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Abstract

While today’s workflow management systems are w
suited for the controlled execution of completely specifi
processes, support for dynamically changing processe
rather weak. However, new applications in the business
main and in non-traditional domains like the natural sc
ences or laboratory environments require support for fle
bility like user interventions in workflow executions and d
namic modifications. Based on an activity meta model a
an activity instance model, this paper discusses dyna
modifications and user interventions and shows how th
implications to activity models and to concurrent and f
ture activity instances can be described. Finally, we sh
how the basic concepts presented in this paper are reali
in a prototypical implementation.

1 Introduction
Today’s workflow management systems have been de
oped for modeling and controlling the execution of app
cation processes, mainly in office environments [4, 17,
19]. Since the target processes are typically complet
specified and executed in a routine fashion, these syst
support quite well the modeling and controlled executi
of completely specified processes. On the other hand,
support for incompletely specified or dynamically changi
processes is rather weak [3]. However, new applications
the business domain and applications in non-traditional
mains, e.g., in the natural sciences or in laboratory or m
ufacturing environments, require enhanced flexibility, lik
support for dynamic modifications [22, 20] or controlle
user interventions. In [18], a number of questions to e
hance the applicability and flexibility of workflow system
were raised, including suitable languages and method
gies for flexible and dynamic modeling of workflow activ
ities. In this paper we address some of these issues.
particular, based on an activity meta model we propos
set of dynamic change operations and user intervention
erations and discuss how these can be used to suppor
1
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controlled execution of potentially incompletely specified
and dynamically changing complex activities.

The work we report on in this paper was carried out in
the context of the WASA project, which aims at providing
flexible workflow support for non-traditional applications,
mainly in the scientific domain [20]. This paper is organize
as follows. Section 2 discusses related work on process a
workflow modeling. Section 3 provides a graph-based a
tivity meta model and a model to describe activity instance
Section 4 discusses a sample application process, which
quires flexibility in modeling and executing complex activ-
ities. In Section 5, flexibility properties of workflow man-
agement systems are described in terms of supported ope
tions. Section 6 discusses how dynamic changes of activ
models are supported by the WASA prototype. Concludin
remarks complete this contribution.

2 Related Work
Representations of application processes to be used
workflow management systems to control the execution
workflow instances are known as workflow models. Th
structure of workflow models is defined by workflow meta
models, which define the components of workflow mode
and their relationships. There is not a universal workflow
meta model which is generally agreed upon – the variety
workflow management systems in the market today is r
flected by the number of different workflow meta models
We now briefly review important approaches to modelin
and executing workflows and discuss how these are relat
to our work.

IBM’s workflow management system FlowMark [9, 12]
uses process graphs to define workflow models. In Flow
Mark, each workflow model is specified by a directed graph
whose nodes represent activities and whose edge set is p
titioned in a set of control flow edges and a set of data flo
edges. Control flow edges represent potential control flo
defined by transition conditions, which are predicates eva
uated at run time. Activities may have typed input and ou
put parameters, and data flow edges connect parameter
different activities. FlowMark is based on a separation o
0 (c) 1998 IEEE0 (c) 1998 IEEE0 (c) 1998 IEEE
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a workflow’s built time and its run time. Workflows are
modelled during built time and executed during run tim
In particular, workflow models may not be changed af
built time. Therefore, support for flexibility is rather lim
ited; e.g., dynamic modifications of workflow models a
not supported by FlowMark. In addition, users may n
change control flow of active workflow instances, e.g.,
stopping or skipping certain activities. Since this is rath
a limitation of the FlowMark system than of the workflow
modeling language and since graph-based representa
of workflow models are intuitive, the activity meta mod
presented in this paper is based on process graphs an
hances them to support flexibility in activity modeling an
execution.

Another important category of workflow approaches u
enhanced Petri-nets to model workflows. The Funso
approach [5] is based on higher Petri-nets. An interest
property of this approach is that Funsoft nets can be u
from early phases of business process modeling until la
phases of workflow modeling and execution. In a recent
per, the suitability of Funsoft nets for enhancing the flexib
ity of modeling and executing workflows is investigated [6
In that contribution, approaches to enhance flexibility bas
on modeling sub-nets during executions and “flexibility b
variants” are discussed, where dynamic modeling is g
erned by analyzing activity transitions, considering perso
and data involved. Ellis et al. [3] use more traditional Pet
nets to specify workflows. In particular, they present a fo
malism to cope with dynamic modifications, focusing o
structural dynamic changes of procedures, like the conc
rent execution of formerly sequential steps. The chan
considered are restricted to isolated procedures, i.e.,
implications of performed changes to other activity mo
els or activity instance are not investigated. The Mob
approach uses programming language constructs to s
ify workflows [11], and workflow models are represente
by programs, written in the Mobile language. This proje
emphasizes on modularity of workflow aspects and syst
development rather than on flexibility issues.

