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Abstract

Today’s category-level object recognition systems

largely focus on fronto-parallel views of objects with char-

acteristic texture patterns. To overcome these limitations,

we propose a novel framework for visual object recognition

where object classes are represented by assemblies of par-

tial surface models (PSMs) obeying loose local geometric

constraints. The PSMs themselves are formed of dense,

locally rigid assemblies of image features. Since our model

only enforces local geometric consistency, both at the level

of model parts and at the level of individual features within

the parts, it is robust to viewpoint changes and intra-class

variability. The proposed approach has been implemented,

and it outperforms the state-of-the-art algorithms for object

detection and localization recently compared in [14] on the

Pascal 2005 VOC Challenge Cars Test 1 data.

1. Introduction

Object recognition—or, in a broader sense, scene

understanding—is the ultimate scientific challenge of com-

puter vision. After 40 years of research, robustly identify-

ing the familiar objects (chair, person, pet) and scene cat-

egories (beach, forest, office) depicted in family pictures

or news segments is still far beyond the capabilities of to-

day’s vision systems. Despite the limitations of current

scene understanding technology, tremendous progress has

been accomplished in the past five years, due in part to

the formulation of object recognition as a statistical pattern

matching problem. The emphasis is in general on the fea-

tures defining the patterns and the machine learning tech-

niques used to learn and recognize them, rather than on the

representation of object and scene categories, or the inte-

grated interpretation of the various scene elements. Mod-

ern pattern-matching approaches largely focus on fronto-

parallel views of objects with characteristic texture patterns,

and they have proven successful in that domain for im-

ages with moderate amounts of clutter and occlusion. Most

methods represent object classes as assemblies of salient

parts—that is, (groups of) image features whose appear-

ance remains stable over exemplars. By and large, geomet-

ric constraints among parts are either completely ignored

(bag-of-parts models [10, 19]), or imposed in a rigid man-

ner (constellation/star models [3, 11, 12]). We believe that,

as demonstrated by others in the specific object recognition

domain [9, 16], geometric constraints are just too powerful

to be ignored. For object categories without characteristic

textures (e.g., cows, people, etc.), they are also the main im-

age cues available. On the other hand, rigid assemblies of

features [3, 11, 12] cannot accommodate the image variabil-

ity due to significant changes in viewpoint or shape within

a category.

In this paper, we propose a novel object model based on

the following observation: Even though the geometric rela-

tionship between “distant” parts of an object may vary due

to intra-class variability and changes in viewpoint, the rela-

tive affine transformations among nearby parts are robust to

these factors (this is related to the well known fact that ar-

bitrary smooth deformations —including those induced by

viewpoint changes for affine cameras or perspectives ones

far from the scene relative to its relief— are locally equiva-

lent to affine transformations [8]).

Thus, we represent object parts as partial surface mod-

els (or PSMs) which are dense, locally rigid assemblies of

texture patches. These PSMs are learned by matching re-

peating patterns of features across training images of each

object class (Section 3). Pairs of PSMs which regularly oc-

cur near each other at consistent relative positions are linked

by edges whose labels reflect the local geometric relation-

ships between these features. These local connections are

used to construct a probabilistic graphical model for the ge-

ometry and appearance of the PSMs making up an object

(Section 4). In turn, the corresponding PSM graph is the

basis for an effective algorithm for object detection and lo-

calization (Section 5), which outperforms the state-of-the-

art methods recently compared in [14] on the Pascal 2005

VOC Challenge Cars Test 1 data (Section 6).
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2. Related Work

Fergus et al. [3] model the joint probability distribution

of the relative positions of object parts (which are individ-

ual features in their case) as a Gaussian distribution with a

full covariance matrix. However, they model each part’s lo-

cation using its x, y image coordinates, making the model

highly viewpoint specific. In addition, the learning time is

exponential in the number of parts, which limits the num-

ber of parts in the model to a maximum of 6 or 7. Loeff et

al. [12] propose a “star” model in which an object generates

a number of parts, each of which generates features with a

certain appearance and location relative to the object center.

