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Abstract: X-ray computed tomography (CT) is an invaluable technique for generating three-dimensional
(3D) images of inert or living specimens. X-ray CT is used in many scientific, industrial, and societal
fields. Compared to conventional 2D X-ray imaging, CT requires longer acquisition times because
up to several thousand projections are required for reconstructing a single high-resolution 3D vol-
ume. Plenoptic imaging—an emerging technology in visible light field photography—highlights the
potential of capturing quasi-3D information with a single exposure. Here, we show the first demon-
stration of a flexible plenoptic microscope operating with hard X-rays; it is used to computationally
reconstruct images at different depths along the optical axis. The experimental results are consistent
with the expected axial refocusing, precision, and spatial resolution. Thus, this proof-of-concept
experiment opens the horizons to quasi-3D X-ray imaging, without sample rotation, with spatial
resolution of a few hundred nanometres.

Keywords: transmission X-ray microscopy; plenoptic imaging; Fresnel zone plates

1. Introduction

X-ray computed tomography (CT) is a powerful three-dimensional (3D) imaging
method for the non-invasive inner exploration of materials [1] and biological samples [2].
X-ray CT at storage ring sources is traditionally considered a benchmark for investigations
in the soft [3] and hard [4] X-ray regimes; it enables access to length scales as low as 1 µm
and 50 nm spatial resolutions in the fields of microtomography [5] and nanotomography [6],
respectively. However, X-ray CT inevitably requires up to thousands of projections to build
a single high-resolution 3D volumetric image.

The strong reduction in the number of projections for achieving 3D or quasi-3D images
is an important objective today. Quasi-3D encompasses all of the techniques—such as
stereoscopy or holography—that partially sample the object in 3D. The advantage of single-
shot quasi-3D imaging over traditional CT is twofold: (a) it is suitable for fast dynamic
processes, and (b) it intrinsically avoids the need to rotate the sample. (a) The temporal
resolution of an acquisition is reduced from the duration of a scan to the duration of a single
exposure. This can signify the ability to track flow dynamics in perfusion CT, intravascular
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tools in interventional imaging, changes induced by fast chemical reactions in operating
energy storage devices, or crack nucleation and propagation in material deformation
experiments, all in 3D. (b) The required sample rotation in synchrotron CT can interact
with fluid samples, and can strongly influence their state and behaviour. The ability to
resolve their 3D structure without rotating them can unlock unprecedented studies of their
unaltered functioning state (e.g., particle image velocimetry of opaque fluids); moreover, it
can enable the reconstruction of specimens with anisotropic or non-cylindrical shape (e.g.,
biological sample slices).

Several attempts have been made to recover quasi-3D information from a pair of views
using X-ray stereoscopy [7,8] and a single sample orientation using X-ray ankylography [9].
Recently, visible plenoptic imaging has attracted attention given its ability to record depth
information in one view. From a single exposure, plenoptic imaging enables the generation
of a stack of images located at several distances along the optical axis. The technique is
based on a combination of an objective lens and an array of microlenses [10,11]. To date,
this method is still restricted to visible light, due to the complexity of using X-ray optics. In
the literature there can be found numerical simulations emulating the operating mode of
an X-ray plenoptic system with limited-angle tomography setups [12,13]. A preliminary
experimental demonstration of plenoptic X-ray imaging was performed by Sowa et al. in
so-called multipoint projection geometry [14,15]. Using a laboratory source, Sowa et al.
developed an X-ray plenoptic microscope version based on polycapillary focusing optics,
instead of using a microlens array [14]. As consequence, the setup shows a limited depth
resolution due to the limited angular sampling of the polycapillary devices and a lateral
resolution restricted to micro-sized sources [14]. This article shows an advancement of
the optical design required for the implementation of an X-ray plenoptic microscope,
thus enabling an increase in the angular and spatial sampling of the incoming X-rays, as
well as enhancement of the refocusing ability. Here, the first X-ray plenoptic microscope
based on an X-ray optics array is presented and used in a flexible configuration [16]. The
microscope was created by combining a Fresnel zone plate (FZP)—i.e., the objective lens—
with a movable array of FZPs—i.e., the microlens array—placed in front of a detector.
This implementation is flexible, enabling different plenoptic imaging configurations on
the same setup. By slightly modifying the distances between the optical elements, it
is possible to switch from the focused plenoptic imaging geometry [11] to the classical
plenoptic imaging configuration [10], both known in visible light photography. Any
change of distances implies a change of angular and spatial light field sampling, and
of the related lateral and longitudinal resolutions. Therefore, the different microscope
parameters can be adjusted according to the acquisition needs. The X-ray microscope
geometry adopted in this work reproduces the focused plenoptic camera configuration [11].
The X-ray plenoptic microscope implemented here was thoroughly tested by imaging
USAF test targets placed at different positions, and by computationally refocusing the
recorded raw plenoptic images. To increase the spatial sampling, the image acquisition
was performed by scanning the FZP array 16 times. Finally, the acquired micro-images
were stitched leading to better resolved image features compared to the initial number of
available micro-images. The achieved spatial and longitudinal resolutions were measured
on the refocused images considering different approaches, and the estimated values were
compared to the theoretical calculations.

