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Abstract

Most generative models for clustering implicitly assume that the number of data
points in each cluster grows linearly with the total number of data points. Finite
mixture models, Dirichlet process mixture models, and Pitman—Yor process mixture
models make this assumption, as do all other infinitely exchangeable clustering
models. However, for some applications, this assumption is inappropriate. For
example, when performing entity resolution, the size of each cluster should be
unrelated to the size of the data set, and each cluster should contain a negligible
fraction of the total number of data points. These applications require models that
yield clusters whose sizes grow sublinearly with the size of the data set. We address
this requirement by defining the microclustering property and introducing a new
class of models that can exhibit this property. We compare models within this class
to two commonly used clustering models using four entity-resolution data sets.

1 Introduction

Many clustering applications require models that assume cluster sizes grow linearly with the size of the
data set. These applications include topic modeling, inferring population structure, and discriminating
among cancer subtypes. Infinitely exchangeable clustering models, including finite mixture models,
Dirichlet process mixture models, and Pitman—Yor process mixture models, all make this linear-
growth assumption, and have seen numerous successes when used in these contexts. For other cluster-
ing applications, such as entity resolution, this assumption is inappropriate. Entity resolution (includ-
ing record linkage and de-duplication) involves identifying duplicateE] records in noisy databases [[1,12]],
traditionally by directly linking records to one another. Unfortunately, this traditional approach is
computationally infeasible for large data sets—a serious limitation in “the age of big data” [1}13]]. Asa
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’In the entity resolution literature, the term “duplicate records” does not mean that the records are identical,
but rather that the records are corrupted, degraded, or otherwise noisy representations of the same entity.
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result, researchers increasingly treat entity resolution as a clustering problem, where each entity is im-
plicitly associated with one or more records and the inference goal is to recover the latent entities (clus-
ters) that correspond to the observed records (data points) [4}15,16]. In contrast to other clustering appli-
cations, the number of data points in each cluster should remain small, even for large data sets. Appli-
cations like this require models that yield clusters whose sizes grow sublinearly with the total number
of data points [[7]. To address this requirement, we define the microclustering property in section[2]and,
in section 3] introduce a new class of models that can exhibit this property. In section ] we compare
two models within this class to two commonly used infinitely exchangeable clustering models.

2 The Microclustering Property

To cluster N data points z1,...,xy using a partition-based Bayesian clustering model, one first
places a prior over partitions of [N] = {1, ..., N'}. Then, given a partition Cy of [IV], one models the
data points in each part ¢ € C'y as jointly distributed according to some chosen distribution. Finally,
one computes the posterior distribution over partitions and, e.g., uses it to identify probable partitions
of [N]. Mixture models are a well-known type of partition-based Bayesian clustering model, in which

C\y is implicitly represented by a set of cluster assignments z1, . .., zn. These cluster assignments
can be regarded as the first /V elements of an infinite sequence 21, 22, . . ., drawn a priori from
w~H and zl,zz,...|7rf“57r, (1)

where H is a prior over 7 and 7 is a vector of mixture weights with ), m; =1 and m; > 0 for
all [. Commonly used mixture models include (a) finite mixtures where the dimensionality of 7
is fixed and H is usually a Dirichlet distribution; (b) finite mixtures where the dimensionality of
7 is a random variable [8} 9]; (c) Dirichlet process (DP) mixtures where the dimensionality of 7
is infinite [10]; and (d) Pitman—Yor process (PYP) mixtures, which generalize DP mixtures [[11].

Equation implicitly defines a prior over partitions of N = {1,2,...}. Any random partition Cy of
N induces a sequence of random partitions (Cy : N = 1,2,...), where Cy is a partition of [N]. Via
the strong law of large numbers, the cluster sizes in any such sequence obtained via equation [I] grow
linearly with N because, with probability one, for all [, % ij:l I(z,=1) — m as N — oo, where
1(-) denotes the indicator function. Unfortunately, this linear growth assumption is not appropriate
for entity resolution and other applications that require clusters whose sizes grow sublinearly with V.