The statechart formalism is an extension of finite sta
machines; it was developed by Harel [7] for specifyin
the behavior of reactive technical systems; to descr
these systems, statecharts specify states and state trans
while accompanying activitycharts describe events that m
lead to state transitions. Provided with a formal sema
tics and with a tool (Statemate [8]), statecharts are u
in designing technical systems, like remote control s
tems or car radio systems. The Mentor project [23] mak
use of state- and activitycharts to model workflows. Th
project emphasizes on scalability and correctness of
tributed workflow executions; it uses statecharts to pa
tion workflow models into smaller units to be processed
a distributed environment [23]. Provided with a formal s
2
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mantics, it is shown that workflow specifications described
by statecharts and their partitioning to be used for their dis-
tributed execution are equivalent [24].

The work of Craven and Mahling [2] stems from the
area of computer supported cooperative work. In particu-
lar, they analyze the relationship between project manage-
ment and workflow management. Fundamental common-
alities between the two areas are discovered, namely coor
dination requirements, dynamic modifications, and re-use
of activity models. While the need for dynamic modifica-
tion is identified, Craven and Mahling do not elaborate on
this aspect. Instead they put the main focus on the specifi-
cation and decomposition of tasks and goals, on maintain-
ing domain knowledge and on coordination requirements
of agents. Reichert and Dadam present ADEPTflex, an ap-
proach for controlled dynamic modifications of workflow
specifications based on non-nested, symmetric workflow
specifications [15].

As indicated above, our approach to modeling and exe-
cuting flexible workflows is based on nested process graphs
similar to those used in FlowMark. Our formalism extends
that approach to explicit modeling of activity modeling op-
erations, activity instances, and operations to allow users
to intervene in system-controlled activity instances. By in-
cluding modeling operations (like adding or deleting activ-
ity models), we are able to specify which dynamic model-
ing operations are valid in which state of an activity execu-
tion. Thereby we aim at providing an environment which
supports users in executing complex activities in a flexible
manner, involving controlled user intervention to allow flex-
ible reaction to unforeseen events and dynamic changes o
activity models.

3 Basic Model

In general, meta models describe how models are struc-
tured. In our context, an activity meta model describes how
activity models are built; using activity models, workflow
management systems control the execution of activity in-
stances.

3.1 Modeling Activities

To model application processes as workflows with the aim
of controlling their execution, a suitable formalism has to
be provided. In this section, we present an activity meta
model which is based on process graphs. In general, ac
tivities are units of work as percepted by the modeler. Ac-
tivities are specified by activity models, and each activity
model includes a description and the types of the data used
and generated by it. Activity models are maintained in an
activity model library, represented by a setM = fi j i � 1g

of activity models. This library is partitioned in a setA
of atomic activity models and a setC of complex activity
00 (c) 1998 IEEE00 (c) 1998 IEEE00 (c) 1998 IEEE
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Figure 1. Nested Structure of Complex Activ-
ity Model

models. As indicated by this terminology, atomic activity
models do not have an internal structure, while complex ac
tivity models do have an internal structure: Each comple
activity model consists of a set of (atomic or complex) ac
tivity models and control flow and data flow constraints.

Activity models are represented by directed graphs, ac
tivity model graphs, whose nodes represent activity mode
and whose edges represent relationships between activ
models. An atomic activity model is represented by a grap
with a single node. The activity model graph of a complex
activity modelk contains multiple nodes, component activ-
ity models, which may be related to each other by directe
edges, representing control flow and data flow. For each a
tivity model i 2 M , the list of input parameters is denoted
by ip(i); op(i) refers to the list of its output parameters. We
assume that a data flow edge can only connect paramet
of sub-activity modelsi andj of a complex activity model
k if there is a control flow path (consisting of one or more
control flow edges) connecting the two and the types of th
parameters connected are compatible. We use the bun
construct [12] to model parallel execution of a number o
activity instances of a given activity model, whose quantity
is evaluated at run time. In this paper we do not conside
cyclic structures in activity models.

