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Abstract. The approach most widely used for the modelling of flexible bodies in multibody systems has been
called the floating frame of reference formulation. In this methodology the flexible body motion is subdivided
into a reference motion and deformation. The displacement field due to deformation is approximated by the Ritz
method as a product of known shape functions and unknown coordinates depending on time only. The shape
functions may be obtained using finite-element-models of flexible bodies in multibody systems, resulting in a
detailed system representation and a high number of system equations. The number of system equations of such a
nodal approach can be reduced considerably using a modal representation of deformation. This modal approach,
however, leads to the fundamental problem of selecting the shape functions.

The floating frame of reference formulation is reviewed here using a generic flexible body model, from which
the various body models used in multibody simulations may be derived by formulation of specific constraint
equations. Special attention is given in this investigation to the following subjects:
• The separation of flexible body motion into a reference motion and deformation requires the definition of a

body reference frame, which in turn affects the choice of shape functions. Some alternatives will be outlined
together with their advantages and disadvantages.

• Assuming the body deformation to be small, the system equations can be linearized. This may require con-
sidering geometric stiffening terms. The problem of how to compute these terms has been solved in literature
on the instability of structures under critical loads. For finite element models the geometric stiffening terms
are obtained from the tangential stiffness matrix.

• The generality of the flexible body model allows the definition of an object oriented data base to describe the
system bodies. Such a data base includes a general interface between multibody- and finite-element-codes.

• By combining eigenfunctions and static deformation modes to represent body deformation one obtains a set
of so-called quasi-comparison functions. When selected properly these functions can be shown to improve
the representation of stresses significantly.

Keywords: Multibody simulation, flexible body modelling, interaction of multibody- and finite-element-codes,
shape functions and quasi-comparison functions, nodal and modal coordinates.

1. Introduction

A general multibody system (MBS), as considered here, is shown in Figure 1. The elements
of the model are bodies, force elements, joints and a global reference frame. The bodies of the
system may be rigid or flexible, and they are the only system components, which are assumed
to have inertia. On the surface of the bodies there are parts, called nodes, at which the joints
and force elements are attached. The force elements are used to model applied forces and
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Figure 1. General multibody system model and its elements.

torques. As shown in Figure 1, they may represent external forces, e.g. due to gravity, or
interaction between the bodies, resulting from dampers, springs, actuators or contact. All of
these forces and torques are functions of the position and velocity of the system bodies, the
constraint forces (e.g. in case of dry friction) and the state of a control system in case of
the actuators. The joints are any devices that constrain the relative motion of the nodes on
the bodies, and they result in unknown constraint forces and torques. Joint deformations as a
result of the interaction between the system bodies are not considered. The global reference
frame is used to model a known global system motion in inertial space.

Multibody formalisms are computer oriented procedures to generate the equations of mo-
tion for systems of the general form shown in Figure 1, based on data, which describe the
system elements and system topology, i.e. the way the nodes on the system bodies are in-
terconnected by force elements and joints. Two groups of formalisms may be distinguished.
They result in basically different types of equations of motion. The first group yields the
Lagrangian equations of type 1, which contain the unknown generalized constraint forces
in terms of Lagrangian multipliers. These differential equations are accompanied by a set of
algebraic constraint equations. The resulting representation of the system motion is sometimes
called the descriptor form of the equations of motion. It is simple to generate, but it requires
the numerical solution of differential-algebraic equations [1]. By contrast, the second group of
formalisms provides the state space representation of motion, i.e. a minimal set of first order
(kinematical and dynamical) differential equations, in which the constraint forces have been
eliminated. Numerical methods for solving these equations are often considered to be more
mature with respect to computational efficiency. The starting point for the development of
both types of formalisms are the equations describing the motion of a representative system
body i, acted upon by the applied external and internal forces and torques due to the force
elements and the unknown internal joint forces and torques between the system bodies.
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Methods of modelling flexible bodies in a multibody system have been reviewed in [2].
Here the floating frame of reference formulation will be used. In this methodology the motion
of a flexible body is subdivided into a reference motion and a deformation. The former is the
motion of the body in its reference configuration. It may be described as the motion of a body
reference frame, i.e. by six variables depending on timet only. Deformation is the motion
of the points of the body with respect to its reference frame, and it is given by variables
depending on material coordinates and time. Introducing a Ritz approximation, one obtains a
representation of the body deformation by variables, which depend on timet only. Thus the
motion of an arbitrary bodyi is described by position- and velocity-variables of the form

ziI (t) = [ziIj (t)] and ziI I (t) = [ziIIj (t)], j = 1,2, . . . , niz. (1)

In case of rigid bodiesniz = 6, whereasniz > 6 for flexible bodies. It is important to realize that
reference motion and deformation are defined only after specifying location and orientation
of the body reference frame [3–5].

The representation of the motion of an arbitrary body in the system, as proposed above,
has the following two consequences:
1. The system equations can be linearized, assuming the deformations to be small, whereas

the reference motion may be large and fast. The assumption is true in many applications
[5, chap. 1]. The simplifications due to linearization can be exploited, to increase the
computational efficiency, but as emphasized in [6], so-called geometric stiffening effects
need to be considered. The problem has been detailed for beams in [7]. In case of high
accelerations of the reference motion, large inertia forces act upon the system bodies.
The deformation of bodies remains small only, if their stiffness against the large inertial
effects is high. In such cases geometric stiffness terms appear in the linearized equations,
describing body deformation in the directions, along which the stiffness coefficients are
low [8–11]. Besides the inertia forces, large external and interaction forces applied in
directions of high body stiffness require the consideration of geometric stiffening.

