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Flexible Multivariate GARCH Modeling
With an Application to International Stock Markets

Abstract

The goal of this paper is to estimate time-varying covariance matrices. Since
the covariance matrix of financial returns is known to change through time and is
an essential ingredient in risk management, portfolio selection, and tests of asset
pricing models, this is a very important problem in practice. Our model of choice
is the Diagonal-Vech version of the Multivariate GARCH(1,1) model. This is the
most straightforward multivariate extension of the GARCH(1,1) model, which is the
standard model in univariate volatility estimation. Unfortunately, the estimation of
the general Diagonal-Vech model model has proved to be numerically infeasible for
dimensions higher than 5. The common approach has been to estimate more restrictive
models which are tractable but may not conform to the data. Our contribution is to
propose an alternative estimation method that is numerically feasible for large-scale
problems, produces positive semi-definite conditional covariance matrices, and does
not impose unrealistic a priori restrictions. We provide an empirical application in the
context of international stock markets, comparing the new estimator to a number of
existing ones.

JEL CLASSIFICATION NOS: C13, C51, C61, G11, G15



1 Introduction

The goal of this paper is to estimate conditional covariance matrices. Since the covariance
matrix is an essential ingredient in risk management, portfolio selection, and tests of asset
pricing models, this is a very important problem in practice. Estimating conditional
covariance matrices is a multivariate extension of the simpler problem of estimating
conditional variances. In the univariate case, many methods are available, ranging from the
simple ‘rolling window’ estimation method to the sophisticated models of latent stochastic
volatility. The most popular method, however, to estimate conditional variances is the
GARCH(1,1) model. We do not claim that it is the “best” method, because a method
that is uniformly better than the others does not seem to exist. On the other hand, many
studies have shown that the univariate GARCH(1,1) gives reasonable results and it can be
safely assumed that it will remain in use for some time to come; for example, see Andersen,
Bollerslev, and Lange (1999) and Lee and Saltoğlu (2001). For these reasons, multivariate
extensions of the univariate GARCH(1,1) model have long been of interest.

The most general multivariate model commonly considered is defined by:

E[xi,t|Ωt−1] = 0 (1)

Cov[xi,t, xj,t|Ωt−1] = hij,t = cij + aij xi,t−1 xj,t−1 + bij hij,t−1 (2)

where Ωt−1 denotes the conditioning information set available at time t− 1 and xi,t denotes
the realization of the ith variable (i = 1, . . . , N) at time t. The parameter values satisfy
aij , bij ≥ 0 ∀ i, j = 1, . . . , N and cii > 0 ∀ i = 1, . . . , N . Equation (2) is known as the
Diagonal-Vech model. It assumes that the conditional covariance of variables xi and xj

depends on its lagged value and on past realizations of the product xi xj only (Bollerslev,
Engle and Wooldridge, 1988). Also, Equation (1) assumes that the variables have zero
conditional mean, which can always be justified by taking them to be residuals coming from
some regression model. While more general models can be thought of, they involve too many
parameters to be of practical interest.

The natural way to estimate the conditional covariance matrix is to compute the (quasi)
maximum likelihood estimates of the parameters cij , aij , and bij from observations of all the
variables in the vector x. Unfortunately, this is not computationally feasible for matrices of
dimension N > 5 (Ding and Engle, 1994): there are too many parameters, 3N(N + 1)/2,
and they interact in a way that is too intricate for existing optimization algorithms to
converge. Another problem is that the estimation of the general Diagonal-Vech model does
not necessarily yield conditional covariance matrices that are positive semi-definite.

The existing literature avoids these difficulties by imposing additional structure on the
problem. For example, Ding and Engle (1994) give a sequence of 20 nested models that are
particular cases of (2), by specifying, for example, that the conditional correlations should
be constant, or that there is some factor structure in the conditional covariance matrix.
Additional models can be found in Engle and Kroner (1995), Engle and Mezrich (1996),
and Engle (2000), among others. Apart from being tractable, these models typically also
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ensure that the resulting conditional covariance matrices are positive semi-definite. Imposing
additional structure is fine if we have a priori reasons to believe in it, but that is rarely the
case. In order to avoid specification error, it is typically preferable to “let the data speak”,
which means finding a way to estimate the unrestricted model.

Our basic idea proceeds in two steps. The first step is to obtain each set of coefficient
estimates ĉij , âij, and b̂ij separately for every (i, j). This can be achieved simply by
estimating a two-dimensional or one-dimensional GARCH(1,1) model (for i �= j or i = j
respectively), which is computationally feasible using a traditional method such as maximum
likelihood. We bring together the outputs of these separate estimation procedures into
matrices Ĉ = [ĉij ]i,j=1,...,N , Â = [âij]i,j=1,...,N , and B̂ = [̂bij ]i,j=1,...,N . However, the coefficient

matrices Ĉ, Â, and B̂ are generally incompatible with each other in the sense that they yield
conditional covariance matrices that are not positive semi-definite. Therefore, our second
step is to transform the estimated parameter matrices Ĉ, Â, and B̂ in such a way that they
yield conditional covariance matrices that are guaranteed to be positive semi-definite, where
the transformation is chosen to be the least disruptive possible (according to some metric).
In addition, we obtain GARCH(1,1) parameters that correspond to covariance-stationary
processes, in contrast to the implicit model behind the exponential smoothing scheme that
is quite popular for large-dimensional covariance matrices and used by RiskMetrics, for
example.

In summary, the main advantage of our estimation method is that it is the first to allow
estimation of the full-blown Diagonal-Vech model for dimensions larger than N = 5 without
imposing any a priori restrictions. Our conditional covariance matrices are only forced
to be positive semi-definite, but they generally turn out to be positive definite and well-
conditioned, which is a characteristic that (purely on economic grounds) we would expect
from the true covariance matrix (as long as we consider a menu of non-redundant assets). An
additional advantage is the reduced computational cost compared to traditional multivariate
models; see Subsection 3.3.

The paper proceeds as follows. Section 2 develops the new estimation method. Section 3
gives an empirical application to international stock markets. Section 4 concludes. An
appendix highlights some computational issues. All tables and figures appear at the end of
the paper.

2 Estimation Method

It is important to understand precisely why it is so difficult to estimate the unrestricted
Diagonal-Vech model in Equation (2) by maximum likelihood. Although there are many
parameters, 3N(N + 1)/2, this cannot be the only source of the problem. The number
of parameters in the unconditional covariance matrix is of the same order of magnitude,
N(N + 1)/2, and estimating the unconditional covariance matrix by the sample covariance
matrix (which is the maximum likelihood estimator under normality) is computationally
trivial. Computing the sample covariance matrix is easy because it can be done in a
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“decentralized” fashion: for every variable, compute its sample variance (this is a univariate
problem) and insert it into the diagonal; for every pair of variables compute their sample
covariance (this is a bivariate problem) and insert it at the appropriate place off the diagonal.
Thus, a large sample covariance matrix can be constructed by solving N(N +1)/2 univariate
or bivariate estimation problems. This is what keeps computations feasible (as opposed to
solving a single, large multivariate estimation problem).

