
Flexible Neural Representation for Physics Prediction

Damian Mrowca1,∗, Chengxu Zhuang2,∗, Elias Wang3,∗, Nick Haber2,4,5 , Li Fei-Fei1 ,
Joshua B. Tenenbaum7,8 , and Daniel L. K. Yamins1,2,6

Department of Computer Science1, Psychology2, Electrical Engineering3, Pediatrics4 and
Biomedical Data Science5, and Wu Tsai Neurosciences Institute6, Stanford, CA 94305

Department of Brain and Cognitive Sciences7, and Computer Science and Artificial Intelligence
Laboratory8, MIT, Cambridge, MA 02139

{mrowca, chengxuz, eliwang}@stanford.edu

Abstract

Humans have a remarkable capacity to understand the physical dynamics of objects
in their environment, flexibly capturing complex structures and interactions at
multiple levels of detail. Inspired by this ability, we propose a hierarchical particle-
based object representation that covers a wide variety of types of three-dimensional
objects, including both arbitrary rigid geometrical shapes and deformable materi-
als. We then describe the Hierarchical Relation Network (HRN), an end-to-end
differentiable neural network based on hierarchical graph convolution, that learns
to predict physical dynamics in this representation. Compared to other neural
network baselines, the HRN accurately handles complex collisions and nonrigid
deformations, generating plausible dynamics predictions at long time scales in
novel settings, and scaling to large scene configurations. These results demonstrate
an architecture with the potential to form the basis of next-generation physics
predictors for use in computer vision, robotics, and quantitative cognitive science.

1 Introduction

Humans efficiently decompose their environment into objects, and reason effectively about the
dynamic interactions between these objects [43, 45]. Although human intuitive physics may be
quantitatively inaccurate under some circumstances [32], humans make qualitatively plausible guesses
about dynamic trajectories of their environments over long time horizons [41]. Moreover, they either
are born knowing, or quickly learn about, concepts such as object permanence, occlusion, and
deformability, which guide their perception and reasoning [42].

An artificial system that could mimic such abilities would be of great use for applications in computer
vision, robotics, reinforcement learning, and many other areas. While traditional physics engines
constructed for computer graphics have made great strides, such routines are often hard-wired
and thus challenging to integrate as components of larger learnable systems. Creating end-to-end
differentiable neural networks for physics prediction is thus an appealing idea. Recently, Chang et al.
[11] and Battaglia et al. [4] have illustrated the use of neural networks to predict physical object
interactions in (mostly) 2D scenarios by proposing object-centric and relation-centric representations.
Common to these works is the treatment of scenes as graphs, with nodes representing object point
masses and edges describing the pairwise relations between objects (e.g. gravitational, spring-like, or
repulsing relationships). Object relations and physical states are used to compute the pairwise effects
between objects. After combining effects on an object, the future physical state of the environment is
predicted on a per-object basis. This approach is very promising in its ability to explicitly handle

∗Equal contribution

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

mailto:mrowca@stanford.edu
mailto:chengxuz@stanford.edu
mailto:eliwang@stanford.edu

object interactions. However, a number of challenges have remained in generalizing this approach
to real-world physical dynamics, including representing arbitrary geometric shapes with sufficient
resolution to capture complex collisions, working with objects at different scales simultaneously, and
handling non-rigid objects of nontrivial complexity.

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9

G
ro

u
n
d
 T

ru
th

P
re

d
ic

ti
o
n

Figure 1: Predicting physical dynamics. Given past observations the task is to predict the future
physical state of a system. In this example, a cube deforms as it collides with the ground. The top
row shows the ground truth and the bottom row the prediction of our physics prediction network.

Several of these challenges are illustrated in the fast-moving deformable cube sequence depicted
in Figure 1. Humans can flexibly vary the level of detail at which they perceive such objects in
motion: The cube may naturally be conceived as an undifferentiated point mass as it moves along
its initial kinematic trajectory. But as it collides with and bounces up from the floor, the cube’s
complex rectilinear substructure and nonrigid material properties become important for understanding
what happens and predicting future interactions. The ease with which the human mind handles such
complex scenarios is an important explicandum of cognitive science, and also a key challenge for
artificial intelligence. Motivated by both of these goals, our aim here is to develop a new class of
neural network architectures with this human-like ability to reason flexibly about the physical world.

To this end, it would be natural to extend the interaction network framework by representing each
object as a (potentially large) set of connected particles. In such a representation, individual constituent
particles could move independently, allowing the object to deform while being constrained by pairwise
relations preventing the object from falling apart. However, this type of particle-based representation
introduces a number of challenges of its own. Conceptually, it is not immediately clear how to
efficiently propagate effects across such an object. Moreover, representing every object with hundreds
or thousands of particles would result in an exploding number of pairwise relations, which is both
computationally infeasible and cognitively unnatural.

As a solution to these issues, we propose a novel cognitively-inspired hierarchical graph-based object
representation that captures a wide variety of complex rigid and deformable bodies (Section 3), and
an efficient hierarchical graph-convolutional neural network that learns physics prediction within this
representation (Section 4). Evaluating on complex 3D scenarios, we show substantial improvements
relative to strong baselines both in quantitative prediction accuracy and qualitative measures of
prediction plausibility, and evidence for generalization to complex unseen scenarios (Section 5).

