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Abstract

When modeling survival data, it is common to assume that the (log-transformed)

survival time (T ) is conditionally independent of the (log-transformed) censoring

time (C) given a set of covariates. There are numerous situations in which this as-

sumption is not realistic, and a number of correction procedures have been developed

for different models. However, in most cases, either some prior knowledge about the

association between T and C is required, or some auxiliary information or data is

supposed to be available. When this is not the case, the application of many existing

methods turns out to be limited. The goal of this paper is to overcome this prob-

lem by developing a flexible parametric model, that is a type of transformed linear

model. We show that the association between T and C is identifiable in this model.

The performance of the proposed method is investigated both in an asymptotic way

and through finite sample simulations. We also develop a formal goodness-of-fit test

approach to assess the quality of the fitted model. Finally, the approach is applied

to data coming from a study on liver transplants.

Key Words: Association; dependent censoring; identifiability; parametric models; sur-

vival analysis.
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1 Introduction

In survival analysis, it is common to assume that the (log-transformed) survival time

(T ) and the (log-transformed) censoring time (C) are independent of each other. This

assumption is reasonable in many contexts, in particular when censoring happens at the

end of the study (the so-called administrative censoring). However, there are also numerous

situations where this assumption is not realistic. For example, in medical studies, patients

may withdraw from the study because their condition is deteriorating or because they are

showing side effects that need alternative treatments. In this case, withdrawal from the

study may indicate that death is likely sooner, and so we have a positive relation between

the survival and the censoring time. On the other hand, patients could drop out because

their health condition has improved and so they no longer follow the treatment (Etzioni

et al., 1999). In this situation, the censoring time is negatively related to the survival time.

Another situation where the assumption of independent censoring is questionable can be

found in transplant studies. For this type of data, a patient is selected for a transplant based

on his/her medical condition. Since the most sick patients are selected for a transplant, it

is unconvincing that their expected survival on the waiting list is representative of those

who have not been selected for the transplant (Staplin et al., 2015). In these examples,

the issue of dependent censoring is induced.

A number of approaches have been proposed in the literature to deal with dependent

censoring. According to Tsiatis (1975), the joint distribution of T and C is not identifiable

from the joint distribution of the follow-up time and the censoring indicator when we have

dependent censoring. Therefore, to identify the joint distribution of T and C, we need ex-

tra information about their dependence. In this regard, Zheng and Klein (1995) modeled

the bivariate distribution of T and C by means of a known copula function, and estimated

the marginal distribution of T non-parametrically under this copula model, which com-

pletely specifies the association between the two variables. Rivest and Wells (2001) further

investigated the proposal of Zheng and Klein for the special case of an Archimedean cop-

ula. The copula approach has been extended to the context of regression by Braekers and

Veraverbeke (2005), Huang and Zhang (2008) and Sujica and Van Keilegom (2018), who

incorporated covariates in Zheng and Klein’s model by assuming that the marginal rela-

tion between the survival time and the covariates is given by a fully nonparametric model,

a Cox model and a location-scale model, respectively. The first textbook on dependent

censoring under an assumed copula has been written by Emura and Chen (2018). The in-

verse probability of censoring weighted (IPCW) method (Collett, 2015), where the weight
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is derived from a censoring time model, and the multiple imputation methods of Jackson

et al. (2014), where the censored times are imputed under departures from independent

censoring, are also useful to adjust for dependent censoring in the Cox model.

Although it is possible to adjust in some sense for possible dependent censoring using

one of the existing approaches, we would like to come up with a novel way to adjust for

dependent censoring, that is at the same time flexible enough to encompass many data

structures, and easy to interpret thanks to its parametric nature. Under our proposed

model the dependence between T and C will be identified. The key element in our model

that ensures this identifiability is the bivariate normality of the errors in the model for T

and the model for C. We will propose a method to estimate the model (and in particular

the association between T and C) and to do inference. We will also develop a formal

goodness-of-fit statistic to check the quality of the fit.

The proposed model is based on a certain parametric transformation of T and C, and we

assume that the transformed variables have a bivariate normal distribution, after adjusting

for possible covariate effects. Some authors have already used a bivariate model to induce

an association. For instance, Emoto and Matthews (1990) suggested a bivariate Weibull

model and Basu (1988) gave a review of existing bivariate exponential models, which could

be used to model an association. However, these models do not allow for the adjustment

of covariates. Here, we focus on bivariate normal models to induce an association, which

are promising because of their mathematical tractability and because of the possibility of

transforming non-normal continuous variables to approximately normal ones. For showing

the identifiability of our model, we will use the papers of Nádas (1971) and Basu and Ghosh

(1978), who showed that for a bivariate normal random vector, the distribution of the

identified minimum (i.e. the observed minimum and the censoring indicator) determines

the joint distribution of the bivariate normal pair. We will extend their result to our

more flexible setting, in which we assume that the survival and censoring times behave

like a bivariate normal random vector after a proper parametric transformation and after

adjusting for covariates. This identification result is the crucial result of the paper.

The paper is organized as follows. In the next section we state the precise model and

derive the distribution of the observed minimum. The identifiability and estimation of our

proposed model is shown in Section 3. In Section 4, we give a formal goodness-of-fit test.

A simulation study that investigates the finite sample behavior of the proposed estimator

is given in Section 5. In Section 6, we apply our models and methods to real data coming

from a study on liver transplants, and we conclude with a discussion in Section 7. All
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proofs are deferred to Appendix A (for the identifiability result) and B (for the asymptotic

results).

2 Model specification

Throughout the paper the variable T denotes the logarithm of the survival time, and C

is the logarithm of the censoring time, both variables taking values in (−∞,+∞). We

assume that T and C are depending on each other, even after conditioning out the effect

of covariates, and they are censoring each other. In this situation, the censoring time is

worth to be modeled jointly with the survival time by including all relevant covariates. This

enables us to identify the set of covariates having an influence on the survival time as well

as on the censoring time. Denote the covariates having an influence on T by X = (1, X̃T )T

(of dimension p, say), and the covariates having an influence on C by W = (1, W̃ T )T ,

which we suppose to be of dimension q. They may be identical, partially overlapping, or

completely distinct. Then the proposed joint regression model has the following form:

{
Λθ(T ) = XTβ + ǫT

Λθ(C) = W Tη + ǫC ,
(2.1)

where {Λθ : θ ∈ Θ} with Θ ⊂ R is a parametric class of monotone increasing transfor-

mations, and β and η are the vectors of regression coefficients. The vector of error terms

(ǫT , ǫC) has a bivariate normal distribution:

(
ǫT

ǫC

)
∼ N2

((
0

0

)
,Σ =

(
σ2
T ρσTσC

ρσTσC σ2
C

))
, (2.2)

where Σ is assumed to be a positive definite matrix, i.e. σT > 0, σC > 0 and |ρ| < 1.

Here, we consider the same transformation parameter (θ) for T and C to make sure that

min(Λθ(T ),Λθ(C)) = Λθ(min(T,C)), i.e. the censoring indicator does not change after the

transformation. We shall assume that

(A1) (ǫT , ǫC) and (X,W ) are independent.

(A2) The matrices Var(X̃) and Var(W̃ ) have full rank.

(A3) The family {Λθ : θ ∈ Θ} is a family of strictly increasing transformations that are

defined on the whole real line and that satisfy limt→±∞ Λθ(t) = ±∞ for all θ in Θ.
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The latter assumption is required for identifiability reasons, and states that the family

of transformations {Λθ : θ ∈ Θ} maps the whole real line to the whole real line. The

Box-Cox transformation (depending on a parameter θ) does not satisfy this assumption,

since it maps a positive random variable to a variable defined on (−1/θ,+∞) for θ > 0

and (−∞,+∞) for θ = 0. On the other hand, Yeo and Johnson (2000) proposed a family

of power transformations that maps (−∞,+∞) to (−∞,+∞) provided 0 ≤ θ ≤ 2. It is

an extension of the Box-Cox family to the whole real line, and is defined as follows:

Λθ(t) =





{(t+ 1)θ − 1}/θ t ≥ 0, θ 6= 0

log(t+ 1) t ≥ 0, θ = 0

−{(−t+ 1)2−θ − 1}/(2− θ) t < 0, θ 6= 2

− log(−t+ 1) t < 0, θ = 2.