2. Materials and Methods
2.1. Experimental Setup

The X-ray plenoptic imaging demonstration was carried out at 11 keV by modifying
the transmission X-ray microscope (TXM) available in the nanotomography experimental
hutch [17] of the P05 imaging beamline [18], at the PETRA III storage ring at the Deutsches
Elektronen-Synchrotron (DESY) in Hamburg, Germany. The P05 beamline is operated
by the Helmholtz-Zentrum Hereon. The nanotomography setup encompasses a granite
optical bench (6.8 m long) equipped with 4 air-bearing movable sliders for the positioning
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of the microscope components. Figure 1 shows the adopted experimental configuration
(an additional picture of the setup is illustrated in Appendix A, Figure A1). The setup
was arranged by combining different diffractive elements: a beam shaper condensing
optics for illuminating the sample [19,20], a single FZP as the objective lens, and 9 × 9 FZPs
as the microlens array. The used beam shaper was 1.8 mm in diameter, with 50 µm2

subfields and 50 nm outermost zone width. The single FZP (280 µm in diameter, outer
zone width equal to 50 nm, and 0.001 numerical aperture) was used as the objective lens of
the transmission X-ray microscope (TXM). Both the beam shaper and objective lens FZP
were designed and fabricated at the Paul Scherrer Institut (PSI) in Villigen, Switzerland.
An array of 9 × 9 FZPs—each with a diameter of 100 µm, an outermost zone of 100 nm,
a numerical aperture of 0.0005, and 250 gold zones—was placed in front of the detector.
The FZP array was fabricated on a 100 nm thick silicon nitride membrane support window
with a 5 mm × 5 mm substrate frame. The microlenses were placed on a Cartesian grid,
with a zone plate spacing of 10 µm and periodicity (i.e., centre-to-centre distance of two
adjacent FZPs) of 110 µm. The array was manufactured with a gold thickness equal to
1500 nm. The FZP array was installed downstream of the main lens, prior to the detector.
Specific details related to the used optics are available in the Materials and Methods section
and in Appendix A, Figure A2. In order to block the zero order, a 400 µm diameter gold
beam stop (provided by the beamline) was installed downstream of the beam shaper,
while a specifically designed array of gold beam blockers was placed downstream of
the FZP array on a separate holder. These gold blockers were manufactured with an
inner diameter equal to 35 µm, an outer diameter equal to 92 µm, and a gold thickness
equal to 10 µm. Both the FZP array and the array of gold beam blockers were specially
designed for this experiment and produced by Applied Nanotools Inc. (city, state, country)
(ANT, Edmonton, Alberta T6G 2M9, Canada). The beam shaper/beam stop combination
produced a hollow cone illumination, illuminating an area of 50 µm × 50 µm at the sample
plane. In addition, order sorting apertures (OSAs) were used around the single FZP for
blocking higher diffractive orders. The sample consisted of two conventional USAF 1951
targets with parallel and perpendicular lines of different width and spacing (elbow pattern;
see Figure A3 in Appendix A), mounted in a “T” shape and slightly overlapping. The two
test targets were Au structures (600 nm thick) on a silicon nitrate membrane, and were
purchased from ANT. The two targets were placed along the optical axis at 128.7 ± 0.2 mm
and 130.0 ± 0.2 mm from the main lens, respectively. The distances from the objective lens
to the lens array and the lens array to the detector were 3846 ± 10 mm and 111.8 ± 0.5 mm,
respectively. The separation distance between the targets (1.3 mm) was larger than the
theoretical field depth of 300 µm [21]. The distances were chosen in order to create the
image of the sample at an intermediate plane between the main lens and the microlens
array, and then onto the detector, as shown in Figure 1.
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Figure 1. Design of the plenoptic experiment: From left to right: the two test targets (TP2 and TP1),
the objective lens (FZP), the intermediate image of the two targets, the FZP array, the beam stop array,
and the detector. The X-ray condenser is not represented. The X-rays propagate from left to right.
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This geometry corresponds to the so-called focused plenoptic camera configura-
tion [11]. It was chosen over the unfocused camera [10] due to its flexibility and higher
spatial resolution around the focal plane of the main lens. The images were acquired with a
PCO.edge 4.2 CMOS camera (2048 × 2048 pixels) integrated with a 50 µm thick LuAG(Ce)
scintillating crystal and coupled with a visible microscope with 7× optical magnification;
this setting led to an effective pixel size of 0.92 × 0.92 µm2. The beam shaper and beam stop
were accommodated on the first slider of the granite bench, the targets on the high-precision
rotation stage on the second slider, the objective FZP on the third, and the FZP array and
the detector were installed on the fourth (Figure A1, Appendix A). The experiment was
performed at an energy of 11 keV and with a flux at the rate of 1012 photons/second. At
this energy, the focal length of the main FZP was 124 mm and the focal length of the FZP
array was 88.73 mm. Each single image was acquired with 5 s exposure time. The dataset
acquired with 9 × 9 FZPs comprised 40 images and 16 flat fields, and was obtained after a
total exposure time equal to 280 s. The stitching datasets consisted of 16 positions, each
containing 10 raw images and 4 flat fields. The total exposure time for stitching was 1120 s.