Figure 1 shows a nested activity model graph for a com
plex activity1. Complex activity model3 is a component
activity model of1, the other component activity models are
atomic. (Component activity models are connected to the
parent by dotted lines; control flow edges are represented
solid arrows; data flow constraints are not displayed explic
itly). Each activity model can be used in multiple complex
activity models. In Figure 1, e.g., activity model2 appears
in complex activity models1 and3.

We assume that each atomic activity model can be ex
cuted by an agent, typically a person or a software syste
or a person using a software system [17]. We assume th
3
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agents are skilled and competent to perform requested activ
ities. Since this paper is centered around flexibility issues,
it does not elaborate on a role concept [12].

Activity models are created using the following set of
activity modeling operations:

� CreateAtomic(i): Create an atomic activity model
i, including the definition of persons and application
programs to performi and sets of input and output
parameters with their respective data types.

� CreateComplex(k): Create a complex activity
modelk, including the definition of input and output
parameters.

� AddActivity(j; k): To a given complex activity
modelk add an (atomic or complex) activity modelj

as a component activity model, assuming bothj and
k are already existing.

� DelActivity(j; k): Delete component activity model
j from complex activity modelk. This involves the
deletion of edges adjacent toj in k.

� AddEdge((i; j); k): In k, add an edgei ! j, where
i andj are component activity models ofk.

� DelEdge((i; j); k): In k, delete an edgei! j.

In summary, an activity model is represented by a nested
directed graph whose nodes are activity models and whos
edges represent control flow and data flow constraints.

3.2 Modeling Activity Instances
Activity instances correspond to real world processes, in
which typically a number of persons and software systems
are involved. In general, an activity instance is created
whenever a complex or an atomic activity is started. Ex-
ecutions of activity instances are controlled by workflow
management systems, using activity models. In this sec
tion we provide a representation of activity instances, based
on operations to manage them.

Activity instances are executed according to execution
rules, described as follows. Consider an activity instance
based on a complex activity modelk. The execution starts
by retrieving the activity model graph from the activity
model repository. All component activity models ofk
which do not have any incoming edges are retrieved and
instantiated, and the input parameters are set up as define
After the termination of a component activity, its output pa-
rameters are used to evaluate the transition conditions of it
outgoing edges. Now, component activities for which all
transition conditions of incoming edges evaluate to true can
be performed. This process iterates until all component ac
tivity models ofk are executed or will not be executed in
that particular case.
00 (c) 1998 IEEE00 (c) 1998 IEEE00 (c) 1998 IEEE
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Figure 2. State Transition Diagram.

An activity instance based on the activity model depicted
Figure 1 is characterized as follows: After retrieving activ
ity model graph 1, an activity instance for component ac
tivity model 2 is instantiated and executed. Assuming 2
be an atomic activity, the system determines an applicati
program and a person to execute that activity. On its term
nation, the activity provides output parameters which ma
be used to evaluate the transition condition of control flo
edge2! 3. Assuming the transition condition evaluates t
true, the system creates an activity instance based on ac
ity model 3, during which activity 2 is executed, followed
by the concurrent execution of 4 and 5, which in turn i
followed by activity 6. This brings complex activity 3 to an
end, followed by the execution of 4, which in turn complete
complex activity 1. In the remainder we use the term ’activ
ity i’ to indicate activity instance based on activity modeli.

The following activity instance operations are available:

� CreateActivity(j): This operation instantiates an
activity according to activity modelj; the identifier
of the created activity is returned, let’s sayij .

� StartActivity(ij): Starting an atomic activity in-
stance involves setting up the input parameters a
the application program to execute it. If the activity
does not require human interaction then the activi
instance is executed under control of the workflow
management system. If a person is involved in th
execution of the activity then a work item is put on
the work item list of that person, and the human exe
cutes the activity after selecting the work item.

� TerminateActivity(ij): When an atomic activity
completes or no more sub-activities of a complex a
tivity have to be performed, an activity instance is ter
minated.

Activity instance operations trigger state transitions of a
tivity instances, displayed in a simple transition state d
agram using nested states (cf. Figure 2). An activity ca
be either in stateopenor closed, indicating not completed
and completed, resp. In particular, when an instance is c
ated using the CreateActivity operation, it enters stateinit;
4
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StartActivity triggers the state transition torunning. Finally,
TerminateActivity brings the activity instance in statedone.
(Statesstoppedandskippedwill be discussed shortly.)