Could the same “decentralized” process be used to compute the Diagonal-Vech estimator?
Not directly. The crucial problem is the compatibility of the parameters that come out
of all the univariate or bivariate estimations. To pursue our analogy, in the case of the
sample covariance matrix, the compatibility constraint is that the matrix be positive semi-
definite. It turns out that there exists a mathematical result that guarantees that the
sample covariance matrix constructed by putting together the individual sample variances
and sample covariances is positive semi-definite. This is very fortunate, and comes out of the
simplicity of the setting. For the Diagonal-Vech model, positive definiteness is not automatic.

The rest of this section develops an approach to deal with this problem.

2.1 Decentralized Estimation of Multivariate GARCH(1,1)

Consider what happens when we try to decentralize the estimation process for the Diagonal-
Vech model. As we said, this constitutes the first step of our estimation procedure. This
step itself can be divided into two sub-steps, corresponding to the estimation of the diagonal
and the off-diagonal coefficients, respectively.

2.1.1 Diagonal Coefficients

We estimate a univariate GARCH(1,1) process for every one of the variables by maximum
likelihood and we get consistent estimators ĉii, âii, and b̂ii. Separately for each i = 1, . . . , N ,
we solve the quasi-likelihood maximization program, assuming conditional normality:

max
cii,aii,bii

T∏
t=1

1√
2πhii,t

e−x2
it/(2hii,t) s.t. hii,t = cii + aiix

2
i,t−1 + biihii,t−1.

For each i, we have a simple univariate GARCH(1, 1) estimation problem, which many
commercial packages solve quickly. The estimator is in general not efficient, as the conditional
distribution may be different from normal, but it is consistent (e.g., Campbell, Lo, and
MacKinlay, 1997, Section 12.2).

2.1.2 Off-Diagonal Coefficients

From above, we get parameter estimates ĉii, âii, and b̂ii. We can use them to construct
conditional variance estimates ĥiit. In the second stage, we use these estimates to specify
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quasi-likelihood functions for the off-diagonal elements. Separately for each i = 1, . . . , N and
j = i + 1, . . . , N , we solve:

max
cij ,aij ,bij

T∏
t=1

1

2π
√

det(Hij,t)
e−X′

ij,tH
−1
ij,tXij,t/2 (3)

s.t. Xij,t =

[
xi,t

xj,t

]
, Hij,t =

[
ĥii,t hij,t

hij,t ĥjj,t

]
and hij,t = cij + aijxi,t−1xj,t−1 + bijhij,t−1. (4)

This quasi-likelihood is obtained by restricting attention to the 2× 2 submatrix of variables
xi and xj , fixing the conditional variances at their first-stage values ĥii and ĥjj, and
assuming normality. As on the diagonal, quasi-likelihood theorems ensure consistency.
Problem (3)-(4) is easy to solve using standard optimization algorithms, since there are
only three free parameters. The positive definiteness of the conditional covariance submatrix
Hij,t is ensured by imposing the following bounds in the estimation process: |cij| ≤ (ĉiiĉjj)

1/2,

0 ≤ aij ≤ (âiiâjj)
1/2, and 0 ≤ bij ≤ (b̂iib̂jj)

1/2, as Ding and Engle (1994) show.

2.2 Compatibility Constraints

As noted before, the estimators of the coefficients cij , aij , and bij obtained separately for
every (i, j) in Subsection 2.1 are not compatible with one another in the sense that the
forecasted covariance matrix may not be positive definite. This subsection analyzes the
mathematical relations that they must satisfy in order to become compatible.

2.2.1 Positive Semi-Definite Conditional Covariance Matrix

Following the notation of Ding and Engle (1994), let C = [cij ]i,j=1,...,N , A = [aij]i,j=1,...,N ,
and B = [bij ]i,j=1,...,N denote matrices containing the parameters of the model. Let
Ht = [hijt]i,j=1,...,N denote the conditional covariance matrix at time t. Denote the matrix of
cross-products of variables observed at time t by: Σt = [xi,t xj,t]i,j=1,...,N . Then Equation (2)
can be rewritten as:

Ht = C + A ∗ Σt−1 + B ∗ Ht−1 (5)

where the symbol ∗ denotes the Hadamard product of two matrices. The Hadamard product
of two matrices U = [uij]i,j=1,...,N and V = [vij ]i,j=1,...,N is defined as the elementwise product
U ∗ V = [uijvij]i,j=1,...,N . Similarly, let ÷ denote the elementwise division: U ÷ V =
[uij/vij ]i,j=1,...,N and let ∧ denote the elementwise exponentiation: U∧p = [up

ij]i,j=1,...,N .

Ding and Engle (1994) show that a sufficient condition to guarantee that the conditional
covariance matrix Ht is positive semi-definite almost surely (a.s.) is that C, A and B be
positive semi-definite. We derive a somewhat weaker sufficient condition.

Proposition 1 If C ÷ (1 − B), A and B are positive semi-definite, then the conditional
covariance matrix is positive semi-definite.
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Proof of Proposition 1 Replacing recursively Equation (5) into itself yields:

Ht =
∞∑

k=0

B∧k ∗ C +
∞∑

k=0

B∧k ∗ A ∗ Σt−k−1

= C ÷ (1 − B) +
∞∑

k=0

B∧k ∗ A ∗ Σt−k−1 (6)

The Hadamard product of two positive semi-definite matrices is positive semi-definite; for
example, see Styan (1973). In addition, the sum of two positive semi-definite matrices is
positive semi-definite. Finally, the matrix of cross products of realizations Σt−k−1 is positive
semi-definite a.s. by construction. Therefore, the inspection of equation (6) shows that, under
the conditions stated in Proposition 1, the conditional covariance matrix Ht is guaranteed
to be positive semi-definite a.s. �

A simple example for which our condition holds but not the one in Ding and Engle (1994)
is given by:

B =

[
0.9 0.84
0.84 0.8

]
and C =

[
1.0 1.1
1.1 1.0

]
.

It is easy to check that here C ÷ (1 − B) is positive semi-definite but C is not. While this
example may or may not be economically relevant, it illustrates that the sufficient condition
of Ding and Engle (1994) can indeed be weakened.

Proposition 2 If:

• the conditional multivariate distribution of the vector xt is continuous with unbounded
support for all t;

• ∀i, ∀j, bij < 1;

• the conditional covariance matrix Ht is positive semi-definite a.s. for all t,

then it is necessary that the parameter matrix C ÷ (1 − B) be positive semi-definite.

Proof of Proposition 2 We make a proof by contradiction. Suppose that C ÷ (1−B) has
at least one negative eigenvalue λ < 0. Expand the conditional covariance matrix as:

Ht = C ÷ (1 − B) +
t−1∑
k=0

B∧k ∗ A ∗ Σt−k−1 + B∧t ∗ [H0 − C ÷ (1 − B)] (7)

Let maxeig(·) denote the maximum eigenvalue of a matrix. Since all the elements of B have
absolute value strictly below one, we have:

B∧t → 0 as t → ∞
B∧t ∗ [H0 − C ÷ (1 − B)] → 0 as t → ∞

maxeig(B∧t ∗ [H0 − C ÷ (1 − B)]) → 0 as t → ∞
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Therefore, there exists a T large enough such that maxeig(B∧T ∗ [H0−C÷(1−B)]) < −λ/2.

