalination phase and
slightly underestimates the effluent ion concentration at the
beginning of the regeneration phase. The basic modeling
accuracy is similar to that of the mD model51, and the modeling
error could be attributed to electrode starvation (low concentra-
tions asymmetrically prolong the desalination phase) which is not
accounted for in the LDL model51. Crucially, the model accurately
predicts the variations in effluent concentration depending on the
applied voltage (Fig. 2b).
For completeness, note that the model can also predict the CDI

performance with varying flow rates (Supplementary Fig. 1, data
from ref. 54), and for batch-mode operations (Supplementary Fig.
2, data from ref. 56).

Wider applicability

Wang et al. investigated the performance of an MCDI system
operating in either CV or CC modes, to compare which operational
mode was most efficient48. The DL model applied to the data for
the CV operation is shown in Fig. 3a. There is a very good
agreement between the model and experiment for both the
effluent concentration (Fig. 3a) and the current (Fig. 3b) over time.
Wang et al. 48 also investigated CC-mode operation with the

same device. Because the same device was used for both
operations, the fitting from Fig. 3 and the input voltage from
Fig. 4b can be used the predict the MCDI performance during CC-
mode operation. (Fig. 4a). There is excellent agreement with
reported experimental results, which demonstrates that the LDL
model could be applied to CC-mode operations in MCDI and,
more generally, operations with time-varying voltages.
As a side note, the LDL model is flexible in that it allows for

fitting using only concentration, only current, or both. This is
demonstrated in Supplementary Note 4, where either only
effluent ion concentration is used for fitting (Supplementary Fig.
3), both current and ion concentration is used (Supplementary Fig.
4), or the current is used as input (Supplementary Fig. 5). Although
it is possible to fit using only ion concentration or current through
the device, using both could reduce overfitting as discussed in
Supplementary Note 4.

Control circuit

The linear-state-space form that has been developed in this work
has for the DL model makes it possible to implement a
proportional integral derivative (PID) controller to automate the
cell operation. Crucially, MATLAB provides support and great
flexibility for tuning such controllers based on the performance
requirements57. MATLAB code for creating the state-space model
and automatically tuning such a controller is provided in
Supplementary Note 1.
A tuned controller can automatically choose the input (μ, the

voltage in Eq. 11) to make the output value y approach some

Fig. 1 A schematic illustration of the working of a typical CDI
device. In a CDI device, water flows through a cell with two porous
electrodes. A voltage applied to these electrodes induces an electric
field removing ions from the solution by electrosorption on the
electrodes.

Fig. 2 The effluent ion concentration over time for a flow-
between CDI cell. The effluent concentration was extracted from
ref. 51. The ion concentration was normalized w.r.t. the inlet
concentration, whereas the time was normalized to the diffusion
time scale following Hemmatifar et al.51. The influent concentration
was 20mM KCl and the flow rate was 0.42 mLmin−1. a The LDL
model was fitted to the effluent concentration data at an applied
voltage of 1 V. b The experimental data for operations with 0.4 V,
0.6 V, and 0.8 V. c The model predictions, based on the fitting in a, for
operations with 0.4 V, 0.6 V, and 0.8 V.
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given reference signal r. This can reliably improve the operation’s
efficacy in various ways depending on the operating targets, such
as energy efficiency, desalination rate, a combination of these, or
the volume of produced water with a given outlet concentration.

For instance, the CDI device could reliably produce clean water
with the same specified quality (ion concentration) while requiring
a short time to reach this state (Fig. 5a). Similarly, the operation
could be either in CC (Fig. 5b) or CV mode (discussed in
Supplementary Notes 2 and 4). As previous works have argued
that CC mode is more energy-efficient than CV58, this already
means the controller can improve energy efficiency compared
to a CV operation. Moreover, any combination of CC and CV mode
could be achieved by choosing y= I/I0+ V/V0, for some chosen
constants I0,V0 (Fig. 5c). Because this operation combines the CC
and CV modes, it is at least as good as the best of the CC and CV
modes, and future work may find a combined operation (values
for I0,V0) that is even more energetically efficient for a given
system.