2 Related Work

An efficient and flexible predictor of physical dynamics has been an outstanding question in neural
network design. In computer vision, modeling moving objects in images or videos for action
recognition, future prediction, and object tracking is of great interest. Similarly in robotics, action-
conditioned future prediction from images is crucial for navigation or object interactions. However,
future predictors operating directly on 2D image representations often fail to generate sharp object
boundaries and struggle with occlusions and remembering objects when they are no longer visually
observable [1, 17, 16, 28, 29, 33, 34, 19]. Representations using 3D convolution or point clouds are
better at maintaining object shape [46, 47, 10, 36, 37], but do not entirely capture object permanence,
and can be computationally inefficient. More similar to our approach are inverse graphics methods
that extract a lower dimensional physical representation from images that is used to predict physics
[25, 26, 51, 50, 52, 53, 7, 49]. Our work draws inspiration from and extends that of Chang et al. [11]
and Battaglia et al. [4], which in turn use ideas from graph-based neural networks [39, 44, 9, 30,
22, 14, 13, 24, 8, 40]. Most of the existing work, however, does not naturally handle complex scene
scenarios with objects of widely varying scales or deformable objects with complex materials.

Physics simulation has also long been studied in computer graphics, most commonly for rigid-body
collisions [2, 12]. Particles or point masses have also been used to represent more complex physical

2

objects, with the neural network-based NeuroAnimator being one of the earliest examples to use a
hierarchical particle representation for objects to advance the movement of physical objects [18]. Our
particle-based object representation also draws inspiration from recent work on (non-neural-network)
physics simulation, in particular the NVIDIA FleX engine [31, 6]. However, unlike this work, our
solution is an end-to-end differentiable neural network that can learn from data.

Recent research in computational cognitive science has posited that humans run physics simulations
in their mind [5, 3, 20, 48, 21]. It seems plausible that such simulations happen at just the right
level of detail which can be flexibly adapted as needed, similar to our proposed representation. Both
the ability to imagine object motion as well as to flexibly decompose an environment into objects
and parts form an important prior that humans rely on for further learning about new tasks, when
generalizing their skills to new environments or flexibly adapting to changes in inputs and goals [27].

3 Hierarchical Particle Graph Representation

A key factor for predicting the future physical state of a system is the underlying representation used.
A simplifying, but restrictive, often made assumption is that all objects are rigid. A rigid body can be
represented with a single point mass and unambiguously situated in space by specifying its position
and orientation, together with a separate data structure describing the object’s shape and extent.
Examples are 3D polygon meshes or various forms of 2D or 3D masks extracted from perceptual
data [10, 16]. The rigid body assumption describes only a fraction of the real world, excluding,
for example, soft bodies, cloths, fluids, and gases, and precludes objects breaking and combining.
However, objects are divisible and made up of a potentially large numbers of smaller sub-parts.

Given a scene with a set of objects O, the core idea is to represent each object o 2 O with a set of
particles Po ⌘ {pi|i 2 o}. Each particle’s state at time t is described by a vector in R

7 consisting of its
position x 2 R

3, velocity δ 2 R
3, and mass m 2 R

+. We refer to pi and this vector interchangeably.

Particles are spaced out across an object to fully describe its volume. In theory, particles can be
arbitrarily placed within an object. Thus, less complex parts can be described with fewer particles
(e.g. 8 particles fully define a cube). More complicated parts (e.g. a long rod) can be represented with
more particles. We define P as the set {pi|1 i NP } of all NP particles in the observed scene.

...

Figure 2: Hierarchical graph-based object representation. An object is decomposed into particles.
Particles (of the same color) are grouped into a hierarchy representing multiple object scales. Pairwise
relations constrain particles in the same group and to ancestors and descendants.

To fully physically describe a scene containing multiple objects with particles, we also need to define
how the particles relate to each other. Similar to Battaglia et al. [4], we represent relations between
particles pi and pj with K-dimensional pairwise relationships R = {rij 2 R

K}. Each relationship
rij within an object encodes material properties. For example, for a soft body rij 2 R represents the
local material stiffness, which need not be uniform within an object. Arbitrarily-shaped objects with
potentially nonuniform materials can be represented in this way. Note that the physical interpretation
of rij is learned from data rather than hard-coded through equations. Overall, we represent the scene
by a node-labeled graph G = hP,Ri where the particles form the nodes P and the relations define the
(directed) edges R. Except for the case of collisions, different objects are disconnected components
within G.

The graph G is used to propagate effects through the scene. It is infeasible to use a fully con-
nected graph for propagation as pairwise-relationship computations grow with O(N2

P). To achieve
O(NP log(NP)) complexity, we construct a hierarchical scene (di)graph GH from G in which the
nodes of each connected component are organized into a tree structure: First, we initialize the leaf
nodes L of GH as the original particle set P . Then, we extend GH by a root node for each connected
component (object) in G. The root node states are defined as the aggregates of their leaf node states.
The root nodes are connected to their leaves with directed edges and vice versa.