The matrix A ∗ (xx′) goes to the null matrix as the vector x goes to the null
vector. Hence, there exists a neighborhood N0 of the null vector such that ∀x ∈ N0,
maxeig(A ∗ (xx′)) < −λ/(2T ). Since all the elements of B have absolute value strictly below
one, it implies: ∀x ∈ N0, ∀k = 0, . . . , T − 1, maxeig(B∧k ∗ A ∗ (xx′)) < −λ/(2T ). In the
event that ∀k = 0, . . . , T − 1, xk ∈ N0, we have:

maxeig

{
T−1∑
k=0

B∧k ∗ A ∗ Σt−k−1 + B∧T ∗ [H0 − C ÷ (1 − B)]

}
< −λ.

Therefore, by equation (7) the conditional covariance matrix HT is not positive semi-
definite if this event occurs. Since the conditional multivariate distribution of the vector xt

is continuous with unbounded support for all t, the event has a positive probability of
happening, which leads to a contradiction. This proves that C ÷ (1 − B) cannot have any
strictly negative eigenvalue. �

The assumption that the elements of B have absolute value strictly below one is innocuous
since it comes from the variance and covariance stationarity of the Multivariate GARCH(1,1)
process. Similarly, we can prove that the positive semi-definiteness of the parameter matrix A
is also a necessary condition.

Proposition 3 If the conditional multivariate distribution of the vector xt is continuous
with unbounded support and Ht is positive semi-definite a.s. for all t, then it is necessary
that the parameter matrix A be positive semi-definite.

Proof of Proposition 3 Again we make the proof by contradiction. Let mineig(·) denote
the smallest eigenvalue of a matrix. Suppose that A has at least one negative eigenvalue,
that is, mineig(A) = λ < 0. Recall the Multivariate GARCH(1,1) recursion Ht =
C + A ∗ (xt−1x

′
t−1) + B ∗ Ht−1. We work conditionally on Ht−1. If xt−1 is equal to

the unit vector then mineig[A ∗ (xt−1x
′
t−1)] = λ. Therefore, by continuity, there exists a

neighborhood N1 of the unit vector such that ∀xt−1 ∈ N1, mineig[A ∗ (xt−1x
′
t−1)] < λ/2. Let

µ = maxeig(C + B ∗ Ht−1). In the event that xt−1 =
√
−2µ/λ z for some z ∈ N1, we have:

mineig[C+A∗(xt−1x
′
t−1)+B∗Ht−1] < 0. Therefore, by the recursion formula the conditional

covariance matrix Ht is not positive semi-definite if this event occurs. Since the conditional
multivariate distribution of the vector xt−1 is continuous with unbounded support, the event
has a positive probability of happening, which leads to a contradiction. This proves that
A cannot have any strictly negative eigenvalue. �

For B, the situation is less clear. Technically speaking, the only necessary condition is that
B∧k ∗A be positive semi-definite for all k ≥ 1. It is possible to construct a counter-example
with a matrix B that satisfies this necessary condition but is not positive semi-definite. In
the univariate case, just take: A = 0, B = −1. This counter-example is mathematically
correct but economically degenerate, and we have not been able to construct a more realistic
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one. In general, after extensive numerical experiments, our overall feeling is that the couples
(A, B) that satisfy the necessary condition and where B is not positive semi-definite are
extremely rare, and can perhaps be ruled out on economic grounds. However, we have not
been able to prove any formal result along these lines. Hence, we will make the positive
definiteness of B an assumption rather than a conclusion.

Assumption 1 The true coefficient matrix B in the Multivariate GARCH(1,1) model is
positive semi-definite.

2.2.2 Covariance Stationarity

Another common concern in the application of GARCH models to financial returns is that
the fitted model be covariance stationary. Hence, we want to make sure that aij + bij <
1, ∀i, j = 1, . . . , N . The following proposition shows that it is only necessary to verify this
on the diagonal, as long as the coefficient matrices are positive semi-definite.

Proposition 4 If A and B are positive semi-definite and if

aii + bii < 1 ∀i = 1, . . . , N

then
aij + bij < 1 ∀i, j = 1, . . . , N .

Proof of Proposition 4

aij + bij = |aij| + |bij | ≤ √
aiiajj +

√
biibjj ≤

√
aii + bii

√
ajj + bjj,

where the second to last inequality is a consequence of A and B being positive semi-definite
and the last inequality is a consequence of the Hölder inequality. �

In conclusion, the definitive version of our set of compatibility constraints is: C ÷ (1 − B),
A and B positive semi-definite, and ai + bi < 1, ∀i = 1, . . . , N .

2.3 Transformation of Coefficient Matrices

We now build the matrices Ĉ = [ĉij ]i,j=1,...,N , Â = [âij ]i,j=1,...,N , and B̂ = [̂bij ]i,j=1,...,N by
placing the estimators from Section 2.1.1 on the diagonal and placing the estimators from
Section 2.1.2 on the appropriate positions off the diagonal. For convenience, we also define
D = C ÷ (1 − B) and D̂ = Ĉ ÷ (1 − B̂). Note that D̂ thus defined is the quasi-maximum
likelihood estimator of D.

D̂, Â and B̂ are consistent estimators of D, A and B respectively, but they are generally not
positive semi-definite. To be precise, D̂, Â and B̂ converge to positive semi-definite matrices
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(under Assumption 1), but in finite sample there is no guarantee that they are positive semi-
definite. Practically speaking, our experience has been that, for reasonable sample sizes,
finding positive semi-definite estimates is extremely rare. In other words, this decentralized
procedure yields parameters that are not compatible with one another. This is why it has
not been used in the existing literature, and why further restrictions are commonly imposed
on the Diagonal-Vech model.

Our central innovation is to transform the estimators D̂, Â and B̂ to positive semi-definite
matrices D̃, Ã and B̃, which we then take to be the estimates of D, A, and B. These
matrices D̃, Ã and B̃ are chosen to be the closest to D̂, Â and B̂, respectively, according to
a certain norm, but forcing the diagonal parameters obtained from univariate GARCH(1,1)
estimation to remain unchanged. This can be formalized as:

min
D̃

‖D̃ − D̂‖ s.t. D̃ is positive semi-definite and d̃ii = d̂ii , ∀i = 1, . . . , N (8)

min
Ã

‖Ã − Â‖ s.t. Ã is positive semi-definite and ãii = âii , ∀i = 1, . . . , N (9)

min
B̃

‖B̃ − B̂‖ s.t. B̃ is positive semi-definite and b̃ii = b̂ii , ∀i = 1, . . . , N (10)

Once we have D̃ and B̃, we can recalculate C̃ = D̃ ∗ (1 − B̃).