Fig. 3 The performance over time for an MCDI cell in CV mode.
This MCDI operation is based on data from ref. 48. The model fitting
was based on Eq. 11, with a CV voltage of 1.2 V and a constant
20mM influent ion concentration, whereas the effluent concentra-
tion and the current were the outputs. The graphs show
experimental data and model fit for a the cell effluent concentration
and b the current through the device.

Fig. 4 The performance over time of an MCDI cell in CC mode. For
this MCDI device, the data was retrieved from ref. 48 and the model
fitting was based on Eq. 11. a The cell effluent concentration over
time. b The applied voltage during the CC operation which was used
as an input for the fitting in a.

Fig. 5 Response from a CDI control system. A state-space model
was derived from Eq. 11 and the parameter fitting in Fig. 3. A PID
controller was automatically tuned to this system using the tool in
Supplementary Note 1 so that the model output y will approach a
supplied reference signal r. The graphs show simulated step
responses for the controlled CDI system, under various outputs y.
a The output is the concentration y= (c0− c)/c0 and the reference
value is r= 0.2. b The output is the current y= I/I0(I0= 100[mA]) and
the reference value is r= 1. c As an example of combined CC/CV
operation, the output is a combination of the current and the
voltage I/I0+ V/V0 (I0= 100[mA], V0= 1[V]) and the reference value
is r= 1.
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Note that the control system in Fig. 5 is meant as a proof-of
concept and does not include extra boundary conditions that
might be present in reality, such as an upper limit on the current
or voltage the cell and circuit can handle. However, MATLAB also
provides the option to set limits on the input through the Simulink
control systems interface (Fig. 6a, Supplementary Note 1). Thus, an
actuator (the part limiting the maximum voltage) connects to the
PID controller and the extracted model structure from Fig. 5.
Figure 6b shows that the complete control circuit works very

well for effectively and safely pursue operational targets. In this
example, the reference signal cref/c0= 0.5 makes the effluent
concentration quickly and reliably reach half the ion concentration
of the inlet solution. Crucially, the limit on the applied voltage
means the ion removal steadily begins to drop when the
adsorption is so large that the maximum voltage is no longer
enough to achieve the target ion removal rate. In effect, this
means the device operates as close as possible to the stated goals
without exceeding the critical input boundaries.
So far, the work has found a linear-state-space formulation that

basically allowed us to construct control systems that effectively
and safely operate toward generalized objectives and efficiency
metrics. Having these control systems intuitively means future
work could systematically investigate the general operational
modes to find faster and more energy-efficient operations. Also,
although this work uses a PID controller as a proof-of-concept,
notice that a strength of the linear-state-space formulation is that
it additionally provides a solid foundation for deriving even more
effective control systems in the future.

DISCUSSION

This work demonstrates that converting an existing physical
model to a gray-box form could have several advantages.

First, the new LDL model retains all the properties of the DL
model, such as predicting device performance with respect to the
applied voltage in CV mode54, different flow rates54, ion
concentration53,54, ion composition in multi-ion solutions55, and
electrode asymmetry53. Therefore, this work has focused on
showing data sets that are new in the LDL model, such as MCDI
systems, CC charging, and control systems. Future work could
focus on further expanding the LDL model by, for instance,
including Faradaic reactions and spatiotemporal resolution. Also,
to create a linear formulation, the LDL model has integrated the
main concentration dependence into the state-space constants,
which complicates the simulations of processes where the
variation in concentration is large. Thus, future non-linear control
systems have the potential to further improve control in such
processes.
Second, the existing framework for state-space models made

LDL more generally applicable and more flexible than DL. The LDL
model could predict the performance of MCDI systems without
increasing the model complexity. Also, it could predict the
performance under time-varying voltages. The model makes it
possible to fit and predict device performances without making
any direct measurements of device components, such as contact
resistance or cell structures, which could make the model easier to
implement for large systems where direct measurements could be
difficult to perform. Furthermore, the model allows fitting to the
initial state, thus circumventing the need for the calibration
experiments to start at equilibrium. This could be valuable if it
takes time and several cycles for the CDI system to reach a stable
operation after the first cycle is initiated, meaning that erratic data
at the beginning of the experiment could be ignored when
providing data to the model for fitting. In summary, we are excited
to learn that the CDI process has fundamental underlying
principles that make it possible to describe a wide variety of
operations and cell structures even with limited device-specific
knowledge, and enables powerful system-identification and
control methods.
Third, software exists that automatically fits state-space models