2. The Ritz method [12; 13, vol. I, p. 150] requires the selection of shape functions. Their
choice is tied to the definition of the body reference frame [4, 5]. Different sets of shape
functions and the corresponding definitions of body reference frames result in different
magnitudes of the two displacements (reference motion and deformation), into which the
body motion has been subdivided. For linearization one would like to select the body
frame in such a way that the variables describing deformation are as small as possible. It
has been demonstrated in [14] that a so-called Buckens-, Gylden-, Tisserand- or mean-
axis-frame (see, e.g., [15–18]) guarantees such an optimal choice. This does not imply of
course that such a frame is the best alternative in all applications.

Based on the equations of motion of a representative bodyi in terms of the variables (1),
the following topics will be discussed in the paper:
1. definition of data describing a flexible body in a multibody system;
2. computation of geometric stiffening terms for finite-element models of the body;
3. representation of body deformation using various sets of shape functions.

The last point requires special attention. Convergence of the Ritz method towards the solu-
tion of the partial differential equation describing body deformation is assured, when the
shape functions form a complete set of functions and when they satisfy thegeometrical
boundary conditions [11, p. 40]. Such functions are called admissible functions [19]. The
expansion theorem [13, vol. I, p. 311] or [20, p. 111] states the conditions, under which eigen-
functions or eigenmodes form a complete set of admissible functions. Using eigenfunctions,
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which violate the dynamical boundary conditions, the convergence of the Ritz method is often
poor, especially when evaluating the internal forces of a flexible body. Convergence can be
improved significantly by introducing an expanded class of admissible functions, called quasi-
comparison functions [19, 21–24]. These are admissible functions allowing to satisfy the
dynamical boundary conditions. But not each function has to satisfy the dynamical boundary
conditions individually. Rather a linear combination of quasi-comparison functions has to be
capable of satisfying them to any desired degree of accuracy.

Eigenfunctions will be used as shape functions here. Poor convergence, when representing
deformation and in particular the resulting internal forces by these functions only, is demon-
strated by simple examples. They suggest that the inability of the eigenfunctions to satisfy the
dynamical boundary conditions is the prime reason for unsatisfactory results. Expanding the
system of eigenfunctions by static deformation modes to obtain a set of quasi-comparison
functions, convergence is improved vastly. The results are true for eigenfunctions corres-
ponding to any boundary conditions, but two points need to be considered, when using the
representation of flexible body motion described above to develop multibody formalisms:
1. Different eigenfunctions correspond to different definitions of body reference frames.

A multibody formalism, in which any set of eigenfunctions is to be used, has to al-
low for any definition of the body reference frame. This is true in particular for the
so-calledO(n)-formalisms. For them a specific choice of the body reference frame results
in computational advantages [25, p. 82; 26]. When sticking to such a specific choice, the
eigenfunctions need to be transformed accordingly, to satisfy the geometric boundary
conditions before using them to represent body deformation [4].

2. For linearization the deformations have to be as small as possible. This condition is sat-
isfied by a mean-axis-frame, which requires to use eigenfunctions of free structures. As
compared to other body reference frames, belonging to eigenfunctions of supported struc-
tures, the mean-axis-frame enlarges the range of applicability of the linearized equations
of motion, often used in the floating frame of reference formulation.

These statements will be explained now in more detail. They are verified by examples in a
companion paper on the representation of stress in the flexible system bodies.

The notation used here is as described in [5]. Vectors considered as invariants are repres-
ented by underlined letters from any alphabet, and matrices are denoted by boldface letters.
The ith row and thej th column of a matrixA = [Aij ] areAi∗ andA∗j , respectively. Tilded
symbols, such as̃v, denote the skew symmetric matrices, assigned to the coordinatesv of a
vectorν, as required to represent its cross productν × w with vectorw,having coordinates
w, by the matrix product̃vw. Vector arrays, a convenient device to specify the resolution of
vectors in a basis, are denoted by underlined boldface letters. Greek subscripts always range
from 1 to 3. A Cartesian coordinate system is denoted by{O,e}, whereO is its origin and
wheree = [eα] denotes its basis given by a set of three orthonormal base vectorseα. The
symbol idν/dt represents the relative derivative of a vectorν with respect to a coordinate
system{Oi,ei}.

2. General Model of a Representative Body

Models of flexible bodies used in multibody system simulation are finite element models and
models of beams, plates or shells, i.e. continuum models with internal constraints. The latter
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Figure 2. General model of a representative bodyi.

term, most probably, is due to Volterra [27, 28]. All of these models are summarised in a
general body model, shown in Figure 2.