4 Sample Application
Our example is based on a business process in manufac
ing, similar to one discussed in [6]. Consider a compa
which manufactures complex products. These products
assembled from numerous parts, some of which are ma
factured locally, while others are supplied by remote com
panies. A common activity in these settings is processin
request by a customer: “When and at which price can co
plex productP be delivered?” To respond to this request,
complex application process is started, in which numero
persons located at different sites are involved.

Informally, this process can be described as follows: A
sume a customer requests the earliest shipping date and
price of a complex productP . When the request is submit-
ted, first the sub-parts ofP have to be determined, including
their respective sub-parts. The availability of these parts h
to be checked next. For each part not available in stock,
respective supplier has to be determined, and requests h
to be sent to determine when at which price the missi
parts are available. After collecting the responses from t
suppliers, the local manufacturing capacities are analyz
and a time slot for the (potential) production of the comple
product is reserved. Finally, the date of potential shippin
is calculated. To respond to the initial request, this inform
tion is passed to the customer, who by then decides whet
to order the complex product. If the customer decides to o
der the product, the requested parts are effectively orde
and the reserved time slot for manufacturing is confirme
If the customer decides to cancel the order then the reque
for the sub-parts have to be cancelled, and the time slot
manufacturing the product is no longer reserved.

4.1 Modeling and Executing Sample Process
Using the activity meta model presented above, the appli
tion process can be specified by a complex activity mod
Request Delivery Dateas shown in Figure 3. The top-leve
activity model consists of five activity models (one of whic
is complex), executed sequentially. After determining th
sub-parts of the complex product requested (determine sub-
parts), the availability of each of them is checked and time
of availability are determined (check avail). Since this ac-
tivity has to be performed for each sub-part, whose numb
is not known before the activity starts, we use the bund
construct to model it; the number of parallel instances
check availis given by the number of sub-parts of the com
plex product, calculated during the execution ofdetermine
sub-parts.

Checking the availability and calculating the time of po
tential arrival of the sub-parts involves the following step
0 (c) 1998 IEEE0 (c) 1998 IEEE0 (c) 1998 IEEE
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Figure 3. Sample Activity Model.

no

determine
sub-parts(P)

check
capacity(P)

inform
customer(C)check

avail(P)

calculate
avail date(P)

sub-part
available(q)

sub-part
available(r)

determine
supplier(r)

request 
info(r)

receive
result(r)

sub-part
available(s)

determine
supplier(s)

receive
result(s)

request 
info(s)

no

Figure 4. Sample Activity Instance.

In sub-part availablewe check if the sub-part is in local
stock. If so, no further requests have to be made, and th
activity instance terminates. If it is not in stock (indicated
by edge labelno) then the supplier has to be determinated
(determine supplier), followed by requesting the earliest
date for shipping and the price of the missing part (request
info). This activity is implemented by sending a request to
the respective supplier. When an answer is received (receive
result), that activity instance terminates. When all activity
instances of the bundle have terminated, the earliest ava
ability date of all parts needed (calculate avail date). The
local manufacturing capacities are analyzed next, and a tim
slot for the potential production is reserved. Finally, the cus
tomer is informed of the delivery date of the product and its
cost.

Notice that the description of the application process a
presented above is rather simplified. Besides higher com
plexity, in real settings situations in which the process ha
to be adapted to changes of the environment are likely t
occur frequently, e.g., due to unforeseen behavior of cu
tomers, suppliers, or to changes in company policies. Th
scenario provides a setting in which we will discuss flexi-
bility issues in activity modeling and execution.

We now discuss an activity instance of activity mode
Request Delivery Date. The activity instance created when
a customerC requests a productP , consisting of sub-parts
q; r; s is shown in Figure 4. To distinguish activity instances
from activity models, we add data information to graphi-
cal representations, e.g., the node representing the determ
5
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nation of the sub-parts of productP is markeddetermine
sub-parts(P)in Figure 4. Creating and starting the top-leve
activity instance is followed by creating and startingdeter-
mine sub-parts(P). After its termination, a bundle consisting
of instancescheck avail(x), x 2 fq; r; sg, is started. Assum-
ing q is in stock andr; s are not,check avail(q)terminates
immediately aftersub-part available(q). However,r ands
have to be ordered. After determining the suppliers ofr and
s and requesting and receiving the respective delivery
formation, the bundle-activity instancecheck avail(P)com-
pletes. On the top-level, calculating the arrival date and
serving local capacities for the production ofP and inform-
ing the customer completes the complex activity instance

4.2 Flexibility Requirements

The application process discussed above simplifies r
world processes considerably. There is a myriad of u
foreseen events which may lead to failure of the applic
tion process. These events cannot be modelled comple
before activity instances start. Sample unforeseen eve
which might occur in our setting can occur on the side
the customer, the supplier, and on the side of the compa
performing the application process. We discuss sample
ceptions for these participants in turn.