The appearance of the features is modeled as a multinomial

distribution over a codebook of feature types and the rel-

ative location is modeled as a Gaussian with a mean and

covariance for each part. The appearance model of a sin-

gle part is rather weak in this case since all the features for

a given part are generated with independent locations rela-

tive to the part center. In addition, the star model enforces

rigid geometric constraints among the different object parts

and so is viewpoint dependent. Leibe et al. [11] construct

implicit shape models (ISMs) by clustering object features

in the training images, and storing for each cluster center

the location of the object center and scale relative to the

corresponding feature. During recognition, each feature de-

tected on the test image essentially casts probabilistic votes

for object centers and scales, and a mean shift procedure is

used to find the maxima in this space. The geometric model

is again rigid, hence highly viewpoint dependent, and the

appearance model is relatively weak since each feature oc-

currence is considered independently of all others.

Lazebnik et al. [10] propose a bag-of-parts model in

which the parts are composed of multiple features linked

together in an affinely rigid structure. These parts are quite

discriminative and relatively stable against intra-class varia-

tions; however, large viewpoint variations result in the affine

model no longer holding for the object parts. In this pa-

per, we learn object parts by only enforcing local geometric

consistency among the features that make up the part. We

also augment the “primary” interest point features of [10]

with more general “secondary” texture patches to generate

dense and highly discriminative PSMs. Using dense mod-

els as opposed to just interest points has been shown to im-

prove matching and recognition performance by [5, 9] in

the context of specific 3D object recognition. Dense PSM

matches provide an extremely stable coordinate frame to

compute the relative positions of other PSM matches ro-

bustly. Since our PSMs consist of multiple overlapping fea-

tures, and some features are more discriminative than others

we train a logistic regression model to evaluate the quality

of a PSM match based on the individual feature matches.

Recently, Thomas et al. [18] have proposed a technique

which deals with the viewpoint change problem by com-

bining models learned for different viewpoints. They use a

highly supervised dataset that consists of images of mul-

tiple motorbike instances, each from a set of up to 16
viewpoints. First, they construct separate viewpoint depen-

dent ISMs [11] for each of the different viewing directions.

Then, they use the method of [4] to match the images of

the same motorbike instance across different viewpoints and

construct region tracks that are later used to transfer the ISM

votes from one viewpoint to its neighboring viewpoints.

This is an interesting setup, but it requires highly supervised

training data and a dense sampling of viewpoints since the

ISMs themselves are highly viewpoint dependent. In addi-

tion, since each of the ISMs is learned independently, there

is no sharing of parts among the different viewpoints. In

contrast, we use a single model that shares its parts (PSMs)

among different viewpoints.

3. Learning PSMs

We use a hypothesize and validate approach to learn

PSMs, similar to [10]. A critical difference, however, is

that the (relatively) sparse and affinely rigid parts of [10]

are replaced by dense and locally rigid PSMs.

3.1. PSM Formation

The learning process starts by selecting two images at

random from the training set and computing appearance-

based primary matches between pairs of salient image re-

gions. To avoid an excessive reliance on characteristic tex-

ture patterns, we use a simple operator (essentially a Hough

transform) to detect circles in edge maps [7], and output

the smallest squares enclosing them as candidate regions.

Candidate matches between these regions are then com-

puted using the SIFT operator [13], and a non-linear refine-

ment process is used to correct the initial alignment of these

matches. This process considers the patch in the second im-

age as a deformable parallelogram, and optimizes the affine

transformation mapping the first patch onto its match so as

to minimize the error between the SIFT descriptors of the

matched patches. This is essential for matching images of

the same patch viewed from different directions.

• Initialization: Once candidate matches have been found,

they are partitioned into locally consistent PSM hypothe-

ses using a greedy approach: A PSM hypothesis is ini-

tialized with a single match, and nearby matches are iter-

atively added until the corresponding affine transformations

are no longer close enough to those associated with nearby

matches already in the PSM hypothesis. An unused match

is then chosen at random, and a new PSM hypothesis is

grown using the leftover candidates. This process partitions

the matches into a set of PSM hypotheses. The hypotheses

that contain more matches than a given threshold are passed

along to the expansion stage. The composition of the large
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Figure 1. Expansion: match prediction and refinement.