(2.3)

The case θ = 1 corresponds to the identity transformation, and hence Λθ(T ) is the log of

the survival time in that case. When 1 < θ ≤ 2, the function Λθ(·) lies entirely above the

identity transformation and is convex, whereas when 0 ≤ θ < 1, it lies completely below

the identity function and it is concave. We refer to Yeo and Johnson (2000) for more details

and properties of this flexible family of transformations. Assumption (A3) is also satisfied

by a family of sinh-arcsinh transformations, which is defined by Λθ(t) = sinh(sinh−1(t)+θ),

θ ∈ R, t ∈ R (see Jones and Pewsey (2009) for more details on this family).

In addition to condition (A3), we also need the following condition, which is also re-

quired in order to identify model (2.1)–(2.2):

(A4) For all θj, µj, σj ∈ R3, j = 1, 2: if θ1 6= θ2, then limt→±∞ Kθ1,µ1,σ1(t)/Kθ2,µ2,σ2(t) = 0

or ∞, where

Kθ,µ,σ(t) = exp
(
−

1

2

{Λθ(t)− µ

σ

}2)
Λ′

θ(t).

It is easily seen that this condition is satisfied for both the Yeo-Johnson family and the

Jones-Pewsey family of transformations.

Note that model (2.1)–(2.2) is a flexible parametric model, depending on the parameter

vector (θ, β, η, σ2
T , σ

2
C , ρ) ∈ Rp+q+4. Due to censoring, the underlying random variables T

and C are only observed through the follow-up time Z and the censoring indicator ∆,

given by Z = min(T,C) and ∆ = I(T ≤ C), where I(·) is the indicator function. Finally,

the data consist of n independent and identically distributed replications (Zi,∆i, Xi,Wi),

i = 1, . . . , n of (Z,∆, X,W ). We make the following additional assumption:

(A5) The probabilities P (Z = T ) and P (Z = C) are strictly positive.

5



We will show in the next section that model (2.1)–(2.2) is identifiable. This might seem

surprising, since the model determines the relation between T and C whereas for a given

individual we observe either T or C, but never both of them.

It is known that when the response in a regression model is transformed by a power

transformation, the regression function of the new model often has an additive structure

and the new error term is often approximately normal and homoscedastic (Box and Cox,

1964). Hence, the assumption of bivariate normality of the error vector (ǫT , ǫC) is quite

natural in this context.

Let FT |X(· | x) and FC|W (· | w) be the conditional distribution functions of T given

X = x and of C given W = w, respectively. Then, thanks to the independence between

(ǫT , ǫC) and (X,W ), we have that

FT |X(t | x) = FǫT

(
Λθ(t)− xTβ

)
= Φ

(
Λθ(t)−xT β

σT

)

FC|W (c | w) = FǫC

(
Λθ(c)− wTη

)
= Φ

(
Λθ(c)−wT η

σC

)
, (2.4)

where FǫT and FǫC are the distribution functions of ǫT and ǫC , respectively, and where Φ

is the distribution function of a standard normal variable. It follows that the conditional

density of T given X = x equals fT |X(t | x) = σ−1
T φ
(
Λθ(t)−xT β

σT

)
Λ′

θ(t), where φ is the density

function of a standard normal variable, and similarly for the conditional density fC|W (c | w)

of C given W = w.

Let the parameter vector be denoted by α = (θ, β, η, σT , σC , ρ) ∈ Rp+q+4. The sub-

distribution function FZ,∆|X,W (·, · | x, w;α) of (Z,∆) given (X,W ) = (x, w) for a given α

can now be derived as follows:

FZ,∆|X,W (z, 1 | x, w;α) = P (Z ≤ z,∆ = 1 | X = x,W = w)

= P (Λθ(T ) ≤ Λθ(z),Λθ(T ) ≤ Λθ(C) | X = x,W = w)

=

∫ Λθ(z)−xT β

−∞

P (ǫC ≥ e+ xTβ − wTη | ǫT = e)fǫT (e) de

=
1

σT

∫ Λθ(z)−xT β

−∞

[
1− Φ

(e+ xTβ − wTη − ρσC

σT
e

σC(1− ρ2)1/2

)]
φ
( e

σT

)
de,

since (ǫC | ǫT = e) ∼ N
(
ρσC

σT
e, σ2

C(1 − ρ2)
)
, and hence the corresponding sub-density

fZ,∆|X,W (·, · | x, w;α) is given by

fZ,∆|X,W (z, 1 | x, w;α) =
1

σT

[
1− Φ

(Λθ(z)− wTη − ρσC

σT
(Λθ(z)− xTβ)

σC(1− ρ2)1/2

)]

×φ
(Λθ(z)− xTβ

σT

)
Λ′

θ(z). (2.5)
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Similarly,

fZ,∆|X,W (z, 0 | x, w;α) =
1

σC

[
1− Φ

(Λθ(z)− xTβ − ρσT

σC
(Λθ(z)− wTη)

σT (1− ρ2)1/2

)]

×φ
(Λθ(z)− wTη

σC

)
Λ′

θ(z). (2.6)

In a similar way we can show that

FZ|X,W (z | x, w;α) = Φ
(Λθ(z)− xTβ

σT

)
+ Φ

(Λθ(z)− wTη

σC

)

−Φ
(Λθ(z)− xTβ

σT

,
Λθ(z)− wTη

σC

; ρ
)
, (2.7)

since P (Z ≤ z) = 1− P (Z > z) = 1− P (T > z, C > z) = P (T ≤ z) + P (C ≤ z)− P (T ≤

z, C ≤ z), where Φ(·, ·; ρ) is the cumulative distribution function of a standard bivariate

normal distribution with correlation parameter ρ. These formulas will be useful in the

sequel.

3 Model identification and estimation

We will show in this section that model (2.1)–(2.2) is identifiable. Note that we only

observe the vector (Z,∆, X,W ) and on the basis of the joint distribution of this vector, we

need to show that the model parameters θ, β, η, σ2
T , σ

2
C and ρ are identifiable, in the sense

that any two different sets of parameters yield different joint distributions of (Z,∆, X,W ).

That the association parameter ρ is identifiable is quite surprising, since we only observe

the minimum Z of T and C, but never both of them. Our proof relies on Basu and

Ghosh (1978), who show the identifiability of model (2.1)–(2.2) when no covariates and no

transformation are included. The proof is given in Appendix A.

Theorem 3.1. Under assumptions (A1) − (A5), suppose that the pair (Tj, Cj) satisfies

model (2.1)–(2.2) with parameters αj = (θj, βj, ηj, σTj
, σCj

, ρj) for j = 1, 2, and that Zj =

min(Tj, Cj) and ∆j = I(Tj ≤ Cj). If fZ1,∆1|X,W (·, ℓ | x, w;α1) ≡ fZ2,∆2|X,W (·, ℓ | x, w;α2)

for ℓ = 0, 1 and for almost every (x, w), then

θ1 = θ2, β1 = β2, η1 = η2, σT1 = σT2 , σC1 = σC2 , ρ1 = ρ2.

Remark 1 : It is easily seen that the identification result given in Theorem 3.1 remains valid

when the functional form of the covariates is non-linear, like e.g. polynomials, fractional

polynomials or other fractional forms as long as assumption (A2) holds true.
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Since our model is fully parametric, we will estimate the model parameters by maxi-

mizing the likelihood function. We write the joint density of (Z,∆, X,W ) as fZ,∆,X,W =

fZ,∆|X,WfX,W . Since the joint density fX,W of (X,W ) does not depend on the model pa-

rameters, we can build the likelihood with the conditional density fZ,∆|X,W . For each ob-

servation (Zi,∆i, Xi,Wi), i = 1, . . . , n, we obtain its contribution to the likelihood function

from formulas (2.5) for the uncensored observations and (2.6) for the censored ones. This

gives us the following likelihood function for the parameter vector α = (θ, β, η, σT , σC , ρ):

L(α) =
n∏

i=1

fZ,∆|X,W (Zi,∆i | Xi,Wi;α)

=
n∏

i=1

{ 1

σT

[
1− Φ

(Λθ(Zi)−W T
i η − ρσC

σT
(Λθ(Zi)−XT

i β)

σC(1− ρ2)1/2

)]
φ
(Λθ(Zi)−XT

i β

σT

)}∆i

×
{ 1

σC

[
1− Φ

(Λθ(Zi)−XT
i β − ρσT

σC
(Λθ(Zi)−W T

i η)

σT (1− ρ2)1/2

)]
φ
(Λθ(Zi)−W T

i η

σC

)}1−∆i

×Λ′
θ(Zi). (3.1)

This likelihood will be maximized over the parameter space A = {(θ, β, η, σT , σC , ρ) : θ ∈

Θ, β ∈ Rp, η ∈ Rq, σT > 0, σC > 0,−1 < ρ < 1}. Note that unlike the case where T and C

are independent given (X,W ), the above likelihood cannot be factorized into a factor only

depending on the parameters of the model for T , and a second factor only depending on

the parameters of the model for C. The only exception is when ρ = 0 and when θ would

be known, in which case we find back the usual likelihood in the independent case.