In the most general case the bodyi may be modelled as suggested in continuum mechanics
[29, 30]. In its reference configuration, which is shown in light grey in Figure 2, the location
of an arbitrary pointP of body i with respect to a body reference frame{Oi,ei} is given by
the material coordinates

R = ei
T

R, R = [Rα]. (2)

Any of the body models, as used in multibody system simulation, is obtained from the general
continuum model by constraining the motion of its pointsP . Examples of such constraint
equations may be found in [15]. In many cases the formulation of the constraint equations
requires introducing coordinate systems{P,e} at the points of the body characterized by the
material coordinatesR (see, e.g., [31]). The orientation of the basise= e(R) with respect to
ei is described by a rotation matrix0i = 0i (R):

e(R) = 0i(R)ei , 0i = [Γ i
αβ]. (3)

In case of an Euler–Bernoulli beam the coordinate systems{P,e} are fixed in the rigid cross
sections of the beam, and in case of finite element models such coordinate systems often exist
at the nodes of the model.

The existence of coordinate systems{P,e} can be mandatory at the attachment points of
joints and force elements, to obtain a meaningful multibody system model: obviously, a rigid
surface element is required on a flexible body to attach a joint, which remains undeformed.
More precisely, such a surface element and the associated coordinate system{P,e} is required,
if a joint constrains rotation or if a force element transmits torque. When using flexible body
models without appropriate coordinate systems{P,e}, their existence at the attachment points
of joints and force elements has to be assured by boundary conditions. They state that the
strains are zero on parts of the surface of the body, at which the elements are fixed.

Thus, coordinate systems{P,e} exist at least at the attachment points of joints, i.e. at
the corresponding nodes of the body model. With the symbolk, i denoting the nodek on
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bodyi, a coordinate system at nodek, i is {Ok,i,ek,i}. The location of its origin is given in the
reference configuration by the coordinatesR = Rk,i. The orientation of its basisek,i = e(Rk,i)

with respect to the body reference frame is described in the reference configuration in view of
Equation (3) as

ek,i = 0k,i ei , 0k,i = 0i(Rk,i). (4)

In many applications the matrices0k,i are given by the unit matrixE.

3. Kinematics of a Representative Body

Orientation and angular velocity of the body reference frame with respect to an inertial frame,
i.e. the absolute motion of{Oi,ei}, is represented in the following way:

ei(t) = Ai(t) eI , Ai(t) = [Aiαβ(t)], where Ai(t) = Ai(αi(t), αi(t) = [αiα(t)], (5)

ωi(t) = ei
T

(t) ωi(t) = [ωiα(t)], where ω̃i = Ai ȦiT . (6)

With the angular velocity given by Equation (6) and with reference to Figure 2, one obtains
the location and velocity ofOi with respect toOI as

ρi(t) = ei
T

(t) ρi (t), ρi(t) = [ρiα(t)], (7)

Idρi

dt
= ρ̇i(t) = νi(t) = ei

T

(t) vi (t), vi = [νiα], where vi = ρ̇i + ω̃i ρi . (8)

In view of Figure 2, the motion of the representative pointsP of body i with respect to the
body reference frame is given by the displacement field

ui(R, t) = ei
T

(t) ui(R, t), ui = [uiα]. (9)

The absolute location and velocity ofP is given by (see Figure 2)

ρ(R, t) = ei
T

(t) Iρ(R, t), ρ = [ρα], Iρ = [Iρα], (10)

ν(R, t) = ρ̇(R, t) = ei
T

(t) v(R, t), v = [να]. (11)

Using the preceding equations and Figure 2, one concludes

Iρ(R, t) = AiT (t) ρ(R, t), (12)

ρ(R, t) = ρi (t)+ R+ ui(R, t) (13)

v(R, t) = vi (t)+ u̇i(R, t)+ ω̃i
(t)(R+ ui(R, t)). (14)

In these equationsρi (t) andAi(t) and their time derivatives represent the reference motion,
whereasui(R, t) and its derivatives describe the deformation of bodyi, when modelling it as
a general continuum. For flexible bodies, in which the motion ofP is constrained, one has
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to consider the motion of a basise atP as well. In the actual configuration the orientation of
e(R, t) with respect toei is described as

e(R, t) = 2i(R, t) 0i(R) ei , 2i = [Θi
αβ]. (15)

For small deformations one obtains in linear approximation

2i(R, t) = E− ϑ̃
i
(R, t), ϑi = [ϑiα]. (16)

The absolute orientation and angular velocity ofe(R, t) is described by

e(R, t) = A(R, t) eI , A = [Aαβ ], (17)

ω(R, t) = ei
T

(t) ω (R, t), ω = [ωα]. (18)

From these equations one concludes with (15), (5) and (6) when the deformations are assumed
to be small that

A(R, t) = (E− ϑ̃
i
(R, t) 0i(R)Ai(t), (19)

ω(R, t) = ωi(t)+ ϑ̇
i
(R, t). (20)

Here Ai(t) and ωi(t) describe the rotational reference motion andϑi (R, t) represents the
effects due to body deformation.