PSM hypotheses is almost unaffected by the choice of the

match used for initialization.

• Expansion: The first image of the training image pair

is covered with overlapping square-shaped “secondary”

patches, and an expansion step is used to densely cover a

region surrounding the PSM hypothesis. Each match in the

current PSM hypothesis tries to expand into nearby sec-

ondary patches by predicting a match for the secondary

patch based on its own affine transformation τ . The “best”

predicted match (in terms of SIFT matching score) for each

secondary patch is then refined using a non-linear refine-

ment process similar to the one used to align the initial

matches. However, now the refinement process also pe-

nalizes the deviation of the refined location from the pre-

dicted location to prevent the match from drifting too far

from its predicted location.1 Finally, the secondary match is

added to the PSM hypothesis if the SIFT matching score ex-

ceeds a given threshold. The process is illustrated in Fig. 1.

The algorithm continues to expand around the newly added

matches until no more secondary matches can be added.

The PSM hypothesis consists of all the patches in the first

image that were matched successfully.

3.2. PSM Matching

A PSM u can be matched to a target image I using a sim-

ilar process. First, the circle detector is used to detect can-

didate regions in I and appearance-based matches are com-

puted between the primary patches in u and the detected

regions in I . Next, an expansion step uses these initial

matches to hypothesize matches for the nearby unmatched

patches of u. The hypothesized matches are first refined (as

described before) and are iteratively added to the current

matches as long as their matching score exceeds a threshold.

Finally, all the feature matches are partitioned into groups

of PSM matches in the same way as was done for the ini-

tially selected image pair. If the number of patch matches

within a PSM match exceeds a certain ratio (R = 0.5) of

the total number of patches in the corresponding PSM, it is

considered correct.

1Since match refinement is relatively time consuming, it is done once

for the “best” expansion attempt for each secondary patch, instead of doing

it for each expansion attempt and choosing the best match later.

Figure 2. Left column: the two base images for a PSM; Right: a few

validation matches for the same PSM. The outline of the PSM, defined as

the union of matched feature regions, is shown in white.

3.3. PSM Validation and Selection

The PSM hypotheses learned in Section 3.1 are scored

by matching them to a set of validation images containing

the object as well as a set of background images. Let N+
u

(resp. N−
u ) be the number of times a PSM candidate u is

matched in the validation (resp. background) images. We

compute the discriminative power of a PSM u as the ratio

Ru = N+
u /N−

u and use it to select PSMs for the object

model. The PSM candidates are processed in a decreasing

order of Ru and are selected only if their validation matches

do not have a significant overlap with those of previously

selected PSMs. This process helps avoid repeated PSMs.

Figure 2 shows a PSM found in training images from the

PASCAL VOC 2005 dataset. The two images on the left of

the figure are the base images used to hypothesize the PSM,

and the images on the right are some validation images.

3.4. PSM Appearance Model

We train a logistic regression model to evaluate the qual-

ity of individual detections (PSM matches). Concretely, we

attach to each match m of a PSM u consisting of n features,

a binary appearance vector a = (a1, . . . , an), where ai is

equal to 1 if the corresponding feature has been matched,

and −1 otherwise. We also associate a label ℓ ∈ {obj, bkg}
with every match m for a PSM u based on whether it

matches the object part corresponding to u or some back-

ground texture in the image. Let us define Pu(a|ℓ) as the

probability that a PSM match of u has appearance vector

a given that it has label ℓ. Since a PSM consists of multi-

ple overlapping features, the individual feature matches (the

components of a) are not independent, making their proba-

bilistic modeling difficult. Thus, instead of learning Pu(a|ℓ)

directly, we learn a parametric model for
Pu(a|obj)
Pu(a|bkg) , which

will prove sufficient for object detection.