to data. In this work, the system-identification and control systems
toolboxes have been used in MATLAB. These made it possible for
us to develop MATLAB programs for automatically fitting and
predicting with the LDL model, as well as constructing control
systems. These programs have been provided in Supplementary
Note 1 to make CDI modeling more accessible to researchers.
It is hoped that the work presented here could aid in modeling

and controlling complex CDI process while inspiring researchers in
other areas where physical modeling is prominent to try to
improve their modeling process by incorporating elements from
gray-box modeling.

METHODS

The idea behind this work is that the decoupled nature of the DL model53

makes it a good candidate for constructing a linear-state-space formula-
tion, and such formulations are well-adapted for system-identification and
control.
As a background, a compressed version of the theory behind the DL

model is derived at the beginning of the methods section. The full
derivation can be seen in refs 53–55,59,60. Mainly, a linear-state-space
formulation version of the DL model (LDL) is derived. Also, we describe
how the LDL can be used in system identification for parameter fitting and
control systems for achieving the desired system dynamics.

The DL model

The basis for the DL model is the Langmuir isotherm61,62. In the Langmuir
isotherm, gas molecules adsorb on a surface, and the fractional surface
coverage, θ, changes at a rate depending on the number of free sites,
(1−θ), the partial pressure, pA, and the adsorption/desorption rate
constants, kads and kdes (Eq. 1). The Langmuir isotherm has been used for
explaining adsorption in liquids by exchanging the partial pressure with

Fig. 6 PID system for CDI. a The Simulink model for the LDL control
system. The Model Process determines how the system is affected
by the applied voltage, as extracted from the data in Fig. 3. The PID
component determines what voltage to apply depending on the
output (e.g., the effluent concentration), and the actuator limits the
applied voltage to 1.2 V. Also, the PID component contains an anti-
windup feature to improve overall performance if the applied
voltage reaches its maximum value during parts of the process.
b The simulated effluent concentration when the operator applied a
reference signal cref/c0= 0.5, meaning the device is supposed to
produce outlet water with half the concentration of the inlet water.
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the ion concentration c61, and this formulation has been used to model the
concentration dependence of the equilibrium adsorption in CDI63–69.

dθ

dt
¼ kadspA 1� θð Þ � kdesθ (1)

To construct a formulation that can incorporate the operational
parameter in CDI electro-adsorption, several aspects should be noted.
The number of sites can be interpreted as voltage-induced sites S, which
depend proportionally on the applied voltage V, rather than physical sites.
We will not consider electrode redox reactions, so the intended voltage
operation range is in the non-Faradaic (V < 1.2) regime. Also, the
fundamental mechanism during the electro-adsorption is the storage of
charged species, σ, onto these sites. Thus, Eq. 1 can be simplified to Eq. 2,
where subscript “ads” denote the corresponding adsorbed quantities (Eq.
2).

dσads

dt
¼ kadsσ S� σadsð Þ � kdesσads (2)

Ideally, the number of charged species, σ, would relate to the ion
concentration, c, through the ion valency, z, as σads= zcads. However, the
effective number of surface sites available for ion adsorption, S′, is typically
lower than the sites for charges (S′= S−β, where β is a constant at a given
initial concentration) (Eq. 3). This could be due to several reasons, but the
main factor considered here is co-ion expulsion; that is, the blockage could
be attributed to charge storage leading to co-ions being repelled from the
surface rather than counterions being attracted. The magnitude of the
blockage can be attributed to charges on the electrodes being
neutralized70 (reduces S by β0, a constant) and a passive presence of
ions close to the pore wall before the CDI process starts (reduces S by β1c0,
where β1 is a constant and c0 is the initial concentration), so that β= β0+
β1c.

dcads

dt
¼ kadsc S� β0 � β1c0 � cadszð Þ � kdescads (3)

In experiments, typically the effluent concentration of the cell is
measured rather than the number of ions adsorbed on the electrodes.
Consider a uniform, well-stirred container (CDI cell) with a cell-free volume,
vc. At any given time, all ions inside the cell are either adsorbed on the
electrodes or free in the solution (total molar content at time t: vcc(t)=
vccads(t)). Over a time period dt, the molar influx of ions (concentration cin,
water volume flow Q) is Qcindt while the outflux is Qcdt. Thus, a formula for
the time-varying molar content inside the cell can be represented by Eq. 4,
which can be rearranged into Eq. 5 when going to the limit of small dt.