To summarize, small deformations of a representative bodyi are described by the functions
ui(R, t) andϑi (R, t). Introducing a Ritz approximation of the form

ui(R, t) = 8i (R) qi(t), 8i = [Φi
αk]

ϑi(R, t) = 9 i (R) qi(t), 9 i = [Ψ i
αk]

}
qi(t) = [qik(t)], k = 1,2, . . . , niq, (21)

the variables representing position and velocity of a bodyi, as introduced by Equation (1),
can be written as

ziI (t) = [ziIj (t)] =
 ρi(t)

αi (t)

qi(t)

 , ziI I (t) = [ziIIj (t)] =
 vi(t)

ωi(t)

q̇i(t)

 ,
j = 1,2, . . . , niz, n

i
z = 6+ niq. (22)

These variables satisfy kinematical equations of motion of the form

żiI = Zi(ziI ) ziI I with Zi =
 E ρ̃

i 0
0 Zir 0
0 0 E

 , (23)

whereZir is a 3×3-matrix, relating the angular velocityωi to the time derivatives of the angles
αi , introduced in Equation (5) to parameterize matrixAi.

The motion of the coordinate systems{Ok,i,ek,i} at the nodesk, i, as required for compu-
tation of forces and torques at the nodes and for evaluation and comparison of results, can be
obtained from the variables (22). With reference to Figure 2, the absolute location ofOk,i is
given byρk,i(t) = ρ(Rk,i, t), i.e. because of Equation (10) byρk,i(t) = ρ(Rk,i, t). Similarly,
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in view of Equation (5), the absolute orientation ofek,i is given byαk,i(t) = α(Rk,i, t). The
relative motion of{Ok,i,ek,i} with respect to the body reference frame is described by the
variablesuk,i(t) = u(Rk,i, t) andϑk,i (t) = ϑ(Rk,i, t) (see Equation (21)) andr(Rk,i, t) =
r k,i(t) = Rk,i + uk,i(t).

The description of absolute location and orientation of{P,e} requires six variables,
whereas it is given by the right-hand sides of Equations (12, 13) and (19) by the 12 variables
ρi(t),αi(t),ui (R, t) andϑi(R, t). This clearly demonstrates that six constraint equations are
still required to uniquely and completely define the variables of Equation (22). These equa-
tions are obtained by defining location and orientation of the body reference frame{Oi,ei}.
This definition can be given using kinematical and dynamical relations (see Section 5).

4. Dynamics of a Representative Body

The model of a multibody system, as shown in Figure 1, may be obtained from the general
model of continuum mechanics by formulating two types of constraint equations. They result
from
1. definition of the models of bodies (i.e. finite element models, beams, etc.) to be used for

a specific analysis;
2. constraints due to the joints between the nodes on the bodies.

The explicit form of the type 1 constraints relates the displacement field of all the points of the
multibody system to the variables of Equation (22). The constraints of type 2 result from the
joints only and their explicit form represents the redundant variables of Equation (22) in terms
of an independent set of system state variables. Formulating both types of constraint equations
and applying one of the principles of dynamics, one can generate the descriptor form or the
state space form of the system equations [5].

An intermediate result of such a derivation of the equations of motion for a system ofn

bodies is the virtual power expression in terms of the velocitiesziI I defined in Equation (22)

δP =
n∑
i=1

δ zi
T

I I (M
i żiI I − hia − hic). (24)

The matricesδ ziI I are the virtual velocities, belonging to the generalized velocitiesziI I , and
M i ,hia andhic are the corresponding generalized masses, applied forces and constraint forces,
respectively. Jourdain’s principle states that the virtual power of the constraint forces, result-
ing from both types of constraints, is zero. In Equation (24), the virtual power expressions
resulting from type 1 constraints do not appear, but the virtual power due to type 2 constraints
has been kept explicit. Because of the latter constraints, the elements ofziI I and δ ziI I are
independent only for a multibody system without joints. In such a casehic ≡ 0, and Jourdain’s
principle yields in view of Equation (24) the system equations of motion

M i żiI I = hia, i = 1,2, . . . , n. (25)

The result suggests a physical interpretation of the expression enclosed by parentheses in
Equation (24). The equations

M i żiI I = hia + hic, i = 1,2, . . . , n (26)
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Figure 3. Forces and moments upon a typical bodyi.

are the equations of motion of a system bodyi, as shown in Figure 3. It is obtained from
the entire multibody system by cutting all force elements and joints. The generalized applied
forces in Equation (26) may be separated into

hia = hiω + hig + hie + hip + hif . (27)

In this expressionhiω are generalized inertia forces due to the angular velocityωi of the
reference motion. They are distributed over the body volumeV i

0. This is also true for the
external forces, which are applied at pointP , as shown in Figure 3 by the body forceki0
per unit volume. An important example are gravitational forces, which yield the generalized
forceshig in Equation (27). Matrixhie represents the generalized internal forces, resulting from
elastic body deformation, andhip results from external surface forces given by the external
stressespi

0
, applied at the boundaryAip of body i. The generalized forceshif result from

force elements attached at nodesk, i. Rigid surface elements have been assumed to exist
at the nodes. Any forces distributed over such a rigid surface element at nodek, i may be
replaced by a resultant forceFk,i and a momentLk,i atOk,i . Both,Fk,i andLk,i, are known
functions of the relative motion of the two nodes interconnected by the force element (and
possibly of additional quantities, as detailed in the description of the multibody model shown
in Figure 1). ForcesFk,i and momentsLk,i result as well from joints fixed at nodesk, i, but
these are unknown. They yield the unknown generalized constraint forceshic in Equation (26).