To address this requirement, we therefore define the microclustering property: A sequence of random
partitions (Cy : N = 1,2,...) exhibits the microclustering property if My is 0,(N), where My is
the size of the largest cluster in Cy, or, equivalently, if My / N — 0 in probability as N — oc.

A clustering model exhibits the microclustering property if the sequence of random partitions implied
by that model satisfies the above definition. No mixture model can exhibit the microclustering property
(unless its parameters are allowed to vary with V). In fact, Kingman’s paintbox theorem [12, [13]] im-
plies that any exchangeable partition of N, such as a partition obtained using equation([T} is either equal
to the trivial partition in which each part contains one element or satisfies liminfy_,, My /N >0
with positive probability. By Kolmogorov’s extension theorem, a sequence of random partitions
(Cy : N =1,2,...) corresponds to an exchangeable random partition of N whenever (a) each Cy
is finitely exchangeable (i.e., its probability is invariant under permutations of {1,..., N'}) and (b)
the sequence is projective (also known as consistent in distribution)—i.e., if N’ < N, the distribution
over C'y coincides with the marginal distribution over partitions of [N'] induced by the distribution
over C. Therefore, to obtain a nontrivial model that exhibits the microclustering property, we must
sacrifice either (a) or (b). Previous work [[14] sacrificed (a); in this paper, we instead sacrifice (b).

Sacrificing finite exchangeability and sacrificing projectivity have very different consequences. If a
partition-based Bayesian clustering model is not finitely exchangeable, then inference will depend on
the order of the data points. For most applications, this consequence is undesirable—there is no reason
to believe that the order of the data points is meaningful. In contrast, if a model lacks projectivity,
then the implied joint distribution over a subset of the data points in a data set will not be the same as
the joint distribution obtained by modeling the subset directly. In the context of entity resolution, sac-
rificing projectivity is a more natural and less restrictive choice than sacrificing finite exchangeability.



3 Kolchin Partition Models for Microclustering

We introduce a new class of Bayesian models for microclustering by placing a prior on the number of
clusters K and, given K, modeling the cluster sizes N1, ..., Ng directly. We start by defining

iid

K~k and Nip,...,Ng|K ~ p, 2)
where K = (K1, ko,...) and p = (u1, pg, ... ) are probability distributions over N = {1,2,...}.
We then define N = Zszl N and, given Ni,...,Ng, generate a set of cluster assign-
ments zj,...,2y by drawing a vector uniformly at random from the set of permutations of
(L,...,1,2,...,2,...... ,K,...,K). The cluster assignments z1, ..., zy induce a random par-
N— N — N—_——

N times  Ns times Ny times
tition C'y of [N], where N is itself a random variable—i.e., Cy is a random partition of a random
number of elements. We refer to the resulting class of marginal distributions over C'y as Kolchin
partition (KP) models [15] [16] because the form of equation[2]is closely related to Kolchin’s repre-
sentation theorem for Gibbs-type partitions (see, e.g.,!16, theorem 1.2). For appropriate choices of
and p, KP models can exhibit the microclustering property (see appendix B for an example).

If € denotes the set of all possible partitions of [N], then Jy_; € is the set of all possible
partitions of [IV] for all N € N. The probability of any given partition Cy € |J3_; € is

