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Abstract

Skilled interception behavior often relies on accurate predictions of external objects because of a large delay in our senso-

rimotor systems. To deal with the sensorimotor delay, the brain predicts future states of the target based on the current state 

available, but it is still debated whether internal representations acquired from prior experience are used as well. Here we 

estimated the predictive manner by analyzing the response behavior of a pursuer to a sudden directional change of the evasive 

target, providing strong evidence that prediction of target motion by the pursuer was incompatible with a linear extrapolation 

based solely on the current state of the target. Moreover, using neural network models, we validated that nonlinear extrapola-

tion as estimated was computationally feasible and useful even against unknown opponents. These results support the use of 

internal representations in predicting target motion, suggesting the usefulness and versatility of predicting external object 

motion through internal representations.
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1 Introduction

Skilled motor behavior often relies on accurate predictions 

of external objects and environments (Wolpert and Flanagan 

2001; Yarrow et al. 2009). For example, to hit a moving ball 

with a bat or capture an evasive opponent, it is essential 

to accurately predict target motion as well as own motion 

(Land and McLeod 2000; Brault et al. 2012; Fujii et al. 

2014). In such cases, it would be easy to intercept a station-

ary or slow moving target, but may be difficult to intercept 

a fast moving target because there is a large delay in our 

sensorimotor systems. Sensorimotor delay, which is associ-

ated with receptor transduction, neural conduction, central 

processing and muscle activation, is inevitable in animals, 

and can be several hundreds of milliseconds in human inter-

ception behavior (Smeets and Brenner 1994; Franklin and 

Wolpert 2011). As a result, for the successful interception 

of fast moving targets, we would need to compensate for 

this sensorimotor delay by a prediction of future states (e.g., 

position and velocity) based on the current state available. 

The predictive mechanism to deal with sensorimotor delay 

is a prominent problem in interception behavior, and numer-

ous studies have been done on predictions of target motion 

(Hayhoe 2017; Brenner and Smeets 2018; De la Malla et al. 

2019; Fiehler et al. 2019). However, the understanding of 

target motion prediction is rather limited because these have 

predominantly studied target objects that move in a predict-

able manner, such as at a constant velocity (Brenner and 

Smeets 1996, 2007, 2009, 2015a, b; Brenner et al. 1998, 

2013; Brouwer et al. 2000, 2002; De Lussanet et al. 2001) 

or accelerated by gravity (Lacquaniti and Maioli 1989; Zago 

et al. 2004, 2009, 2010; Senot et al. 2005, 2012; Zago and 

Lacquaniti 2005; López-Moliner et al. 2010; López-Moliner 
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and Brenner 2016); it remains an open question how we 

predict interactive targets such as evasive opponents, which 

appear to be less predictable.

When we try to intercept an opponent, there are two 

basic manners that the brain may use to predict the future 

state of the opponent. One is linear extrapolation, and the 

other is nonlinear extrapolation. The first predictive man-

ner has generally been assumed to estimate a target motion 

(or trajectory) based only on the current sensory informa-

tion, namely position and velocity, of the target. That is, in 

this manner, the pursuer predicts that the target would move 

straight ahead regardless of the situation, in each instant. 

This linear extrapolation, which assumes a simple mecha-

nism to compensate for the sensorimotor delay, is consist-

ent with experimental observations in both humans (Engel 

et al. 1999; Engel and Soechting 2000) and non-humans 

(Borghuis and Leonardo 2015). The alternative manner has 

been assumed to estimate target motion based on internal 

representations in addition to the current information. That 

is, target motion is estimated through a mapping between 

the current state and the future state. Such transforma-

tions (or representations) are termed internal models and 

are thought to be acquired through prior experience. This 

manner allows us to make nonlinear extrapolation with our 

perceptible information and is supported by the fact that 

we can successfully catch a falling ball (Zago et al. 2004; 

López-Moliner and Brenner 2016). Specifically, even though 

the human visual system is poor at perceiving acceleration, 

the brain can accurately predict the motion of a ball accel-

erated by gravity. Although the use of internal models in 

predicting target motion is still controversial (Baurès et al. 