2.2. Data Processing

For each configuration, 10 images were acquired and then averaged to create an image
with a better signal-to-noise-ratio. Reference (flat-field) images were acquired without
the sample. The average of four reference images was then used for a normalisation
step, to correct for beam inconsistencies and motor errors. This normalisation enables
the extraction of the useful signal from the background. This pre-processing step was
executed for each position of the microlens array separately. Finally, the exact centre of
each micro-image was found manually, allowing us to extract all of the micro-images from
the different raw images. The micro-images were then combined together to form a dataset
with 36 × 36 micro-images used as inputs to the refocusing algorithm.

2.3. Dedicated Software to Generate Synthetic or Refocused Experimental Raw Plenoptic Images

The refocusing algorithm is at the heart of plenoptic imaging, since it enables the raw
array of micro-images to be transformed into full images refocused at any distance from the
camera. A new refocusing algorithm [21] has been developed that overcomes the distinction
between traditional [10] and focused algorithms [11] by unifying both approaches. The
algorithm is based on a unique set of equations describing the propagation of the light rays
in a plenoptic setup composed of an objective lens, a microlens array, and a detector. The
set of equations defines the transformation between object-space and sensor-space rays,
based on geometric optics applied on both the objective lens and the microlens array. In
this approach, the ray propagation is given as a function of the physical distances of the
setup, without assuming a specific configuration or any relationship between the distances
and the parameters. It is thus physically based, and can be used for data acquired in either
the traditional or focused configurations.

Based on this set of equations, two algorithms were implemented. The refocusing
process starts with the backpropagation of the acquired data from sensor space to object
space, at a depth chosen by the user; it is then followed by the combination of all of
the angular information converging at the same spatial position, mimicking the light
integration of a sensor pixel. A simulation algorithm was also implemented, allowing us to
generate synthetic data from an object placed in object space. The simulation process is
reversed compared to the refocusing algorithm—the data are projected from object space
to sensor space using the defined set of equations, before their integration at the sensor
plane to generate the synthetic plenoptic image [22]. The parameterisation together with
the integration constitutes a unique method that is valid regardless of the configuration in
which the data were acquired.
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3. Results