We now define the maximum likelihood estimator (MLE) of α as follows:

α̂ = (θ̂, β̂, η̂, σ̂T , σ̂C , ρ̂) = argmaxα∈AL(α).

Note that it is not possible to maximize this likelihood function analytically, but instead

it can be maximized numerically.

Let us now consider the asymptotic theory of our estimator. We will do this assuming

that our model (2.1) is identified but potentially misspecified (see Remark 1 for identifiable

classes of models that are more general than model (2.1)). In this context, the results of

White (1982) on misspecified parametric models can be used to derive the consistency

and asymptotic normality of our estimators. We give theorems related to consistency and

asymptotic normality of our estimator in Appendix B.

We end this section with a discussion on how to compute standard errors (SE) and

confidence intervals (CI) for the parameters in the model. We will do this by using the
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asymptotic normality of the MLE given in Theorem 7.2 in Appendix B. For example, the

SE for the regression parameter β̂j is SE(β̂j) =
√

[V (α̂)]βj
, j = 1, . . . , p, where V (α̂) is the

variance–covariance matrix given in Theorem 7.2. The (1−ω)×100% confidence interval for

βj is then β̂j ± z1−ω/2ŜE(β̂j), where z1−ω/2 is the 1− ω/2-quantile of the standard normal

distribution, and ŜE(β̂j) is an estimator of SE(β̂j). Similarly, CI’s for the regression

coefficients η1, . . . , ηq can be obtained. Note that for the variances σT and σC , and for the

correlation ρ, the confidence interval will be based on the logarithm and on Fisher’s Z

transformation, respectively. Their corresponding standard errors will be obtained using

the Delta method, and the confidence interval limits will then be transformed back to the

original scale. For the logarithmic transformation we have g(σ̂T ) = log(σ̂T ), and then using

the Delta method, SE(g(σ̂T )) =
√
[V (α̂)]σT

/σT . The (1− ω)×100% confidence interval is

then given by

exp{g(σ̂T )− z1−ω/2ŜE(g(σ̂T ))} < σT < exp{g(σ̂T ) + z1−ω/2ŜE(g(σ̂T ))}.

A similar result can be obtained for σ̂C . Similarly, for Fisher’s transformation we have

g(ρ̂) = 0.5log
{
(1+ ρ̂)/(1− ρ̂)

}
and SE(g(ρ̂)) =

√
[V (α̂)]ρ/(1−ρ). Then the (1−ω)×100%

confidence interval is given by

exp{2[g(ρ̂)− z1−ω/2ŜE(g(ρ̂))]} − 1

exp{2[g(ρ̂)− z1−ω/2ŜE(g(ρ̂))]}+ 1
< ρ <

exp{2[g(ρ̂) + z1−ω/2ŜE(g(ρ̂))]} − 1

exp{2[g(ρ̂) + z1−ω/2ŜE(g(ρ̂))]}+ 1
.

4 Goodness-of-fit test

Since the proposed estimation method relies on the model assumptions, we supplement

the method with a formal goodness-of-fit test for testing whether the distribution of the

observed survival time Z is equal to the distribution under our dependent censoring model.

More precisely under the null hypothesis, we have

H0 : P (Z ≤ z) = FZ(z;α), for some α,

where the distribution of Z under H0 is given by

FZ(z;α) =

∫ ∫
P (Z ≤ z | X = x,W = w)fX,W (x, w) dx dw

=

∫
Φ
(Λθ(z)− xTβ

σT

)
fX(x) dx+

∫
Φ
(Λθ(z)− wTη

σC

)
fW (w) dw

−

∫ ∫
Φ
(Λθ(z)− xTβ

σT

,
Λθ(z)− wTη

σC

; ρ
)
fX,W (x, w) dx dw,
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which can be approximated by

FZ(z; α̂) =
1

n

n∑

i=1

Φ
(Λθ̂(z)−XT

i β̂

σ̂T

)
+

1

n

n∑

i=1

Φ
(Λθ̂(z)−W T

i η̂

σ̂C

)

−
1

n

n∑

i=1

Φ
(Λθ̂(z)−XT

i β̂

σ̂T

,
Λθ̂(z)−W T

i η̂

σ̂C

; ρ̂
)
, (4.1)

where the model parameters are replaced by their corresponding estimated values. It

can be seen that both the survival and the censoring model parameters are involved in

the estimation of FZ(·;α). For this reason, a deviation from H0 suggests that either the

survival or the censoring model is misspecified.

In order to test H0, it is natural to assess the goodness-of-fit in terms of the distance

between the empirical distribution function of Z, namely Fn(z) = n−1
∑n

i=1 I(Zi ≤ z), and

the proposed parametric estimator of FZ(z;α). Specifically, the Cramér-von Mises type of

statistic is given by

TCM =

∫

R

n
{
Fn(z)− FZ(z; α̂)

}2

dFZ(z; α̂).

A large value of TCM indicates a possible misspecification in the proposed model.

Now we will use a parametric bootstrap approach to determine the distribution of TCM

under the null hypothesis (Efron and Tibshirani, 1993; Emura and Michimae, 2017). Let B

be the number of bootstrap samples. Then, we perform the goodness-of-fit test as follows:

1. Simulate bootstrap samples (Zb
i ,∆

b
i , X

b
i ,W

b
i ), for i = 1, 2, · · · , n, b = 1, 2, · · · , B un-

der model (2.1) with α = α̂.

2. Using the data generated in point 1, compute the bootstrap Cramér-von Mises statis-

tic T ∗
CM,b for each bootstrap sample.

3. Reject H0 with level ω if TCM is greater than the 100 × (1 − ω) percent point of

{T ∗
CM,b, b = 1, 2, · · · , B}.

5 Simulation study

In this section, we conduct a simulation study to show the effect of not taking into ac-

count the correlation between T and C in model (2.1). We will do this by comparing our

estimation method with the method that assumes independent censoring. We will also

evaluate the performance of the proposed method by comparing it with an estimator un-

der a copula model. The copula model we will use in our simulations has the advantage
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of being directly comparable with our model, whereas other competitors in the literature

(like the weighted Cox model given in Collett (2015)) cannot be written in a form close

to our model, and the parameters in these models have different interpretations and can

therefore not be compared with the parameters in our model. Finally, we will assess the

performance of the proposed goodness-of-fit test by means of simulations.

5.1 Comparison with the independent censoring model

The following data generating model is considered:

{
Λθ(T ) = β0 + β1X1 + β2X2 + ǫT

Λθ(C) = η0 + η1X1 + η2X2 + ǫC ,
(5.1)

where Λθ(·) is the Yeo-Johnson transformation function defined in (2.3), X1 ∼ Bern(0.5)

and X2 ∼ U [−1, 1]. The vector of error terms (ǫT , ǫC) is drawn from a bivariate normal

distribution with zero mean vector and σT = 1, σC = 1.5 and ρ = 0.75. We study two

different settings. For setting 1, we set the regression parameters as follows: β0 = 2,

β1 = 1.2, β2 = 1.5 and η0 = 2.5, η1 = 0.5, η2 = 1. Under this setting, the average

proportion of censoring in the simulated data is approximately 45%. In setting 2, we set

β0 = 3.25, β1 = −0.45, β2 = 1.2 and η0 = 3.5, η1 = 0.6, η2 = 1, so that the average

proportion of censoring in the simulated data is approximately 25%. After simulating a

set of normal transformed survival times and a second set of normal transformed censoring

times, for each subject, we simply take the minimum to obtain the observed transformed

survival time (Λθ(Z)) and consequently the event indicator (∆). Three different values

of θ are considered (θ = 0, 0.5 and 1.5), and we estimate θ along with the other model

parameters to investigate their behavior in practice for two sample sizes, namely n = 300

and n = 600. The model estimation is done in R using the nonlinear optimization package

nloptr for optimization and numDeriv for computing the Hessian matrix.