3

At this point, GH consists of the leaf particles L representing the finest scene resolution and one root
node for each connected component describing the scene at the object level. To obtain intermediate
levels of detail, we then cluster the leaves L in each connected component into smaller subcomponents
using a modified k-means algorithm. We add one node for each new subcomponent and connect
its leaves to the newly added node and vice versa. This newly added node is then labeled as the
direct ancestors for its leaves and its leaves are siblings to each other. We then connect the added
intermediate nodes with each other if and only if their respective subcomponent leaves are connected.
Lastly, we add directed edges from the root node of each connected component to the new intermediate
nodes in that component, and remove edges between leaves not in the same cluster. The process then
recurses within each new subcomponent. See Algorithm 1 in the supplementary for details.

We denote the sibling(s) of a particle p by sib(p), its ancestor(s) by anc(p), its parent by par(p), and
its descendant(s) by des(p). We define leaves(pa) = {pl 2 L | pa 2 anc(pl)}. Note that in GH ,
directed edges connect pi and sib(pi), leaves pl and anc(pl), and pi and des(pi); see Figure 3b.

4 Physics Prediction Model

In this section we introduce our physics prediction model. It is based on hierarchical graph convolu-
tion, an operation which propagates relevant physical effects through the graph hierarchy.

4.1 Hierarchical Graph Convolutions For Effect Propagation

In order to predict the future physical state, we need to resolve the constraints that particles connected
in the hierarchical graph impose on each other. We use graph convolutions to compute and propagate
these effects. Following Battaglia et al. [4], we implement a pairwise graph convolution using two
basic building blocks: (1) A pairwise processing unit φ that takes the sender particle state ps, the
receiver particle state pr and their relation rsr as input and outputs the effect esr 2 R

E of ps on
pr, and (2) a commutative aggregation operation Σ which collects and computes the overall effect
er 2 R

E . In our case, this is a simple summation over all effects on pr. Together these two building
blocks form a convolution on graphs as shown in Figure 3a.

p
s

1

p
s

2

p
s

3

p
r

p
s

1

e
s r

2
� e

r
r

s r

p
s

�p
r p

r p
r

1

1 p
s

2

r
s r

2

p
s

3

r
s r

3

e
s r

1

e
s r

3

L2
A

A2D

WS

WS

L
2
A

A
2
D

A
2
D

�

� �

�L2A

�WS

�
A2Dp

s
2

p
s

3

p
r

�a) b)

Figure 3: Effect propagation through graph convolutions. a) Pairwise graph convolution φ. A
receiver particle pr is constrained in its movement through graph relations rsr with sender particle(s)
ps. Given ps, pr and rsr, the effect esr of ps on pr is computed using a fully connected neural
network. The overall effect er is the sum of all effects on pr. b) Hierarchical graph convolution
η. Effects in the hierarchy are propagated in three consecutive steps. (1) φL2A. Leaf particles L
propagate effects to all of their ancestors A. (2) φWS . Effects are exchanged between siblings S. (3)
φA2D. Effects are propagated from the ancestors A to all of their descendants D.

Pairwise processing limits graph convolutions to only propagate effects between directly connected
nodes. For a generic flat graph, we would have to repeatedly apply this operation until the information
from all particles has propagated across the whole graph. This is infeasible in a scenario with
many particles. Instead, we leverage direct connections between particles and their ancestors in
our hierarchy to propagate all effects across the entire graph in one model step. We introduce a
hierarchical graph convolution, a three stage mechanism for effect propagation as seen in Figure 3b:

The first L2A (Leaves to Ancestors) stage φL2A(pl, pa, rla, e
0
l) predicts the effect eL2A

la 2 R
E of a

leaf particle pl on an ancestor particle pa 2 anc(pl) given pl, pa, the material property information
of rla, and input effect e0l on pl. The second WS (Within Siblings) stage φWS(pi, pj , rij , e

L2A
i)

predicts the effect eWS
ij 2 R

E of sibling particle pi on pj 2 sib(pi). The third A2D (Ancestors to

Descendants) stage φA2D(pa, pd, rad, e
L2A
a + eWS

a) predicts the effect eA2D
ij 2 R

E of an ancestor

particle pa on a descendant particle pd 2 des(pa). The total propagated effect ei on particle pi is

4

�
C

�
F

�

�
H

�� Pt+1G(t-T,t]
H

Figure 4: Hierarchical Relation Network. The model takes the past particle graphs G
(t−T,t]
H =

hP (t−T,t], R(t−T,t]i as input and outputs the next states P t+1. The inputs to each graph convolutional
effect module φ are the particle states and relations, the outputs the respective effects. φH processes
past states, φC collisions, and φF external forces. The hierarchical graph convolutional module η
takes the sum of all effects, the pairwise particle states, and relations and propagates the effects
through the graph. Finally, ψ uses the propagated effects to compute the next particle states P t+1.

computed by summing the various effects on that particle, ei = eL2A
i + eWS

i + eA2D
i where

eL2A
a =

X

pl∈leaves(pa)

φL2A(pl, pa, rla, e
0
l) eWS

j =
X

pi∈sib(pj)

φWS(pi, pj , rij , e
L2A
i)

eA2D
d =

X

pa∈anc(pd)

φA2D(pa, pd, rad, e
L2A
a + eWS

a).

In practice, φL2A,φWS , and φA2D are realized as fully-connected networks with shared weights that
receive an additional ternary input (0 for L2A, 1 for WS, and 2 for A2D) in form of a one-hot vector.