To simplify the learning task, we assume that the train-
ing data is generated from a joint distribution Pu(a, ℓ) as
follows: First, the label is generated from P (ℓ = obj) =
P (ℓ = bkg) = 0.5 and then the appearance a is generated
given the label from the probability distribution Pu(a|ℓ).
We begin by training a logistic regression classifier on this
data to construct the probability distribution Pu(ℓ|a). This
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now allows us to compute the desired probability ratio as

Pu(a|obj)

Pu(a|bkg)
=

Pu(obj|a)Pu(a)

Pu(obj)
×

Pu(bkg)

Pu(bkg|a)Pu(a)
=

Pu(obj|a)

Pu(bkg|a)
.

We now describe the generation of the training data sam-

ples (a, ℓ) and the classifier training procedure.

• Generating data from the joint distribution: Every

match m of the PSM u provides us with a data point, la-

beled as obj or bkg depending on whether it has been found

in a validation or background image. However, since the

number of background instances available is typically much

smaller than the number of object instances, we repeatedly

sample the background matches as necessary to create as

many data points labeled bkg as there are points labeled

obj. We assume that the matches observed in the valida-

tion images correctly match the corresponding object parts

and that the observed appearances a of the matches in the

validation (resp. background) images are random samples

from Pu(a|obj) (resp. Pu(a|bkg)).
• Training the classifier: We train the logistic regression

model to output the probability Pu(ℓ|a) that a data point has

label ℓ given that it has appearance a. The binary features

used by the logistic regression model are simply the com-

ponents of a. The weights associated with the features of

the model are learned so as to maximize the log-likelihood

of labels observed on the training data. This is a convex op-

timization problem and can be solved efficiently. Since the

amount of training data is limited we regularize the maxi-

mum likelihood parameter learning process to avoid over-

fitting by adding a penalty proportional to the squared norm

of the weight vector of the logistic regression model [17].

Once the PSMs and the corresponding logistic regression

models have been learned, the matching process can essen-

tially be thought of as running a set of PSM detectors that

fire at certain locations in an image and provide an estimate

of the quality of the match based on its appearance. As

argued before, since these detectors enforce only local ge-

ometric consistency, they are robust to viewpoint changes

and intra-class variability.

4. Learning Object and Background Models

4.1. The PSM Graph

We can associate with any instance u′ of a PSM u de-

tected in an image the 2D affine transformation which is

the “mean” of the affine transformations mapping the in-

dividual patches of u in the base image roughly to their

detected matches u′. Intuitively, this transformation repre-

sents the affine deformation of the PSM from its base image

to its matched location. We denote by Au, the random vari-

able associated with the affine deformation corresponding

to PSM u, and we model the joint probability distribution

of the variables Au associated with all PSMs in an object

model as a MRF (Markov Random Field) structure dubbed

the PSM graph. The vertices of this graph are identified

with the random variables Au. Nearby PSMs are linked

by edges that enforce local consistency between them. An

edge joins two PSMs when they co-occur within a speci-

fied range from each other in a sufficient number of vali-

dation images. Figure 3 shows the PSM graph model for a

car learned from the PASCAL VOC 2005 dataset using the

technique described in the rest of this section.

The Hammersley-Clifford theorem [1] allows us to write

the joint probability distribution of the variables Au as a

product of functions over maximal cliques in the graph.

For efficiency reasons, we ignore the cliques of size greater

than two while modeling the intra-PSM relations. The pair-

wise consistency constraints between adjacent PSMs are

modeled using normal distributions on the relative affine

transformations. Concretely, let Ru:v ≡ Au
−1Av denote

the affine transformation between the patches of v and u,

or equivalently the vector of IR6 representing the location,

scale, skew and orientation of v in the coordinate frame of

u, and let µu:v ∈ IR6 and σu:v ∈ IR6×6 denote the cor-

responding mean vector and covariance matrix. We model

the joint distribution of the PSM positions as

pg(A1,A2 . . .AN ) =
1

Z

∏
(u,v)∈E

N (Ru:v; µu:v, σu:v),

where N (R; µ, σ) is the normal distribution with mean µ
and covariance matrix σ, and Z is a normalization constant.