Supplier So far we have assumed that each supplier a
swers timely to a request and is able to deliver reques
parts within acceptable time spans at acceptable pric
However, if suppliers do not answer timely, the applicatio
process gets stuck, and the system is no longer able to c
trol its execution. What may happen in this situation is th
people involved in the execution of that process decide
stop the activity and to continue it on a manual basis, whi
provides the required flexibility, but without system contro
Besides not responding, the supplier may not be able to
liver the requested part in an acceptable time span. In t
case the user may decide to consult the customer wheth
later delivery date is acceptable. If so, the activity executi
continues as specified by the activity model. In addition, t
user may start other activity instances to determine alter
tive suppliers. If an activity model suitable for this purpos
is present in the activity model library then the user shall
supported in localizing and starting it. If a suitable activit
model is not present then the user may want to define su
an activity model. The newly created activity model wil
then be available in future activity instances.

Customer Customers are also a potential source of no
anticipated behavior. For instance, if and when a custom
decides to cancel an order, the corresponding activity h
to be cancelled, followed by undoing effects of the activi
like undoing the reservation of sub-parts or the reservati
of time slots for manufacturing. In another scenario, a cu
tomer provides a latest shipping date which then may le
0 (c) 1998 IEEE0 (c) 1998 IEEE0 (c) 1998 IEEE
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to prematurely stopping the activity instance during exe
tion, if one or more sub-parts are not present in time and
alternative supplier can be found. Users shall be able to s
activity instances which are no longer needed. This may
followed by starting theinform customeractivity and billing
the customer for the work that was performed on his beh

Company Besides changes in the market environmen
the company, i.e., with suppliers and customers, there m
be changes in the policies of the company, e.g., due
re-engineering projects, aiming at optimizing applicati
processes. Changes include parallel execution of activ
which have been executed sequentially formerly. In gene
changes in the organization of the company typically res
in dynamic changes of the corresponding activity mod
Once the change is applied, all future instances of that
tivity will be effected by that change. Another form of non
anticipated behavior occurs if the user learns from exter
sources (e.g., by a phone call or by documentation mate
that a supplier is able to deliver the missing part timely.
this case, requesting the date and receiving the result do
have to be executed. Since the shipping information is
ready available, the activitiesrequest infoandreceive result
can be skipped in that situation. Hence the user should
able to select activities to be skipped in the particular ac
ity instance.

5 Functionality to Support Flexibility

We now identify a set of operations, which a workflow ma
agement system has to support in order to satisfy the fl
ibility requirements discussed in the previous section.
general there are two types of flexibility operations, nam
user intervention operations and dynamic modification
erations. With user intervention operations, users may
tively intervene with the system-controlled execution of a
tivities, i.e., by changing the predefined control flow of a
tivities. Dynamic change operations may be used to al
the modification of activity models while activity instance
are executing.

5.1 User Intervention Operations

By user intervention operations we mean operations
change the control flow in the execution of activity instanc
by users. Operations involve skipping, stopping or repe
ing activities. However, user interventions do not invol
changes to activity models. Therefore, their effects are l
ited to the activity instance during which the interventio
occurred. To provide this new functionality, the set of act
ity instance operations as proposed in Section 3 is enhan
by user intervention operationsSkipActivity, StopActivity,
andRepeatActivity.
6
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5.1.1 SkipActivity
Activities which are in stateinit can be skipped, which trig-
gers a state transition toskipped(cf. Fig. 2). Hence, an ac-
tivity can be skipped only before its execution starts. Skip-
ping activities allows users to save time and effort for activi-
ties which are not needed during a particular case. However
skipping activities presents data-related issues, as shown in
the following example.