Since all particles within one object are connected to the root node, information can flow across the
entire hierarchical graph in at most two propagation steps. We make use of this property in our model.

4.2 The Hierarchical Relation Network Architecture

This section introduces the Hierarchical Relation Network (HRN), a neural network for predicting
future physical states shown in Figure 4. At each time step t, HRN takes a history of T previous

particle states P (t−T,t] and relations R(t−T,t] in the form of hierarchical scene graphs G
(t−T,t]
H as

input. G
(t−T,t]
H dynamically changes over time as directed, unlabeled virtual collision relations

are added for sufficiently close pairs of particles. HRN also takes external effects on the system
(for example gravity g or external forces F) as input. The model consists of three pairwise graph
convolution modules, one for external forces (φF), one for collisions (φC) and one for past states
(φH), followed by a hierarchical graph convolution module η that propagates effects through the
particle hierarchy. A fully-connected module ψ then outputs the next states P t+1.

In the following, we briefly describe each module. For ease of reading we drop the notation (t� T, t]
and assume that all variables are subject to this time range unless otherwise noted.

External Force Module The external force module φF converts forces F ⌘ {fi} on leaf particles
pi 2 PL into effects φF (pi, fi) = eFi 2 R

E .

Collision Module Collisions between objects are handled by dynamically defining pairwise collision
relations rCij between leaf particles pi 2 PL from one object and pj 2 PL from another object that

are close to each other [11]. The collision module φC uses pi, pj and rCij to compute the effects

φC(pj , pi, r
C
ij) = eCji 2 R

E of pj on pi and vice versa. With dt(i, j) = kxt
i � xt

jk, the overall

collision effects equal eCi =
P

j{eji|d
t(i, j) < DC}. The hyperparameter DC represents the

maximum distance for a collision relation.

History Module The history module φH predicts the effects φ(p
(t−T,t−1]
i , pti) 2 eHi from past

p
(t−T,t−1]
i 2 PL on current leaf particle states pti 2 PL.

Hierarchical Effect Propagation Module The hierarchical effect propagation module η propagates
the overall effect e0i = eFi + eCi + eHi from external forces, collisions and history on pi through
the particle hierarchy. η corresponds to the three-stage hierarchical graph convolution introduced in

5

Figure 3 b) which given the pairwise particle states pi and pj , their relation rij , and input effects e0i ,
outputs the total propagated effect ei on each particle pi.

State Prediction Module We use a simple fully-connected network ψ to predict the next parti-
cle states P t+1. In order to get more accurate predictions, we leverage the hierarchical particle
representation by predicting the dynamics of any given particle within the local coordinate system
originated at its parent. The only exceptions are object root particles for which we predict the global
dynamics. Specifically, the state prediction module ψ(g, pi, ei) predicts the local future delta position

δt+1
i,` = δt+1

i � δt+1
par(i) using the particle state pi, the total effect ei on pi, and the gravity g as input.

As we only predict global dynamics for object root particles, the gravity is only applied to these root
particles. The final future delta position in world coordinates is computed from local information as

δt+1
i = δt+1

i,` +
P

j δ
t+1
j,` , j 2 anc(i).

4.3 Learning Physical Constraints through Loss Functions and Data

Traditionally, physical systems are modeled with equations providing fixed approximations of the
real world. Instead, we choose to learn physical constraints, including the meaning of the material
property vector, from data. The error signal we found to work best is a combination of three objectives.

(1) We predict the position change δt+1
i,` between time step t and t+ 1 independently for all particles

in the hierarchy. In practice, we find that δt+1
i,` will differ in magnitude for particles in different levels.

Therefore, we normalize the local dynamics using the statistics from all particles in the same level

(local loss). (2) We also require that the global future delta position δt+1
i is accurate (global loss). (3)

We aim to preserve the intra-object particle structure by imposing that the pairwise distance between
two connected particles pi and pj in the next time step dt+1(i, j) matches the ground truth. In the
case of a rigid body this term works to preserve the distance between particles. For soft bodies, this
objective ensures that pairwise local deformations are learned correctly (preservation loss).

The total objective function linearly combines (1), (2), and (3) weighted by hyperparameters α and β:

Loss = α
�

X

pi

kδ̂t+1
i,` �δt+1

i,` k2+β
X

pi

kδ̂t+1
i �δt+1

i k2
�

+
�

1�α
�

X

pi∈sib(pj)

kd̂t+1(i, j)� dt+1(i, j)k2

5 Experiments

In this section, we examine the HRN’s ability to accurately predict the physical state across time in
scenarios with rigid bodies, deformable bodies (soft bodies, cloths, and fluids), collisions, and external
actions. We also evaluate the generalization performance across various object and environment
properties. Finally, we present some more complex scenarios including (e.g.) falling block towers
and dominoes. Prediction roll-outs are generated by recursively feeding back the HRN’s one-step
prediction as input. We strongly encourage readers to have a look at result examples shown in main
text figures, supplementary materials, and at https://youtu.be/kD2U6lghyUE.