For each simulation setting, 2000 replicated datasets are created. For each of them, the

model parameters are estimated under the dependent censoring model using the likelihood

function given in (3.1), and the independent censoring model corresponding to ρ = 0 in

(3.1). In Tables 1 and 2 we report the bias, the empirical standard deviation (ESD), the

average of the model standard errors (ASE), the root mean squared error (RMSE), and

the coverage rate of 95% confidence intervals (CR) to compare the fitted models.

The simulation results when the proportion of censoring is approximately 45% and

n = 300 can be found in Table 1. From the table it is clear that the dependent censoring
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model performs better than the model under independence, since it has much smaller bias

and the coverage rate is close to the nominal level of 95% for all parameters. There is

sometimes a slight increase in the variance with respect to the model under independence,

but the RMSE is much smaller for the dependent censoring model. Comparing these

results to those for n = 600 (see Table 7 in supplementary materials), as can be expected,

the absolute bias becomes smaller as the sample size increases and/or the magnitude of

θ decreases for the dependent censoring model. However, for the independent censoring

model, we see that an increase in the sample size does not correspond to a decrease in the

bias, which shows the inconsistency of the parameter estimators when non-zero association

exists between T and C. Also, the coverage rates for the dependent censoring model

improve for some parameters whereas the coverage rates for the independent censoring

model decrease as we increase the sample size.

The simulation results for 25% censoring and n = 300 are shown in Table 2. The results

in the table again show that the proposed dependent censoring model performs well: there

is a much smaller bias in the parameter estimates compared to the independent censoring

model, and the estimated coverage rates are reasonably close to the nominal level. Again

we see that when we increase the sample size to n = 600 (Table 8 in supplementary

materials), the biases and RMSE decrease. Comparing the coverage rates for 25% and

45% censoring for the dependent censoring model, we notice that the coverage rates are

slightly worse for the case where we have 25% censoring. This is not surprising, since we

need a reasonable number of uncensored and of censored observations in order to estimate

well all model parameters. So, the model with 45% censoring is easier to estimate than the

one with 25% censoring since we have enough observations on both T and C (in absolute

terms) under the former censoring rate.

We also conduct a simulation study to assess the performance of the proposed method

when the model for the censoring time is misspecified, since we like to know whether

the estimated parameters are sensitive to the misspecification of the censoring model. To

investigate this issue, we generate data similar to those in the previous setting under 45%

censoring, except that the true censoring model is given by Λθ(C) = η0 + η1X1 + η2X2 +

η3X
2
2 + ǫC . Note that we fit a wrong censoring model Λθ(C) = η0 + η1X1 + η2X2 + ǫC

without X2
2 . Then the effect of the misspecification of the censoring model on the survival

model will be tested when X2
2 has a moderate effect (with η3 = 1) and a strong effect

(with η3 = 2). For each set of simulated data, the model parameters are estimated under

the dependent censoring model. In Table 3 we present the bias, ESD, ASE, RMSE and
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CR. The table shows that for η3 = 1 the parameter estimators have a small bias and their

coverage rates are close to the 95% nominal level. So the joint model does not suffer a lot

from the misspecification of the censoring model. When the effect of X2
2 is strong, we see

an increase in bias and RMSE for the censoring model. However, the parameter estimates

of the survival model and of the variance–covariance matrix are almost unaffected by the

misspecification.

5.2 Comparison with the copula model

In this subsection, we will evaluate the performance of the proposed method by comparing

it with an estimator constructed under a copula model allowing for dependent censoring.

Unfortunately, none of the existing copula models is directly comparable to ours. A com-

mon assumption in the framework of copula models allowing for dependent censoring is the

assumption that the copula is known and that the margins are completely unspecified or

partially specified. Following this approach, we propose a Gaussian copula model, which

has the same structure as our model except that one of the margins is unspecified. The

proposed copula model is then given by

{
Λθ(T ) = XTβ + ǫT

Λθ(C) = W Tη + ǫC ,
(5.2)

where
(

Φ−1(FǫT (ǫT ))

ǫC

)
∼ N2

((
0

0

)
,

(
1 ρ

ρ 1

))
, (5.3)

and where FǫT is unknown, and ρ is known.

The estimation of this model is not straightforward when the error distribution is

unknown, even under independent censoring. So, we will start by proposing a method for

estimating this copula model. We follow a semi-parametric maximum likelihood approach.

Note that the monotonicity of the transformations in the copula model allows the derivation

of a likelihood function that can be factorized into the product of contributions from the

survival and the censoring times. It follows that the likelihood function for the unknown
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parameters ξ = (θ, β, η) and the unknown function FǫT can be written as

L(ξ, FǫT ) =
n∏

i=1

{
fǫT
(
Λθ(Zi)−XT

i β
)

×
[
1− Φ

(Λθ(Zi)−W T
i η − ρΦ−1(FǫT (Λθ(Zi)−XT

i β))

(1− ρ2)1/2

)]}∆i

×
{[

1− Φ
(Φ−1(FǫT (Λθ(Zi)−XT

i β))− ρ(Λθ(Zi)−W T
i η)

(1− ρ2)1/2

)]

×φ
(
Λθ(Zi)−W T

i η
)}1−∆i

Λ′
θ(Zi). (5.4)

Directly maximizing this likelihood is not feasible, as the likelihood contains the infinite

dimensional parameter FǫT and its derivative. We will replace FǫT by a nonparametric

estimator, and fǫT by a kernel estimator, which we will define below. We will also explain

below how this nonparametric estimator can be used to estimate model (5.2)–(5.3). Note

that this model has the extra difficulty that it imposes a copula model on the errors ǫT

and ǫC and we do not know which of these two errors is the smallest, we only know the

order between T and C, or equivalently between Λθ(T ) and Λθ(C). This complicates the

construction of the nonparametric estimator.

For a fixed value of ξ = (θ, β, η), the estimator of FǫT can be constructed as follows.

Let R(1) < R(2) < . . . < R(m) = max {Ri, i = 1, . . . n} be the distinct residual lifetimes

Ri = Λθ(Zi) −XT
i β, and let ∆(i), i = 1, . . . ,m be the corresponding censoring indicators.

Here m ≤ n is the number of such distinct times. We suppose here that ties can occur

among the uncensored residuals, or among the censored residuals, but that a censored

residual cannot be equal to an uncensored residual. If this would happen, the censored

residual is increased by a very small amount. Hence, ∆(i) is well defined.

For fixed ξ, define now FǫT ,ξ(t) = P (Λθ(T )−XTβ ≤ t). Note that

P (R ≤ t,∆ = 1) = E(P (Λθ(T )−XTβ ≤ t,Λθ(T ) ≤ Λθ(C)|X,W ))

= E
{∫ t

−∞

[
1− Φ

(e− −W Tη +XTβ − ρΦ−1(FǫT ,ξ(e
−))

(1− ρ2)1/2

)]
dFǫT ,ξ(e)

}
.

This suggests that in order to estimate FǫT ,ξ(·) for a fixed value of ξ, we solve the following

equation (in F̂ǫT ,ξ(·)) :

n−1

n∑

i=1

I(Ri ≤ t,∆i = 1)

=

∫ t

−∞

{
1− n−1

n∑

i=1

Φ
(e− −W T

i η +XT
i β − ρΦ−1(F̂ǫT ,ξ(e

−))

(1− ρ2)1/2

)}
dF̂ǫT ,ξ(e). (5.5)
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This shows that F̂ǫT ,ξ is a nondecreasing step function with jumps only at the observed

residual lifetimes. We can write (5.5) also as

n−1

n∑

i=1

I(Ri ≤ t,∆i = 1)

=
m∑

j=1

(
F̂ǫT ,ξ(R(j))− F̂ǫT ,ξ(R(j−1))

)
I(R(j) ≤ t)

×
{
1− n−1

n∑

i=1

Φ
(R(j−1) −W T

i η +XT
i β − ρΦ−1(F̂ǫT ,ξ(R(j−1)))

(1− ρ2)1/2

)}
, (5.6)

where R(0) = −∞. This equation can be solved sequentially starting from j = 1 and going

through the residuals R(j) from smallest to largest, using the following more direct formula

that is equivalent to (5.6):

F̂ǫT ,ξ(R(j)) = F̂ǫT ,ξ(R(j−1)) +
n−1

∑n
i=1 I(Ri = R(j),∆i = 1)

1− n−1
∑n

i=1 Φ
(

R(j−1)−WT
i η+XT

i β−ρΦ−1(F̂ǫT ,ξ(R(j−1)))

(1−ρ2)1/2

) .

