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Abstract controlled execution of potentially incompletely specified
and dynamically changing complex activities.

While today’s workflow management systems are well The work we report on in this paper was carried out in
suited for the controlled execution of completely specified the context of the WASA project, which aims at providing
processes, support for dynamically changing processes isflexible workflow support for non-traditional applications,
rather weak. However, new applications in the business do-mainly in the scientific domain [20]. This paper is organized
main and in non-traditional domains like the natural sci- as follows. Section 2 discusses related work on process and
ences or laboratory environments require support for flexi- workflow modeling. Section 3 provides a graph-based ac-
bility like user interventions in workflow executions and dy- tivity meta model and a model to describe activity instances.
namic modifications. Based on an activity meta model and Section 4 discusses a sample application process, which re-
an activity instance model, this paper discusses dynamicquires flexibility in modeling and executing complex activ-
modifications and user interventions and shows how theirities. In Section 5, flexibility properties of workflow man-
implications to activity models and to concurrent and fu- agement systems are described in terms of supported opera-
ture activity instances can be described. Finally, we show tions. Section 6 discusses how dynamic changes of activity
how the basic concepts presented in this paper are realizedmodels are supported by the WASA prototype. Concluding
in a prototypical implementation. remarks complete this contribution.

2 Related Work

1 Introduction Representations of application processes to be used by
Today’s workflow management systems have been develworkflow management systems to control the execution of
oped for modeling and controlling the execution of appli- workflow instances are known as workflow models. The
cation processes, mainly in office environments [4, 17, 14, structure of workflow models is defined by workflow meta
19]. Since the target processes are typically completelymodels, which define the components of workflow models
specified and executed in a routine fashion, these systemsnd their relationships. There is not a universal workflow
support quite well the modeling and controlled execution meta model which is generally agreed upon — the variety of
of completely specified processes. On the other hand, thevorkflow management systems in the market today is re-
support for incompletely specified or dynamically changing flected by the number of different workflow meta models.
processes is rather weak [3]. However, new applications inWe now briefly review important approaches to modeling
the business domain and applications in non-traditional do-and executing workflows and discuss how these are related
mains, e.g., in the natural sciences or in laboratory or man-to our work.

ufacturing environments, require enhanced flexibility, like  IBM’'s workflow management system FlowMark [9, 12]
support for dynamic modifications [22, 20] or controlled uses process graphs to define workflow models. In Flow-
user interventions. In [18], a number of questions to en- Mark, each workflow model is specified by a directed graph,
hance the applicability and flexibility of workflow systems whose nodes represent activities and whose edge set is par-
were raised, including suitable languages and methodolo-itioned in a set of control flow edges and a set of data flow
gies for flexible and dynamic modeling of workflow activ- edges. Control flow edges represent potential control flow,
ities. In this paper we address some of these issues. Irdefined by transition conditions, which are predicates eval-
particular, based on an activity meta model we propose auated at run time. Activities may have typed input and out-
set of dynamic change operations and user intervention opput parameters, and data flow edges connect parameters of
erations and discuss how these can be used to support thdifferent activities. FlowMark is based on a separation of
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a workflow’s built time and its run time. Workflows are mantics, it is shown that workflow specifications described
modelled during built time and executed during run time. by statecharts and their partitioning to be used for their dis-
In particular, workflow models may not be changed after tributed execution are equivalent [24].

built time. Therefore, support for flexibility is rather lim- The work of Craven and Mahling [2] stems from the
ited; e.g., dynamic modifications of workflow models are area of computer supported cooperative work. In particu-
not supported by FlowMark. In addition, users may not lar, they analyze the relationship between project manage-
change control flow of active workflow instances, e.g., by ment and workflow management. Fundamental common-
stopping or skipping certain activities. Since this is rather alities between the two areas are discovered, namely coor-
a limitation of the FlowMark system than of the workflow dination requirements, dynamic maodifications, and re-use
modeling language and since graph-based representationsf activity models. While the need for dynamic modifica-
of workflow models are intuitive, the activity meta model tion is identified, Craven and Mahling do not elaborate on
presented in this paper is based on process graphs and ethis aspect. Instead they put the main focus on the specifi-
hances them to support flexibility in activity modeling and cation and decomposition of tasks and goals, on maintain-
execution. ing domain knowledge and on coordination requirements