νcc t þ dtð Þ þ νccads t þ dtð Þ ¼ νcc tð Þ þ νccads tð Þ þ Qcindt � Qcdt (4)

dc

dt
¼ �

dcads

dt
þ

Q

νc
cin � cð Þ (5)

State-space formulation

Linear-state-space formulations are desirable because they are relatively
easy to use for system identification and control. They can be generally
written as in Eqs. 6 and 7. Here x is the vector of internal states (typically
c cads σads½ �T in CDI), μ is the vector of system inputs (how the operator
affects the system, typically [Vcin]

T, the voltage and inlet concentration), y is
the vector of system outputs (what is measured, typically [cI]T, the outlet
concentration and the current through the CDI device), and A, B, C, D are
matrices.

_x ¼ Ax þ Bu (6)

y ¼ Cx þ Du (7)

Assuming the variation in the cell concentration during the experiment
is not large enough to significantly change the adsorption/desorption rate,
the concentration c in Eq. 3 can be exchanged for c0 (Eq. 8).

dcads
dt

¼ kadsc S� β0 � β1c0 � cadszð Þ � kdescads

� kads S� β0ð Þc0 � kadsβ1c
2
0

� �

� kadsc0z þ kdesð Þcads

¼ Ka � Kbcads

(8)

The parameter Ka depends on one term that is proportional to the
applied voltage and one that arises from unideal charge efficiency
(Ka ¼ maxð0; KadsV � KΛÞ, where Kads and KΛ are constants corresponding
to the terms in Ka with S or β0 and β1, respectively). Note that, the voltages
applied to desalinate are typically such that, Ka= KadsV−KΛ, can be used53

(otherwise there would be no ion removal). In the regeneration phase,
linearizing by directly removing the “max” induces a small error at 0 V
discharge, unless the charge efficiency is high, which could be addressed
by raising the discharge voltage during the regeneration phase while
extracting the calibration data, or by fitting the model to data from the
desalination phase only. Following the normal rules for matrix multi-
plication and the definition above, Eq. 9 summarizes the results from Eqs.
4, 7, and 2. Note that σ= zc (charge neutrality is assumed in bulk water)
and that Q � Q=νc .
The expression in Eq. 9 can be rewritten in several different forms

depending on the choice of input and the type of operation (elaborated in
Supplementary Notes 2 and 3). For instance, it can be adapted to batch-
mode operations or rewritten to simplify parameter fitting when only
concentration or current data is available.

_c

cads

σads

1

2

6

6

6

4

3

7

7

7

5

¼

�Q Kb 0 0

0 �Kb 0 �KΛ

0 0 �Kb 0

0 0 0 0

2

6

6

6
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3

7

7

7
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c

cads

σads

1

2

6

6

6

4

3

7

7

7

5

þ

�Kads Q

Kads 0

zKads 0

0 0

2

6

6

6

4

3

7

7

7

5

V

cin

� �

(9)

Note that depending on the available data the output state can be
chosen to incorporate either the effluent ion concentration or the current
through the device, or both. Assuming the internal states and inputs in Eq.
9, only using the effluent ion concentration as output corresponds to y= c
(C= [1000], D= [00])). We define the parameter relating the change in
charge concentration to total current as, η ¼ Fzνc ¼ FzQ=Q, where F is the
Faraday constant. Then, using the current passing through the cell
corresponds to, y ¼ η _σads (C ¼ 0 0� ηKb 0½ �;D ¼ η Kads 0½ �). Finally, using
both the above formulations, we can simplify to y ¼ c η _σads½ �T .
Normalizing the model states might increase the stability of the fitting

process (Eq. 10). Thus, we introduce the normalizations c ¼ c � c0ð Þ=c0 ,
cads ¼ cads=c0, σads ¼ σads=c0 , Kads ¼ Kads=c0 , and Kb ¼ Kb . Here, c; σads;
and cads are unitless, while the unit of Kads is s