The generalized mass matrixM i in Equation (26) can be partitioned according to the
partitioning ofziI andziI I in Equation (22) as follows

M i =


M i
t t sym.

M i
rt M i

rr

M i
et M i

er M i
ee

 =

mi E sym.

mi c̃i I i

Ci
t Ci

r M i
e

 . (28)
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Indices t, r and e refer to translation and rotation of the reference motion and to elastic
deformation, respectively. The symbolmi in Equation (28) denotes the mass of bodyi and
I i is the inertia matrix of the body (in its deformed configuration) with respect to the origin
Oi of its reference frame. It is the resolution of the inertia tensorI i in basisei . Matrix ci

contains the coordinates of vectorci in ei . As shown in Figure 3, it locates the center of
massCMi of the body (in its deformed configuration) with respect toOi . SubmatrixM i

e

contains the generalized masses corresponding to the velocitiesq̇i, andCi
t andCi

r are matrices
representing the coupling the between reference motion and deformation. They have a simple
interpretation: The separation of the motion of bodyi into reference motion and deformation
results in a corresponding separation of the linear and angular momentum vectors of the body.
Resolving linear and angular momentum due to deformation in basisei and denoting the
coordinates byOJi andOHi, respectively, one finds that the matricesCi

t andCi
r represent these

momentum vectors in the form

OJi = Ci
t q̇i , OHi = Ci

r q̇i where Ci
r = Ci

r (q
i). (29)

All of the generalized forces and masses in Equation (26) are found to be algebraic expres-
sions, containing the variables (22) and integrals over the shape functions8i(R) and9 i (R)
[15].

5. Definition of Body Reference Frames

A unique representation of the motion of bodyi by the variables of Equation (22) requires
the definition of the body reference frame{Oi,ei}. A widely used option is to identify it with
the frame{P,e} at one of the nodes of bodyi, e.g. the node characterized by the material
coordinatesR = 0{

Oi,ei
} = {P,e}∣∣R=0. (30)

As the reference motion represents the motion of{P,e} at R = 0, one concludes that

ui(0, t) = 0 and ϑi(0, t) = 0 (31)

holds for the variables of Equation (21) representing deformation. These are geometrical
boundary conditions, which need to be satisfied by the shape functions, i.e.

8i(0) = 0 and 9i (0) = 0. (32)

This clearly demonstrates that the definition of the body reference frame and the choice of
shape functions are interrelated. When using eigenfunctions of a flexible body to represent
deformation as proposed in Equation (21) and when the body reference frame is considered to
satisfy Equation (30), the eigenfunctions have to satisfy Equation (32), i.e. belong to a struc-
ture clamped atR = 0. A definition of the body reference frame as suggested in Equation (30)
is often used in so-calledO(n)-formalisms: the associated generation of the system equations
of motion becomes particularly efficient, when the body reference frame coincides with the
frame{P,e} at the attachment point of the inboard joint on the body [25]. When being forced
to use a set of eigenfunctions violating Equation (32) (e.g. because they are the only ones,
which are available for a given finite element model and because their recomputation for the
desired boundary conditions is expensive) one has two choices:

schwerta
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Figure 4. Definition of the body reference frame based on three points of the body.

1. the eigenfunctions are transformed to satisfy Equation (32) as proposed in [4];
2. the definition of the body reference frame is modified as required by the functions, which

are available.
An example of other eigenfunctions are those belonging to simply supported structures.

In such a case{Oi,ei} is given by three pointsP 1, P 2 and P 3 of the body, which are
characterized by their material coordinatesR1,R2 andR3. The originOi is defined as

Oi = P ∣∣R=R1. (33)

The basisei is obtained as suggested by Figure 4: vectorei1 points to pointP 2, ei3 is defined
to be perpendicular to the plane spanned by the three pointsP 1, P 2 andP 3 andei2 = ei3× ei1.
Such a definition results in the six boundary conditions

ui(R1, t) = 0, ui2(R
2, t) = 0, ui3(R

2, t) = 0, ui3(R
3, t) = 0, (34)

which implies for the shape functions

8i(R1) = 0, 8i
2∗(R

2) = 0, 8i
3∗(R

2) = 0, 8i
3∗(R

3) = 0. (35)

In a similar way other body frames may be defined by tying the frame to specific points or
lines on the body. A complete definition of{Oi,ei} requires six equations, which implies that
six boundary conditions are needed. In particular, they have to exclude any rigid body motion
of the flexible body.