All training data for the below experiments was generated via a custom interactive particle-based
environment based on the FleX physics engine [31] in Unity3D. This environment provides (1) an
automated way to extract a particle representation given a 3D object mesh, (2) a convenient way to
generate randomized physics scenes for generating static training data, and (3) a standardized way
to interact with objects in the environment through forces.†. Further details about the experimental
setups and training procedure can be found in the supplement.

5.1 Qualitative evaluation of physical phenomena

Rigid body kinematic motion and external forces. In a first experiment, rigid objects are pushed
up, via an externally applied force, from a ground plane then fall back down and collide with the
plane. The model is trained on 10 different simple shapes (cube, sphere, pyramid, cylinder, cuboid,
torus, prism, octahedron, ellipsoid, flat pyramid) with 50-300 particles each. The static plane is
represented using 5,000 particles with a practically infinite mass. External forces spatially dispersed
with a Gaussian kernel are applied at randomly chosen points on the object. Testing is performed on

†HRN code and Unity FleX environment can be found at https://neuroailab.github.io/physics/

6

https://youtu.be/kD2U6lghyUE
https://neuroailab.github.io/physics/

a)

c)

G
ro

u
n
d
 T

ru
th

P
re

d
ic

ti
o
n

b)

d) G
ro

u
n
d
 T

ru
th

P
re

d
ic

ti
o
n

f) G
ro

u
n
d
 T

ru
th

P
re

d
ic

ti
o
n

G
ro

u
n
d
 T

ru
th

P
re

d
ic

ti
o
n

G
ro

u
n
d
 T

ru
th

P
re

d
ic

ti
o
n

G
ro

u
n
d
 T

ru
th

P
re

d
ic

ti
o
n

e)

t+1 t+3 t+5 t+7 t+9t+1 t+3 t+5 t+7 t+9

h) G
ro

u
n
d
 T

ru
th

P
re

d
ic

ti
o
n

G
ro

u
n
d
 T

ru
th

P
re

d
ic

ti
o
n

g)

Figure 5: Prediction examples and ground truth. a) A cone bouncing off a plane. b) Parabolic
motion of a bunny. A force is applied at the first frame. c) A cube falling on a slope. d) A cone
colliding with a pentagonal prism. Both shapes were held-out. e) Three objects colliding on a plane.
f) Falling block tower not trained on. g) A cloth drops and folds after hitting the floor. h) A fluid
drop bursts on the ground. We strongly recommend watching the videos in the supplement.

instances of the same rigid shapes, but with new force vectors and application points, resulting in new
trajectories. Results can be seen in supplementary Figure F.9c-d, illustrating that the HRN correctly
predicts the parabolic kinematic trajectories of tangentially accelerated objects, rotation due to torque,
responses to initial external impulses, and the eventual elastic collisions of the object with the floor.

Complex shapes and surfaces. In more complex scenarios, we train on the simple shapes colliding
with a plane then generalize to complex non-convex shapes (e.g. bunny, duck, teddy). Figure 5b shows
an example prediction for the bunny; more examples are shown in supplementary Figure F.9g-h.

We also examine spheres and cubes falling on 5 complex surfaces: slope, stairs, half-pipe, bowl, and
a “random” bumpy surface. See Figure 5c and supplementary Figure F.10c-e for results. We train on
spheres and cubes falling on the 5 surfaces, and test on new trajectories.

Dynamic collisions. Collisions between two moving objects are more complicated to predict than
static collisions (e.g. between an object and the ground). We first evaluate this setup in a zero-gravity
environment to obtain purely dynamic collisions. Training was performed on collisions between 9
pairs of shapes sampled from the 10 shapes in the first experiment. Figure 5d shows predictions for
collisions involving shapes not seen during training, the cone and pentagonal prism, demonstrating
HRN’s ability to generalize across shapes. Additional examples can be found in supplementary
Figure F.9e-f, showing results on trained shapes.

Many-object interactions. Complex scenarios include simultaneous interactions between multiple
moving objects supported by static surfaces. For example, when three objects collide on a planar
surface, the model has to resolve direct object collisions, indirect collisions through intermediate
objects, and forces exerted by the surface to support the objects. To illustrate the HRN’s ability
to handle such scenarios, we train on combinations of two and three objects (cube, stick, sphere,
ellipsoid, triangular prism, cuboid, torus, pyramid) colliding simultaneously on a plane. See Figure 5e
and supplementary Figure F.10f for results.

We also show that HRN trained on the two and three object collision data generalizes to complex new
scenarios. Generalization tests were performed on a falling block tower, a falling domino chain, and
a bowl containing multiple spheres. All setups consist of 5 objects. See Figure 5f and supplementary
Figures F.9b and F.10b,g for results. Although predictions sometimes differ from ground truth in their
details, results still appear plausible to human observers.

7

Soft bodies. We repeat the same experiments but with soft bodies of varying stiffness, showing that
HRN properly handles kinematics, external forces, and collisions with complex shapes and surfaces
involving soft bodies. One illustrative result is depicted in Figure 1, showing a non-rigid cube as it
deformably bounces off the floor. Additional examples are shown in supplementary Figure F.9g-h.