Since this only involves direct calculation, it is much easier than solving equation (5.6).

Next, we will use a kernel approach to obtain an estimator of the density fǫT ,ξ :

f̂ǫT ,ξ(t) =
1

h

∫
K
(t− r

h

)
dF̂ǫT ,ξ(r) =

1

h

m∑

j=1

K
(t−R(j)

h

)
wj,

where K is a smooth kernel function (we use a normal kernel in the simulations), h is a

bandwidth parameter (set to h = n−1/5), and wj = F̂ǫT ,ξ(R(j))− F̂ǫT ,ξ(R(j−1)). Finally, we

plug in F̂ǫT ,ξ and f̂ǫT ,ξ in the likelihood function (5.4), and we maximize this likelihood

that now only depends on ξ.

In order to compare our proposed estimator with the estimator under the copula model

given above, we generate data from the following model:

{
Λθ(T ) = βX + ǫT

Λθ(C) = ηX + ǫC ,

where the transformation Λθ equals the Yeo-Johnson transformation with θ = 0.5 and X

follows a binomial distribution with equal probability. The other model parameters are set

to β = 0.75 and η = 1. Since our method requires specification of the error distribution,

we like to assess the performance of the proposed method when either the dependence

structure or the marginal distribution is misspecified. We will also study the sensitivity of
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the copula model when the dependence parameter ρ is misspecified. To investigate these

issues, let P (ǫT ≤ u, ǫC ≤ v) = C{FǫT (u), FǫC (v)}, where C is a parametric copula function.

We consider the following scenarios:

Scenario 1: The copula Cρ is a Gaussian copula or a t-copula with degrees of freedom

v = 5, where ρ = 0.75, and the errors ǫT and ǫC follow a standard normal distribution.

Here the assumption of linear relation holds true even though the dependence structure is

misspecified under the t-copula.

Scenario 2: The copula Cγ is a Frank copula or a Gumbel copula, where the dependence

parameter γ is chosen to yield Kendall’s correlation τ = 0.54, which corresponds to γ = 6.5

under the Frank copula and γ = 2.2 under the Gumbel copula. Note that for this value of

τ , the correlation ρ is equal to 0.75. Again, both errors ǫT and ǫC follow a standard normal

distribution. Here the assumption of linear dependence does not hold since both the Frank

and the Gumbel copula introduce a non-linear dependence. We refer to the book of Nelsen

(2006) for details about various copula models.

Scenario 3: The copula Cρ is a Gaussian copula with ρ = 0.75. Under this scenario, the

errors ǫT and ǫC follow a standard t-distribution with v = 5 degrees of freedom. Therefore,

the assumption of normal marginals required by our method is not satisfied.

For each simulation scenario, a total of 1000 datasets with a sample size of n = 500

is considered. The average proportion of censored data is approximately 45%. For each

dataset, the model parameters are estimated based on our dependent censoring model and

based on the copula model using the true value of ρ = 0.75 and using a misspecified value

of ρ = 0.45. Table 4 presents the bias, ESD and RMSE. The proposed method has a much

smaller bias and RMSE in all scenarios except Scenario 3. For the considered scenarios,

the misspecification in the dependence structure has little influence on the proposed model.

Under Scenario 3, the proposed model gives inconsistent estimates for the model parame-

ters, whereas the copula model provides a slightly smaller bias when ρ is correctly specified.

So, our model seems to be sensitive to the misspecification of the marginal distributions.

In order to decide whether the method can be used or not, we recommend the user of our

method to carry out the goodness-of-fit test given in Section 4. On the other hand, when

ρ is misspecified as ρ = 0.45, Table 4 shows an increase in absolute bias and RMSE for the

copula model. This implies that prior knowledge of the dependence parameter is important

to get good estimates. In all scenarios, the proposed method manifests advantages over

the estimator under the copula model in terms of ESD and RMSE.
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5.3 Performance of the goodness-of-fit test

We evaluate the performance of the goodness-of-fit test (Section 4) using simulations. The

null hypothesis to be tested is the validity of the proposed dependent censoring model. The

data are generated based on model (5.1), where Λθ(·) is the Yeo-Johnson transformation

function, X1 ∼ Bern(0.5) and X2 ∼ U [−1, 1]. We draw error terms ǫT and ǫC from

a bivariate normal distribution and from a bivariate t-distribution with either v = 5 or

v = 10 degrees of freedom. The other model parameters are set to β0 = 2.25, β1 = 1,

β2 = 1.7, η0 = 2.6, η1 = 0.5, η2 = 1.2, θ = 0.5, σT = 1.2, σC = 1.7 and ρ = 0.7. For

these parameter values, the average proportion of censored observations in the simulated

data is approximately 42%. We create 500 data sets of size n = 300 and n = 500, and

for each data set we compute the Cramér-von Mises statistic and test the goodness-of-fit

hypothesis based on B = 500 bootstrap samples. So as to assess the Type I error rate and

the power of the test, we count the number of rejections under levels 5% and 10% over 500

runs.

In Table 5 we show the performance of the goodness-of-fit test. When the data are

generated from a bivariate normal distribution (so when the model is valid), we see that

the percentage of times H0 is rejected is close to the nominal levels. Moreover, the mean of

the test statistic TCM is close to the mean of the average bootstrap statisticB−1
∑B

b=1 T
∗
CM,b.

To get a better understanding of the power of the test, data are generated from a bivari-

ate t with v = 5 degrees of freedom. When the data are generated from this distribution,

we have seen in Section 5.2 that the proposed model does not fit well. Table 5 shows

that the rejection rates are much higher than the specified levels. As expected, the powers

become larger when the sample size increases from n = 300 to 500. It can be seen that

the rejection rate is 0.488 (at level 0.05) under n = 500, showing about 48.8% power to

reject the null hypothesis. Indeed, the bivariate normal and bivariate t (with small degrees

of freedom) show different marginal behaviour as also shown in our simulation. As we

increase the degrees of freedom to v = 10, the rejection rates are slightly higher than the

specified levels, so the power is much smaller than the power under v = 5. For example,

the rejection rate is 0.095 (at level 0.05) under n = 500, showing about 9.5% power to

reject the null hypothesis. This is in agreement with our expectation that as the degrees

of freedom increase, the t-distribution resembles a normal distribution. In summary, the

proposed goodness-of-fit test shows a good control of the Type I error rate and exhibits a

moderate power against a wrong null hypothesis.
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6 Data application

We applied the proposed model and estimation method to two data examples. The analysis

of the first data set is given below in detail, and concerns a liver transplant data set, given

in the book of Collett (2015). For the second data set we refer to the online supplementary

material.

In the UK, when a patient has been judged to require a liver transplant, he/she is added

to the enrolment list. However, due to a national deficiency of livers some patients may die

while waiting for their transplant. The aim of this data analysis is to identify the factors

affecting time to death, which would inform policy makers of the selection of patients for

transplantation.

The data given in Collett (2015) consist of 281 adults with primary biliary cirrhosis

who were enrolled for a liver transplant in the UK in the five-year period starting from 1

January 2006, and the response variable of interest is the time from being registered for a

liver transplant to death. Patients who got a transplant are considered to be censored at

the time of the transplant, and individuals who were expelled from the study because of

their poor health condition are categorized as dead at the time of the removal since their

condition had deteriorated to the point where transplantation is no longer an alternative.

Removal of a patient from the waiting list for transplantation is a form of dependent

censoring since the livers were given on the basis of the patient’s health condition. This

means that the more the patient is seriously ill, the more likely it is that a liver will be

allocated to that patient. Hence, patients who get a transplant tend to be those who are

closer to death. The censoring time due to transplant is then dependent on the time to

death without a transplant. About 27% of patients died while waiting for a transplant,

whereas the remaining patients received a transplant. In addition to the observed survival

time, the following characteristics of the patients were obtained: the age of the patient

in years, their gender (1 = male, 0 = female), their body mass index in kg/m2 (BMI),

and their UKELD score, which is a UK end-stage liver disease score, where higher values

correspond to a disease of greater severity. The UKELD score is calculated based on several

clinical measurements such as international normalized ratio, serum bilirubin, sodium and

serum creatinine (see details in Barber et al. (2011)). Also it seems natural to believe that

the time until death while waiting for a liver transplant depends on the UKELD score,

and on the time until transplant (for a given UKELD score). This relationship is shown

in Figure 1, where we distinguish between non-censored (dead) and censored patients.