Cnl|!
P(Cy) = ‘NLV# ( 11 |c|!uc|> : 3)

ceCyn

where | - | denotes the cardinality of a set, |Cn| is the number of clusters in Cl, and |¢| is the
number of elements in cluster ¢. In practice, however, N is usually observed. Conditioned on
N, a KP model implies that P(Cn | N) o |Cn 'Ky (TTeecy l€l! t4ie)- Equation 3|leads to a
“reseating algorithm”—much like the Chinese restaurant process (CRP)—derived by sampling from
P(Cn | N,Cn\n), where Cn \n is the partition obtained by removing element n from C'y:

e forn =1,..., N, reassign element n to

- an existing cluster ¢ € C'y \n with probability o< (|c| + 1) %

R(ICp\nI+1)
KNl

— or a new cluster with probability o< (|Cy\n|+ 1) .
We can use this reseating algorithm to draw samples from P(Cy | N); however, unlike the CRP, it
does not produce an exact sample if it is used to incrementally construct a partition from the empty
set. In practice, this limitation does not lead to any negative consequences because standard posterior
inference sampling methods do not rely on this property. When a KP model is used as the prior in a
partition-based clustering model—e.g., as an alternative to equation[T}—the resulting Gibbs sampling
algorithm for C'y; is similar to this reseating algorithm, but accompanied by likelihood terms. Unfor-
tunately, this algorithm is slow for large data sets. In appendix C, we therefore propose a faster Gibbs
sampling algorithm—the chaperones algorithm—that is particularly well suited to microclustering.

In sections[3.1]and we introduce two related KP models for microclustering, and in section3.4]
we explain how KP models can be applied in the context of entity resolution with categorical data.

3.1 The NBNB Model

We start with equation [3]and define
x = NegBin (a,q) and p = NegBin (r,p), 4

where NegBin(a,q) and NegBin(r,p) are negative binomial distributions truncated to N =
{1,2,...}. We assume that ¢ > 0 and ¢ € (0,1) are fixed hyperparameters, while r and p are
distributed as r ~ Gam(7,, s,) and p ~ Beta(u,, v,) for fixed 7., s,, u, and va] We refer to the
resulting marginal distribution over C'y as the negative binomial-negative binomial (NBNB) model.

3We use the shape-and-rate parameterization of the gamma distribution.
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Figure 1: The NBNB (left) and NBD (right) models appear to exhibit the microclustering property.

By substituting equation [ into equation 3} we obtain the probability of C'y conditioned N:

P(Ox | N,a,grp) < D((Cl + @) 51! T S0

ceCn

&)

T 1-(-p)r
posterior distributions over r and p, in appendix A.2. Posterior inference for the NBNB model involves
alternating between (a) sampling C'y from P(Cy | N, a, g, r, p) using the chaperones algorithm and
(b) sampling 7 and p from their respective conditional posteriors using, e.g., slice sampling [[17].

where 5 = 20D e provide the complete derivation of equation along with the conditional

3.2 The NBD Model

Although k = NegBin (a, q) will yield plausible values of K, u = NegBin (r,p) may not be
sufficiently flexible to capture realistic properties of N1, ..., Nk, especially when K is large. For
example, in a record-linkage application involving two otherwise noise-free databases containing
thousands of records, K will be large and each Nj will be at most two. A negative binomial
distribution cannot capture this property. We therefore define a second KP model—the negative
binomial-Dirichlet (NBD) model—by taking a nonparametric approach to modeling Ny, ..., Ng
and drawing p from an infinite-dimensional Dirichlet distribution over the positive integers:

K = NegBin (a,q) and p|a, 19 ~ Dir (a,u(o)) , (6)
where o > 0 is a fixed concentration parameter and p(°) = (u§0>, ug)), -++) is a fixed base measure
with Y, us,?) = 1and uSP > 0 for all m. The probability of C'y conditioned on N and p is

P(Cn|N,a,q,pm) < T (ICx|+a) gV TT lel! ey (7
ceCn

Posterior inference for the NBD model involves alternating between (a) sampling Cy from
P(Cn | N,a,q, p) using the chaperones algorithm and (b) sampling g from its conditional posterior:

”‘CN7047N(0)NDiI'<O¢,u§O)+L17(XM50)+L27"')7 (8)

where L, is the number of clusters of size m in Cy. Although p is an infinite-dimensional
vector, only the first N elements affect P(Cy | a, g, pt). Therefore, it is sufficient to sample the

(N + 1)-dimensional vector (p1,...,un,1 — ZTanl ) from equation E modified accordingly,
and retain only 1, ..., un. We provide complete derivations of equations|/|and [§|in appendix A.3.