Consider the activity model shown in Figure 5. Skipping
activity k, for instance, results in startingl immediately af-
ter j terminates. If there is a data flow defined fromk to l

andk is skipped then data needed for the execution ofl is
not available. In addition, transition conditions of the outgo-
ing edges of the skipped activity cannot be evaluated due to
missing data. To cope with these issues, whenever an activ
ity is skippable, information on how to provide data needed
in the remainder of the complex activity has to be defined in
the activity model. Possible solutions are providing data by
default values, entering data manually [15] or mapping data
parameters, i.e., using data provided by previously executed
activities. As an example, consider activityj gets customer
data whilek validates the data and provides the validated
data to activityl. Hence, customer data flows from activi-
tiesj to k and fromk to l. If the user decides that checking
the data of a particular customer is not needed then he or sh
may skip activityk. In this case, the output parameter ofj

can be mapped to the input parameter ofl, and the customer
information is passed directly fromj to l.

5.1.2 StopActivity
Running activities can be stopped using the StopActivity
operation. In terms of states of activity instances, this op-
eration triggers a state transition fromrunning to stopped.
There are different forms of stopping an activity. The first
form corresponds to stopping an activity and resuming ex-
ecution with the next activity, as defined by the activity
model. In this case, data issues with transition conditions
and input parameters of the next activity emerge, as was
discussed in the context of the SkipActivity operation.

In Figure 5, assume activitiesj andz are active concur-
rently when activityj is stopped. In the first form of stop-
ping, execution is resumed withk. After l (andz andp) are
completed, the execution ofy completes the complex activ-
ity. In the second form, the execution path starting from the
stopped activity will not be executed, i.e., activitiesk andl
will also be skipped. In this case, after stopping the activ-
ity, dead path elimination has to be performed to make sure
later parts of the complex activity will be executed properly.
(Recall that dead path elimination [12] is used to deal with
paths whose nodes are not and will not be instantiated.) Af-
ter z andp are completed, the execution is resumed withy.
Dead path elimination makes surey does not wait for the
completion ofl. In addition, stopping an activity may rule
.00 (c) 1998 IEEE.00 (c) 1998 IEEE.00 (c) 1998 IEEE
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Figure 5. Complex Activity Model.

out the successful completion of the complex activity and
therefore leads to stopping the complex activity. If stopping
j rules out the successful completion of the complex activ
ity then the complex activity has to be stopped.

5.1.3 RepeatActivity

Repeating an activity can be described as “manually startin
an activity which was executed already”. Repeating an ac
tivity cannot easily be captured in state transition diagram
since these diagrams specify state transitions of a given a
tivity instance, and repeating an activity creates a new a
tivity instance. The newly created activity instance will be
executed independently from the earlier instances of that a
tivity.

We assume that only sequential executions are allowe
i.e., one repetition can start only after the previous one ha
completed. Data-related issues also emerge in the conte
of repeating activities. Besided the options discussed abov
input data from former (e.g., the first, most recent) instance
of the repeated activity can be used. Consider a sequent
execution of activitiesj, k and l, shown in Figure 5. As-
sume after the execution ofl the user decides to continue the
complex activity with repeatingj. Then after the termina-
tion of l, another instance ofj is created. When this instance
terminates, the execution continues with repetitions of ac
tivities k andl. Notice that the order of execution seems to
violate the activity model, sincej should execute beforel,
but an instance ofj is started after an instance ofl has ter-
minated. Since we assume that repetitions are sequentia
for each repetition the control flow constraints as defined i
the complex activity model are satisfied.

Assumez andl are active and the person performing the
latter decides to repeatj (cf. Fig. 5). This operation can
be granted since there is no violation of control flow con
straints. After the repetition ofj is completed, new activi-
tiesk and l are created, and the two concurrent strands o
the execution finally meet in activityy. There are restric-
tions on which activities to repeat depending on the state o
the activity execution. Assume after completingl, the user
decides to repeat an instance of activityx. In this case,z
is still active, while an instance ofx is also active. This
situation violates control flow constraints, since activities
7
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x andz are defined to execute sequentially but in fact the
are executed concurrently (although they belong to differe
repetitions). In order to avoid this situation, we assume th
after the termination of an instancek, an activityj can only
be repeated, if all outgoing edges ofj reachk. For instance,
in Figure 5, jumping back froml to j obeys the assumption.
Repeatingx from l, however, violates it and is therefore not
allowed: There is a path starting inx and not passingk. On
the contrary, repeatingx from y is feasible, since all paths
starting fromx finally reachy.