In a previous analysis of the data set (see Collett, 2015), a significant effect of the
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UKELD score on both the survival and the censoring time was found. Hence, we fit our

joint model by excluding the variables that have no significant effect on the censoring time,

namely age, gender and BMI, but we will continue to use a survival time model that con-

tains all four explanatory variables. The parameter estimates, model-based standard errors

(SE), and p-values are shown in Table 6. Note that the p-values are computed based on a

Wald test using the model-based standard errors. We found the estimated transformation

parameter θ̂ = 1.76 and the association parameter ρ̂ = 0.73 for the dependent censor-

ing model. This is a strong correlation that will probably induce bias in the parameter

estimates if this correlation would not be correctly acknowledged in the modeling process.

We therefore also provide in Table 6 the parameter estimates under the independent

censoring model for purposes of comparison. The parameter estimates are somewhat differ-

ent for the dependent and the independent censoring model, especially for the age, which

shows that the association between the survival and censoring time affects the parameter

estimates. In the independent censoring model, both the age and the UKELD score are

highly significant (p-value < 0.014), whereas age ceases to be significant in the dependent

censoring model at the 5% level.

We also compare our results for the dependent censoring model to the results obtained

by using a weighted Cox model, where the IPCW method is used to adjust for dependent

censoring as given in the book of Collett (2015) (Example 14.3 on page 467). The results

are also given in Table 6. We see that the same variables are significant and insignificant

in the two models, namely the UKELD score is in both models significant and the other

variables are in both models insignificant. However, BMI negatively affects the survival of

patients in our model, whereas it positively affects the survival of patients in the weighted

Cox model. Other covariates such as age, gender, and UKELD score have similar impacts

on survival in the two models.

Table 6 also shows the parameter estimates, bootstrap standard errors (BSE) and p-

values under the copula model discussed in Section 5.2. Since the assumed copula needs

a pre-specification of the dependence parameter, we select ρ = 0.75 which is very close

to the estimated dependence parameter under the proposed model. The copula model is

estimated based on the same set of covariates as in the dependent censoring model except

that the continuous covariates are standardized so as to overcome convergence problems

for this model. For computing the bootstrap standard errors, 500 bootstrap samples were

drawn using a naive resampling of the original data. The table shows that age, gender,

and BMI are not related to time to death, whereas the UKELD score is significant for time
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to death. In conclusion, all models show that the UKELD score is an important covariate

in predicting the risk of death.

In order to get more insight in the effect of dependent censoring, Figure 2 shows the

estimated survival rates for a female patient aged 50 years with a UKELD score of 57 and

a BMI of 25, under a dependent and independent censoring model for the time to death.

From this figure, it is clear that failure to take the dependent censoring into account re-

sults in overestimated survival rates. In particular, if no account is made for dependent

censoring, the survival rate at six months is estimated to be 88%, but after taking depen-

dent censoring into account, the estimate is 66%. The 80% survival rate is overestimated

by almost 2.8 months. Not accounting for dependent censoring can therefore result in

misleading estimates of survival rates for patients awaiting a liver transplant. Figure 2

also displays the estimated survival rates under a weighted Cox model and under a cop-

ula model with ρ = 0.75 to compare them with our estimates. The results show a very

good agreement between the estimates obtained from the dependent censoring model and

the copula model. However, the estimates from the weighted Cox model deviate much

from the two curves, particularly at middle time points. Given that we obtain a strong

positive correlation under the dependent censoring model, it is expected that the survival

curve from this model lies below the survival curve from the independent censoring model.

The reason is that a positive correlation between the survival and censoring time indicates

that censored patients will likely have their event soon after their censoring time, whereas

under the independent censoring model it is believed that for a censored observation the

(unobserved) survival time can be any value larger than the censoring time, not neces-

sarily a value close to the censoring time. Hence, it is clear that under the independent

censoring model, we obtain an estimator of the survival function that is too positive, i.e.

an estimator that overestimates the true survival function. See also Etzioni et al. (1999)

for a detailed discussion of this phenomenon. It should be noted that our model takes full

potential of adjusting for dependent censoring by estimating the dependence parameter,

whereas the usefulness of the IPCW method is conditional on the availability of important

covariates that predict the censoring probability. On the other hand, as we decrease the

dependence parameter of the copula model (not shown here), the survival estimates from

this model deviate from our estimates. This is because the copula approach is sensitive to

misspecification of the dependence parameter (Zheng and Klein, 1995).

One of the quantities of interest in survival analysis is the predicted median survival

time. The median survival time is any time t satisfying ST |X(t) = 0.5. Let T̃ be the original
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survival time of interest, so T̃ = exp(T ). Using equation (2.4) we can estimate the median

survival time by

̂med(T̃ |X) = exp{Λ−1

θ̂
(σ̂TΦ

−1(0.5) +XT β̂)} = exp
{
Λ−1

θ̂
(XT β̂)

}
,

where θ and β are replaced by their corresponding estimates.

After we compute the predicted median survival time, we can use the Delta method

to compute a confidence interval for the predicted median time. Treating ̂med(T̃ |X) as a

function of θ̂ and β̂, the standard error can be calculated as

ŜEm =








∂ ̂med(T̃ |X)

∂β̂

∂ ̂med(T̃ |X)

∂θ̂




T

V̂β̂,θ̂




∂ ̂med(T̃ |X)

∂β̂

∂ ̂med(T̃ |X)

∂θ̂








1/2

,

where V̂β̂,θ̂ is the estimated variance-covariance matrix of β̂ and θ̂ obtained from Theorem

7.2. Then the (1− ω)% confidence interval is given by

̂med(T̃ |X)− z1−ω/2 ŜEm < med(T̃ |X) < ̂med(T̃ |X) + z1−ω/2 ŜEm,

where z1−ω/2 is the 1− ω/2-quantile of the standard normal distribution.

For the real data example, we calculate the predicted median survival time for a female

patient aged 58 years with a UKELD score of 58 and a BMI of 19.5. The estimated median

time is 6.4 months with a 95% confidence interval ranging from 2 to 10.8 months.

Finally, we performed our goodness-of-fit test (see Section 4) on the dependent censoring

model. The Cramér-von Mises type statistic TCM produced a p-value of 0.314 based on

500 bootstrap replications. Therefore, there is no evidence against the fitted dependent

censoring model at the 5% level.

7 Discussion and future research

When modeling survival data, it is common to assume that given a set of covariates, the

survival time is independent of the censoring time. When this assumption is likely to

be violated, the dependent censoring must be taken into account in order to obtain valid

inferences.

In this paper, we proposed a flexible parametric model for the association between the

survival and the censoring time. A bivariate normal distribution is assumed to induce this

association. But since both the survival and the censoring time are typically skewed to
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the right, these times are first transformed and the bivariate normality of the transformed

times is assumed after adjusting for the possible effect of covariates. The model has the

advantage that it is able to estimate a transformation parameter from the data rather than

working with the classical logarithmic transformation. In addition, a remarkable advantage

of our model over the well known copula approach is that the proposed model permits the

estimation of the association parameter together with other model parameters instead of

assuming the dependence parameter to be known.

The asymptotic normality of the parameter estimators is shown both when the model

is correctly specified and when it is misspecified. Note that as a by-product of our method

we obtain the parameter estimators of the model for the censoring time. Also note that

our model can be used when the survival and censoring time are independent given the

covariates. The estimated model parameters will then be close to those obtained under

the assumption that the errors ǫT and ǫC are normal and independent, and hence there is

only a small price to pay for this extra flexibility in the model.

A simulation study demonstrates the good performance of the dependent censoring

model compared to the model under independence. Simulations (not shown here) also

show that the method works well for a large range of censoring rates, as long as the sample

size is reasonably large. Moreover, confidence intervals are obtained for the model parame-

ters, whose coverage rate is close to the 95% nominal level, which is an indication that the

asymptotic normality of our estimators is approximately satisfied even for small samples.