3.3 The Microclustering Property for the NBNB and NBD Models

Figure[I] contains empirical evidence suggesting that the NBNB and NBD models both exhibit the mi-
croclustering property. For each model, we generated samples of My / N for N = 100, ..., 10*. For
the NBNB model, we set a = 1, ¢ = 0.5, 7 = 1, and p = 0.5 and generated the samples using rejec-
tion sampling. For the NBD model, we set a = 1, ¢ = 0.5, and o = 1 and set (%) to be a geometric
distribution over N = {1, 2, ...} with a parameter of 0.5. We generated the samples using MCMC
methods. For both models, My / N appears to converge to zero in probability as N — 0o, as desired.

In appendix B, we also prove that a variant of the NBNB model exhibits the microclustering property.



3.4 Application to Entity Resolution

KP models can be used to perform entity resolution. In this context, the data points x1, . . .,z are ob-
served records and the K clusters are latent entities. If each record consists of F' categorical fields, then
Cn ~ KP model )

071 |05,y ~ Dir (67, v) (10)

a:fn|zn,9f1,...,9f;(~Cat(0fzn) (12)

forf=1,...,F,k=1,...,K,andn = 1,..., N, where ((Cy,n) maps the n record to a latent
cluster assignment z,, according to C'y. We assume that 6y > 0 is distributed as ; ~ Gam (1, 1),

while « ; is fixed. Via Dirichlet-multinomial conjugacy, we can marginalize over 611, . ..,0pk to
obtain a closed-form expression for P(z1,...,xn | 21,...,2N,0f,7 f). Posterior inference involves
alternating between (a) sampling Cy from P(Cy | x1, ...,z n, ) using the chaperones algorithm

accompanied by appropriate likelihood terms, (b) sampling the parameters of the KP model from
their conditional posteriors, and (c) sampling d; from its conditional posterior using slice sampling.

4 Experiments

In this section, we compare two entity resolution models based on the NBNB model and the NBD
model to two similar models based on the DP mixture model [[10] and the PYP mixture model [11].
All four models use the likelihood in equations @] and@ For the NBNB model and the NBD model,

we set a and g to reflect a weakly informative prior belief that E[K] = /Var[K] = &. For the

NBNB model, we set 7, = s, = 1l and u, = v, = 2EI For the NBD model, we set &« = 1 and set ,u(o)

to be a geometric distribution over N = {1, 2, ...} with a parameter of 0.5. This base measure reflects

a prior belief that E[N;] = 2. Finally, to ensure a fair comparison between the two different classes
N

of model, we set the DP and PYP concentration parameters to reflect a prior belief that E[K] = 5.

We assess how well each model “fits” four data sets typical of those arising in real-world entity reso-
lution applications. For each data set, we consider four statistics: (a) the number of singleton clusters,
(b) the maximum cluster size, (c) the mean cluster size, and (d) the 90" percentile of cluster sizes.
We compare each statistic’s true value to its posterior distribution according to each of the models.
For each model and data set combination, we also consider five entity-resolution summary statistics:
(a) the posterior expected number of clusters, (b) the posterior standard error, (c) the false negative
rate, (d) the false discovery rate, and (e) the posterior expected value of 6y = d for f =1,..., F.
The false negative and false discovery rates are both invariant under permutations of 1, ..., K [S,18].

4.1 Data Sets

We constructed four realistic data sets, each consisting of N records associated with K entities.