Another important category of workflow approaches use ©f agents. Reichert and Dadam present ADRE;T an ap-
enhanced Petri-nets to model workflows. The Funsoft- Proach for controlled dynamic modifications of workflow
approach [5] is based on higher Petri-nets. An interestingSPecifications based on non-nested, symmetric workflow
property of this approach is that Funsoft nets can be usedSPecifications [15].
from early phases of business process modeling until later As indicated above, our approach to modeling and exe-
phases of workflow modeling and execution. In a recent pa-cuting flexible workflows is based on nested process graphs,
per, the suitability of Funsoft nets for enhancing the flexibil- Similar to those used in FlowMark. Our formalism extends
ity of modeling and executing workflows is investigated [6]. that approach to explicit modeling of activity modeling op-
In that contribution, approaches to enhance flexibility based erations, activity instances, and operations to allow users
on modeling sub-nets during executions and “flexibility by t0 intervene in system-controlled activity instances. By in-
variants” are discussed, where dynamic modeling is gov- ¢luding modeling operations (like adding or deleting activ-
erned by analyzing activity transitions, considering personsity models), we are able to specify which dynamic model-
and data involved. Ellis et al. [3] use more traditional Petri- iNg operations are valid in which state of an activity execu-
nets to specify workflows. In particular, they present a for- tion. Thereby we aim at providing an environment which
malism to cope with dynamic modifications, focusing on SUPPOrts users in executing complex activities in a flexible
structural dynamic changes of procedures, like the concur-manner, involving controlled user intervention to allow flex-
rent execution of formerly sequential steps. The changegble reaction to unforeseen events and dynamic changes of
considered are restricted to isolated procedures, i.e., thectivity models.
implications of performed changes to other activity mod-
els or activity instance are not investigated. The Mobile 3 Basic Model
approach uses programming language constructs to spec- _
ify workflows [11], and workflow models are represented " géneral, meta models describe how models are struc-
by programs, written in the Mobile language. This project tured. In our context, an activity meta model describes how

emphasizes on modularity of workflow aspects and Systemactivity models are built; using activity models, workflow
development rather than on flexibility issues. management systems control the execution of activity in-

. . . . stances.
The statechart formalism is an extension of finite state

machines; it was developed by Harel [7] for specifying . I
the behavior of reactive technical systems; to describe3'1 Modeling Activities

these systems, statecharts specify states and state transitiol® model application processes as workflows with the aim
while accompanying activitycharts describe events that mayof controlling their execution, a suitable formalism has to
lead to state transitions. Provided with a formal seman- be provided. In this section, we present an activity meta
tics and with a tool (Statemate [8]), statecharts are usedmodel which is based on process graphs. In general, ac-
in designing technical systems, like remote control sys- tivities are units of work as percepted by the modeler. Ac-
tems or car radio systems. The Mentor project [23] makestivities are specified by activity models, and each activity
use of state- and activitycharts to model workflows. This model includes a description and the types of the data used
project emphasizes on scalability and correctness of dis-and generated by it. Activity models are maintained in an
tributed workflow executions; it uses statecharts to parti- activity model library, represented by a 9¢t= {i|: > 1}

tion workflow models into smaller units to be processed in of activity models. This library is partitioned in a st

a distributed environment [23]. Provided with a formal se- of atomic activity models and a sét of complex activity
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agents are skilled and competent to perform requested activ-
ities. Since this paper is centered around flexibility issues,
it does not elaborate on a role concept [12].