We assume a diagonal form for the covariance matrix σu:v .

It is important to note that this model is not equivalent

to a joint Gaussian model on all the random variables Au.

This would indeed be true if the model was constraining

the PSM positions instead of relative affine transformations

between the PSMs. In that case, the model would be equiv-

alent to a Gaussian model on the random variables with a

specific structure imposed on the inverse covariance matrix

(the only non-zero entries would be the ones corresponding

to the edges in the graph). However, since we impose Gaus-

sian constraints on the relative transformations of PSMs, the

model can no longer be written as a joint Gaussian density

on the Au. However, as discussed in the introduction, con-

straining only the relative affine transformations (and not

the relative x, y locations) is important to make the model

robust to viewpoint and intra-class variations.

4.2. Learning the PSM Graph Parameters

Both µu:v and σu:v are estimated from the training im-

ages in which u and v are seen together. We initialize µu:v

using the mean of the observed relative affine transforms

and σu:v as a diagonal matrix containing the observed vari-

ance of each of the entries in µu:v. However, this estimate is

biased and the variances estimated are extremely small. In-

tuitively, the observed variance between two adjacent nodes
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Figure 3. An example of learned PSM graph. The top row shows the outlines of the PSM instances corresponding to nodes with the same color in the PSM

graph below it. The black nodes represent other nodes in the PSM graph. Please view in color.

occurs as a result of all the constraints in the graph connect-

ing the 2 nodes acting together and attributing the variance

to a single constraint makes it too tight. Hence, we use a

gradient ascent procedure to optimize the variance param-

eters σu:v so that the log likelihood of the PSM matches

observed in the validation set is maximized. Let {i1 . . . ip}
be the indices of PSMs observed in some validation image

I and let {j1 . . . jq} be the indices of the PSMs that are not

observed in I . The likelihood of the geometrical configura-

tion observed in the ith validation image can be computed

by integrating out the unobserved PSMs:

pg(Ai1 , . . .Aip
) =

∫
j1...jq

pg(A1,A2 . . .AN ).

We use loopy belief propagation [15] to approximately

compute the log-likelihood for the observed configurations

in the validation images. The total log-likelihood of the val-

idation set is just the sum of the log-likelihoods for the in-

dividual validation images since the images are assumed to

be independent. Computing the “exact” gradient of the log-

likelihood on the validation images is not computationally

feasible since it requires running a belief propagation step

for each validation image for every variance parameter on

every edge after each iteration. Hence, we compute an ef-

ficient approximation to this gradient and use it to optimize

the log-likelihood. The details of the gradient ascent pro-

cedure are described in Algorithm 1. This algorithm runs

a single belief propagation on every validation image after

every iteration. Each belief propagation is initialized using

the state at the end of the previous iteration and hence con-

verges extremely quickly. In practice, the algorithm con-

verges in less than 10 iterations and the entire optimization

process takes less than 10 minutes on a desktop machine for

a model with about 30 PSMs and 50 edges. Also, it is usu-

ally sufficient to optimize just a single scaling ratio for the

entire covariance σu:v on each edge instead of optimizing

the 6 parameters independently.

4.3. Object and Background Models

Our object model is generative: First, a PSM graph in-

stance, with an affine transformation Au for every compo-

Algorithm 1 Optimization of Variance Parameters.

Input: A set of validation images with detected PSMs, initial es-

timate of the PSM graph and step length τ .

Output: Optimized PSM Graph.

for all validation images I do

• Initialize the observed PSMs in I ;

• Run BP on I and store the state of messages;

end for

repeat

• Set gradient Gu:v of σu:v on all edges (u, v) to 0;

for all validation images I do

for all observed nodes v in I do

• Assume v is not observed and compute the belief at v
using the incoming messages;

• Compute gradient ∂L/∂Mu:v of the log-likelihood of

the observed v w.r.t. the incoming messages Mu:v;

• Compute gradient ∂L/∂σu:v by multiplying

∂L/∂Mu:v and the Jacobian J(Mu:v, σu:v);