Instead of the kinematical relations used heretofore, the body reference frame may be
defined as well, using dynamical concepts. A particularly favourable choice is to select its loc-
ation and orientation in such a way that linear and angular momentum due to body deformation
are zero, i.e. in view of Equation (29) that

Ci
t q̇i = 0 and Ci

r q̇i = 0 where Ci
r = Ci

r (q
i). (36)

A body frame satisfying these constraint equations is called Tisserand-, Gylden- or mean-axis-
frame, and in particular Buckens-frame, when using the linearized form of Equations (36),
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Figure 5. Deformation of an Euler–Bernoulli beam with respect to a tangent-, chord- and mean-axis-frame.

assuming the deformations described byqi and q̇i to be small [15–18]. Its origin is located
at the center of massCMi of the deformed body, and its basisei rotates as to guarantee that
OHi ≡ 0. Such a frame has three remarkable properties:
1. Because of Equation (36), which impliesci = 0, the mass matrix in Equation (28) has

block diagonal form.
2. The separation of the body motion into reference motion and deformation implies a

corresponding separation of the kinetic energy. As demonstrated in [14], the choice
of a mean-axis-frame results in a minimum value of the kinetic energy due to body
deformation, i.e.∫

V i0

u̇i
T

(R, t)u̇i(R, t) dV = min . (37)

3. The constraint relations as defined by Equation (36) are nonlinear, because matrixCi
r is a

function ofqi. When linearizing, assuming the deformations to be small, Equation (37) is
no longer satisfied, but∫

V i0

ui
T

(R, t)ui(R, t) dV = min . (38)

A Buckens-frame yields the smallest deformations, which are possible, a choice of
{Oi,ei}, which is most favourable for linearization.

For beams, the frames defined by Equations (31) and (34) are often called tangent- and
chord-frame, respectively. Figure 5 visualizes the deformations to be smallest, when measured
with respect to a mean-axis-frame. Also, deformations measured in a chord-frame are much
smaller than those measured with respect to a tangent-frame.

There is a basic difference of the conditions given by Equation (36) as compared to Equa-
tions (31) and (34). The latter are boundary conditions, applying to specific pointsR of the
body only, whereas the former takes into account the motion of all the body points. The
conditions need to be satisfied, when solving the system equations. It is shown in [14] that
this can be achieved in a most simple way: using the eigenfunctions of unsupported structures
for the shape functions in Equation (21) and deleting the rigid body modes, the constraint
equations (36) are automatically satisfied.
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6. Linearization and Geometric Stiffening

In many applications the dynamical equations of motion (26) can be linearized, assuming
the deformations as described by Equation (21) to be small. This may require considering
geometric stiffness terms [7]. A detailed analysis for arbitrary structures demonstrates that
geometric stiffening has to be considered, if the following conditions are satisfied [5]:
1. Body i is soft in directions associated with coordinates described by a subsetqiw of the

variablesqi, but it is stiff in the directions associated with deformations described by the
remainderqis of these variables.1

2. Forces resulting in deformations described byqiw are small, which implies that these
deformations themselves and the corresponding stresses are small. Forces resulting in
large deformations described byqiw do not exist for the models to be considered.

3. Forces yielding deformationsqis are large. Despite the magnitude of the forces, the de-
formations described byqis are considered to have the same order of magnitude as those
described byqiw. This requires the corresponding stiffness of the body to be large. As a
consequence, the large forces result in large stressesσ is .

A frequently studied example satisfying these conditions is a slender beam under large axial
loading. It is soft against bending and stiff against stretching (condition 1), the forces resulting
in bending are assumed to be small when compared with the longitudinal forces (condition 2)
and because of high longitudinal stiffness the large longitudinal forces result in small longit-
udinal deformations (condition 3). Other examples of beams, which require the modelling of
geometric stiffening, have been discussed in [7]. The various cases are found easily from two
sets of equations, the potential energy expression in terms of so-called deformation quantities
and the transformations of these variables into displacement quantities, which yield a simple
representation of kinetic energy.

If the three conditions are satisfied, the geometric stiffness terms appear in the linearized
equations (26) and they can be computed for any flexible body model from the equilibrium
conditions between the large forces acting on the body and the stressesσ is . Small forces need
not be considered in this context. If the large forces do not depend on the accelerationsżiI I
(examples are Coriolis- and centrifugal forces and forcesFk,i and momentsLk,i at the nodes)
the geometric stiffness terms are obtained from ordinary, i.e. non-differential equations. As
the high frequency motions due to high stiffness of the body need not be considered in such
cases, the efficiency of the numerical solution of the multibody system equations is increased
by an order of magnitude [32]. On the contrary, if the large forces are inertia forces, depending
on the accelerationṡziI I , high frequency terms appear in the linearized equations of motion,
slowing down their numerical integration.

Geometric stiffness terms are found for beam models as described in [7]. An analysis of
various approximations is available in [33]. The computation of the terms for finite element
models is detailed in [34, 35]. In [5] it is shown of how to obtain the terms from the total
tangential stiffness matrixK i

T of a finite element model of bodyi. With reference to [36,
p. 287]

K i
T = K i + K i

σ + K i
ν. (39)

Here,K i is the small displacement stiffness matrix,K i
σ is the initial stress matrix, andK i

ν is
the large displacement matrix. Considering small displacements of bodies without initial stress

1 Indexw of qiw refers to the German word ‘weich’ for ‘soft’.
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Figure 6. Model of a straight Euler–Bernoulli beam and notation to represent its motion.

and the corresponding linearized equations of motion, it can be shown thatK i
ν = 0 and that

K i
σ is identical with the geometric stiffness matrixK i

geo, i.e.K i
σ = K i

geo, whenK i
σ is computed

using the stressesσ is , due to large forces yielding the deformationsqis. As a consequence one
obtains the geometric stiffness matrix in such cases as

K i
geo= K i

T − K i , (40)

i.e. from the tangential stiffness matrixK i
T and the small displacement stiffness matrixK i.