Activity models are created using the following set of
activity modeling operations:

e CreateAtomic(i): Create an atomic activity model
i, including the definition of persons and application
programs to performi and sets of input and output
parameters with their respective data types.

e CreateComplex(k): Create a complex activity
modelk, including the definition of input and output

parameters.
Figure 1. Nested Structure of Complex Activ- ) o
ity Model o AddActivity(j,k): To a given complex activity

modelk add an (atomic or complex) activity modgl
as a component activity model, assuming bptmd

- . ) ) . k are already existing.
models. As indicated by this terminology, atomic activity

models do not have an internal structure, while complex ac-  ® Del Activity(j, k): Delete component activity model

tivity models do have an internal structure: Each complex
activity model consists of a set of (atomic or complex) ac-

j from complex activity modek. This involves the
deletion of edges adjacent fan k.

tivity models and control flow and data flow constraints.
Activity models are represented by directed graphs, ac-
tivity model graphs, whose nodes represent activity models
and whose edges represent relationships between activity o DelEdge((i, 7), k): In k, delete an edge— ;.
models. An atomic activity model is represented by a graph - )
with a single node. The activity model graph of a complex N summary, an activity model is represented by a nested
activity modelk contains multiple nodes, component activ- directed graph whose nodes are activity models and whose
ity models, which may be related to each other by directed edges represent control flow and data flow constraints.
edges, representing control flow and data flow. For each ac- ) o
tivity modeli € M, the list of input parameters is denoted 3.2 Modeling Activity Instances
by ip(i); op(i) refers to the list of its output parameters. We Activity instances correspond to real world processes, in
assume that a data flow edge can only connect parameterhich typically a number of persons and software systems
of sub-activity modelg and;j of a complex activity model  are involved. In general, an activity instance is created
k if there is a control flow path (consisting of one or more whenever a complex or an atomic activity is started. Ex-
control flow edges) connecting the two and the types of the ecutions of activity instances are controlled by workflow
parameters connected are compatible. We use the bundlenanagement systems, using activity models. In this sec-
construct [12] to model parallel execution of a number of tion we provide a representation of activity instances, based
activity instances of a given activity model, whose quantity on operations to manage them.
is evaluated at run time. In this paper we do not consider  Activity instances are executed according to execution
cyclic structures in activity models. rules, described as follows. Consider an activity instance
Figure 1 shows a nested activity model graph for a com- based on a complex activity model The execution starts
plex activity 1. Complex activity modeB is a component by retrieving the activity model graph from the activity
activity model of1, the other component activity models are model repository. All component activity models bf
atomic. (Component activity models are connected to theirwhich do not have any incoming edges are retrieved and
parent by dotted lines; control flow edges are represented byinstantiated, and the input parameters are set up as defined.
solid arrows; data flow constraints are not displayed explic- After the termination of a component activity, its output pa-
itly). Each activity model can be used in multiple complex rameters are used to evaluate the transition conditions of its
activity models. In Figure 1, e.g., activity modehppears  outgoing edges. Now, component activities for which all
in complex activity modeld and3. transition conditions of incoming edges evaluate to true can
We assume that each atomic activity model can be exe-be performed. This process iterates until all component ac-
cuted by an agent, typically a person or a software systemtivity models of k are executed or will not be executed in
or a person using a software system [17]. We assume thathat particular case.

e AddEdge((i,j),k): In k, add an edgé — j, where
i andj are component activity models bf
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StartActivity triggers the state transitiontianning. Finally,
TerminateActivity brings the activity instance in stadiene
(Statesstoppedandskippedwill be discussed shortly.)

done

.

running stopped

4 Sample Application

skipped Our example is based on a business process in manufactur-
ing, similar to one discussed in [6]. Consider a company
which manufactures complex products. These products are
assembled from numerous parts, some of which are manu-
Figure 2. State Transition Diagram. factured locally, while others are supplied by remote com-
panies. A common activity in these settings is processing a
request by a customer: “When and at which price can com-
plex productP be delivered?” To respond to this request, a
complex application process is started, in which numerous
persons located at different sites are involved.

Informally, this process can be described as follows: As-
sume a customer requests the earliest shipping date and the
price of a complex produd?. When the request is submit-

i

An activity instance based on the activity model depicted in
Figure 1 is characterized as follows: After retrieving activ-

ity model graph 1, an activity instance for component ac-
tivity model 2 is instantiated and executed. Assuming 2 to
be an atomic activity, the system determines an application
program and a person to execute that activity. On its termi-

nation, the activity provides output parameters which may ted, first the sub-parts df have to be determined, including

be used to evaluate the transition condition of control flow their respective sub-parts. The availability of these parts has

edge2 — 3. Assuming the trans_ltl_on_condmon evaluates to_ to be checked next. For each part not available in stock, the
true, the system creates an activity instance based on activ-

ity model 3, during which activity 2 is executed, followed respective supplier hé.ls to be determ|r_1ed, a_nd reques_ts _have
: o - to be sent to determine when at which price the missing
by the concurrent execution of 4 and 5, which in turn is