Contrasting our model with the copula model, our model exhibits a major advantage in

terms of reduction in bias and RMSE when the dependence structure is misspecified. How-

ever, when the marginal distributions are misspecified, our model gives biased estimates.

To help the user of our model in checking the quality of the fitted model, we built up

a formal goodness-of-fit test with the aid of parametric bootstrap. The proposed test is

based on the distance between the model-based estimator and model-free estimator of the

distribution function of the observed survival times. In the simulations, this test shows a

good control of the Type I error rate and reveals a moderate power in rejecting a false null

hypothesis.

The proposed approach can not only be followed for the analysis of medical survival

data, but can also be used for analysing data on market disequilibria with minor modifi-

cations. Specifically, our approach is very useful if the quantity demanded depends on the

quantity supplied, which is often the case in e.g. the housing market. Note that the data

consist of the minimum of the demand and the supply, and on the information about which
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of these two is the smallest, together with possible covariates that influence the market.

The limitation of the proposed model is that the model requires an adequate number of

censored observations in order to estimate well all model parameters when the sample size

is small. This is especially the case for the correlation parameter, whose estimator might

be biased when the number of censored and/or uncensored observations is small. In the

proposed approach, the censoring model is equally important as the survival model. Thus,

it is worth noting that a decrease in the censoring rate does not necessarily correspond to a

decrease in bias and an increase in the coverage rate as in the model under independence.

However, this is not a problem when we have a large sample size as shown by our simulations

(e.g., when n = 600 in the supplementary material, we observe small biases and coverage

rates close to the nominal level for all parameters under both 25% and 45% censoring).

So, the model parameters are well estimated irrespective of the proportion of censoring

for a large sample size. Another limitation is that the proposed model assumes the same

transformation parameter (θ) for both T and C. Without this condition, the derivation

of the likelihood will be much more difficult, as it is then no longer clear whether the

transformed T is smaller or larger than the transformed C, since the censoring indicator

of the transformed variables depends on the unknown transformation parameters.

The proposed model is a first step towards a new stream of models that take the possible

association between the survival and the censoring time into account, and it opens the door

for many possible extensions and adaptations. A first possible extension that is currently

under investigation is the extension to dependent competing risks, possibly including the

case of administrative censoring as one of the risks, which can be assumed to be independent

of all other risks. This will allow us to analyse data on dependent causes of death that

are often encountered in practice. A second future line of research is the adaptation of the

model to semi- or nonparametric regression functions, using splines, orthogonal series or

kernel methods. This will also be studied in the near future. Finally, even more flexibility

in the model can be obtained by allowing heteroscedasticity of the errors in the model, or

by allowing the errors to follow other distributions than the bivariate normal distribution,

although it is not clear for the moment under which other distributions the association

parameter will be identifiable.
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Supplementary materials

Tables 7 and 8 and software in the form of R code with complete documentation are

available on Github (https://github.com/N2143/Supplementarymaterials), whereas

the analysis of a second data example can be found in the online supplementary mate-

rial.
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Appendix A: Proof of the identifiability result

We start with a preliminary result that is needed in the proof of the main identifiability

result, and which is interesting on its own.

Proposition 7.1. Given assumptions (A1)− (A4), suppose that the survival time T1 sat-

isfies Λθ1(T1)−XTβ1 ∼ N(0, σ2
T1
) and that the survival time T2 satisfies Λθ2(T2)−XTβ2 ∼

N(0, σ2
T2
). Let fT1|X(·) and fT2|X(·) denote the probability density functions of T1 and T2

given X, respectively. Then,

lim
t→±∞

fT1|X(t | x)

fT2|X(t | x)
= 1 for almost every x ⇐⇒ θ1 = θ2, β1 = β2, σT1 = σT2 .

A similar result holds for the density of the censoring time C given W .

Proof. Write

1 = lim
t→±∞

fT1|X(t | x)

fT2|X(t | x)
=

σT2

σT1

lim
t→±∞

φ
(Λθ1

(t)−xT β1

σT1

)

φ
(Λθ2

(t)−xT β2

σT2

) ·
Λ′

θ1
(t)

Λ′
θ2
(t)

=
σT2

σT1

lim
t→±∞

Kθ1,xT β1,σT1
(t)

Kθ2,xT β2,σT2
(t)

.

(7.1)
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We know from condition (A4) that the right hand side of (7.1) equals either 0 or +∞ when

θ1 6= θ2, which is impossible. Hence, θ1 = θ2. Straightforward calculus now shows that

(xTβ1, σT1) has to be equal to (xTβ2, σT2) for almost every x. Writing βT
j = (µj, λ

T
j ), j =

1, 2, we have that x̃T (λ1−λ2) = µ2−µ1 for almost every x. Hence, Var(X̃T (λ1−λ2)) = 0.

It now follows that γ1 = γ2 if (A2) holds, and hence we also have that λ1 = λ2. ✷

We are now ready to show that the model parameters (θ, β, η, σT , σC , ρ) in model (2.1)–

(2.2) are identifiable from the distribution of (Z,∆, X,W ).

Proof of Theorem 3.1. The proof is inspired by the proof of Theorem 2 in Basu and

Ghosh (1978), which holds when no covariates and no transformation are included in the

dependent censoring model. We know from (2.5) that

fZj ,∆j |X,W (z, 1 | x, w;αj) =
1

σTj

[
1− Φ

((1− ρjσCj
/σTj

)Λθj(z)− wTηj + ρj(σCj
/σTj

)xTβj

σCj
(1− ρ2j)

1/2

)]

×φ
(Λθj(z)− xTβj

σTj

)
Λ′

θj
(z), for j = 1, 2.

Define γ11 = 1− ρ1σC1/σT1 , γ12 = 1− ρ1σT1/σC1 , γ21 = 1− ρ2σC2/σT2 , γ22 = 1− ρ2σT2/σC2 ,

and define a variable ξj1 (j = 1, 2), whose distribution for given X and W is given by

(ξj1 | X = x,W = w) ∼ N
(wTηj − ρj(σCj

/σTj
)xTβj

γj1
,
σ2
Cj
(1− ρ2j)

γ2
j1

)
.

We consider a number of cases, depending on the signs of the γ coefficients.

Case 1: All γjk > 0, j, k = 1, 2. The positivity of γj1 (j = 1, 2) implies that

fZj ,∆j |X,W (z, 1 | x, w;αj) = P
(
ξj1 > Λθj(z) | X = x,W = w

) 1

σTj

φ
(Λθj(z)− xTβj

σTj

)
Λ′

θj
(z)

= P (ξj1 > Λθj(z) | X = x,W = w)fTj |X(z | x).

We know that fZ1,∆1|X,W (z, 1 | x, w;α1) = fZ2,∆2|X,W (z, 1 | x, w;α2) for almost every (x, w)

and z. We also know that limz→−∞ P (ξ11 > Λθ1(z) | X = x,W = w) = limz→−∞ P (ξ21 >

Λθ2(z) | X = x,W = w) = 1. Hence, limz→−∞ fT1|X(z | x) = limz→−∞ fT2|X(z | x) for

almost every x, and application of Proposition 7.1 now implies that θ1 = θ2, β1 = β2 and

σT1 = σT2 . Repeating the same arguments but with ∆j = 1 replaced by ∆j = 0, entails

that η1 = η2 and σC1 = σC2 , using this time the fact that γ12 > 0 and γ22 > 0. Finally, to

identify the correlation parameter, note that we have from (2.7) that

Φ
(Λθ1(z)− xTβ1

σT1

,
Λθ1(z)− wTη1

σC1

; ρ1

)
= Φ

(Λθ1(z)− xTβ1

σT1

,
Λθ1(z)− wTη1

σC1

; ρ2

)
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for almost every (x, w), from which it follows that ρ1 = ρ2.

Case 2: One of (γ11, γ12) is positive, and one of (γ21, γ22) is positive. Assume that

γ11 > 0 and γ12 < 0. Now either (γ21 > 0, γ22 < 0) or (γ21 < 0, γ22 > 0). Let us first

assume that (γ21 > 0, γ22 < 0). Define this time the distribution of ξj2 (j = 1, 2) for given

X and W by

(ξj2 | X = x,W = w) ∼ N
(
−

xTβj − ρj(σTj
/σCj

)wTηj

γj2
,
σ2
Tj
(1− ρ2j)

γ2
j2

)
.