One appealing property of this transformation is that it guarantees that the multivariate
GARCH(1,1) process will not explode, that is, |ãij + b̃ij | < 1 , ∀i, j = 1, . . . , N . As shown
in Proposition 4, it is sufficient to check the diagonal, since the transformed matrices are
by construction positive semi-definite. Since we preserve the diagonal elements of Â and B̂,
which come from covariance-stationary univariate GARCH(1,1) processes, this condition is
automatically verified.

Another useful property is that the conditional covariance matrix Ht is in general invertible.
The parameter matrices D̃, Ã and B̃ are not invertible because, by construction, they lie
on the frontier of the convex set of positive semi-definite matrices, and only the interior of
this set is made of invertible matrices. Nonetheless, combining D̃, Ã and B̃ according to
Equation (5) is sufficient to pull the resulting Ht into the interior of this set, thereby making
it invertible, except in some degenerate special cases.

In order to measure closeness, different matrix norms are possible. We choose the Frobenius

norm ‖U‖F =
√∑N

i=1

∑N
j=1 u2

ij because it is intrinsically compatible with the usual quadratic
formulation of consistency results. Unfortunately, there does not appear to be any closed-
form solution for the minimization problems (8)–(10). We use a numerical algorithm due to
Sharapov (1997, Section 3.2). For convenience, this algorithm is explained in the Appendix.

It is important to understand that this transformation makes no difference asymptotically,
since the limits of D̂, Â and B̂ are positive semi-definite (under Assumption 1). Therefore,
the consistency of D̂, Â and B̂ guarantees that of D̃, Ã and B̃.

It should be kept in mind that the true matrices D, A and B (under Assumption 1) are
positive semi-definite. Therefore, by forcing our estimators to be positive semi-definite, we
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are bringing them closer to the truth. The general principle is as follows: given any convex set
(e.g. positive semi-definite matrices) and given any object outside this convex set, projecting
this object onto the convex set brings it closer to any element of the convex set. To be fair,
we are not exactly projecting D̂, Â and B̂ onto the set of positive semi-definite matrices
because we are preserving the diagonals. Nonetheless, this suggests that our transformation
has the potential to increase parameter accuracy in every sample.

A disadvantage of our method is that it does not yield straightforward standard errors of
the parameter estimates, as the transformation of the first-step matrices to positive semi-
definite matrices is nonlinear and not available in closed-form. At the expense of greater
computational cost, however, standard errors can be obtained by using an appropriate
bootstrap method. A natural choice would be a semi-parametric bootstrap based on the
fitted model. It generates bootstrap data x∗

t , . . . x
∗
T in the following way:

h∗
ij,t = c̃ij + ãijx

∗
i,tx

∗
j,t−1 + b̃ijh

∗
ij,t−1, (11)

x∗
t = (H∗

t )1/2ε∗t . (12)

Here, the ε∗t are resampled from the fitted standardized residuals ε̂t = Ĥ
−1/2
t xt, properly

transformed to have sample mean equal to zero and sample covariance matrix equal to
the identity. The sample covariance matrix can be used as a starting value for H∗

1 . (To
make negligible the choice of the starting value, one could actually start the generation of
bootstrapped data at time t = −M , with M = 100 say, and then discard the first M + 1
values.) The following algorithm describes how to compute bootstrap standard errors for
the individual parameter estimates c̃ij , ãij, and b̃ij . Note that choosing K ≥ 100 in this
algorithm should be sufficient in practice; see Efron and Tibshirani (1993).

Algorithm 1 (Bootstrap Standard Errors)

1. For k = 1, . . . , K, generate bootstrap data x∗
1,k, . . . , x

∗
T,k as described in (11)-(12).

2. Compute the estimators C̃, Ã, and B̃ on each data set to obtain bootstrap estimates
C̃∗

k , Ã∗
k, and B̃∗

k , for k = 1, . . . , K.

3. The sample standard deviations of c̃∗ij,k, ã∗
ij,k, and b̃∗ij,k, k = 1 . . .K, are the respective

bootstrap standard errors of c̃ij, ãij , and b̃ij .

3 Application to International Stock Markets

In this section, we compare the performance of several multivariate GARCH(1,1) covariance
estimators using historical stock return data. Additionally, we compare the multivariate
GARCH(1,1) estimators to other, less sophisticated estimators. (Note that a less
sophisticated estimator is not necessarily an inferior estimator.) The multivariate
GARCH(1,1) estimator that we developed in the previous section will be abbreviated by
FlexM (for Flexible Multivariate GARCH) in the remainder of the paper.
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3.1 Data

We use weekly stock market data from the US, UK, France, Germany, Japan, Canada, and
Switzerland, as captured by the major, broad market indices in each of these countries.
The sample goes from January 1, 1975 to December 31, 2000, yielding 1,356 weekly returns
observations (from the close of Wednesday to the close of next Wednesday).

We take the point of view of a US investor who does not hedge any currency risk. For each
country, we thus convert weekly index prices to US dollars (using the exchange rate of the
appropriate date) and then compute log-returns. To ease interpretation, the log-returns are
multiplied by 100, so they can be read as percentage returns. All data were obtained from
Datastream. Summary statistics of the return data are presented in Table 1; note that the
numbers for the mean and the standard deviation have been annualized.

3.2 Competing Estimators

For comparison, we include two popular multivariate GARCH(1,1) estimators and two other
widely used estimators of conditional covariance matrices in the study.

3.2.1 Constant Conditional Correlation GARCH

Bollerslev (1990) suggested a multivariate GARCH(1,1) model where the conditional
correlations are constant over time. To be more specific, each conditional variance hii,t

is modeled by a separate univariate GARCH(1,1) model with parameters cii, aii, and bii,
respectively, and the conditional covariance between variables xi and xj at time t is given

by hij,t = ρij

√
hii,thjj,t. Hence, there are a total of N(N + 5)/2 free parameters. This

model gives positive definite and stationary conditional covariance matrices provided that
the ρij make up a well-defined correlation matrix and the parameters cii, aii, and bii are all
nonnegative satisfying aii + bii < 1 ∀i = 1, . . . , N . The estimation is done by maximizing
the quasi-likelihood, assuming conditional normality. In the remainder of the paper, this
estimator will be abbreviated by CCC.

A problem with this model is the assumption of a constant conditional correlation, which
conceivably will not always hold.

3.2.2 Diagonal BEKK GARCH

Engle and Kroner (1995) proposed a class of multivariate GARCH models that are
guaranteed to produce positive definite conditional covariance matrices. In its full generality,
the corresponding GARCH(1,1) model includes all positive definite Diagonal-Vech models
and suffers from its intractability problem for higher dimensions. The model most commonly
used in practice is the more restrictive first-order Diagonal BEKK GARCH(1,1) model given
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by:
Ht = G′G + E ′xt−1x

′
t−1E + F ′Ht−1F,

where Ht denotes the conditional covariance matrix at time t, xt denotes the (column)
vector of residuals at time t, G is a triangular matrix, and E and F are diagonal matrices.
Again, there are a total of N(N + 5)/2 free parameters and the conditional covariance
matrices (that are positive semi-definite by construction) are guaranteed to be stationary if
e2

ii + f 2
ii < 1 ∀i = 1, . . . , N . The estimation is done by maximizing the quasi-likelihood,

assuming conditional normality. In the remainder of the paper, this estimator will be
abbreviated by BEKK.