L o o parts are available. After collecting the responses from the
followed by activity 6. This brings complex activity 3 to an suppliers, the local manufacturing capacities are analyzed
end, followed by the execution of 4, which in turn completes PP ' gcap yzed,

o ) .~ and a time slot for the (potential) production of the complex
complex activity 1. In the remainder we use the term "activ- (p )P P

ity 4’ to indicate activity instance based on activity model product is reserved. Finally, the date of potential shipping

The following activit instance operations are available: is calculated. To respond to the initial request, this informa-
9 y P " tionis passed to the customer, who by then decides whether

e CreateActivity(j): This operation instantiates an t0 order the complex product. If the customer decides to or-
activity according to activity model; the identifier der the product, the requested parts are effectively ordered
of the created activity is returned, let's sgy and the reserved time slot for manufacturing is confirmed.

If the customer decides to cancel the order then the requests

e StartActivity(i;): Starting an atomic activity in-  for the sub-parts have to be cancelled, and the time slot for
stance involves setting up the input parameters andmanufacturing the product is no longer reserved.
the application program to execute it. If the activity
does not require human interaction then the activity 4.1 Modeling and Executing Sample Process

instance is executed under control of the workflow sing the activity meta model presented above, the applica-
management system. If a person is involved in the tjon process can be specified by a complex activity model
execution of the activity then a work item is put on  gequest Delivery Datas shown in Figure 3. The top-level
the work item list of that person, and the human exe- 4jyity model consists of five activity models (one of which
cutes the activity after selecting the work item. is complex), executed sequentially. After determining the
sub-parts of the complex product requestetérmine sub-
parts), the availability of each of them is checked and times
of availability are determinedcheck avaijl. Since this ac-
tivity has to be performed for each sub-part, whose number
is not known before the activity starts, we use the bundle
Activity instance operations trigger state transitions of ac- construct to model it; the number of parallel instances of
tivity instances, displayed in a simple transition state di- check avails given by the number of sub-parts of the com-
agram using nested states (cf. Figure 2). An activity can plex product, calculated during the executiordetermine

be either in statepenor closed indicating not completed  sub-parts

and completed, resp. In particular, when an instance is cre- Checking the availability and calculating the time of po-
ated using the CreateActivity operation, it enters siaite tential arrival of the sub-parts involves the following steps:

e TerminateActivity(i;): When an atomic activity
completes or no more sub-activities of a complex ac-
tivity have to be performed, an activity instance is ter-
minated.
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nation of the sub-parts of produét is markeddetermine
sub-parts(P)n Figure 4. Creating and starting the top-level
activity instance is followed by creating and startofeter-
mine sub-parts(RAfter its termination, a bundle consisting
of instancesheck avail(x)x € {q,r, s}, is started. Assum-
ing ¢ is in stock and-, s are not,check avail(qterminates
immediately aftesub-part available(g) However,r ands
have to be ordered. After determining the suppliersafd

s and requesting and receiving the respective delivery in-
formation, the bundle-activity instancleck avail(Pxom-
pletes. On the top-level, calculating the arrival date and re-

determine™  (Z — ) |/ calculate check inform serving local capacities for the productionf®fand inform-
sub-parts(P) ) avail date(P capacity(P) customer (C) . PR
S N@ailP) S-S ing the customer completes the complex activity instance.

determine " check N
sub-parts avail
4 N
4 |
/7
sub-part
available

determine
supplier

. -~
request
info

Figure 3. Sample Activity Model.

4.2 Flexibility Requirements

|

|
no The application process discussed above simplifies real

Qallablelr pplier() infolr) reitn) world processes considerably. There is a myriad of un-
no i } foreseen events which may lead to failure of the applica-

! tion process. These events cannot be modelled completely
before activity instances start. Sample unforeseen events
which might occur in our setting can occur on the side of
Figure 4. Sample Activity Instance. the customer, the supplier, and on the side of the company
performing the application process. We discuss sample ex-
ceptions for these participants in turn.