7. Multibody System Data

As mentioned in Section 4, one may develop any type of multibody formalism by introducing
type 2 constraints into the equations of motion (26) and applying the principles of dynamics.
The resulting procedure for generation of the equations of motion provides the definition of
data to describe a multibody system. They may be subdivided into data describing bodies,
joints, force elements, the motion of the global reference frame and the system topology. All
of these have been well discussed in the literature on dynamics of systems of rigid bodies. In
[37], an object oriented data model has been proposed for such systems. It has been augmented
by a set of standard input data describing flexible bodies in multibody systems [38]. The
definition of these data is based on Equation (26), which represents the motion of a general
flexible bodyi as shown in Figure 3. The specific equations for models of beams, plates, shells
or finite element structures are found by formulating the constraint equations (21), relating
deformations, as described byui(R, t) andϑi (R, t), to the generalized coordinatesqi(t). Such
equations are given for beams and finite element models here – computational details are
found in [5].

As an example consider small deformations of a straight Euler–Bernoulli beam. With
reference to Figure 6, the displacement field of its points is given by

ui(R, t) = wi(R1, t)− R̃C ϑi (R1, t), RC = [0 R2 R3]T . (41)
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Here,wi(R1, t) represents the displacementswi of the points on the beam’s axis in the basis
ei and angles

ϑi(R1, t) = [ϑi1(R1, t) − w′i3 (R1, t) w′i2 (R1, t)]T (42)

describe the orientation of the coordinate system{O(t),e(t)}, fixed in a cross section of the
beam in its actual configuration, with respect to{O(t0),e(t0)} in the reference configuration.
Angleϑi1(R1, t) represents torsional motion. Introducing the Ritz approximation

wi(R1, t) =Wi (R1) qi(t), ϑi1(R1, t) = 9i
1∗(R1) qi(t), (43)

one obtains the matrices8i(R) and9 i(R) appearing in Equation (21) as

9 i(R) = [9 i
1∗(R1) −W ′i3∗(R1) W ′i2∗(R1)]T , 8i(R) =Wi (R1)− R̃C 9 i(R). (44)

In the classical Ritz method the shape functions in Equation (43) have to be ‘admissible
functions’ [19]. They satisfy the geometrical boundary conditions only. Convergence, and
in particular the representation of internal forces due to body deformation, are improved
when using ‘comparison functions’. These are requested to satisfy the dynamical boundary
conditions as well, but such functions are hard to produce. Fortunately, the improvements
are obtained also when selecting ‘quasi-comparison functions’ [21–24]. These are admissible
functions with the additional property that a small, limited number of linear combinations of
them are able to satisfy all of the boundary conditions including the dynamical ones. Often
quasi-comparison functions are found by combining eigenfunctions and static deformation
modes. When selecting shape functions based on these results, the conditions resulting from
the choice of the body reference frame as discussed in Section 5 need to be considered.

To consider finite element structures in multibody system models, two routes have been
pursued, which result in the so-callednodalandmodalapproaches. Both of them will be dis-
cussed now. In terms of the nodal coordinatesziF (t), describing the motion of an unconstrained
structure withniE elements, the displacement field of a bodyi is represented as

ui(R, t) =
niE∑
e=1

0e
T

Ne(x) Te ziF (t) where x = 0e(R− Re). (45)

With reference to Figure 7, the coordinatesRe of Re in ei specify the location of the origin
of an element reference frame{Oe,ee} with respect to the body reference frame{Oi,ei}, and
matrix 0e describes the orientation ofee by the relationee = 0i ei (see also Equation (3)).
MatricesNe(x) contain the element shape functions withNe(x) ≡ 0 for pointsx not in the
elemente. Matrix Te is an orthogonal transformation matrix [39, p. 482], which relates the
nodal coordinatesze(t) of an elemente to the global coordinatesziF (t) by ze(t) = Te ziF (t).

In case of structures modelled by beam- and plate-elements, the coordinatesziF (t) represent
translationsuk,i and rotationsϑk,i of coordinate systems{Ok,i,ek,i} at the nodesk, i of the
finite element model of bodyi, i.e.

ziF =
[
ziFj
] =



...[
uk,i

ϑk,i

]
...

 , j = 1,2, . . . niF . (46)
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Figure 7. Finite element model of bodyi and notation to represent its motion.

When using other elements, matrixziF contains a subset of these quantities (see, e.g., de-
scription of elements in [40]). The existence of translational and rotational displacements
uk,i(t) = ui(Rk,i, t) and ϑk,i(t) = ϑk,i(Rk,i, t) is guaranteed in such cases at least at the
attachment points of force elements and joints by the boundary conditions mentioned in
Section 2.

With reference to Section 5, boundary conditions need to be satisfied as well, when defining
the body reference frame by kinematical relations. They describe, in which way the structure
is supported, to satisfy the six conditions specifying location and orientation of the body
reference frame. In terms of the nodal coordinates (46) these conditions can be written in
the form

ziF (t) = ¯̄T
i ¯̄ziF (t) where ¯̄ziF =

[ ¯̄ziFj], j = 1,2, . . . ¯̄niF , ¯̄niF = niF − 6, (47)

with a matrix ¯̄Ti, whose elements are either zero ore one. Thus, variables¯̄ziF (t) are a subset of
the variablesziF (t).