• Add gradient to Gu:v for edges (u, v) incident on v;

end for

end for

• Update σu:v ← σu:v + τ ·Gu:v;

• Run BP and update the messages on all validation images

using the updated σu:v;

until convergence.

nent PSM u, is chosen from the above distribution. Next,

each PSM independently chooses its occlusion state, with

probability Pvis(u) to be visible, and probably Pocc(u) =
1 − Pvis(u) to be hidden. If a PSM u is visible it then gen-

erates a PSM match m at the location Au. Finally, the ap-

pearance of m is chosen independently from the distribution

p(m|obj) for each visible PSM. Pvis, Pocc are learned by just

measuring the statistics of the PSM on the validation data.

The background model generates matches for each

model PSM u from a Poisson distribution Ppoiss(n|Ku)
with mean Ku. The location for each PSM match is selected

from a uniform pdf over the size of the image (for position)

and a reasonable range of scale, orientation and skew pa-

rameters. These ranges are estimated from the background

dataset. Finally, the appearance of the PSM match is cho-

sen from the distribution p(m|bkg). The means Ku of the
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Poisson distribution are learned using the statistics observed

on the background data. Note that the appearance models

P (m|obj) and P (m|bkg) are not learned explicitly. Instead,

the logistic regression model associated with every PSM is

used to predict their ratio
P (m|obj)
P (m|bkg) for the PSM. Finally, we

assume that the background is present in every image and

the number of objects present in it follows a Poisson distri-

bution with mean λO . Again, this mean λO may be learned

from the training data.

5. Object Detection/Localization

5.1. Object Detection

We start by matching all the PSMs in the object model

to the test image independently to obtain a set of PSM

matches. Each PSM match m is assigned a probability ratio
P (a|obj)
P (a|bkg) based on its appearance by the logistic regression

model for the corresponding PSM. Let D represent the set

of all the PSM matches detected in the test image. Every

match in D is generated either by the corresponding PSM

from an object or by the background. We denote by Oi

the subset of D corresponding to instance number i of the

object in the image (there may be no such instances, or sev-

eral ones). Even though D may contain multiple matches

for a single PSM, each object instance contains at most one

match per PSM. Let Φ denote the set of all the PSMs in the

object model, and let ΦS ⊂ Φ for any set of PSM matches

S denote the set of PSMs that are matched at least once by

matches in S. Finally, let us denote the PSM correspond-

ing to a PSM match m by um and the appearance of m by

am. Recall that the appearance of a PSM match m is a bi-

nary vector containing one coordinate for every feature in

am whose value is either 1 or −1 depending on whether

the corresponding feature is matched in m or not. An ex-

planation E = {O1,O2 . . .Ok,B} of D is a partition2 of

D where the matches in Oi correspond to the ith object in-

stance and B is the set of background matches. Let P(D)
be the set of all the possible explanations of D.

The probability distribution p(E,D) represents the prob-

ability that an explanation E generates the matches D in

the image. In other words, if E = {O1, . . .Ok,B}, then

p(E,D) represents the probability that 1) there are k object

instances present in the scene, 2) the ith object instance gen-

erates the matches in Oi, and 3) the background generates

the matches in B. Since all the objects in the image and the

background generate matches independently of each other,

2E is not a partition in the strict sense, since it may contain empty

blocks. An empty block for an object instance corresponds to the case

when the object is present in the image but does not generate any matches

(i.e. none of its PSMs are detected in the image). Such an explanation

would have a low (but non-zero) probability. Similarly, the background

block could also be empty indicating that the background does not generate

matches for any of the PSMs.

O2

µu:v, σu:v

v

u

Bkg

ObservedImage

O1

PSMs

Figure 4. Explanation using two object instances.

we can write the distribution p(E,D) as

p(E,D) = pb(B) Ppoiss(k|λO)
∏

1≤i≤k

po(Oi), where :

• The term pb(B) represents the probability that the PSM

matches in B and only these matches are generated from

the background. Since the background model assumes inde-

pendence of the matches generated by the different PSMs,

we can again decompose pb(B) as a product
∏

u∈Φ pb(Bu),
where Bu is the set of nu matches in B associated with

u. Since the background model also assumes independence

in the geometry and appearance for all the matches corre-

sponding to any PSM we can write,

pb(Bu) = Ppoiss(nu|Ku)
∏

m∈Bu

pg(m|bkg)Pum
(am|bkg).