Cloth. We also experiment with various cloth setups. In the first experiment, a cloth drops on the
floor from a certain height and folds or deforms. In another experiment a cloth is fixated at two points
and swings back and forth. Cloth predictions are very challenging as cloths do not spring back to
their original shape and self-collisions have to be resolved in addition to collisions with the ground.
To address this challenge, we add self-collisions, collision relationships between particles within the
same object, in the collision module. Results can be seen in Figure 5g and supplementary Figure F.11
and show that the cloth motion and deformations are accurately predicted.

Fluids. In order to test our models ability to predict fluids, we perform a simple experiment in which
a fluid drop drops on the floor from a certain height. As effects within a fluid are mostly local, flat
hierarchies with small groupings are better on fluid prediction. Results can be seen in Figure 5h and
show that the fall of a liquid drop is successfully predicted when trained in this scenario.

Response to parameter variation. To evaluate how the HRN responds to changes in mass, gravity
and stiffness, we train on datasets in which these properties vary. During testing time we vary those
parameters for the same initial starting state and evaluate how trajectories change. In supplementary
Figures F.14, F.13 and F.12 we show results for each variation, illustrating e.g. how objects accelerate
more rapidly in a stronger gravitational field.

Heterogeneous materials. We leverage the hierarchical particle graph representation to construct
objects that contain both rigid and soft parts. After training a model with objects of varying shapes and
stiffnesses falling on a plane, we manually adjust individual stiffness relations to create a half-rigid
half-soft object and generate HRN predictions. Supplementary Figure F.10h shows a half-rigid
half-soft pyramid. Note that there is no ground truth for this example as we surpass the capabilities of
the used physics simulator which is incapable of simulating objects with heterogeneous materials.

5.2 Quantitative evaluation and ablation

We compare HRN to several baselines and model ablations. The first baseline is a simple Multi-
Layer-Perceptron (MLP) which takes the full particle representation and directly outputs the next
particle states. The second baseline is the Interaction Network as defined by Battaglia et al. [4]
denoted as fully connected graph as it corresponds to removing our hierarchy and computing on a
fully connected graph. In addition, to show the importance of the φC , φF , and φH modules, we
remove and replace them with simple alternatives. No φF replaces the force module by concatenating
the forces to the particle states and directly feeding them into η. Similarly for no φC , φC is removed
by adding the collision relations to the object relations and feeding them directly through η. In case
of no φH , φH is simply removed and not replaced with anything. Next, we show that two input time
steps (t, t � 1) improve results by comparing it with a 1 time step model. Lastly, we evaluate the
importance of the preservation loss and the global loss component added to the local loss. All models
are trained on scenarios where two cubes collide fall on a plane and repeatedly collide after being
pushed towards each other. The models are tested on held-out trajectories of the same scenario. An
additional evaluation of different grouping methods can be found in Section B of the supplement.

P
o

si
ti

o
n

 M
S

E

Time

D
el

ta
 P

o
si

ti
o

n
 M

S
E

Time

P
re

se
rv

e
D

is
ta

n
ce

 M
S

E

Time

Global + local loss Local loss No preservation loss No �
H

No �
C

No �
F

1 time step Fully connected graph

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9

MLP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9

Figure 6: Quantitative evaluation. We compare the full HRN (global + local loss) to several
baselines, namely local loss only, no preservation loss, no φH , no φC , no φF , 1 time step, fully
connected graph and a MLP baseline. The line graphs from left to right show the mean squared
error (MSE) between positions, delta positions and distance preservation accumulated over time. Our
model has the lowest position and delta position error and a only slightly higher preservation error.

8

Comparison metrics are the cumulative mean squared error of the absolute global position, local
position delta, and preserve distance error up to time step t + 9. Results are reported in Figure 6.
The HRN outperforms all controls most of the time. The hierarchy is especially important, with
the fully connected graph and MLP baselines performing substantially worse. Besides, the HRN
without the hierarchical graph convolution mechanism performed significantly worse as seen in
supplementary Figure C.4, which shows the necessity of the three consecutive graph convolution
stages. In qualitative evaluations, we found that using more than one input time step improves results
especially during collisions as the acceleration is better estimated which the metrics in Figure 6
confirm. We also found that splitting collisions, forces, history and effect propagation into separate
modules with separate weights allows each module to specialize, improving predictions. Lastly, the
proposed loss structure is crucial to model training. Without distance preservation or the global
delta position prediction our model performs much worse. See supplementary Section C for further
discussion on the losses and graph structures.

5.3 Discussion

Our results show that the vast majority of complex multi-object interactions are predicted well,
including multi-point collisions between non-convex geometries and complex scenarios like the bowl
containing multiple rolling balls. Although not shown, in theory, one could also simulate shattering
objects by removing enough relations between particles within an object. These manipulations
are of substantial interest because they go beyond what is possible to generate in our simulation
environment. Additionally, predictions of especially challenging situations such as multi-block towers
were also mostly effective, with objects (mostly) retaining their shapes and rolling over each other
convincingly as towers collapsed (see the supplement and the video). The loss of shape preservation
over time can be partially attributed to the compounding errors generated by the recursive roll-outs.
Nevertheless, our model predicts the tower to collapse faster than ground truth. Predictions also jitter
when objects should stand absolutely still. These failures are mainly due to the fact that the training
set contained only interactions between fast-moving pairs or triplets of objects, with no scenarios
with objects at rest. That it generalized to towers as well as it did is a powerful illustration of our
approach. Adding a fraction of training observations with objects at rest causes towers to behave more
realistically and removes the jitter overall. The training data plays a crucial role in reaching the final
model performance and its generalization ability. Ideally, the training set would cover the entirety
of physical phenomena in the world. However, designing such a dataset by hand is intractable and
almost impossible. Thus, methods in which a self-driven agent sets up its own physical experiments
will be crucial to maximize learning and understanding[19].