In the nodal approachone identifies the nodal variables̄̄z
i

F (t) with the generalized
coordinatesqi(t) describing deformation, i.e.

qi(t) ≡ ¯̄ziF (t). (48)

The entire finite element model is considered in a multibody system simulation in this meth-
odology, resulting in a high number of system variables as given by Equation (22). This
number is reduced in themodal approach. The eigenmodes of the finite element structure,
described by variables̄̄z

i

F (t), are given by the eigenvectorsziF ν, ν = 1,2, . . . ¯̄niF . A set of
static deformations, due to suitably selected loads, isziFµ, µ = 1,2, . . . nistat. In these terms
the variablesqi(t) are defined by the relation

¯̄ziF (t) = 8i
F qi(t) where 8i

F =
[ ¯̄ziF ν, ¯̄ziF sµ], ν = 1,2, . . . nieig, µ = 1,2, . . . nistat. (49)

Usually one considers just a small subset ofnieig � ¯̄niF eigenvectors, thereby reducing the
number of generalized coordinates significantly. Such variables are called modal coordinates.
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Figure 8. Multibody system data and pre-processors for computation of body data as required for system
simulation with any multibody system-code.

In [5] the computation of the generalized masses and forces appearing in the linearized
equations (26) of a body i is described in detail, based on the general model shown in Figures 2
and 3. The evaluation of the corresponding equations requires the knowledge of the body data.
Most of them are found to be integrals over the body volumeV i

0, whose integrands are given
by simple algebraic expressions including the shape functions8i and9 i from Equation (21).
Collecting all of these data, the set ofstandard data for bodies in multibody systems, shown
in Figure 8, has been defined [5, 38].

Considering the specific forms of8i and9i , as suggested by Equation (44) or by Equa-
tions (45) to (49), one can generate the specific data required to model flexible bodies as
beams or finite element structures. These data may be computed by pre-processors, as shown
in Figure 8. Examples of such pre-processors are described in [41, 42]. In particular, such
pre-processors allow to use general finite element codes, to compute the data required for
an analysis based on multibody simulation. As exemplified in Figure 8, the generality of the
definition of the body data basis allows to combine any finite element code with any multibody
program.

The generality just mentioned has its price. To compute the body data, one has to use
the output of finite element codes, as available in any code. Usually the output files contain
the system matrices of the finite element model, the loads resulting in static deformations

¯̄ziF sµ and the eigenvectors̄̄z
i

F ν due to a linear system analysis, together with the matrices¯̄Ti
describing the way the structure is supported. To maintain generality, the data required for
the description of bodies in a multibody system need to be computed from these data, solely.
For some data, only approximations can be found under these restrictions, as described in
[5, 43]. To be specific, the data are found by comparing the kinetic energy expressions of
body i, when represented in terms of the variablesżiF andziI I (see Equations (46) and (22)).
The nodal coordinatesziF of a finite element model must be able to represent a rigid body
motion. Therefore, variablesvi and ωi , appearing in Equation (22), can be represented in
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terms ofżiF . Introducing these relations into the kinetic energy expression, as given byżiF ,
and comparing with the expression in terms ofziI I , one obtains the relations representing the
submatrices ofM i, given in Equation (28), in terms of the generalized mass matrix of the finite
element structure. These are the equations (in some cases just approximations) to compute the
body data for multibody simulation from the information available in the output files of finite
element codes.

8. Conclusions

A floating frame of reference formulation, based on a generic flexible body model, allows a
definition of general data describing flexible bodies in multibody systems. Such a data base
provides an interface between any multibody- and finite-element-codes. It facilitates the usage
of finite element models in multibody system simulation.

The floating frame of reference formulation is based on a separation of the flexible body
motion into a reference motion and deformation. The definition of the two motions requires the
specification of a body reference frame, which in turn is tied to the choice of shape functions in
the Ritz method used to discretize deformation. Two approaches may be pursued. In the nodal
approach the shape functions are given by the interpolation functions used in a finite element
model of the flexible body. The method allows a detailed representation of deformation and
internal forces but it also results in a high system order and corresponding computational costs.
The modal approach may reduce the number of system variables and costs considerably, but
it raises the problem of how to select the shape functions. In the classical formulation of the
Ritz method so-called admissible functions satisfying the geometrical boundary conditions
are used. A popular choice are eigenfunctions of a linear, often explicitly solvable problem, in
which the flexible body moves in a similar way as when embedded in the multibody system.
Recently, quasi-comparison functions have been proposed as an alternative. They improve
the convergence of the Ritz method and the representation of internal forces considerably.
Suitable quasi-comparison functions may be obtained by combining eigenfunctions and static
deformation modes.

The separation of the motion of a flexible body into reference motion and deformation
is introduced primarily to linearize the equations of motion assuming the deformation to be
small. The magnitude of deformation depends on the choice of the body reference frame. A so-
called Buckens frame yields a minimal deformation, but this does not imply that such a frame
is the best choice in all application problems: Shape functions belonging to the conditions of
other frames may be better suited to represent body deformation in specific situations.
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