Figure 2a shows characteristic features in the raw plenoptic images produced by the X-
ray microlens array. Due to a mismatch in size between the OSA around the main FZP and
the microlenses’ diameter, several grey lines corresponding to 0th order transmission can be
observed. Superimposed on these lines are circles with black structures at their centres. A
closer look at these circles (Figure 2b) reveals that the inner black structures are images of a
small part of the sample produced by the +1st diffraction order (called micro-images). The
use of a beam stop array placed after the microlens array prevents the 0th order (red dotted
circle in Figure 2b) from mixing with the +1st order (yellow dotted circle in Figure 2b). The
plenoptic information is contained only in the yellow circle (1st order). Only the signal
from these pixels can be used for data treatment. The objective lens magnifies the front
and the back targets by approximately 30.6 and 29.6 times, respectively. The microlenses
magnify by a factor 0.2, leading to a total magnification of ~6. The beam divergence at the
objective lens exit was estimated at around 0.3 mrad, while for the microlenses, the entrance
divergence was 0.11 mrad. This mismatch of divergences generated small micro-images,
~20 µm in diameter (i.e., 22 pixels), separated by a distance corresponding to the microlens
pitch of 110 µm (Figure 2a). In order to achieve a denser sampling, a new image was taken
with a shift of the microlens array by a quarter of the inter-lens spacing, i.e., by 27.5 µm;
these two images were then merged. This procedure was repeated three times in both the
horizontal and vertical directions, generating a stitched plenoptic raw image, composed of
36 × 36 micro-images (Figure 2c).
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Figure 2. Raw images of the two targets as recorded by the plenoptic X-ray microscope: In image
(a), many disks can be observed with a central black spot, produced by the microlens array. Image
(b) shows the pattern produced by a single microlens, with large horizontal black lines from the 0th
order of the microlens (red circle) and small darker lines produced by the +1st order (yellow circle).
These are the micro-images of the sample (+1st order). The zone outside the red circle is the sum of
the −1st order image and the image of the lens objective on the microlens plane passing through
the microlenses’ substrate frame. The scales in (a,b) are given in the target plane. The stitched raw
plenoptic image (c) was achieved by adding 16 images obtained by shifting the lens array by a fraction
of the sub-aperture (1/4 microlens diameter) after each image acquisition. The sampling of the lens
array is thus much denser.

The raw data were treated using a dedicated algorithm (see Materials and Methods)
that can operate on all plenoptic configurations (focused and unfocused) [22].

Figure 3 shows the comparison between the images obtained using the objective lens
only (Figure 3a), using the objective lens and the microlens array corresponding to classical
plenoptic imaging (Figure 3b), and the resulting plenoptic image after stitching (Figure 3c).



Photonics 2022, 9, 98 6 of 13

Photonics 2022, 9, 98 6 of 13 
 

 

from the objective lens. However, for Figure 3a the detector was situated at the position 
of the intermediate image plane (Figure 1), while it was moved further from the objective 
lens in order to insert the microlens array for the plenoptic configuration. This leads to 
different magnifications in Figure 3a–c. The 2 µm spaced lines of the first and second tar-
gets are recognizable on the right part of the reconstructed plenoptic image (Figure 3b); 
they appear dashed, and not plain as they are in reality (Figure 3a). In addition, on the 
left-hand side the number “2” of the first target (TP1) is barely visible, and the lines of the 
back target (TP2) with spacing lower than 1 µm are not resolved; this is due to the low 
number of microlenses (9 × 9) used for sampling the intermediate image created by the 
main lens. Figure 3c displays the reconstructed image of the targets using the synthetic 36 
× 36 micro-images. Compared to Figure 3b, the improvement is striking. The noise has 
been strongly reduced thanks to the addition of 16 images. In addition, the true image can 
now be resolved, showing the plain lines instead of the dashed lines seen in Figure 3b. 
Additionally, the number “2” is now clear and readable (Figure 3c). The image of the back 
target remains blurred due to being out of focus. This first step of the study shows the 
quality of the plenoptic reconstruction. 

 
Figure 3. Conventional TXM and reconstructed plenoptic images: (a) Raw TXM image (flat-field 
corrected) recorded with only the objective lens by adjusting the targets’ distances such that the first 
target is in focus (darkest structures at the lower part of the image). The image was acquired with 5 
s exposure time. The targets consist of different groups of black lines with different spacing, each of 
them marked with white numbers. (b) Image obtained with the full plenoptic setup and recovered 
with the refocusing algorithm. The raw dataset consisted of 40 images and of 16 flat fields (back-
ground images). Each single image was acquired with 5 s exposure time, and the total acquisition 
time was equal to 280 s. The structures of both the first and second targets are apparent. Due to the 
low number of microlenses (9 × 9), the target lines appear dashed instead of solid, and the noise 
level is rather high. (c) The recovered plenoptic image from the same experimental arrangement, 
but after stitching 16 positions, each containing 10 raw images and 4 flat fields. Each raw image was 
acquired with 5 s exposure time, and the total time for the stitching was 1120 s. The quality of the 
image is strongly improved: the front lines are plain and the number “2” is clear and well resolved. 