The term pg(m|bkg) is the uniform pdf for the background

model described earlier.

• The term Ppoiss(k|λO) represents the prior probability of

the image containing k object instances.

• The term po(Oi) is the probability distribution that the

matches in Oi and only these matches are generated by

the ith instance of the object model. Since the appearance,

the geometry and the occlusion state of the PSM matches

are independent, we can write po(Oi) as a product of an

appearance term Pa(Oi|obj), a geometry term pg(Oi|obj)
and the visibility term Pvis(ΦOi

)Pocc(Φ \ ΦOi
). Since

we assume that the appearances of the PSMs generated by

the object are independent, we can write Pa(Oi|obj) =∏
m∈Oi

Pum
(am|obj). The term Pg(Oi|obj) represents

the probability of the geometric configuration of the PSM

matches in Oi and is computed using the PSM graph. Fi-

nally, since the occlusion variables for each PSM are inde-

pendent, we can write Pvis(ΦOi
) =

∏
u∈ΦOi

Pvis(u) and

Pocc(Φ \ ΦOi
) =

∏
u∈Φ\ΦOi

Pocc(u).

We want to find the most likely explanation of the scene:

E∗ = argmax
E∈P(D)

P (E|D) = argmax
E∈P(D)

p(E,D).

It is not feasible to search to over all possible explanations

of D, and we use a greedy algorithm to build up the “best”
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explanation. The algorithm is initialized with the explana-

tion E0 = {D}, assuming that all the matches in D are

generated by the background. We then add a single ob-

ject to the explanation and compute the most likely ex-

planation E1 = {O1,B1}, assuming that a single object

generates the matches in O1 and the remaining matches

in B1 = D \ O1 are generated by the background. If

p(E1,D) > p(E0,D), we fix the matches in O1 as be-

longing to the first object instance. Next, the most proba-

ble explanation E2 = {O1,O2,B2} with 2 objects is con-

structed by splitting the matches in B1 into O2 and B2. The

algorithm iteratively adds the ith object instance to the ex-

planation if p(Ei,D) > p(Ei−1,D), and terminates when

adding more objects decreases the probability of the expla-

nation. Figure 4 shows an explanation containing two object

instances. During the ith iteration, the algorithm has fixed

the matches in O1, . . .Oi−1 and needs to compute the most

likely split of the matches in Bi−1 into Oi and Bi. Since it

is not feasible to search over all the possible splits of Bi, we

use a greedy scheme to populate Oi starting from an empty

set. We move matches from Bi to Oi one at a time so as

to achieve the maximum increase in p(Ei,D) at each step.

We compute the ratio of p(Ei,D) before and after moving

a single match m from Bi to Oi, and use this ratio to choose

the best match to move. The process terminates when the

best ratio drops below 1. While computing this ratio, the

contributions of the terms corresponding to the first i − 1
object instances cancel out and we obtain:

p({O1...Oi−1,Oi∪{m},Bi\{m}})
p({O1...Oi−1,Oi,Bi})

=
pum (am|obj)
pum (am|bkg) ×

pvis(m|obj)
pocc(m|obj)

×Ppoiss(nm−1|Kum )
Ppoiss(nm|Kum ) × pg(Oi∪m|obj)

pg(Oi|obj)·pg(m|bkg)

where nm denotes the number of times m is matched in Bi.

The first term can be computed using the logistic regression

model for the PSM. The second and third terms are com-

puted using the learned occlusion parameters pvis, pocc and

background Poisson distribution parameter Ku. The final

term is computed (approximately) by running loopy belief

propagation on the graph. In fact, what we need to com-

pute is the ratio
pg(Oi∪m|obj)

pg(Oi|obj) which can be computed as fol-

lows. The nodes in ΦOi
are fixed and belief propagation

is run to compute the “approximate” marginal distributions

pg(Au|ΦOi
) on all the nodes u ∈ Φ\ΦOi

. The required ra-

tio is just pg(Aum
|ΦOi

). The term pg({m}|obj) for an ob-

ject instance containing a single PSM match m is assumed

to be the same as pg(m|bkg).