2007; Zago et al. 2008), the idea is attractive in that it has 

the potential to predict target motion with greater accuracy 

by nonlinear extrapolation. However, it is unclear whether 

nonlinear extrapolation with an internal model is used for 

predicting the motion of opponents, who seem to have less 

stable rules of motion than free-falling objects, and, if so, 

whether it can accurately predict the opponent motion.

To address these questions, we conducted an experiment 

in which participants played a one-on-one chase and escape 

task on a screen with joystick controllers. Three experimen-

tal conditions for the width of the pitch (narrow, square, 

and wide) were studied to examine the situational depend-

ence of the predictive manners. We analyzed the response 

behavior of the pursuer (defender) to a sudden directional 

change of the target (attacker) to estimate the predictive 

manner adopted by the pursuer, providing strong evidence 

that the pursuer would make a nonlinear extrapolation of 

the opponent motion. Moreover, we validated the feasibility 

and effectiveness of nonlinear extrapolations using neural 

network models which learn the mapping between the cur-

rent state and the future state from the experimental data. 

Our results suggest the usefulness and versatility of the 

prediction of external objects through internal representa-

tions, and provide an insight into the predictability of others' 

behavior.

2  Methods

2.1  Participants

Twelve males participated in the experiment (aged 22–31, 

mean = 25.9, s.d. = 3.0). All participants were right-handed, 

had normal or corrected-to-normal vision, had some experi-

ence in amateur sports, and were naïve to the purpose of the 

study. This study was approved by the Ethics Committee of 

the University of Tokyo of Arts and Sciences. Informed con-

sent was obtained from each participant before the experi-

ments. Participants were recruited in pairs and every mem-

ber of each pair took in turn the roles of both attacker and 

defender. They each received 1,000 yen per hour as a reward.

2.2  Apparatus and stimuli

Participants were seated in a chair, and they operated the joy-

stick of an Xbox One controller that could tilt freely in any 

direction to control a disk on the screen. The stimuli were 

presented on a 27-inch monitor (ASUS SWIFT PG278Q) 

at a refresh rate of 120 Hz. A black rectangle surrounding 

the disks was defined as the play area, or “pitch.” The width 

of the pitch was 7.5, 15.0, 30.0 cm in the narrow, square, 

and wide condition, respectively, with a consistent height 

of 15.0 cm. The velocity of each disk on the screen was 

determined by the degree of inclination of the joystick on 

their respective controllers. The maximum speed of both the 

attacker and the defender was set to 5.5 cm per second. The 

diameter of each disk was 1.0 cm, and the central position 

of each disk on the screen during the trials was recorded at 

120 Hz on a computer (MacBook Pro) with Psychtoolbox 

version 3.0. The viewing distance of the participants was 

about 50 cm, and a partition prevented direct viewing of the 

hands or controller of the other player.

2.3  Procedure and design

Each participant controlled either a red disk representing an 

attacker or a blue disk representing a defender on the screen 

(Fig. 1). The participant controlling the attacker was asked 

to get past the defender and reach the end line (yellow line) 

behind the defender (Fig. 1, lower left panel), whereas the 

participant controlling the defender was asked to catch the 

attacker without him reaching the end line (Fig. 1, lower 

right panel). "Catch" was defined as contact between the 

outer disk edges. If the attacker left the boundaries of the 

pitch (black rectangle), the trial was deemed a successful 
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defense. The start trial position of the attacker was in the 

upper middle of the pitch (red circle), while that of the 

defender was in the center of the pitch (blue circle). The 

experimental task began with a start cue. A high-pitched 

beep sounded as feedback to a successful attack. Conversely, 

a low-pitched beep sounded after a successful defense. The 

number of successful attacks was indicated at the end of each 

block. The experimental block consisted of 50 trials, with 

a warm-up of 10 trials to get used to the task. There were 

three experimental conditions (narrow, square, and wide), 

and each participant played one block in turn on both the 

attacker and the defender under each experimental condition. 

In total, there were 60 warm-up trials and 300 experimental 

trials for each participant (or each pair). The order of the 

experimental conditions was counterbalanced across pairs.