Italy: We derived this data set from the Survey on Household Income and Wealth, conducted by the
Bank of Italy every two years. There are nine categorical fields, including year of birth, employment
status, and highest level of education attained. Ground truth is available via unique identifiers based
upon social security numbers; roughly 74% of the clusters are singletons. We used the 2008 and 2010
databases from the Fruili region to create a record-linkage data set consisting of N = 789 records;
each Ny is at most two. We discarded the records themselves, but preserved the number of fields, the
empirical distribution of categories for each field, the number of clusters, and the cluster sizes. We
then generated synthetic records using equations [I0]and[I2] We created three variants of this data set,
corresponding to § = 0.02,0.05, 0.1. For all three, we used the empirical distribution of categories for
field f as ;. By generating synthetic records in this fashion, we preserve the pertinent characteristics
of the original data, while making it easy to isolate the impacts of the different priors over partitions.

NLTCS5000: We derived this data set from the National Long Term Care Survey (NLTCSf]—a
longitudinal survey of older Americans, conducted roughly every six years. We used four of the

*We used p ~ Beta (2, 2) because a uniform prior implies an unrealistic prior belief that E[N},] = co.
*http://www.nltcs.aas.duke.edu/
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available fields: date of birth, sex, state of residence, and regional office. We split date of birth into
three separate fields: day, month, and year. Ground truth is available via social security numbers;
roughly 68% of the clusters are singletons. We used the 1982, 1989, and 1994 databases and
down-sampled the records, preserving the proportion of clusters of each size and the maximum
cluster size, to create a record-linkage data set of NV = 5, 000 records; each [N is at most three. We
then generated synthetic records using the same approach that we used to create the Italy data set.

Syria2000 and SyriaSizes: We constructed these data sets from data collected by four human-rights
groups between 2011 and 2014 on people killed in the Syrian conflict [[19} 20]. Hand-matched
ground truth is available from the Human Rights Data Analysis Group. Because the records were
hand matched, the data are noisy and potentially biased. Performing entity resolution is non-trivial
because there are only three categorical fields: gender, governorate, and date of death. We split date
of death, which is present for most records, into three separate fields: day, month, and year. However,
because the records only span four years, the year field conveys little information. In addition, most
records are male, and there are only fourteen governorates. We created the Syria2000 data set by
down-sampling the records, preserving the proportion of clusters of each size, to create a data set
of N = 2,000 records; the maximum cluster size is five. We created the SyriaSizes data set by
down-sampling the records, preserving some of the larger clusters (which necessarily contain within-
database duplications), to create a data set of N = 6, 700 records; the maximum cluster size is ten.
We provide the empirical distribution over cluster sizes for each data set in appendix D. We generated
synthetic records for both data sets using the same approach that we used to create the Italy data set.

4.2 Results

We report the results of our experiments in table [T] and figure 2] The NBNB and NBD models
outperformed the DP and PYP models for almost all variants of the Italy and NLTCS5000 data sets.
In general, the NBD model performed the best of the four, and the differences between the models’
performance grew as the value of J increased. For the Syria2000 and SyriaSizes data sets, we see no
consistent pattern to the models’ abilities to recover the true values of the data-set statistics. Moreover,
all four models had poor false negative rates, and false discovery rates—most likely because these
data sets are extremely noisy and contain very few fields. We suspect that no entity resolution model
would perform well for these data sets. For three of the four data sets, the exception being the
Syria2000 data set, the DP model and the PYP model both greatly overestimated the number of
clusters for larger values of d. Taken together, these results suggest that the flexibility of the NBNB
and NBD models make them more appropriate choices for most entity resolution applications.

5 Summary

Infinitely exchangeable clustering models assume that cluster sizes grow linearly with the size of the
data set. Although this assumption is reasonable for some applications, it is inappropriate for others.
For example, when entity resolution is treated as a clustering problem, the number of data points in
each cluster should remain small, even for large data sets. Applications like this require models that
yield clusters whose sizes grow sublinearly with the size of the data set. We introduced the microclus-
tering property as one way to characterize models that address this requirement. We then introduced a
highly flexible class of models—KP models—that can exhibit this property. We presented two models
within this class—the NBNB model and the NBD model—and showed that they are better suited
to entity resolution applications than two infinitely exchangeable clustering models. We therefore
recommend KP models for applications where the size of each cluster should be unrelated to the size
of the data set, and each cluster should contain a negligible fraction of the total number of data points.
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(d) SyriaSizes: the models perform similarly because there are so few fields.
each data set, as well as its posterior distribution according to each of the four entity resolution models.