6 Conclusion

We have described a hierarchical graph-based scene representation that allows the scalable spec-
ification of arbitrary geometrical shapes and a wide variety of material properties. Using this
representation, we introduced a learnable neural network based on hierarchical graph convolution
that generates plausible trajectories for complex physical interactions over extended time horizons,
generalizing well across shapes, masses, external and internal forces as well as material properties.
Because of the particle-based nature of our representation, it naturally captures object permanence
identified in cognitive science as a key feature of human object perception [43].

A wide variety of applications of this work are possible. Several of interest include developing
predictive models for grasping of rigid and soft objects in robotics, and modeling the physics of 3D
point cloud scans for video games or other simulations. To enable a pixel-based end-to-end trainable
version of the HRN for use in key computer vision applications, it will be critical to combine our
work with adaptations of existing methods (e.g. [54, 23, 15]) for inferring initial (non-hierarchical)
scene graphs from LIDAR/RGBD/RGB image or video data. In the future, we also plan to remedy
some of HRN’s limitations, expanding the classes of materials it can handle to including inflatables
or gases, and to dynamic scenarios in which objects can shatter or merge. This should involve a
more sophisticated representation of material properties as well as a more nuanced hierarchical
construction. Finally, it will be of great interest to evaluate to what extent HRN-type models describe
patterns of human intuitive physical knowledge observed by cognitive scientists [32, 35, 38].

9

Acknowledgments

We thank Viktor Reutskyy, Miles Macklin, Mike Skolones and Rev Lebaredian for helpful discussions
and their support with integrating NVIDIA FleX into our simulation environment. This work was
supported by grants from the James S. McDonnell Foundation, Simons Foundation, and Sloan
Foundation (DLKY), a Berry Foundation postdoctoral fellowship (NH), the NVIDIA Corporation,
ONR - MURI (Stanford Lead) N00014-16-1-2127 and ONR - MURI (UCLA Lead) 1015 G TA275.

References

[1] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking:
Experiential learning of intuitive physics. In Advances in Neural Information Processing
Systems, pages 5074–5082, 2016.

[2] D. Baraff. Physically based modeling: Rigid body simulation. SIGGRAPH Course Notes, ACM
SIGGRAPH, 2(1):2–1, 2001.

[3] C. Bates, P. Battaglia, I. Yildirim, and J. B. Tenenbaum. Humans predict liquid dynamics using
probabilistic simulation. In CogSci, 2015.

[4] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, and k. kavukcuoglu. Interaction networks
for learning about objects, relations and physics. In Advances in Neural Information Processing
Systems 29, pages 4502–4510. 2016.

[5] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum. Simulation as an engine of physical scene
understanding. Proceedings of the National Academy of Sciences, 110(45):18327–18332, 2013.

[6] J. Bender, M. Müller, and M. Macklin. Position-based simulation methods in computer graphics.
In Eurographics (Tutorials), 2015.

[7] M. Brand. Physics-based visual understanding. Computer Vision and Image Understanding, 65
(2):192–205, 1997.

[8] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[9] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[10] A. Byravan and D. Fox. Se3-nets: Learning rigid body motion using deep neural networks.
In Robotics and Automation (ICRA), 2017 IEEE International Conference on, pages 173–180.
IEEE, 2017.

[11] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum. A compositional object-based
approach to learning physical dynamics. arXiv preprint arXiv:1612.00341, 2016.

[12] E. Coumans. Bullet physics engine. Open Source Software: http://bulletphysics. org, 1:3, 2010.

[13] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in Neural Information Processing Systems,
pages 3844–3852, 2016.

[14] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik,
and R. P. Adams. Convolutional networks on graphs for learning molecular fingerprints. In
Advances in neural information processing systems, pages 2224–2232, 2015.

[15] H. Fan, H. Su, and L. J. Guibas. A point set generation network for 3d object reconstruction
from a single image. In CVPR, volume 2, page 6, 2017.

[16] C. Finn, I. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through
video prediction. In Advances in neural information processing systems, pages 64–72, 2016.

[17] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learning visual predictive models of
physics for playing billiards. arXiv preprint arXiv:1511.07404, 2015.

10

[18] R. Grzeszczuk, D. Terzopoulos, and G. Hinton. Neuroanimator: Fast neural network emulation
and control of physics-based models. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 9–20. ACM, 1998.

[19] N. Haber, D. Mrowca, L. Fei-Fei, and D. L. Yamins. Learning to play with intrinsically-
motivated self-aware agents. arXiv preprint arXiv:1802.07442, 2018.

[20] J. Hamrick, P. Battaglia, and J. B. Tenenbaum. Internal physics models guide probabilistic
judgments about object dynamics. In Proceedings of the 33rd annual conference of the cognitive
science society, pages 1545–1550. Cognitive Science Society Austin, TX, 2011.