2.4  Behavioral analysis

We recorded the onscreen X and Y positions of the attacker 

and defender. All behavioral analyses, except for the evalua-

tion of unpredictability of target motion (Fig. 2b), were per-

formed using data recorded at 120 Hz. Because we thought 

it would be reasonable to use data with a temporal resolution 

closer to human perception in evaluating the unpredictability 

of the target motion, we used the downsampled data in this 

analysis. Specifically, we first downsampled the recorded 

data to 20 Hz based on the previous studies (Pöppel 1997; 

Mrotek and Soechting 2007a, b) and then, using the down-

sampled data, we calculated the difference in the target 

(attacker) moving direction between time t  and time t + 1 

( Δt = 50 ms) and the entropy (see Supplementary Fig. 1). 

The following behavioral analyses are performed using data 

recorded at 120 Hz. Directional change was defined as veloc-

ity in the X direction crossing zero, and response time as 

the temporal difference between the directional changes of 

the attacker and the defender, distinguishing between posi-

tive and negative X velocities. The response time might be 

affected by the movement directions of both attacker and 

defender, but since our interest was in the approximate value, 

we only focused on the time difference for simplicity. We 

limited the range of response times from 0 to 500 ms, and 

removed any response times longer than 500 ms from the 

analyses to exclude responses where the defender had given 

up trying to catch the attacker. A short latency response was 

defined as the response less than 150 ms based on the results 

of the simple reaction task (see Supplementary Figs. 2 and 

3). To calculate the values of each variable within each 

horizontal position on the pitch, we divided the pitch into 

4, 8 and 16 columns for the three experimental conditions, 

Fig. 1  Experimental setup. Illustration of the experimental task. Par-

ticipants (n = 12) controlled either an attacker (red disk) or a defender 

(blue disk) on a screen using the joystick of a controller. The initial 

location of the attacker was the upper middle (red circle) and that of 

the defender was the middle (blue circle) of the pitch (upper panel). 

The participant controlling the attacker was asked to move past the 

defender and reach the end line (lower left panel), whereas the par-

ticipant controlling the defender was asked to “catch” (contact) the 

attacker without him reaching the end line (lower right panel). If the 

attacker moved out of pitch boundaries (black rectangle), the trial was 

deemed a successful defense

a

N
a

rr
o

w
S

q
u

a
re

W
id

e

X positionX position

Y
 p

o
s
it
io

n
Y

 p
o

s
it
io

n

0

1,000

T
im

e
 (

s
)

0 1,000

Time (s)

0

1,000

0 1,0000

1,000

0

Y
 p

o
s
it
io

n
Y

 p
o

s
it
io

n

Y
 p

o
s
it
io

n
Y

 p
o

s
it
io

n

b

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

0

0.5

-180 180

0.4

0.3

0.2

0.1

0

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

0

0.5

-180 180

0.4

0.3

0.2

0.1

0

Difference from previous

movement direction (deg)

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

0

0.5

-180 180

0.4

0.3

0.2

0.1

0

1,000

X positionX position

X positionX position

Fig. 2  Characteristics of target motion. a Attacker paths with his-

tograms of X and Y positions, in all trials (n = 600) for each of the 

experimental conditions (narrow, square, and wide). Bin width was 

set to divide the pitch into 4, 8, and 16 columns for the three condi-

tions, respectively. b Relative frequency distribution of the difference 

in attacker moving direction between at time t and t + 1 (∆t = 50 ms) 

for each of the three experimental conditions. Bin width was set to 

5 degrees. To quantify the unpredictability of attacker motion, we 

calculated the entropy. One-way repeated-measures ANOVA with 

the Holm–Bonferroni method was used (F(2, 22) = 91.152, P < 0.001, 

η2 = 0.800; narrow vs. square: t11 = 5.835, P < 0.001; square ver-

sus wide: t11 = 8.745, P < 0.001; narrow versus wide: t11 = 11.533, 

P < 0.001)
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respectively. For the column that containing missing values, 

such as because the participants did not go to that position, 

the mean and s.e.m. were calculated excluding the miss-

ing values, which are shown by dotted circles and lines in 

each figure. The frequency of directional change was defined 

as the average number of occurrences per second. Specifi-

cally, the frequency was calculated by dividing the number 

of directional changes by the time spent in each X column. 

Note that we focused mainly on the direction of movement in 

the behavioral analysis, because both attackers and defenders 

were moving at almost maximum speed most of the time; 

the proportion of movement speed that exceeded 90% of the 

maximum speed was more than 90% in all conditions for 

both attackers and defenders.