The first dataset was taken with the first test target (TP1) situated close to the best 
experimental in-focus position. The second target (TP2) was placed 1.3 mm from TP1. An 
image stack was computationally produced by varying the focus position of TP1 from 
128.6 mm to 129.5 mm in 100 µm steps in order to find its most accurate in-focus position. 
Four consecutive refocused images of TP1 are displayed in Figure 4a,d,g,j, within a 0.3 
mm long range. Figure 4d,g exhibit images of TP1 with the highest contrast over the full 
scan, implying that both refocused planes can be considered to be in focus at the same 
time. This was expected, since the separation of these two reconstruction planes is lower 
than the theoretical depth of field [22], found to be 0.3 mm in this demonstration. Image 
processing allowed Z0exp to be defined as 128.75 ± 0.05 mm. In all of the computationally 
refocused positions, TP2 was blurred, since it was placed ~1 mm away from the depth of 
field of the whole plenoptic system. Experimental results were compared with simulated 
images. To precisely characterise the plenoptic X-ray microscope, the algorithm used for 

Figure 3. Conventional TXM and reconstructed plenoptic images: (a) Raw TXM image (flat-field
corrected) recorded with only the objective lens by adjusting the targets’ distances such that the
first target is in focus (darkest structures at the lower part of the image). The image was acquired
with 5 s exposure time. The targets consist of different groups of black lines with different spacing,
each of them marked with white numbers. (b) Image obtained with the full plenoptic setup and
recovered with the refocusing algorithm. The raw dataset consisted of 40 images and of 16 flat
fields (background images). Each single image was acquired with 5 s exposure time, and the total
acquisition time was equal to 280 s. The structures of both the first and second targets are apparent.
Due to the low number of microlenses (9 × 9), the target lines appear dashed instead of solid, and the
noise level is rather high. (c) The recovered plenoptic image from the same experimental arrangement,
but after stitching 16 positions, each containing 10 raw images and 4 flat fields. Each raw image was
acquired with 5 s exposure time, and the total time for the stitching was 1120 s. The quality of the
image is strongly improved: the front lines are plain and the number “2” is clear and well resolved.

The three images were obtained with the same position of the targets adjusted such
that the first image is in focus, thus placed at a position of approximately Z0exp = 128.7 mm
from the objective lens. However, for Figure 3a the detector was situated at the position
of the intermediate image plane (Figure 1), while it was moved further from the objective
lens in order to insert the microlens array for the plenoptic configuration. This leads to
different magnifications in Figure 3a–c. The 2 µm spaced lines of the first and second
targets are recognizable on the right part of the reconstructed plenoptic image (Figure 3b);
they appear dashed, and not plain as they are in reality (Figure 3a). In addition, on the
left-hand side the number “2” of the first target (TP1) is barely visible, and the lines of the
back target (TP2) with spacing lower than 1 µm are not resolved; this is due to the low
number of microlenses (9 × 9) used for sampling the intermediate image created by the
main lens. Figure 3c displays the reconstructed image of the targets using the synthetic
36 × 36 micro-images. Compared to Figure 3b, the improvement is striking. The noise has
been strongly reduced thanks to the addition of 16 images. In addition, the true image
can now be resolved, showing the plain lines instead of the dashed lines seen in Figure 3b.
Additionally, the number “2” is now clear and readable (Figure 3c). The image of the back
target remains blurred due to being out of focus. This first step of the study shows the
quality of the plenoptic reconstruction.