[21] M. Hegarty. Mechanical reasoning by mental simulation. Trends in cognitive sciences, 8(6):
280–285, 2004.

[22] M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional networks on graph-structured data.
arXiv preprint arXiv:1506.05163, 2015.

[23] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel. Neural relational inference for
interacting systems. arXiv preprint arXiv:1802.04687, 2018.

[24] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[25] T. D. Kulkarni, V. K. Mansinghka, P. Kohli, and J. B. Tenenbaum. Inverse graphics with
probabilistic cad models. arXiv preprint arXiv:1407.1339, 2014.

[26] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep convolutional inverse graphics
network. In Advances in Neural Information Processing Systems, pages 2539–2547, 2015.

[27] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines that learn
and think like people. Behavioral and Brain Sciences, 40, 2017.

[28] A. Lerer, S. Gross, and R. Fergus. Learning physical intuition of block towers by example.
arXiv preprint arXiv:1603.01312, 2016.

[29] W. Li, S. Azimi, A. Leonardis, and M. Fritz. To fall or not to fall: A visual approach to physical
stability prediction. arXiv preprint arXiv:1604.00066, 2016.

[30] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493, 2015.

[31] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim. Unified particle physics for real-time
applications. ACM Transactions on Graphics (TOG), 33(4):153, 2014.

[32] M. McCloskey, A. Caramazza, and B. Green. Curvilinear motion in the absence of external
forces: Naive beliefs about the motion of objects. Science, 210(4474):1139–1141, 1980.

[33] R. Mottaghi, H. Bagherinezhad, M. Rastegari, and A. Farhadi. Newtonian scene understanding:
Unfolding the dynamics of objects in static images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3521–3529, 2016.

[34] R. Mottaghi, M. Rastegari, A. Gupta, and A. Farhadi. “what happens if...” learning to predict
the effect of forces in images. In European Conference on Computer Vision, pages 269–285.
Springer, 2016.

[35] L. Piloto, A. Weinstein, A. Ahuja, M. Mirza, G. Wayne, D. Amos, C.-c. Hung, and M. Botvinick.
Probing physics knowledge using tools from developmental psychology. arXiv preprint
arXiv:1804.01128, 2018.

[36] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. Proc. Computer Vision and Pattern Recognition (CVPR), IEEE,
1(2):4, 2017.

11

[37] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Information Processing Systems, pages
5105–5114, 2017.

[38] R. Riochet, M. Y. Castro, M. Bernard, A. Lerer, R. Fergus, V. Izard, and E. Dupoux. Int-
phys: A framework and benchmark for visual intuitive physics reasoning. arXiv preprint
arXiv:1803.07616, 2018.

[39] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

[40] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and M. Welling. Modeling
relational data with graph convolutional networks. arXiv preprint arXiv:1703.06103, 2017.

[41] K. A. Smith and E. Vul. Sources of uncertainty in intuitive physics. Topics in cognitive science,
5(1):185–199, 2013.

[42] E. S. Spelke. Principles of object perception. Cognitive science, 14(1):29–56, 1990.

[43] E. S. Spelke, K. Breinlinger, J. Macomber, and K. Jacobson. Origins of knowledge. Psychologi-
cal review, 99(4):605, 1992.

[44] I. Sutskever and G. E. Hinton. Using matrices to model symbolic relationship. In Advances in
Neural Information Processing Systems, pages 1593–1600, 2009.

[45] J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman. How to grow a mind: Statistics,
structure, and abstraction. science, 331(6022):1279–1285, 2011.

[46] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal fea-
tures with 3d convolutional networks. In Computer Vision (ICCV), 2015 IEEE International
Conference on, pages 4489–4497. IEEE, 2015.

[47] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Deep end2end voxel2voxel
prediction. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2016 IEEE
Conference on, pages 402–409. IEEE, 2016.

[48] T. Ullman, A. Stuhlmüller, N. Goodman, and J. B. Tenenbaum. Learning physics from dynamical
scenes. In Proceedings of the 36th Annual Conference of the Cognitive Science society, pages
1640–1645, 2014.

[49] Z. Wang, S. Rosa, B. Yang, S. Wang, N. Trigoni, and A. Markham. 3d-physnet: Learning the
intuitive physics of non-rigid object deformations. arXiv preprint arXiv:1805.00328, 2018.

[50] N. Watters, A. Tacchetti, T. Weber, R. Pascanu, P. Battaglia, and D. Zoran. Visual interaction
networks. arXiv preprint arXiv:1706.01433, 2017.

[51] W. F. Whitney, M. Chang, T. Kulkarni, and J. B. Tenenbaum. Understanding visual concepts
with continuation learning. arXiv preprint arXiv:1602.06822, 2016.

[52] J. Wu, I. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum. Galileo: Perceiving physical
object properties by integrating a physics engine with deep learning. In Advances in neural
information processing systems, pages 127–135, 2015.

[53] J. Wu, J. J. Lim, H. Zhang, J. B. Tenenbaum, and W. T. Freeman. Physics 101: Learning
physical object properties from unlabeled videos. In BMVC, volume 2, page 7, 2016.

[54] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Torralba, and W. T. Freeman. Single
image 3d interpreter network. In European Conference on Computer Vision, pages 365–382.
Springer, 2016.

12