In sub-part availablewe check if the sub-part is in local

stock. If so, no further requests have to be made, and thatSUPPlier - So far we have assumed that each supplier an-
activity instance terminates. If it is not in stock (indicated SWers timely to a request and is able to deliver requested

by edge labeho) then the supplier has to be determinated Parts within acceptable time spans at acceptable prices.
(determine suppliér followed by requesting the earliest However, if suppliers do not answer.tlmely, the application
date for shipping and the price of the missing pagiest process gets stuck, and the system is no longer able to con-

info). This activity is implemented by sending a request to trol its e_xecution._ What may h_appen in this situation is_ that
the respective supplier. When an answer is receiiembive ~ PEOPI€ involved in the execution of that process decide to
resulf), that activity instance terminates. When all activity StOP the activity and to continue it on a manual basis, which
instances of the bundle have terminated, the earliest avail-Provides the required flexibility, but without system control.
ability date of all parts neededdlculate avail datp The  Besides notresponding, the supplier may not be able to de-
local manufacturing capacities are analyzed next, and a timeVer the requested part in an acceptable time span. In this
slot for the potential production is reserved. Finally, the cus- 2S¢ the user may decide to consult the customer whether a
tomer is informed of the delivery date of the product and its later delivery date is acceptable. If so, the activity execution
cost. continues as specified by the activity model. In addition, the
Notice that the description of the application process as User may_start other aqtiyity instancgs to determine alterna-
presented above is rather simplified. Besides higher com-_t'Ve Squ"?rS' Ifan _a(_:t|V|ty mod_el suitable for this purpose
plexity, in real settings situations in which the process has Is present n the a<_:t|_V|ty model I|prary then the_ user Sh"?‘". be
to be adapted to changes of the environment are likely tosuppor_ted in localizing and starting it. If a suitable a_lctlwty
occur frequently, e.g., due to unforeseen behavior of Cus_model is not present then the user may want to define such
' X an activity model. The newly created activity model will

tomers, suppliers, or to changes in company policies. Thisth b ilable in fut tvity inst
scenario provides a setting in which we will discuss flexi- en be available in future activity Instances.

bility issues in activity modeling and execution. Customer Customers are also a potential source of non-
We now discuss an activity instance of activity model anticipated behavior. For instance, if and when a customer
Request Delivery DateThe activity instance created when decides to cancel an order, the corresponding activity has
a customer” requests a produd?, consisting of sub-parts  to be cancelled, followed by undoing effects of the activity
q,r, s is shown in Figure 4. To distinguish activity instances like undoing the reservation of sub-parts or the reservation
from activity models, we add data information to graphi- of time slots for manufacturing. In another scenario, a cus-
cal representations, e.g., the node representing the determitomer provides a latest shipping date which then may lead
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to prematurely stopping the activity instance during execu-5.1.1  SkipActivity

tion, if one or more sub-parts are not present in time and no Activities which are in stateit can be skipped, which trig-
alternative supplier can be found. Users shall be able to stopyers a state transition kipped(cf. Fig. 2). Hence, an ac-
activity instances which are no longer needed. This may betjity can be skipped only before its execution starts. Skip-
followed by starting thenform customeactivity and billing  ping activities allows users to save time and effort for activi-
the customer for the work that was performed on his behalf. ties which are not needed during a particular case. However,