The first dataset was taken with the first test target (TP1) situated close to the best
experimental in-focus position. The second target (TP2) was placed 1.3 mm from TP1. An
image stack was computationally produced by varying the focus position of TP1 from
128.6 mm to 129.5 mm in 100 µm steps in order to find its most accurate in-focus position.
Four consecutive refocused images of TP1 are displayed in Figure 4a,d,g,j, within a 0.3 mm
long range. Figure 4d,g exhibit images of TP1 with the highest contrast over the full
scan, implying that both refocused planes can be considered to be in focus at the same
time. This was expected, since the separation of these two reconstruction planes is lower
than the theoretical depth of field [22], found to be 0.3 mm in this demonstration. Image
processing allowed Z0exp to be defined as 128.75 ± 0.05 mm. In all of the computationally
refocused positions, TP2 was blurred, since it was placed ~1 mm away from the depth of
field of the whole plenoptic system. Experimental results were compared with simulated
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images. To precisely characterise the plenoptic X-ray microscope, the algorithm used for
reconstructing the data was reversed, allowing us to generate synthetic plenoptic raw
images [21,22] (see Materials and Methods) of the three TP1 bars labelled 1, 2, and 3 in
Figure 4g. All parameters of the simulation were chosen to be the same as in the experiment,
considering TP1 placed at Z0exp = 128.7 mm. The simulated refocused images are displayed
in Figure 4c,f,i,l, and are a zoomed view of TP1’s bars. The simulated images of the bars
are compared with the magnified views of the refocused images of the bars shown in
Figure 4b,e,h,k. The visual agreement between modelling and experiment is good for all of
the refocused positions. The ability of the plenoptic X-ray microscope to perform digital
refocusing and defocusing from a single acquisition was subsequently tested. The assembly
of TP1 and TP2 was positioned at different distances from the FZP. For each raw image
acquired, a refocused image stack was reconstructed by the refocusing algorithm, and
the image showing the highest contrast on either TP1 or TP2 was selected. The highest
contrast was determined by visual inspection, as there was a marked difference between
the in-focus image corresponding to the highest contrast and the other unfocused images.
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Figure 5 shows three refocused images acquired at different positions of the assembly 
of TP1 and TP2. The first position labelled “0” in Figure 5 corresponds to Figure 4d at Z0exp 
= 128.7 mm. Moving the target assembly closer to the main lens by 0.5 mm (position 1, 
Figure 5), both targets appear out of focus, although the image of TP2 is slightly sharper 
and more resolved compared to the structures in Figure 4d,g. Moving the assembly once 
more towards the main lens by 0.5 mm (position 2, Figure 5), the image of TP1 becomes 
totally blurred. Due to a small change in contrast between positions 1 and 2, section pro-
files were not sufficient to define the best focusing distance for TP2 (see Appendix A, Fig-
ure A4). Thus, the long bar of TP2, indicated by the yellow arrow in each sub-image of 

Figure 4. Plenoptic images refocused at different distances: The targets were placed such that only the
first target (TP1) was near the theoretical plane of best focus. The numerical positions of the refocused
planes are Z0 = 128.6 (a), 128.7 (d), 128.8 (g), and 128.9 mm (j), with respective zooms (orange square)
displayed in (b,e,h,k). Images (d) (Z0 = 128.7 mm) and (g) (Z0 = 128.8 mm) are nearly identical,
showing good refocusing on TP1, while TP2 remains blurred. Images (a,j) are totally blurred, with the
number “2” hardly recognizable. In these two cases, the refocusing distances are outside the depth of
focus. Images (c,f,i,l) were retrieved using an in-house model, and correspond to the zoomed bars
displayed in (b,e,h,k), respectively. The modelling agrees well with the experimental data.

Figure 5 shows three refocused images acquired at different positions of the assembly
of TP1 and TP2. The first position labelled “0” in Figure 5 corresponds to Figure 4d at
Z0exp = 128.7 mm. Moving the target assembly closer to the main lens by 0.5 mm (position
1, Figure 5), both targets appear out of focus, although the image of TP2 is slightly sharper
and more resolved compared to the structures in Figure 4d,g. Moving the assembly once
more towards the main lens by 0.5 mm (position 2, Figure 5), the image of TP1 becomes
totally blurred. Due to a small change in contrast between positions 1 and 2, section
profiles were not sufficient to define the best focusing distance for TP2 (see Appendix A,
Figure A4). Thus, the long bar of TP2, indicated by the yellow arrow in each sub-image
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of Figure 5, was identified as a reference feature to determine the focusing trend for TP2.
While this line is single (see Appendix A, Figure A3) and well defined at position 2, it looks
doubled at position 1, and even more doubled at position 0. This is evidence that TP2 is
defocused at positions 0 and 1, while its sharpness improves moving towards position 2;
however, position 2 is not quite its exact focal plane. Similarly, the orange arrow indicates
the focusing evolution of TP1 for the three different cases. The chart border, indicated by
the orange arrow, is sharp and single at position 0, and then it becomes doubled at position
2. In this condition, TP2 was positioned at 0.3 mm from the initial position of TP1. This
indicates a depth of field smaller than 0.3 mm, and confirms the plane of best focus to be
around Z0 = 128.75 mm. TP1 and TP2 are never completely in focus at the same time.
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Gaussian shape for the PSF with a resolution of ~420 ± 60 nm. The resolution estimation 
was obtained averaging over five pixels. However, the signal-to-noise ratio was too low 
(2–3) for ensuring an accurate measurement. Alternatively, it can be considered that the 
narrower black bars (labelled 1–4 in Figure 4g) are the convolution of a 1 µm width square 