Figure 2: Box plots depicting the true value (dashed line) of each data-set statistic for each variant of



Table 1: Entity-resolution summary statistics—the posterior expected number of clusters, the posterior
standard error, the false negative rate (lower is better), the false discovery rate (lower is better), and
the posterior expected value of d—for each variant of each data set and each of the four models.

DataSet  True K  Variant Model E[K] Std. Er. FNR FDR E[J]

Italy 587 6 =0.02 DP  594.00 4.51 0.07 0.03 0.02
PYP  593.90 4.52 0.07 0.03 0.02

NBNB  591.00 4.43 0.04 0.03 0.02

NBD  590.50 3.64 0.03  0.00 0.02

6 =0.05 DP  601.60 5.89 0.13  0.03 0.03
PYP  601.50 5.90 0.13  0.03 0.04

NBNB  596.40 5.79 0.11  0.04 0.04

NBD  592.60 5.20 0.09 0.04 0.04

0=0.1 DP  617.40 7.23 027 0.06 0.07
PYP  617.40 7.22 027 0.05 0.07

NBNB  610.90 7.81 024 0.06 0.08

NBD  596.60 9.37 0.18 0.05 0.10

NLTCS5000 3,061 6 =0.02 DP  3021.70 24.96 0.02 0.11 0.03
PYP 3018.70 25.69 0.03 0.11 0.03

NBNB  3037.80 25.18 0.02 0.07 0.02

NBD  3028.20 5.65 0.01 0.09  0.03

6 =0.05 DP  3024.00 26.15 005 0.13 0.06
PYP 3045.80 23.66 0.05 0.10 0.05

NBNB  3040.90 24.86 0.04 0.06 0.05

NBD  3039.30 10.17 0.03 0.07 0.06

0=0.1 DP  3130.50 21.44 0.12  0.09 0.10
PYP 3115.10 25.73 0.13  0.10 0.10

NBNB  3067.30 25.31 0.11 0.08 0.11

NBD  3049.10 16.48 0.09 0.08 0.12

Syria2000 1,725 6 =0.02 DP  1695.20 25.40 070 027 0.07
PYP 1719.70 36.10 0.71 026  0.04

NBNB  1726.80 27.96 070 028 0.05

NBD 1715.20 51.56 0.67 028 0.02

6 =0.05 DP 1701.80 31.15 077 031 0.07
PYP 174290 24.33 075 032 0.04

NBNB  1738.30 25.48 074 031 0.04

NBD 171140 47.10 069 032 0.03

0=0.1 DP 1678.10 40.56 0.81 0.19  0.18
PYP 1761.20 39.38 0.81 022  0.08

NBNB 1779.40 29.84 077 026 0.04

NBD 1757.30 73.60 074 025 0.03

SyriaSizes 4,075 6 =0.02 DP  4175.70 66.04 065 017 0.01
PYP 423430 68.55 064 0.19 0.01

NBNB 4108.70 70.56 065 019 0.01

NBD 3979.50 70.85 0.68 020 0.03

6 =0.05 DP  4260.00 77.18 0.71 021  0.02
PYP 4139.10 104.22 075 0.18 0.04

NBNB  4047.10 55.18 073 020 0.04

NBD 3863.90 68.05 075 022 0.07

0=0.1 DP  4507.40 82.27 0.80 0.19 0.03
PYP  4540.30 100.53 0.80 020 0.03

NBNB  4400.60 111.91 0.80 023 0.03

NBD  4251.90 203.23 082 025 0.04
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