5.2. Localization

Once we have computed an explanation E for the image,

we use the PSM matches within each object instance Oi to

predict a bounding box for it. For every PSM match mu

in Oi, we transform the bounding box in the base image of

u to the test image using Au. The predicted bounding box

for Oi is just the mean of these bounding boxes for all the

matches m ∈ Oi. We compute a score βOi
(needed to plot

Precision-Recall curves) for each Oi using the appearance

and visibility terms for the PSMs within Oi as

βOi
= log [Pa(Oi)Pvis(ΦOi

)Pocc(Φ \ ΦOi
)] .

6. Experiments and Discussion

We have conducted experiments on the PASCAL VOC

Challenge 2005 Cars Test 1 dataset [14], which consists of

275 images containing one or more cars (in a variety of

poses) and 414 background images with no cars present.

The training data consisted of 272 positive images with 320
annotated cars, and 412 background images.

• Pre-processing of the training data: Since images of

cars facing left are identical (up to a flip about the ver-

tical) to cars facing right, we learn a model for detect-

ing cars facing right. The detector is run on the origi-

nal image as well as its flipped version to be able to de-

tect cars facing both to the left and to the right. To sim-

plify the learning of the object model we correct each im-

age of the training set so that the car is pointing towards

the right (by flipping the image, if required). Then we an-

notate the images with a rough viewing direction from the

set {Rear, RearSide, Side, SideFront, Front}. Images

from a given class are only matched to others from the same

class or from neighboring classes during the PSM valida-

tion phase. Since our method first learns the object part

appearances “independently” and later learns the geometry,

it requires a reasonably “clean” set of validation matches

while building the model. Thus, we prune the validation

image matches based on whether the location of the match-

ing patches within the bounding box in the base image is

roughly consistent with the location of the corresponding

matches in the bounding box of the validation image.

• Results: Qualitative detection and localization results on

the Test 1 data are shown in Fig. 5. As per the rules of the

VOC Challenge [14], a detection is considered correct if the

intersection area of the predicted bounding box and the an-

notated bounding box is at least 50% of the union of the

two. Also, multiple detections for the same object instance

are considered false positives. We have implemented a sim-

ple baseline method to judge the performance of the PSMs

without the geometric model: Each PSM match mu in the

test image casts a vote for its predicted bounding box using

Au (similar to Section 5.2) and a mean shift procedure is

used to find the modes in this space. The VOC Challenge

competition used the average precision (AP) score [14] to

rank the results submitted by the participants. Our baseline

approach achieves an AP score of 0.590, which is just below

the best score of of 0.613 obtained by Dalal and Triggs [2]
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Figure 5. Successful detections on the PASCAL VOC 2005 Cars Test 1.
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Figure 6. Precision/recall curves (left), and AP score comparison (right).

The results for Dalal and Triggs, Fritz et al., and Garcia and Duffner are

taken from [14]. The references in brackets are the publications where the

methods used in the challenge have been first described.

in the competition. The PSM graph approach achieves an

even higher score of 0.628—the highest obtained so far for

this dataset. Figure 6 shows the precision/recall curves cor-

responding to the baseline method and the full PSM graph

algorithm, and compares our AP scores with those obtained

by the participants in the VOC 2005 Challenge [14].

• Discussion: These experimental results demonstrate the

strength of our model: First, we can see that PSMs are very

discriminative, since when combined with a simple voting

scheme, they significantly outperform comparable methods

based on individual local features [11]. This style of voting

can be thought of as a (simple) implementation of a rigid

star model. Our experiments also demonstrate the power

added by our loose geometric model, which significantly

outperforms all other methods on the Cars Test 1 data of the

Pascal 2005 VOC Challenge.
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