skipping activities presents data-related issues, as shown in
Company Besides changes in the market environment of the following example.
the company, i.e., with suppliers and customers, there may Consider the activity model shown in Figure 5. Skipping
be changes in the policies of the company, e.g., due toactivity %, for instance, results in startiigmmediately af-
re-engineering projects, aiming at optimizing application ter j terminates. If there is a data flow defined frénto /
processes. Changes include parallel execution of activitiesandk is skipped then data needed for the executiohief
which have been executed sequentially formerly. In general,not available. In addition, transition conditions of the outgo-
changes in the organization of the company typically result ing edges of the skipped activity cannot be evaluated due to
in dynamic changes of the corresponding activity model. missing data. To cope with these issues, whenever an activ-
Once the change is applied, all future instances of that ac-ity is skippable, information on how to provide data needed
tivity will be effected by that change. Another form of non-  in the remainder of the complex activity has to be defined in
anticipated behavior occurs if the user learns from externalthe activity model. Possible solutions are providing data by
sources (e.g., by a phone call or by documentation material)default values, entering data manually [15] or mapping data
that a supplier is able to deliver the missing part timely. In parameters, i.e., using data provided by previously executed
this case, requesting the date and receiving the result do noctivities. As an example, consider activjtgets customer
have to be executed. Since the shipping information is al-data whilek validates the data and provides the validated
ready available, the activitieequest infaandreceive result  data to activityl. Hence, customer data flows from activi-
can be skipped in that situation. Hence the user should beiesj to k and fromk to 1. If the user decides that checking
able to select activities to be skipped in the particular activ- the data of a particular customer is not needed then he or she
ity instance. may skip activityk. In this case, the output parameterjof

can be mapped to the input parametel, @ind the customer

5 Functionality to Support Flexibility information is passed directly frognto [.

We now identify a set of operations, which a workflow man- 5.1.2  StopActivity

agement system has to support in order to satisfy the flex-Running activities can be stopped using the StopActivity
ibility requirements discussed in the previous section. In operation. In terms of states of activity instances, this op-
general there are two types of flexibility operations, namely eration triggers a state transition frammningto stopped
user intervention operations and dynamic modification op- There are different forms of stopping an activity. The first
erations. With user intervention operations, users may ac-form corresponds to stopping an activity and resuming ex-
tively intervene with the system-controlled execution of ac- ecution with the next activity, as defined by the activity
tivities, i.e., by changing the predefined control flow of ac- model. In this case, data issues with transition conditions
tivities. Dynamic change operations may be used to allow and input parameters of the next activity emerge, as was
the modification of activity models while activity instances discussed in the context of the SkipActivity operation.

are executing. In Figure 5, assume activitigsandz are active concur-
rently when activityj is stopped. In the first form of stop-
5.1 User Intervention Operations ping, execution is resumed with After [ (andz andp) are

completed, the execution gfcompletes the complex activ-
By user intervention operations we mean operations toity. In the second form, the execution path starting from the
change the control flow in the execution of activity instances stopped activity will not be executed, i.e., activitieand!
by users. Operations involve skipping, stopping or repeat-will also be skipped. In this case, after stopping the activ-
ing activities. However, user interventions do not involve ity, dead path elimination has to be performed to make sure
changes to activity models. Therefore, their effects are lim- later parts of the complex activity will be executed properly.
ited to the activity instance during which the intervention (Recall that dead path elimination [12] is used to deal with
occurred. To provide this new functionality, the set of activ- paths whose nodes are not and will not be instantiated.) Af-
ity instance operations as proposed in Section 3 is enhancetkr z andp are completed, the execution is resumed with
by user intervention operatior&kipActivity StopActivity Dead path elimination makes suyedoes not wait for the
andRepeatActivity completion ofl. In addition, stopping an activity may rule

1060-3425/98 $10.00 (c) 1998 IEEE



° o x andz are defined to execute sequentially but in fact they
are executed concurrently (although they belong to different
° repetitions). In order to avoid this situation, we assume that
after the termination of an instangean activityj can only
t ) < ) be repeated, if all outgoing edgesjafachk. For instance,
in Figure 5, jumping back frorhto j obeys the assumption.
Repeating: from [, however, violates it and is therefore not
allowed: There is a path startinginand not passing. On

Figure 5. Complex Activity Model. the contrary, repeating from y is feasible, since all paths
starting fromz finally reachy.