2.5  Computational model

Because we thought it would be reasonable to use data with 

a temporal resolution closer to human perception in mod-

eling human prediction, we also used the data downsampled 

to 20 Hz in the analyses of the computational model. At 

every time t, the neural network models receives an input 

vector x
t
 and emits a hidden state vector from the last layer 

h
l

t
 that parameterizes a predictive distribution of the target 

position ŷ
t
 at next time-step t + 1 ( Δt = 50 ms) relative to 

the current position. To correspond to the available sen-

sory information of the pursuer (or defender) as assumed 

in previous research, the input vector x
t
∈ ℝ

6 in this study 

is composed of position and velocity information. Specifi-

cally, this consisted of the velocity vectors of the attacker 

v
a

t
=

(

v
a

X
, v

a

Y

)

t
 and defender vd

t
=

(

v
d

X
, v

d

Y

)

t
 and a range vector 

r
t
=

(

r
X

, r
Y

)

t
 , which is defined as a vector pointing from the 

position of the pursuer to that of the target. Our three neural 

network models contained three weight layers. The dimen-

sions of the hidden state vectors of the first layer h
f

t ∈ ℝ
64 , 

second layer hs

t
∈ ℝ

128 , and last layer hl

t
∈ ℝ

5 were deter-

mined according to previous research (Alahi et al. 2016). 

The hidden state vector of the last layer hl

t
 was used to gen-

erate a bivariate Gaussian distribution parameterized by the 

mean �
t
=

(

�
X

,�
Y

)

t
 , standard deviation �

t
=

(

�
X

, �
Y

)

t
 , and 

correlation coefficient �
t
 following the previous researches 

(Graves 2013; Alahi et al. 2016). The predicted distribution 

ŷ
t
 at time t is given by ŷ

t
∼ N

(

�
t
,�

t
, �

t

)

.

In our neural network models, the input and hidden lay-

ers differed among the networks, while the output layer was 

common. In the LN model, all layers were composed of the 

fully connected layer without nonlinearity,

where W
xh

 , and b
h
 denote the input-to-hidden weight matrix 

and the bias vector, respectively. In the NN model, only the 

output layer is the fully connected layer without nonlinearity, 

h
t
= W

xh
x

t
+ b

h

and the other layers are composed of the fully connected 

layers with nonlinearity,

where �(x) = max(0, x) is the rectified linear unit (ReLU) for 

nonlinearity (Glorot et al. 2011). In the recurrent neural net-

work (RNN) model, the input, output, and hidden layers are, 

respectively, the fully connected layer without nonlinearity, 

that with nonlinearity, and a recurrently connected layer,

where W
hh

 is the hidden-to-hidden (or recurrent) weight 

matrix and h
t−1

 is the hidden state vector at the previous 

time-step t − 1.

The LSTM model was designed to be better at storing 

and accessing information than standard RNNs, and the 

hidden layer of the RNN model is replaced with an LSTM 

layer below,

where �(x) = 1∕(1 + exp(−x)) is the logistic sigmoid func-

tion, i, f, o, c, and h are the input gate, forget gate, out-

put gate, memory cell, and hidden state activation vectors, 

respectively, at time-step t. h
0
= c

0
= 0 . The W terms denote 

weight matrices, the b terms are biases, and ⊙ is the Had-

amard (element-wise) product. The deep neural network 

models (DNN, DRNN, and DLSTM) had two hidden layers 

each.

The neural network models were trained to minimize 

the loss L = −

∑T

t=1
log ℙ

�
y

t
�N

�
�

t
,�

t
, �

t

��
  where y

t
 

( = x
t+1

 ) denotes the actual target position at next time-

step t + 1 . Network parameters were iteratively optimized 

via stochastic gradient descent with the Adam optimizer 

(Kingma and Ba 2015). The learning rate and batch size 

was 0.0003 and 16, respectively, in all neural network 

models and experimental conditions. These hyper-param-

eters were selected using a grid search on pre-experi-

mental data (Supplementary Table 1) to make full use of 

the experimental data. The networks were trained for the 

experimental data of 11 participants (550 trials) and tested 

on the experimental data of the other one participant (50 

trials) in each model and condition; that is, model perfor-

mance was evaluated by “leave-one participant-out cross-

validation.” The average number of training data (time-

steps) was 27,428 (range: 26,465–28,551), and that of the 

test data was 2493 (range: 1370–3456).