5.1.4 Use of Operations
We now briefly comment on how to use these operation
in the scenario described above. Stopping and repeati
an activity requesting the date of delivery of a sub-partq

from a particular supplier can be implemented byStopActiv-
ity(request info(q), check avail(P)), RepeatActivity(reques
info(q), check avail(P)).When the user knows that the
supplier can provide a missing partr timely (e.g., based
on external information) then after determining the sup
plier, the activitiesrequest info(r)andreceive result(r)can
be skipped: SkipActivity(request info(r), check avail(P)),
SkipActivity(receive result(r), check avail(P)). When the
customer withdraws the request on complex productP

while the complex activity instance is active then all ac
tive instances can be stopped. The stopping is followe
by a start of the activityinform customer(C), which ac-
knowledges to the customer the cancelling of the activit
and sends an invoice (subject to company policies).

5.2 Dynamic Change
Besides manually intervening in activity executions, dy
namic changes of activity models are also an option. I
general, changes are performed using modeling operatio
as discussed in Section 3.1, involving the creation and del
tion of activity models and relationships between activity
models.

5.2.1 Dynamic Change Operations

To perform a dynamic change operation, the user invoke
a dedicated activity modeling activity. During this activ-
ity, the operationsAddActivity, DelActivity, AddEdgeand
DelEdgeare available within a complex activityk.

AddActivity Adding an activity to an existing complex
activity is done by performing the AddActivity operation:
AddActivity(j; k) adds an activityj as a sub-activity of
k. Adding an activity specifies how it is embedded in the
activity model. This is done by specifying which activities
have to be completed before it starts and which activitie
can start only after it completes. Notice that no activity o
the latter kind can be in staterunning when the dynamic
change occurs.
0 (c) 1998 IEEE0 (c) 1998 IEEE0 (c) 1998 IEEE
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DelActivity Activities can be deleted using the DelAc
tivity operation:DelActivity(j; k) purges activityj from
complex activityk. This operation can only be executed be
fore j begins execution. In this case, execution can resu
with the follow-up activity of the deleted activity. Notice
that data-related issues as discussed in the context of u
intervention operations re-emerge in this context.

AddEdge Adding control flow constraints between com
ponent activities can be done using the AddEdge operati
AddEdge((i; j); k) adds a control flow edgei! j to com-
plex activity k; (i ! j) can be added tok only whenj
has not yet started; activityi can be in any state, including
closed states. Adding this constraint at run time, however
useful when both activities have not yet started. In this ca
the system makes sure that the start ofj is delayed untili is
completed.

DelEdge When edges are deleted using the DelEdge o
eration, constraints on the execution of sub-activities are
laxed. DelEdge((i; j); k): In k, delete control flow edge
i ! j, resulting in an independent execution of the tw
activities.

In Figure 5 assume we want to add an activitym to be ex-
ecuted afterz and beforep. This can be done if and when
p has not started execution, i.e., ifp is in state init. The
insertion of the activity is then done by adding activitym,
adding edgesz ! m andm! p and deletingz ! p. Data
flow can be defined from, e.g.,z to m and fromm to p.
Notice that existing data flow constraints betweenz andp
present in the original activity model can be retained. Give
the original activity model as shown in Figure 5,p can be
deleted in casep has not started yet. This involves the dele
tion of edgesz ! p andp ! y and adding edgez ! y.
Data flow constraints have to be handled as was discus
in the context of the SkipActivity operation.

5.2.2 Scope of Dynamic Changes

An important issue in dynamic modification addresses t
implication of a dynamic change operation to other activi
models and, thereby, to other activity instances, charact
ized by the scope of dynamic changes. The scope is loc
if the change applies only to the instance, in which the d
namic change was conducted. The scope is global, if it a
plies to the activity model and, hence, to all future activit
instances using the changed model.

If the scope is local then other activity models using th
changed activity model or other activity instances, e.g., co
currently executing instances, are not affected by the d
namic change. This requires to create a new version of
changed activity model which is used only during the e
ecution of the complex activity instance during which th
dynamic change operation was conducted. If the scope
global, the dynamic change can be done “in place”, name
8
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the original activity modelj can be overwritten by the new
activity modelx. Notice thatj is assigned the value ofx,
i.e., j keeps its identifier. Since complex activity models
store references to the activity models used, the overwriting
of j suffices to perform the global change.

We point out that special care has to be taken to control
concurrent activities of the changed model in presence of
global changes. Depending on the state of these activities,
the global change either applies to them or does not apply,
i.e, if the changed part started execution already. In terms
of an implementation, activities which are not effected by a
dynamic change have to be controlled based the original ac-
tivity model, which requires that a local copy of the original
activity model has to be provided to the activity instance.