out the successful completion of the complex activity and _
therefore leads to stopping the complex activity. If stopping 214 Use_ of Operations _
j rules out the successful completion of the complex activ- We now briefly comment on how to use these operations

ity then the complex activity has to be stopped. in the scenario described above. Stopping and repeating
an activity requesting the date of delivery of a sub-part

o from a particular supplier can be implemented3tgpActiv-

5.1.3  RepeatActivity ity(request info(q), check avail(P)), RepeatActivity(request
Repeating an activity can be described as “manually startinginfo(q), check avail(P))When the user knows that the
an activity which was executed already”. Repeating an ac-supplier can provide a missing parttimely (e.g., based
tivity cannot easily be captured in state transition diagrams,on external information) then after determining the sup-
since these diagrams specify state transitions of a given acplier, the activitiegequest info(rJandreceive result(r)can
tivity instance, and repeating an activity creates a new ac-be skipped: SkipActivity(request info(r), check avail(P)),
tivity instance. The newly created activity instance will be SkipActivity(receive result(r), check avail(PNVhen the
executed independently from the earlier instances of that accustomer withdraws the request on complex prodHct
tivity. while the complex activity instance is active then all ac-

We assume that only sequential executions are allowedive instances can be stopped. The stopping is followed
i.e., one repetition can start only after the previous one hasby a start of the activityinform customer(G)which ac-
completed. Data-related issues also emerge in the contexknowledges to the customer the cancelling of the activity
of repeating activities. Besided the options discussed above@nd sends an invoice (subject to company policies).
input data from former (e.g., the first, most recent) instances
of the repeated activity can be used. Consider a sequentiab.2 Dynamic Change
execution of activitieg, k and!, shown in Figure 5. As-  Besides manually intervening in activity executions, dy-
sume after the execution bfhe user decides to continue the  namjc changes of activity models are also an option. In
complex activity with repeating. Then after the termina-  general, changes are performed using modeling operations,
tion of/, anotherinstance gfis created. When this instance a5 discussed in Section 3.1, involving the creation and dele-

terminates, the execution continues with repetitions of ac-jon of activity models and relationships between activity
tivities £ andl. Notice that the order of execution seems to models.

violate the activity model, sincg should execute before
but an instance of is started after an instance bhas ter- 521 Dynamic Change Operations

minated. Since we assume that repetitions are sequentially_,l_ ) ) )
for each repetition the control flow constraints as defined in 10 Perform a dynamic change operation, the user invokes

the complex activity model are satisfied. a dedicated activity modeling activity. During this activ-
Assumez and! are active and the person performing the ity, the operationsAddActivity, DelActivity, AddEdgand

latter decides to repedt(cf. Fig. 5). This operation can DelEdgeare available within a complex activity

be granted since there is no violation of control flow con- AddActivity Adding an activity to an existing complex
straints. After the repetition of is completed, new activi-  activity is done by performing the AddActivity operation:
tiesk and! are created, and the two concurrent strands of AddActivity(j, k) adds an activityj as a sub-activity of
the execution finally meet in activity. There are restric- k. Adding an activity specifies how it is embedded in the
tions on which activities to repeat depending on the state ofactivity model. This is done by specifying which activities
the activity execution. Assume after completinghe user  have to be completed before it starts and which activities
decides to repeat an instance of activity In this casez can start only after it completes. Notice that no activity of
is still active, while an instance aof is also active. This the latter kind can be in stat@inning when the dynamic
situation violates control flow constraints, since activities change occurs.
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DelActivity Activities can be deleted using the DelAc- the original activity modej can be overwritten by the new
tivity operation: Del Activity(j, k) purges activityj from activity modelz. Notice thatj is assigned the value of,
complex activityk. This operation can only be executed be- i.e., j keeps its identifier. Since complex activity models
fore j begins execution. In this case, execution can resumestore references to the activity models used, the overwriting
with the follow-up activity of the deleted activity. Notice of j suffices to perform the global change.

that data-related issues as discussed in the context of user We point out that special care has to be taken to control
intervention operations re-emerge in this context. concurrent activities of the changed model in presence of
AddEdge Adding control flow constraints between com- global changes. Depending on the state of these activities,
ponent activities can be done using the AddEdge operationiN€ global change either applies to them or does not apply,