h
t
= �

(

W
xh

x
t
+ b

h

)

h
t
= tanh

(

W
xh

x
t
+ W

hh
h

t−1
+ b

h

)

it = �
(

Wxixt + Whiht−1
+ bi

)

f t = �
(

Wxf xt + Whf ht−1
+ bf

)

ot = �
(

Wxoxt + Whoht−1
+ bo

)

ct = f t ⊙ ct−1
+ it ⊙ tanh

(

Wxcxt + Whcht−1
+ bc

)

ht = ot ⊙ tanh
(

ct

)
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To evaluate model performance using the test data, �
t
 

was used for the predicted coordinates ŷ
t
 in the one time-

step prediction and compared with the actual coordinates y
t
 . 

The predicted coordinates ŷ
t
 , and the displacement to reach 

them, were used as model input for position and velocity of 

the attacker at the next time-step t + 1 in the sequential (or 

trajectory) prediction. In this case, we assumed that own 

state (position and velocity of the defender) could be used 

up to 250 ms ahead based on estimations with the internal 

model of own motion (Wolpert et al. 1998, 2011; Kawato 

1999; Imamizu et al. 2000). In addition, in the sequential 

prediction, for RNN, LSTM, DRNN, and DLSTM models, 

a 2.5 s observational period was provided to “warm” the 

hidden state. The prediction and the observation for it were 

kept within the same trial, and never crossed between trials.

The linear (L) model predicts that the target continued 

to move in the same direction at a constant speed. We first 

calculated the target displacement from time t − 1 to the 

current time t  , and added the displacement to the current 

position to predict the position at time t + 1 . The curvilinear 

(C) model predicts that the target continues to move at the 

same speed and angular velocity along a circular arc. We 

thus calculated the target displacements from time t − 2 to 

time t − 1 and that from time t − 1 to the current time t , and 

then computed the angular change Δ� per a time-step using 

the displacements. When predicting target position at time 

t + 1 , movement speed is equal to the magnitude of the lat-

est displacement and movement direction is the angle of the 

latest displacement plus Δ� . Consequently, for Δ� = 0 , the 

predictions of the linear and curvilinear models are equal.

2.6  Statistical analysis

No statistical methods were used to predetermine sample 

sizes, but our sample sizes were chosen based on stand-

ards in the field. All quantitative data are reported as 

mean ± s.e.m. across participants. The data were analyzed 

using one-, two- or three-way repeated-measures analysis of 

variance (ANOVA), as appropriate. For these tests, Mauch-

ly’s test was used to test sphericity; if the sphericity assump-

tion was violated, degrees of freedom were adjusted by the 

Greenhouse–Geisser correction. P values were adjusted by 

the Holm–Bonferroni method for multiple comparisons. 

The column containing missing values was excluded from 

statistical analyses (Figs. 3e, 6a). The data distribution was 

assumed to be normal for multiple comparisons, but this was 

not formally tested. Two-tailed statistical tests were used 

for all applicable analyses. The significance level was set 

at an alpha value of 0.05. The method of Holm was used to 

adjust the P values in multiple testing (Holm 1979). When 

reporting K P values for K distinct tests, the Holm method 

is to compare the rth smallest P value (for r = 1,...,K) among 

the K P values with 0.05/(K − r + 1), and the test result is 

considered statistically significant after adjustment for the 

multiple tests if the rth smallest P value is less than 0.05/

(K − r + 1). However, if the rth smallest P value is the first 

that exceeds 0.05/(K − r + 1), then the test results associated 

with the (K − r + 1) largest P values are considered statis-

tically nonsignificant according to the Holm method. To 

make the presentation simpler, we let the adjusted P value 

be (K − r + 1) times the original P value and simply com-

pare the adjusted P value with 0.05 to determine whether a 

particular test result is statistically significant after adjust-

ment. Specific test statistics, P values, and effect sizes for 

the analyses are detailed in the corresponding figure legends 

and in Supplementary Table 2. All statistical analyses were 

performed using R version 4.0.2 (The R Foundation for Sta-

tistical Computing).