Figure 5. Schematic description of the study of the depth of field: The inset at the lower part of the
figure represents a typical image of TP2 (in green) and TP1 (in grey). Bars with 2 µm spacing are
visible for TP1. Bars with 2 µm, 1 µm, 0.5 µm, and 0.1 µm spacing are visible for TP2. At the central
part of Figure 5 the positions of both targets are represented for the three cases of interest, named
positions 0 (corresponding to Figure 4d), 1, and 2. At the top, the images reconstructed using the
refocusing reconstruction algorithm are displayed. In order to follow the evolution of the focusing of
TP1 and TP2, the orange and yellow arrows indicate the same bar in each reconstructed image. It can
be observed that the best focusing is not achieved at the same position for TP1 and TP2.

Spatial resolution is a standard parameter used to find the focal plane for classical
cameras, and it is used here to confirm the position of the best digitally refocused plane.
The spatial resolution was estimated by two independent techniques giving similar values.
The first estimation was done by estimating the point-spread function (PSF) directly from
the gradient of the intensity along a line crossing a sharp edge. This measurement was
performed on the large bars labelled 5 and 6 in Figure 4g. The derivative generated a
Gaussian shape for the PSF with a resolution of ~420 ± 60 nm. The resolution estimation
was obtained averaging over five pixels. However, the signal-to-noise ratio was too low
(2–3) for ensuring an accurate measurement. Alternatively, it can be considered that
the narrower black bars (labelled 1–4 in Figure 4g) are the convolution of a 1 µm width
square function with a Gaussian PSF [23]. Thus, the second estimation was performed by
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convolving the 1 µm bars (labelled 1 and 4) with a Gaussian function of different widths.
The results are full width at half-maximum values, and are displayed in Figure 6a,b. The
measured resolution varies from 350 nm ± 50 nm to 660 nm ± 50 nm.
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Figure 6. Spatial resolution estimation using the convolution of a square bar and a Gaussian PSF:
Comparison of the plots achieved along the yellow line in Figure 4g (pixelated blue curves) for bars
1 (a) and 4 (b), and the convolution between a rectangle function with 1 µm width and a Gaussian
function representing the PSF (black curves). The best fit gives values of the PSF of 350 ± 50 nm for
bar 1 (a) and 660 ± 50 nm for bar 4 (b). It is worth noting that the shape of bar 1 is closer to a square
than that of bar 4, which has a smooth, Gaussian-like peak.

Figure 7 displays the cross-sections of bars 1–3, extracted from both experimental and
numerical images (Figure 4h,i, respectively) obtained at Z0 = 128.8 mm, corresponding to
the plane of best focus. The theoretically computed curve is in good agreement with the
experimental measurement. It is worth noting that the shape of the three bars obtained
experimentally is accurately reproduced numerically. As shown in Figure 6, the modifica-
tion of the bar shape from a top hat (left and centre bars) to a Gaussian shape (right bar)
indicates a variation in the spatial resolution across the image.
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As a final step of the study of this plenoptic X-ray microscope, the longitudinal res-
olution of the refocused images was investigated by scanning the spatial resolution over
a wide range of refocused positions. Figure 8 displays both numerical and experimental
spatial resolutions versus position along the optical axis. Only the first target TP1 located at
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Z0exp = 128.8 mm was considered. Both experimental and numerical resolutions were cal-
culated using the image of bar 2 (in Figure 4g), and treated using the convolution technique
explained above (Figure 6). The overall variation in the spatial resolution with the refocused
position matches very well between experiment and modelling, although numerical images
always produce a slightly better resolution. The best spatial resolution equals 0.4 µm for
modelling, and compares well to the 0.45 µm found in the experiment. The discrepancy
from the focal plan increases for the highest positions due to the stronger influence of
noise when the image of the bar becomes more and more blurred. The experimental curve
(in green) shows a kind of plateau of best resolution centred at Z0exp = 128.71 mm and
extending over ~80 µm, while the numerical curve (black curve) has a less pronounced
plateau, extending over ~100 µm. These two values, 80 and 100 µm, correspond to the
experimental and numerical longitudinal resolutions, respectively. Finally, the voxel size
achieved with this first demonstration is equal to 0.45 µm × 0.45 µm × 80 µm.
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4. Conclusions