Then the negativity of γj2 (j = 1, 2) implies that

fZj ,∆j |X,W (z, 0 | x, w;αj) = P
(
ξj2 > −Λθj(z) | X = x,W = w

) 1

σCj

φ
(Λθj(z)− wTηj

σCj

)
Λ′

θj
(z)

= P (ξj2 < Λθj(z) | X = x,W = w)fCj |W (z|w).

It is given that fZ1,∆1|X,W (z, 0 | x, w;α1) = fZ2,∆2|X,W (z, 0 | x, w;α2) for almost every

(x, w) and z. We know that limz→+∞ P (ξ12 < Λθ1(z) | X = x,W = w) = limz→+∞ P (ξ22 <

Λθ2(z) | X = x,W = w) = 1, which implies limz→+∞ fC1|W (z | w) = limz→+∞ fC2|W (z | w)

for almost every w. Application of Proposition 7.1 to the latter equality now implies that

θ1 = θ2, η1 = η2 and σC1 = σC2 . For the case ∆j = 1 and (γ11 > 0, γ21 > 0), we have

already shown the result under Case 1.

Similarly, let (γ21 < 0, γ22 > 0). First consider γ11 > 0 and γ21 < 0, then we obtain

P (ξ11 > Λθ1(z) | X = x,W = w)

= P (ξ21 < Λθ2(z) | X = x,W = w)
{
fT1|X(z | x)

}−1
fT2|X(z | x).

Taking the limits on both sides as z → −∞ and using Proposition 7.1, the left hand side

goes to 1, however, the right hand side does not go to 1, which is a contradiction. Following

similar arguments when ∆j = 0, γ12 < 0 and γ22 > 0, one can show that the result is again

a contradiction. Hence, these possibilities can not happen in practice.

Other cases, for example, when one (or more) of the γjk = 0 or one of γjk is negative

can be considered, but we omit the details. ✷

Appendix B: Asymptotic results

Let α∗ = (θ∗, β∗, η∗, σ∗
T , σ

∗
C , ρ

∗) be the parameter vector that minimizes the Kullback-

Leibler Information Criterion (KLIC), given by

E
[
log
{ fZ,∆|X,W (Z,∆ | X,W )

fZ,∆|X,W (Z,∆ | X,W ;α)

}]
,
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where fZ,∆|X,W is the true density of (Z,∆) given (X,W ), and where the expectation is

taken with respect to the true density fZ,∆,X,W (also in what follows). We then have the

following results on consistency and asymptotic normality of our MLE estimator.

Theorem 7.1. Under assumptions A1 to A3 in White (1982),

(θ̂, β̂, η̂, σ̂T , σ̂C , ρ̂)
P

−→ (θ∗, β∗, η∗, σ∗
T , σ

∗
C , ρ

∗) as n → ∞.

If the model is correctly specified the KLIC attains its unique minimum at α∗ = α, which

means that α̂ is a consistent estimator of the true parameter vector α in that case.

Theorem 7.2. Under assumptions A1 to A6 in White (1982),

n1/2
(
(θ̂, β̂, η̂, σ̂T , σ̂C , ρ̂)− (θ∗, β∗, η∗, σ∗

T , σ
∗
C , ρ

∗)
)

d
−→ N(0, V ),

where V = A(α∗)−1B(α∗)A(α∗)−1, with

A(α) =
(
E
{ ∂2

∂αi∂αj

log fZ,∆|X,W (Z,∆ | X,W ;α)
})p+q+4

i,j=1
,

B(α) =
(
E
{ ∂

∂αi

log fZ,∆|X,W (Z,∆ | X,W ;α) ·
∂

∂αj

log fZ,∆|X,W (Z,∆ | X,W ;α)
})p+q+4

i,j=1
.

Note that if the model is correctly specified, the variance-covariance matrix V in Theorem

7.2 is equal to A(α)−1, the inverse of Fisher’s information matrix. The regularity con-

ditions of White (1982) are assumptions regarding the true density fZ,∆|X,W , the density

fZ,∆|X,W (·;α) under our assumed model and its derivatives both with respect to α and z,

and the parameter vector α.
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Table 4: Simulation results for the proposed model and the copula model when the data

are generated under Scenarios 1–3. Note that the copula model is fitted using the true

value of ρ = 0.75 and using a misspecified value of ρ = 0.45.

Copula model Copula model

Type of Proposed model (ρ = 0.75) (ρ = 0.45)

copula Par. Bias ESD RMSE Bias ESD RMSE Bias ESD RMSE

Scenario 1

Normal β -0.001 0.073 0.073 -0.037 0.129 0.134 -0.186 0.179 0.258

η -0.003 0.104 0.104 -0.023 0.102 0.104 0.039 0.211 0.215

θ -0.001 0.054 0.054 0.014 0.077 0.078 -0.137 0.105 0.173

ρ -0.009 0.100 0.100

t (df=5) β -0.016 0.072 0.073 -0.058 0.133 0.145 -0.223 0.168 0.279

η 0.012 0.108 0.109 -0.012 0.103 0.104 0.027 0.212 0.214

θ -0.025 0.054 0.059 -0.017 0.080 0.081 -0.181 0.111 0.212

ρ -0.007 0.102 0.102

Scenario 2

Frank β 0.016 0.075 0.077 0.016 0.124 0.125 -0.176 0.199 0.266

(τ=0.54) η 0.009 0.109 0.110 0.041 0.106 0.114 0.043 0.245 0.249

θ 0.095 0.052 0.108 0.107 0.076 0.131 -0.078 0.121 0.144

ρ 0.026 0.091 0.094

Gumbel β -0.047 0.071 0.085 -0.120 0.141 0.186 -0.270 0.139 0.303

(τ=0.54) η -0.055 0.099 0.113 -0.065 0.111 0.129 0.061 0.149 0.189

θ -0.046 0.049 0.067 -0.107 0.081 0.134 -0.249 0.107 0.271

ρ 0.052 0.081 0.096

Scenario 3

Normal β -0.102 0.093 0.138 -0.119 0.158 0.198 -0.249 0.164 0.298

η -0.235 0.112 0.262 -0.088 0.120 0.149 -0.021 0.205 0.206

θ 0.071 0.081 0.107 -0.066 0.093 0.114 -0.174 0.104 0.203

ρ 0.171 0.040 0.176
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Table 5: Simulation results for the goodness-of-fit test for the proposed model when the

data are generated from a bivariate normal and a bivariate t distribution.

Model Sample Test stati- Test stati- Rejection Rejection

size stics E(TCM) stics E(T ∗
CM,b) rate at 5% rate at 10%

Normal n = 300 0.054 0.053 0.053 0.117

n = 500 0.052 0.052 0.056 0.107

t with df = 5 n = 300 0.096 0.053 0.316 0.425

n = 500 0.122 0.052 0.488 0.583

t with df = 10 n = 300 0.059 0.053 0.095 0.158

n = 500 0.060 0.051 0.095 0.165

Table 6: Parameter estimates for the liver transplant data in a dependent censoring, an

independent censoring model, a Weighted Cox model and a copula model. The standard

errors (SE) (or the bootstrap standard errors (BSE)) and the p-values are also provided.

Dependent model Independent model

Parameter Estimate SE p-value Estimate SE p-value

Age -0.165 0.096 0.084 -0.267 0.109 0.014

Gender 0.915 0.895 0.307 0.988 1.318 0.456

BMI -0.086 0.065 0.181 -0.121 0.085 0.155

UKELD -0.610 0.214 0.005 -0.678 0.237 0.004

θ 1.764 0.196 0.000 1.680 0.195 0.000

ρ 0.730 0.250 0.004

Weighted Cox model Copula model

Parameter Estimate SE p-value Estimate BSE p-value

Age 0.012 0.032 0.708 -0.307 0.201 0.126

Gender -0.990 0.655 0.131 0.234 1.092 0.830

BMI -0.022 0.049 0.653 -0.265 0.164 0.107

UKELD 0.156 0.043 0.000 -0.859 0.192 0.000

θ 0.940 0.031 0.000
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Figure 1: Scatter plot of the UKELD score versus the time to death while waiting for a

liver transplant. Uncensored observations are indicated by a circle, censored ones by a

plus.
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Figure 2: Estimated survival functions of T given X obtained under a dependent and

independent censoring model and under a weighted Cox model and a copula model for a

50 year-old female with a UKELD score of 57 and a BMI of 25.

36