A problem of this model, in the notation of the general Diagonal-Vech model, are the implied

constraints aij =
√

aiiajj and bij =
√

biibjj, which could easily be violated for certain data.

3.2.3 Rolling Window

The ever popular “rolling window” estimator simply estimates the covariance matrix at
time t, conditional on the information available at time t−1, as the sample covariance matrix
of the observations xt−k, . . . ,xt−1, where k is some predetermined integer. A common choice
for weekly data is k = 104, which corresponds to a 2-year window. In the remainder of the
paper, this model will be abbreviated by Window.

3.2.4 Exponential Smoothing

The exponential smoothing estimator is given by

Ĥt = λxt−1x
′
t−1 + (1 − λ)Ĥt−1,

where λ is a small, positive constant. Note that this prescription requires some suitable
starting values. A common approach is to use the rolling window estimator at time k + 1
for Ĥ1, . . . , Ĥk+1.

The exponential smoothing estimator corresponds to a multivariate Integrated Garch(1,1)
model with a unique autoregressive coefficient, (1−λ), and a unique moving average coeffient,
λ, for all variances and covariances. This specification is the basis of many risk measurement
systems currently in use and, for example, is advocated by RiskMetrics. A commonly used
value for λ is 0.06. In the remainder of the paper, this model will be abbreviated by RiskM.

3.3 Estimation of the Models

When estimating the three multivariate GARCH(1,1) models from the entire set of 1,356
weekly data, the estimation of the FlexM model took less than three minutes, using a
proprietary optimization routine in Matlab. In contrast, the estimation of both the CCC
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and the BEKK model took over one hour, using off-the-shelf optimization routines available
in Matlab. Tables 2–5 present the estimates of the parameters of the various models. Table 3
displays bootstrap standard errors for the FlexM model.

However, we do not use these estimated models in our comparisons, as this strategy would
focus on the in-sample performance of the various estimators. In-sample comparisons are
not ideal for our purposes for at least two reasons. First, they are too optimistic because
the entire sample is used in the fitting process before the fitted models are then applied in
hindsight. Second, they tend to favor models with more degrees of freedom, so FlexM might
have an unfair advantage.

We will therefore use out-of-sample comparisons in what follows. In general, the forecasts
for time t are made using information available up to time t − 1 only. The parameter
estimates of the multivariate GARCH(1,1) models are updated every four weeks to reduce
the computational burden for BEKK and CCC. All forecasts start at time t = 601.

3.4 Forecast Criteria

The real test for a multivariate GARCH(1,1) model is to compare its estimated, or forecasted
conditional covariance matrix to the true, realized matrix. The latter is unobservable but a
proxy can be constructed. A common and successful approach, termed integrated volatility,
is to use cumulative cross-products of intraday return residuals over the forecast horizon;
for example, see Andersen, Bollerslev, and Lange (1999), henceforth ABL, or Andersen,
Bollerslev, Diebold, and Labys (2001). Unfortunately, we only have daily return data
available but the same methodology can be applied to them; this results in a less precise
but still useful proxy. We consider forecast horizons of 1, 2, and 4 weeks. Note that there
are standard formulas to compute the the 2-week and 4-week forecasts for multivariate
GARCH models, given the 1-week forecast and the estimated model at time t − 1; for
example, see ABL. To compute the 2-week and 4-week forecasts for RiskM and Window, we
simply multiply the 1-week forecasts by the forecast horizon. Denote by Ĥt,k the estimated
conditional covariance matrix, based on the information available at time t − 1, for the k-
week forecast horizon; in this notation Ĥt,1 corresponds to Ĥt, the 1-week forecast. Also,
let Σt,k be the cumulative cross-products of daily return residuals during that period. The

typical elements of these two matrices are denoted by ĥij,t,k and σij,t,k, respectively. As do
ABL, we consider the following two criteria to judge the quality of the volatility forecasts:

RMSEk =

 1

N2

∑
i,j

E(ĥij,t,k − σij,t,k)
2

1/2

(13)

MADk =
1

N2

∑
i,j

E|ĥij,t,k − σij,t,k|, (14)

RMSEk and MADk are multivariate versions of root mean squared error and mean absolute
deviation, respectively. Criteria based on absolute deviations are sometimes preferred, since
they are more robust and less affected by a few large outliers; e.g., ABL.
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Table 6 reports estimates of the two criteria at the different forecast horizons. There are 6
comparisons altogether (2 criteria and 3 horizons). FlexM is best 4 times—for both criteria
at the 1-week and 2-week horizons—and CCC is best 2 times—for both criteria at the 4-week
horizon. RiskM and Window are always worse than the multivariate GARCH models.

3.5 Standardized Residuals

Consider the standardized residuals εt = H
−1/2
t xt, where Ht is the true conditional covariance

matrix at time t. Obviously, the εt have constant conditional covariance matrix equal to the
identity and the cross-products εtε

′
t are uncorrelated over time. It is therefore natural to test

for any ‘leftover’ autocorrelation in the cross-products ε̂tε̂
′
t, where ε̂t = Ĥ

−1/2
t xt and Ĥt is the

estimated conditional covariance matrix at time t.

A standard test for serial correlation in a univariate time series {yt} is the Ljung-Box test.
The test statistic is:

LB(k) = T
k∑

l=1

T + 2

T − l
ρ̂(l),

where ρ̂(l) is the sample autocorrelation of order l and k is an integer which is small compared
to the sample size T . The commonly used asymptotic null distribution is χ2

k, the Chi-square
distribution with k degrees of freedom.

There are, however, two problems with applying this test for our purposes. A general problem
is that the asymptotic null distribution is only correct under the additional assumption of
i.i.d. data. If the series {yt} is uncorrelated but dependent, the χ2

k approximation can be
arbitrarily misleading (Romano and Thombs, 1996). Another problem is that the test is
designed for univariate series and not series of N × N matrices. We address these two
problems simultaneously by suggesting a “combined” test statistic that takes into account
all cross-product elements at once and by constructing a test that, under the null, only
requires that the cross-products are uncorrelated rather than i.i.d..

The combined test statistic we suggest is:

LBcomb.(k) =
∑
i≤j

LBij(k), (15)

where LBij(k) is the univariate Ljung-Box test statistic computed from the series {ε̂i,tε̂j,t}.
To assess the evidence against the null hypothesis, we compute the P -value based on the
subsampling method. To this end, let LBcomb.,t,b(k) be the combined test statistic based on
the stretch of data {ε̂t, . . . , ε̂t+b−1}, for t = 1, . . . , T − b + 1. Here, the block size b is an
integer smaller than T . The subsampling P -value is then given as:

PVSub =
#{LBcomb.,t,b(k) ≥ LBcomb.(k)}

T − b + 1
.