In this article, we report the first flexible plenoptic X-ray microscope operating in
the hard X-ray domain (11 keV). The demonstration was achieved by adding an array
of 9 × 9 Fresnel zone plates (FZPs) downstream of the objective lens of the existing TXM
available at the P05 imaging beamline at the PETRA III storage ring. The setup described
here is innovative for the development of a new optical system with refocusing ability. For
this proof-of-concept demonstration, the FZP array was tested using two spaced USAF test
targets. The image reconstruction showed that the image focus can be computationally
changed from one test target to another after the image acquisition. Similarly to the focused
plenoptic camera, which is well known in the visible regime, this novel X-ray system shows
the indisputable advantage of capturing depth information. The first images obtained with
the FZP array showed a poor spatial sampling due to the limited number (9 × 9) of FZPs.
In order to increase the spatial sampling, the microlenses were moved horizontally and
vertically with respect to the detector in order to generate a synthetic plenoptic image. This
strategy allowed us to acquire raw plenoptic images composed of 36 × 36 micro-images.
The best experimental resolution was found to be 450 nm, in good agreement with the
numerical model (400 nm). Plenoptic imaging represents a new optical modality for quasi-
3D X-ray imaging, especially when adapted for fast acquisition or non-movable samples,
but with the limitation of lower resolution as compared to tomography.

In this proof-of concept study, numerical refocusing was demonstrated on two targets
positioned at 1.3 mm from one another. The refocusing ability of the system as well as
its lateral resolution will be improved in the future, reducing the depth of field by one
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order of magnitude and reaching nearly 100 nm lateral resolution. This will be feasible by
replacing the objective lens with optics with higher numerical aperture [24–26]. As another
future perspective, a larger FZP array will enable the reduction in the acquisition times
required by the stitching approach today. Thus, the angular and spatial X-ray information
can be sampled in a single acquisition, making very fast measurements feasible. The optics
improvement will enable the generation of a stack of computationally refocused images
at different depths within real thick specimens, ultimately with few X-ray exposures and
without sample rotation. Moreover, the technique opens also the path to the development
of compact plenoptic X-ray microscopes with laboratory X-ray sources.
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Figure A1. Image of the plenoptic X-ray microscope installed at the PETRA III-P05 beamline. The 
X-rays come from right to left. Abbreviations: Fresnel zone plates (FZPs), order sorting aperture 
(OSA). 
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Figure A2. Images of the lens array (a) and of the 0th-order blocker (b) of the lens array acquired, 
with the same magnification, using a visible microscope. The yellow colour comes from the gold 
coating. 

 
Figure A3. A scanning electron microscope (SEM) image of the used USAF target. The image shows 
the elbow pattern and the lines’ width. 
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Figure A4. (a) Image related to position 1 of Figure 5. TP2 bars underlying the yellow line were 
considered for the contrast profile analysis. The line is 10 pixels long and perpendicular to the bars. 
The same line over the same bars was also considered for the image at position 2 of Figure 5. (b) 
Contrast profiles related to the TP2 bars (yellow line in a) for positions 1 and 2. The red arrows show 
the different bars. The values given above the arrows are for the contrasts of position 1/position2. 
Globally, the contrast of position 1 varies from 5 to 8%, while for position 2 it is from 3 to 9%. Con-
sidering the strong noise, the weak changes between positions 1 and 2 cannot be used in the search 
for an in-focus position. 
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Figure A4. (a) Image related to position 1 of Figure 5. TP2 bars underlying the yellow line were
considered for the contrast profile analysis. The line is 10 pixels long and perpendicular to the
bars. The same line over the same bars was also considered for the image at position 2 of Figure 5.
(b) Contrast profiles related to the TP2 bars (yellow line in a) for positions 1 and 2. The red arrows
show the different bars. The values given above the arrows are for the contrasts of position 1/position
2. Globally, the contrast of position 1 varies from 5 to 8%, while for position 2 it is from 3 to 9%.
Considering the strong noise, the weak changes between positions 1 and 2 cannot be used in the
search for an in-focus position.
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