−1V−1 and Kb is s−1. Notice
that Kb is supposed to be the same as Kb because the normalized
parameters come from Eq. 8 divided by c0. Thus, this unchanged
parameter’s altered notation just stresses that Kb has the same unit as
Kads with respect to concentration. Also, let η ¼ ηc0, be the factor that
relates the normalized variation in the concentration of charges to the total
current passing through the cell.
Because this work will move towards creating a controller, notice that a

typical CDI operation will run in either continuous mode or batch mode,
which prevents the controller from freely choosing the inlet concentration.
This means a formulation with only V as input would be more appropriate
for creating the controller. Thus, in Eq. 10, we have additionally assumed
the inlet concentration to be constant (cin= c0), which removes the
concentration from the input matrix to make the voltage the sole system
input.

_c

cads

σads

1

2

6

6

6
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7

7
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¼

�Q Kb 0 0

0 �Kb 0 �KΛ

0 0 �Kb 0
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7
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cads

σads
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6
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7

7
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þ

�Kads

Kads

zKads

0

2

6

6

6

4

3

7

7

7

5

V½ � (10)

Furthermore, reducing the number of unknown parameters could
improve stability and reduce overfitting. Note, therefore, that if the charge
efficiency is high, such as by utilizing ion-selective membranes71,
increasing the charging voltage39, treating the electrodes71, or raising
the discharge voltage72, this simplifies the model formulation (Eq. 11). Note
also, that if a CV charging is used and only effluent concentration data are
supplied to the model (data for the current through the cell is not included
in the fitting), then Eq. 11 must be used instead of Eq. 10 since the
contributions from the KΛ and Kads parameters become indistinguishable
(not identifiable).
Regarding the output states, in Eq. 12, y1 ¼ c thus corresponds to the

normalized effluent concentration, whereas y2 ¼ η _cads corresponds to the
current through the cell at high charging efficiency. Note that if the cell-
free volume vc is measured (and thus known), Kads and Kb are the only
unknown parameters. However, the model can be implemented without
measuring vc separately by declaring Q as a fitting parameter in the
provided program (it is assumed that the volume flow rate, Q, is known, so
vc is uniquely determined by the relative volume flow rate, Q). The
program will then find the value of Q that yields the best fit to data,
considering both the direct dependence on Q in Eq. 11 and the indirect
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dependence on Q through η in Eq. 12.

_c

cads

" #

¼
�Q Kb

0 �Kb

" #

c

cads

� �

þ
�Kads

Kads

" #

V½ � (11)

y1

y2

� �

¼
1 0

0 �ηKb

� �

c

cads

� �

þ
0

ηKads

� �

V½ � (12)

Implementation

For a purely physical model, the model structure and the model
parameters are either known or calculated in specific experiments. In
contrast, when constructing the gray-box model, we will derive a physical
structure where unknown model parameters are extracted through
generalized comparisons with time-series data.
Here, The LDL model was implemented in MATLAB73 using the system-

identification toolbox; specifically, the linear gray-box estimation (grayest)
was used6. Such modeling requires the user to specify the input μ, the
reference data y, and the A, B, C, D matrices. Based on that the unknown
parameters are automatically extracted.
A control system was implemented in MATLAB using the control system

toolbox57. The program takes as input a calibrated model, extracted with
the system-identification software, that can be implemented to auto-
matically tune a PID controller.
In Supplementary Note 1, the programs and all data used are disclosed.

The program files include a “data” folder with all the data sets used in this
manuscript, a “files” folder and a “main” script for running the system-
identification program, an “equation” folder with scripts describing
different implementations of Eq. 8–10, and a “control” file for tuning the
controller. An instruction document is also provided to facilitate learning
and implementing the program for simulation.

Experimental validation

The derived model was validated solely using experimental data from
reports available in the literature. These were chosen so that CDI/MCDI,
continuous/batch mode, CV/CC charging were represented. In addition,
data from the literature were chosen that reported multiple data sets,
showing different operational modes, such that the model could be used
for fitting one data set while predicting the others. Note that both the
extracted data and the program used to implement the model are
provided in Supplementary Note 1.
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