AddEdge((i, j), k) adds a control flow edge— j to com- i.e, if the changed part started execution already. In terms
plex activity,k' ,(z' ~ j) can be added t& only when; of an implementation, activities which are not effected by a

has not yet started: activitycan be in any state, including o_Iy_namic chang_e have t(_) be controlled based the orig_in_al ac-
closed states. Adding this constraint at run time, however, istVity model, which requires that a local copy of the original
useful when both activities have not yet started. In this case@CtiVity model has to be provided to the activity instance.
the system makes sure that the start f delayed untif is

completed. 5.2.3 Use of Dynamic Change Operations

DelEdge When edges are deleted using the DelEdge op-We now briefly discuss how these operations can be used in
eration, constraints on the execution of sub-activities are re-our sample application. During the execution of the toplevel
laxed. DelEdge((i, ), k): In k, delete control flow edge  workflow, the user may learn that another company now
i — J, resulting in an independent execution of the two also produces a missing sub-partThe user now decides
activities. to request shipping information from that supplier. Assume
this company is able to ship the missing part timely, there is
a new option of getting part. The person now decides to
have two alternatives for getting partEach future instance
can check in parallel which alternative will be most appro-
priate. This situation corresponds to a change of the activ-
ity model using the dynamic modeling operations specified
above.

In Figure 5 assume we want to add an activityto be ex-
ecuted aftee and beforep. This can be done if and when
p has not started execution, i.e.,zifis in state init. The
insertion of the activity is then done by adding activity
adding edges — m andm — p and deletingg — p. Data
flow can be defined from, e.gz, to m and fromm to p.
Notice that existing data flow constraints betweeandp
presentin the original activity model can be retained. Given
the original activity model as shown in Figurefscan be 6 Systems Considerations

deleted in casg has not started yet. This involves the dele- The WASA-Project [22, 20] aims at supporting work-

tion of edges: — p andp — y and adding edge — y. 4,y management in non-standard application areas, among
pata flow constraints have t_o.be handlgd as was discusse hich scientific applications play a major role, e.g., in the
in the context of the SkipActivity operation. domains of molecular biology [13], geo-processing [1], and
laboratory management [16]. Based on a generic WASA

5.2.2 Scope of Dynamic Changes architecture, we have developed a prototype of a workflow
An important issue in dynamic modification addresses the management system, which allows the coordinated execu-
implication of a dynamic change operation to other activity tion of complex activities defined by workflow models and
models and, thereby, to other activity instances, characterprovides a high degree of flexibility and platform indepen-
ized by the scope of dynamic changes. The scope is localdence. In this section we focus on flexibility issues by
if the change applies only to the instance, in which the dy- very briefly discussing the conceptual design of the proto-
namic change was conducted. The scope is global, if it ap-type and sketching how dynamic modification operations
plies to the activity model and, hence, to all future activity are supported.
instances using the changed model. In the current WASA prototype, workflow models are

If the scope is local then other activity models using the stored in a relational database system; the workflow server
changed activity model or other activity instances, e.g., con-is implemented in Java, and the database is accessed via
currently executing instances, are not affected by the dy-a JDBC interface. Hence, we are not restricted to a spe-
namic change. This requires to create a new version of thecific database system but are basically free to use any re-
changed activity model which is used only during the ex- lational database system. When a top-level workflow with
ecution of the complex activity instance during which the a number of sub-workflows is started, the workflow server
dynamic change operation was conducted. If the scope isretrieves the respective workflow model from the database.
global, the dynamic change can be done “in place”, namely The models of the sub-workflows, however, are not yet re-
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trieved: They are read successively during the execution ofity management of activity models w.r.t. dynamic changes
the workflow instance, as they are needed. This approacto the management of scopes and maintenance of agent's ac-
allows for dynamic modification; namely the implementa- cess rights. As pointed out in [18], sociological and organi-
tion of sub-workflows will be done at the run time of the zational consequences of dynamic changes require research
workflows. efforts from a variety of disciplines. This contribution aims
We have implemented a basic dynamic change activity, at enhancing the flexibility of workflow management sys-
which allows the changing of workflow models while in- tems. The concepts presented herein will hopefully lead to
stances of this model are active. In particular, it allows more flexible workflow systems, to be used in a variety of
to dynamically modify future parts of the workflow model. application areas for which workflow management seems
Given a top-level workflow and a corresponding workflow too restrictive in today’s systems.
instance, the refinements of the component workflow mod
els can be done while the workflow runs. In particular,
defining the refinements can be done by workflow appli-
cations invoked within the changed workflow instance. The paper.
prototype supports model changes only. As an ongoing re-
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