By arguments analogous to the ones of Romano and Thombs (1996), it can easily be shown
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that this test is consistent if the cross-products are uncorrelated but dependent. For more
details about the general use of subsampling tests with dependent data, the reader is referred
to Politis, Romano, and Wolf (1999, Chapter 3). The block size b needs to satisfy the
asymptotic conditions b → ∞ and b/T → 0; some methods for chosing b in practice are
given in Politis, Romano, and Wolf (1999, Chapter 9).

Table 7 presents the test statistic and corresponding P -value for the five models, using k = 12
and b = 100; the results are similar for other values of k and b. FlexM has the smallest test
statistic and is the only model that is not rejected at any conventional level; its P -value is
0.72, the one for RiskM is 0.01, and all the others are 0.

3.6 Value-at-Risk

An important use of the conditional covariance matrix is in calculations of Value-at-Risk
(VaR). A large number of methods to compute VaR have been suggested and are currently
employed, such as historical simulation, RiskMetrics, Monte Carlo, GARCH, nonparametric
quantile regressions, and methods based on extreme value theory. We certainly do not aim to
settle the dispute as to which method is “best,” and it stands to reason that a uniformly best
method does not exist. However, GARCH methods are very popular among practitioners
and tend to perform well. (In particular, recent claims that they are dominated by methods
based on extreme value theory do not seem to be substantiated; for example, see Lee and
Saltoğlu; 2001.)

If a single portfolio is considered, it makes more sense to fit a univariate GARCH(1,1) model
to the corresponding return series and base any VaR calculations on this model. On the
other hand, if a number of different portfolios based on the same universe of N assets are
considered (as is the case with different traders of an investment bank, say), it is common
practice to base the individual VaR calculations on a single estimate of the conditional
covariance matrix of all N assets. This also allows computing marginal contributions to
risk of each position and evaluating the impact of hedges. Hence, multivariate GARCH is
certainly relevant to risk management applications.

In our tests, we consider the following four portfolios based on the seven market indices that
make up our data:

• U.S. Portfolio: U.S. only.

• North-American Portfolio: U.S. and Canada equally weighted.

• European Portfolio: U.K., France, Germany, and Switzerland equally weighted.

• World Portfolio: all seven countries equally weighted.

We use the estimated conditional covariance matrix to compute the one-week-ahead VaR at
levels 1% and 5%. In order to try to fit the tails of the return distributions and to match
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the theoretical VaR levels, we assume a conditional t-distribution. To be more specific, let
the portfolio be represented by the vector of weights, w. The estimated conditional variance
of the portfolio at time t is then given by:

ĥw,t = w′Ĥtw.

At time t− 1, we condition on the past portfolio returns and their corresponding estimated
conditional variances to choose the degrees of freedom, ν∗, that maximize the likelihood:

t−1∏
s=1

Γ
(

ν+1
2

)
√

π(ν − 2)ĥw,s Γ(ν/2)

[
1 +

(w′xs)
2

(ν − 2)ĥw,s

]−(ν+1)/2

over ν, where Γ(·) denotes the “gamma” function. Note that the standard formula for
the t-distribution has been modified by the scale factor ĥw,s(ν − 2)/ν, where the degree-of-

freedom adjustment is designed so that ĥw,s is exactly equal to the conditional variance of
w′xs. Having thus found ν∗, the 1% VaR at time t is finally computed as

tν∗,0.01

√
ĥw,t(ν∗ − 2)/ν∗.

Here, tν∗,0.01 denotes the 0.01 quantile of the t-distribution with ν∗ degrees of freedom. An
analogous computation yields the 5% VaR.

For a certain portfolio and for a given level, define the hit variable:

hitt = I{w′xt < V̂aRt}, (16)

where I{·} is the indicator function and V̂aRt is the estimated VaR at time t. If the model
to calculate the VaR is correctly specified, the series {hitt} should be uncorrelated over time
and have expected value equal to the desired confidence level.

Table 8 presents the sample means (or “hit rates”) and the Ljung-Box P -values for
autocorrelation of the hit series for the various methods, portfolios, and VaR levels. The
P -values are based on the first k = 12 sample autocorrelations. Since the hit series are
univariate and given the fact that a (stationary) {0, 1} series is uncorrelated if and only if
it is independent, it is safe to use the asymptotic Chi-square approximation to compute the
P -values here.

The hit rates are all reasonably close to the target levels, although they tend to be a bit
larger on average. There is no clear winner, nor a clear loser in terms of the hit rates.
Judging the serial correlation of the hit series {hitt}, it is seen that RiskM performs best,
since all its P -values are above 0.1. We conclude that FlexM is somewhat better than the
other GARCH models.
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3.7 Portfolio Selection

Another important application of the conditional covariance matrix is as an input to the
Markowitz (1952) portfolio selection method. Hence, we examine the gains from international
diversification obtained by taking into account the time changing nature of the covariance
matrix. In order to avoid having to specify the vector of conditional expected returns, which
is more a task of the portfolio manager than a statistical problem, we focus on constructing
the (global) minimum variance portfolio, allowing for short sales.

Table 9 shows the realized (annualized) standard deviation of the returns of the conditional
minimum variance portfolio over the entire sample period obtained from the three GARCH
models, the RiskMetrics method, and the Rolling Window method. It compares them to the
standard deviation of the US stock market, of the equal-weighted portfolio of the seven stock
markets, and of the unconditional minimum variance portfolio obtained from the sample
covariance matrix at t = 1, 356. (The last portfolio would be infeasible but we include it
nevertheless.) Not surprisingly, fully investing in the US stock market yields the highest
standard deviation, followed by the equal-weighted world portfolio and the unconditional
minimum variance portfolio. All three GARCH model provide a significant improvement,
with FlexM being the best. Window is comparable to the unconditional minimum variance
portfolio and RiskM is worse than even the equal-weighted portfolio.

4 Conclusion

In this paper, we have developed an estimation procedure for the general Diagonal-Vech
formulation of the Multivariate GARCH(1,1) model. Our procedure is the first to be
computationally feasible for dimensions N > 5, without constraining the coefficient matrices.
Our method proceeds in two steps: first, we decentralize the problem by estimating separately
N univariate and N(N − 1)/2 bivariate GARCH models, all of which are computationally
feasible problems; second, we bring together these results to form N -dimensional matrices of
parameter estimates, which we transform in order to ensure the positive semi-definiteness of
the conditional covariance matrices. In doing so, we avoid having to impose additional
restrictions, which has been the common approach so far in the multivariate GARCH
literature. In addition, our method is computationally far less demanding than traditional
multivariate models, which is an important advantage if the sample size is large, as would
be the case with high-frequency data.

We apply our procedure to 25 years of weekly data on 7 major international stock markets
and compare it to two popular traditional multivariate GARCH(1,1) models, namely the
constant conditional correlation model and the Diagonal BEKK model and two widely-
used, albeit less sophisticated, estimators, namely the Rolling Window estimator and the
exponential smoothing estimator. Using a number of criteria, such as forecast accuracy,
persistence of standardized residuals, precision of Value-at-Risk estimates, and optimal
portfolio selection, we find that the Flexible Multivariate GARCH method does indeed offer
improved performance. The use of high-frequency data, which undoubtedly will increase in
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the future, should make our procedure even more attractive.