3  Results

Our task required participants to control either an attacker 

(target; red disk) or a defender (pursuer; blue disk) on a 

screen using the joystick of a controller (Fig. 1). The par-

ticipant controlling the attacker was asked to move past the 

defender and reach the end line (Fig. 1, lower left panel). 

On the other hand, the participant controlling the defender 

was asked to catch the attacker before the attacker reached 

the end line. A "catch" was regarded as a case where the 

outer edges of the disks were in contact (Fig. 1, lower right 

panel). If the attacker moved out of the pitch bounds (black 

rectangle), the trial was deemed a successful defense. The 

velocity of each disk on screen was determined by the degree 

of joystick inclination on the respective controllers, and the 

disks had equal maximum speed (magnitude of velocity). 

Three experimental conditions (narrow, square, and wide) 

were set to examine whether the predictive manner changed 

for targets with different rules of motion; based on the previ-

ous research (Tsutsui et al. 2019a), we reasoned that targets 

would change direction more frequently in the narrow pitch 

condition, whereas move more linearly in the wide pitch 

condition. The proportion of successful defenses were 0.97, 

0.91, and 0.59, respectively, with mean trial durations of 

2.47, 3.99, and 6.38 s, for each experimental condition.

3.1  Characteristics of target motion

We first examined the characteristics of the target motion. 

The target (attacker) paths show highly varied motion 

(Fig. 2a). To quantify the unpredictability of target motion 

(or the effectiveness of a linear extrapolation) from the per-

spective of the pursuer (defender), we calculated the differ-

ence in movement direction of the target between at a time 

t and time t + 1 ( Δt = 50 ms) for each experimental condi-

tion and calculated the entropy (Fig. 2b). As expected, the 
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proportion of linear movement of the target decreased as 

the pitch narrowed. This indicates that linear extrapolation 

would not work effectively as the pitch narrowed.

3.2  Anticipatory response to target movement 
by pursuer

Then, to determine the predictive manner used by the pursuer 

to extrapolate the target motion, we analyzed the response 

behavior of the pursuer to sudden directional changes of the 

target. Pursuit behaviors, from insects to mammals, have 

often been described as movements toward the estimated 

future position of the target based on its current position 

and velocity (Olberg et al. 2000; Fajen and Warren 2004; 

Ghose et al. 2006; Olberg 2012; Kane et al. 2015; Tsut-

sui et al. 2019b) (Fig. 3a, left panel). In other words, this 

description (or model) assumes a linear extrapolation of 

target motion by pursuers in each moment. Accordingly, 

the directional change of the pursuer would necessarily be 

one step behind that of the target owing to the sensorimotor 
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Fig. 3  Anticipatory response to directional change of target move-

ment by pursuer. a Traditional description of pursuit of a target that 

moves straight (left panel), and a target that changes movement direc-

tion (right panel). The pursuer (blue disk) often moves along the 

time-optimal (shortest) path to intercept a target (red disk). The gray 

arrow denotes the range vector from pursuer to target at each instant. 

Assuming that the pursuer predicts the near-future position of the tar-

get using a linear extrapolation (red circle), the directional change of 

the pursuer is necessarily delayed by one step from that of the tar-

get due to sensorimotor delay of the pursuer. b Example trajectories 

of passive (left panel) and anticipatory (right panel) responses. In 

many cases, the pursuer reactively changed its moving direction with 

respect to that of the target, while the pursuer, in some case, changed 

its moving direction anticipatory. c Relative frequency distribution of 

the response times. Response time was defined as the temporal dif-

ference between the target and pursuer in the zero-crossing of their 

horizontal velocities. Bin width was set to 50 ms. We compared the 

proportion of the short latency response (less than 150 ms). One-way 

repeated-measures ANOVA with the Holm–Bonferroni method was 

used (F(2, 22) = 17.386, P < 0.001, η2 = 0.427; narrow versus square: 

t11 = 3.012, P = 0.024; square versus wide: t11 = 3.014, P = 0.024; 

narrow versus wide: t11 = 5.685, P < 0.001). d Spatial distribu-

tion and histogram of response for each of the experimental condi-

tions. Light and dark gray dots denote the short and other latency 

responses, respectively. Bin width was set to divide the pitch (hori-

zontal position) into 4, 8 and 16 columns for the respective experi-

mental conditions. e Mean response times within each horizontal 

position on the pitch. Bin width was set to divide the pitch into 4, 8, 

and 16 columns for the respective experimental conditions. Dashed 

circles and error bars denote bins containing missing values and that 

were excluded from statistical analysis. Because the number of bins 

was different across the conditions and we were interested in differ-

ences of response times within the pitch, we used one-way repeated-

measures ANOVA with the Holm–Bonferroni method for each 

experimental condition (Fnarrow(3, 33) = 1.958, P = 0.140, η2 = 0.075; 