5.2.3 Use of Dynamic Change Operations

We now briefly discuss how these operations can be used in
our sample application. During the execution of the toplevel
workflow, the user may learn that another company now
also produces a missing sub-partq. The user now decides
to request shipping information from that supplier. Assume
this company is able to ship the missing part timely, there is
a new option of getting partq. The person now decides to
have two alternatives for getting partq. Each future instance
can check in parallel which alternative will be most appro-
priate. This situation corresponds to a change of the activ-
ity model using the dynamic modeling operations specified
above.

6 Systems Considerations
The WASA-Project [22, 20] aims at supporting work-
flow management in non-standard application areas, among
which scientific applications play a major role, e.g., in the
domains of molecular biology [13], geo-processing [1], and
laboratory management [16]. Based on a generic WASA
architecture, we have developed a prototype of a workflow
management system, which allows the coordinated execu-
tion of complex activities defined by workflow models and
provides a high degree of flexibility and platform indepen-
dence. In this section we focus on flexibility issues by
very briefly discussing the conceptual design of the proto-
type and sketching how dynamic modification operations
are supported.

In the current WASA prototype, workflow models are
stored in a relational database system; the workflow server
is implemented in Java, and the database is accessed via
a JDBC interface. Hence, we are not restricted to a spe-
cific database system but are basically free to use any re-
lational database system. When a top-level workflow with
a number of sub-workflows is started, the workflow server
retrieves the respective workflow model from the database.
The models of the sub-workflows, however, are not yet re-
00 (c) 1998 IEEE00 (c) 1998 IEEE00 (c) 1998 IEEE
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trieved: They are read successively during the execution
the workflow instance, as they are needed. This approa
allows for dynamic modification; namely the implementa-
tion of sub-workflows will be done at the run time of the
workflows.

We have implemented a basic dynamic change activit
which allows the changing of workflow models while in-
stances of this model are active. In particular, it allows
to dynamically modify future parts of the workflow model.
Given a top-level workflow and a corresponding workflow
instance, the refinements of the component workflow mod
els can be done while the workflow runs. In particular
defining the refinements can be done by workflow appli
cations invoked within the changed workflow instance. Th
prototype supports model changes only. As an ongoing r
search project, the WASA prototype will be enhanced to
support instance changes and local change as well; wo
on implementing user intervention operations, like the stop
ping, skipping and repeating of activities, is under way. We
do not go deeper into the discussion of the prototype bu
refer the reader to [21, 20].

7 Conclusions
This paper proposes a graph-based activity meta mod
which allows the definition of atomic and complex activ-
ity models and the specification of data flow and contro
flow constraints between activity models. Unlike other ap
proaches, we explicitly model operations to model activi
ties, like the creation or deletion of activity models. These
operations are not only available when activity models ar
initially built, but also when activity instances based on tha
model are executing, realizing dynamic modification oper
ations. Using an application process from the area of ma
ufacturing, we discuss how activity models can be specifie
and what kinds of flexibility issues arise in that context. Ba
sically, two sorts of flexibility requirements emerge, namely
active user intervention and dynamically modifying activity
models. In this paper we define a set of user interventio
operations and a set of dynamic change operations, whi
are suitable to support the flexibility requirements impose
by the sample application. While different application ar-
eas require different flexibility support, we believe that ou
approach as introduced in this paper meets some of the k
features in flexible workflow management.

In this paper we have been looking into the technical as
pects of activity modeling and flexibility issues. Using dy-
namic modifications, however, has severe sociological an
organizational consequences: Agents can be given new r
sponsibilities to organize their work, and an agent rises from
an executer of system-defined work to a person responsib
for his or her work, with the freedom to change local work-
ing procedures, which may even have global effects. In th
context, a number of questions emerge, ranging from qua
9
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ity management of activity models w.r.t. dynamic changes
to the management of scopes and maintenance of agent’s ac-
cess rights. As pointed out in [18], sociological and organi-
zational consequences of dynamic changes require research
efforts from a variety of disciplines. This contribution aims
at enhancing the flexibility of workflow management sys-
tems. The concepts presented herein will hopefully lead to
more flexible workflow systems, to be used in a variety of
application areas for which workflow management seems
too restrictive in today’s systems.

Acknowledgements: The author is grateful to Gottfried
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paper.
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