Direct applications of this method involve portfolio selection and tests of asset pricing
models such as the International CAPM, and risk measurement uses such as Value-at-
Risk. An interesting topic left for future research is an extension to asymmetric multivariate
GARCH(1,1).
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Appendix: Minimization of the Frobenius norm

A.1 Problem Formulation

Given a symmetric matrix A with the property diag(A) > 0, find a symmetric, positive
semi-definite matrix M with diag(M) = diag(A) that minimizes ‖A − M‖F , where ‖ · ‖F is
the Frobenius norm.

A.2 Numerical Solution

Write the matrix A and the current approximation M to the solution of the above problem
as

A =
(

a11 aT

a A

)
M =

(
a11 mT

m M

)
and let the conditions of the problem be satisfied (that is, diag(M) = diag(A) and
M = MT ≥ 0). For a matrix of the form

P =
(

ρ xT

0 In−1

)

(where In−1 is identity), we can introduce the next iterate by

M̌ = PMP T =
(

ρ2a11 + 2ρxT m + xT Mx ρmT + xT M
ρm + Mx M

)
. (17)

If we enforce the condition

ρ2a11 + 2ρxT m + xT Mx = a11, (18)

then the new approximation M̌ satisfies the conditions of the problem: M̌ = M̌T ≥ 0 and
diag(M̌) = diag(A).

If (18) is satisfied we have

‖A − M̌‖F − ‖A − M‖F = 2‖a − (ρm + Mx)‖2
2 − 2‖a − m‖2

2,

therefore choosing x and ρ that minimize ‖a − (ρm + Mx)‖2
2 from (17) we get M̌ that

minimizes ‖A − M̌‖F , satisfies the conditions of the problem, and is obtained form the
previous approximation M by changing its first row and column. The extension to the ith
column and row is obvious.

Remark 1 The convexity of the problem implies that the solution matrix M is singular,
that is, lies on the boundary of the feasible region. Since det(M̌) = ρ2 det(M), we can make
the iterates stay within the interior of the feasible region by initializing the process with

18



a nonsingular matrix and choosing ρ to be bounded away from zero. Later on we treat ρ
as a chosen constant between zero and one, so the iterates become singular not faster then
exponentially. In numerical examples, ρ is chosen to be 0.5.

One step of the iterative procedure becomes

min
x

‖a − (ρm + Mx)‖2
2

subject to (18), or introducing
b = a − ρm

it becomes
min

x
‖Mx − b‖2

2

still subject to (18).

The Lagrangian of this subproblem is

L(x, λ) = ‖Mx − b‖2
2 + λ(ρ2a11 + 2ρxT m + xT Mx − a11)

and the optimality conditions are

F (x) = ρ2a11 + 2ρxT m + xT Mx − a11 = 0 (19)

and
∇xL(x, λ) = 0,

which can be written as
M

2
x − Mb + λρm + λMx = 0. (20)

For any λ, Equation (20) can be solved for x:

x(λ) = (M
2
+ λM)−1(Mb − λρm) (21)

and
F (λ) = F (x(λ)) = 0

can be solved by the Newton’s method:

λ ⇐ λ − F (λ)

Fλ(λ)
(22)

The analytic expression for Fλ(λ) can be obtained from

Fλ(λ) = ∇xF (x) · xλ = 2(ρm + Mx)T xλ (23)

By differentiating (20) in λ we get

M
2
xλ + ρm + Mx + xMxλ = 0,
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therefore
xλ = −(M

2
+ λM)−1(ρm + Mx).

inserting in (23) we get

Fλ(λ) = −2(ρm + Mx)T (M
2
+ λM)−1(ρm + Mx). (24)

We can summarize the solution of the subproblem as:

• Initialize λ (say λ = 0)

• Compute x by (21)

• Compute F (λ) and Fλ(λ) using (19) and (24)

• Update λ using Newton’s step (22)

• Recur the Newton’s procedure

Remark 2 Steps (19) and (24) involve the inverse of M
2
+ λM which is singular if M is.

Restricting ρ to be a nonzero constant results in nonsingular M unless it is a solution; see
Remark 1.

A MATLAB routine implementing this procedure has been written Ilya Sharapov and is
available from the authors upon request.

A.3 Numerical Tests

Extensive simulation tests of the numeric routing have been implemented. Numerical
convergence is typically obtained after one or two iterations with minimal error. The results
to these tests are not presented for brevity but can be obtained from the authors upon
request.
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Table 1: Summary Statistics of Log-Returns. This table presents the summary statistics
for the weekly percentage log-returns of seven different stock markets. The local currency
returns were transformed into US Dollar returns by the appropriate exchange rate, they
correspond to the returns obtained by a US investor who does not hedge currency risk. The
sample includes 1,356 observations from January 1, 1975 to December 31, 2000, obtained
from Datastream. The numbers for the mean and the standard deviation are annualized.

USA UK France Germany Japan Canada Switzerland

Mean 15.16 17.85 15.91 12.14 11.69 11.27 15.23
SD 15.10 19.71 20.57 17.66 20.44 15.62 16.48
Skewness -0.60 0.25 -0.49 -0.31 0.11 -0.47 -0.60
Kurtosis 6.82 9.01 5.29 4.72 4.80 6.54 6.95



Table 2: Parameter Estimates of the FlexM Model. This table presents the estimated
parameters of the Flexible Multivariate (FlexM) GARCH(1,1) model based on the entire
sample. The model is developed and described in Section 2. As the matrices are symmetric,
only the lower triangular parts are displayed to enhance readability.

USA UK France Germany Japan Canada Switzerland

C̃

0.1448
0.1292 0.1641
0.1560 0.2120 0.4410
0.0744 0.1270 0.1752 0.1783
0.0627 0.1119 0.1666 0.1160 0.1858
0.1813 0.1840 0.1876 0.0950 0.0732 0.2929
0.1495 0.2062 0.2798 0.2575 0.1958 0.1817 0.5271

Ã

0.0861
0.0499 0.0710
0.0533 0.0700 0.1037
0.0641 0.0680 0.0940 0.0918
0.0475 0.0405 0.0565 0.0600 0.0772
0.0839 0.0474 0.0600 0.0768 0.0565 0.1162
0.0517 0.0629 0.0876 0.0820 0.0521 0.0567 0.0783

B̃

0.8835
0.8886 0.9066
0.8606 0.8714 0.8426
0.8802 0.8880 0.8595 0.8808
0.8896 0.9018 0.8700 0.8873 0.9012
0.8509 0.8616 0.8319 0.8497 0.8601 0.8233
0.8482 0.8588 0.8292 0.8469 0.8573 0.8198 0.8179



Table 3: Standard Errors of the FlexM Model. This table presents bootstrap standard
errors corresponding to the parameter estimates of Table 2. The standard errors were
computed as outlined in Algorithm 1, using K = 100. As the matrices are symmetric,
only the lower triangular parts are displayed to enhance readability.

USA UK France Germany Japan Canada Switzerland

C̃

0.0862
0.0497 0.1286
0.0554 0.0903 0.2221
0.0354 0.0550 0.0675 0.0869
0.0360 0.0575 0.0610 0.0456 0.0948
0.0759 0.0755 0.0860 0.0516 0.0439 0.1406
0.0957 0.1505 0.1898 0.1508 0.1512 0.1068 0.5059

Ã

0.0271
0.0183 0.0220
0.0186 0.0164 0.0294
0.0169 0.0171 0.0206 0.0264
0.0177 0.0146 0.0149 0.0138 0.0191
0.0245 0.0179 0.0197 0.0183 0.0172 0.0369
0.0212 0.0228 0.0255 0.0284 0.0177 0.0244 0.0458

B̃

0.0379
0.0319 0.0337
0.0419 0.0339 0.0461
0.0362 0.0288 0.0313 0.0332
0.0390 0.0319 0.0350 0.0283 0.0254
0.0428 0.0420 0.0537 0.0460 0.0524 0.0551
0.0890 0.0873 0.0848 0.0853 0.0890 0.0913 0.1320



Table 4: Parameter Estimates of the CCC Model. This table presents the estimated
parameters of the Constant Conditional Correlation (CCC) GARCH(1,1) model based on
the entire sample. The model is described in Subsubsection 3.2.1.

USA UK France Germany Japan Canada Switzerland

cii

0.1850 0.0733 0.3495 0.1514 0.2356 0.2992 0.5743

aii

0.0700 0.0520 0.0731 0.0446 0.0727 0.0898 0.0467

bii

0.8872 0.9379 0.8819 0.9278 0.8977 0.8443 0.8367

Correlation Matrix

1.0000
0.4392 1.0000
0.3572 0.4888 1.0000
0.3302 0.4623 0.5643 1.0000
0.2469 0.3369 0.3373 0.3688 1.0000
0.6753 0.4352 0.3459 0.3267 0.2244 1.0000
0.3655 0.4852 0.5299 0.7009 0.3891 0.3450 1.0000



Table 5: Parameter Estimates of the BEKK Model. This table presents the estimated
parameters of the Diagonal BEKK (BEKK) GARCH(1,1) model based on the entire sample.
The model is described in Subsubsection 3.2.2. Note that G is a lower triangular matrix, so
the elements not displayed are equal to zero.

USA UK France Germany Japan Canada Switzerland

G

0.3034
0.1004 0.1662
0.1508 0.2863 0.2634
0.1291 0.2558 0.0215 0.2696
0.0842 0.1154 0.0374 0.0561 0.3300
0.2408 0.0831 -0.0329 -0.0270 -0.0060 0.2485
0.2039 0.3923 -0.0519 0.0905 0.0557 -0.0620 0.2302

Diag(E)

0.1446 0.1283 0.2141 0.2050 0.1709 0.1567 0.1872

Diag(F )

0.9786 0.9885 0.9657 0.9655 0.9769 0.9729 0.9557



Table 6: Forecast Criteria for Covariance Matrices. This tables compares the
forecasted conditional covariance matrices with the realized integrated volatility covariance
matrices computed from daily data that serve as a proxy for the true but unobservable
conditional covariance matrices. The criteria RMSE and MAD are defined in (13)–(14). All
forecasts are out-of-sample. Forecasts start at week t = 601.

Model RMSE MAD

1-Week Horizon

FlexM 9.73 2.96
CCC 9.88 3.01
BEKK 9.90 3.09
RiskM 9.98 3.31
Window 10.02 3.42

2-Week Horizon

FlexM 15.48 5.13
CCC 15.70 5.22
BEKK 15.74 5.37
RiskM 16.07 5.88
Window 16.03 6.09

4-Week Horizon

FlexM 17.42 8.90
CCC 17.09 8.71
BEKK 17.48 9.37
RiskM 26.14 10.82
Window 25.61 11.10



Table 7: Standardized Residuals. This tables presents test results for left-over
autocorrelation in the fitted standardized residuals. The test statistic is the combined Ljung-
Box statistic defined in (15) using the first k = 12 sample autocorrelations. The P -value for
the null hypothesis of no autocorrelation is obtained by applying the subsampling method
with block size b = 100, as detailed in the discussion following Equation (15). All fitted
standardized residuals are out-of-sample and are computed starting at week t = 601.

Model Test Statistic P -value

FlexM 275.4 0.72
CCC 640.1 0.00
BEKK 760.1 0.00
RiskM 386.7 0.01
Window 845.3 0.00



Table 8: Value-at-Risk. This table compares VaR calculations at levels 1% and 5%,
assuming a conditional t-distribution (suitably normalized). The hit rates are the sample
means of the hit series defined in (16) and should be close to the nominal level. The P -value
corresponds to the null hypothesis of no autocorrelation in the hit series and is obtained
from the usual Chi-square approximation of the univariate Ljung-Box test statistic using the
first k = 12 sample autocorrelations. All VaR calculations are out-of-sample and start at
week t = 601.

Model Hit Rate for 1% Hit Rate for 5% P -value for 1% P -value for 5%

U.S. Portfolio

FlexM 0.027 0.068 0.71 0.82
CCC 0.027 0.068 0.64 0.93
BEKK 0.018 0.068 0.36 0.99
RiskM 0.030 0.066 0.85 0.83
Window 0.029 0.068 0.78 0.24

North-American Portfolio

FlexM 0.015 0.070 0.90 0.86
CCC 0.015 0.070 0.00 0.68
BEKK 0.015 0.068 0.07 0.79
RiskM 0.027 0.066 0.61 0.44
Window 0.028 0.062 0.01 0.51

European Portfolio

FlexM 0.010 0.054 0.01 0.18
CCC 0.016 0.060 0.08 0.01
BEKK 0.011 0.054 0.04 0.09
RiskM 0.015 0.058 0.55 0.30
Window 0.017 0.052 0.00 0.00

World Portfolio

FlexM 0.016 0.063 0.03 0.44
CCC 0.015 0.069 0.00 0.00
BEKK 0.016 0.053 0.03 0.00
RiskM 0.020 0.065 0.18 0.26
Window 0.021 0.061 0.02 0.00



Table 9: Standard Deviation of Portfolio Returns. This table presents (annualized)
standard deviations of various portfolios. The Minimum Variance Portfolios aim to construct
the portfolio with globally minimum variance; no restriction on the expected return is made
and short sales are allowed. All portfolios are constructed starting at week t = 601.

US Portfolio 15.87

Equal-Weighted World Portfolio 13.33

Unconditional Minimum Variance Portfolio 12.91

FlexM Minimum Variance Portfolio 12.32

CCC Minimum Variance Portfolio 12.53

BEKK Minimum Variance Portfolio 12.54

RiskM Minimum Variance Portfolio 13.37

Window Minimum Variance Portfolio 12.89