Fsquare(2.16, 23.72) = 1.064, P = 0.365, η2 = 0.033; Fwide(3.72, 40.95) = 2.715, 

P = 0.046, η2 = 0.076). For detailed statistics, see Supplementary 

Table  2. f Example trajectory of anticipatory response failure. In 

this case, the pursuer probably changed its moving direction in an 

incorrect anticipation of a directional change by the target. g Ratio 

of directional changes in the horizontal (X) position of the defender 

versus that of the attacker. One-way repeated-measures ANOVA with 

the Holm–Bonferroni method was used (F(2, 22) = 66.279, P < 0.001, 

η2 = 0.738; narrow vs. square: t11 = 4.124, P = 0.017; square vs. wide: 

t11 = 8.545, P < 0.001; narrow vs. wide: t11 = 9.966, P < 0.001). For 

all panels, quantitative data represent the mean ± s.e.m across partici-

pants. *P < 0.05; ***P < 0.001
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delay (Fig. 3a, right panel). Conversely, the temporal differ-

ence of directional changes between the target and pursuer 

allows us to estimate the predictive manner of the pursuer. 

Specifically, if a pursuer adopts linear extrapolation to esti-

mate the future target position (or motion), the response of 

the pursuer to a directional change of the target should be 

purely reactive, whereas this would not necessarily be the 

case when adopting nonlinear extrapolation, as the response 

may include anticipatory components (e.g., extremely short 

latency response).

Thus, we examined the temporal differences in directional 

changes in the horizontal (X) position between the target 

and pursuer. The directional change of the pursuer was basi-

cally reactive, occurring after perceiving that of the target 

(Fig. 3b, left panel), but, in some case, was anticipatory, 

occurring before perceiving that of the target (Fig. 3b, right 

panel). The frequency distribution of the response times, 

defined as the temporal difference between the target and 

pursuer in the zero-crossing of their horizontal velocities, 

included extremely short latency responses (Fig. 3c), and 

the proportion of short latency responses (less than 150 ms) 

increased as the pitch width narrowed (0.14, 0.09, and 0.04, 

respectively). These results strongly indicate that a linear 

extrapolation of target motion was insufficient to explain the 

predictive manner of the pursuer. It also indicates that the 

pursuers may flexibly change their predictions depending on 

the target motion or situation.

To examine the spatial factors that result in a short 

latency response, we next focused on its spatial distribution. 

In studies on eye movement, explicit barriers are known to 

promote anticipatory eye movements (Kowler 1989; Kowler 

et al. 2014, 2019). If the pursuer’s short latency responses 

would be distributed near the edges of the pitch, an explicit 

barrier may have been employed. However, the short latency 

responses were distributed at the middle as well as the 

edges of the pitch (Fig. 3d), and the mean response times 

for the horizontal position on the pitch were almost uniform 

(Fig. 3e). These results indicate that the defender made a 

short latency response even in situations where the infor-

mation on explicit barriers would be difficult to use for pre-

diction, suggesting that a short latency response, that is, a 

nonlinear extrapolation of target motion, may involve using 

clues from rules of target motion rather than explicit barri-

ers. In addition, we found the cases in which the directional 

change of the pursuer failed in anticipation of that of the 

target (Fig. 3f). The ratio of the directional changes of the 

pursuer versus the target was greater than 1 for each exper-

imental condition (Fig. 3g). If the defender uses a linear 

extrapolation (i.e., behave passively), the ratio of the direc-

tional change of defender to that of attacker should be equal 

to (or less than) 1. On the other hand, if the defender makes 

an incorrect nonlinear extrapolation (as shown in Fig. 3f), 

the ratio could exceed 1. This result therefore suggests that 

anticipatory responses with nonlinear extrapolations were 

attempted under all experimental conditions, but that such 

nonlinear extrapolations were not always spatiotemporally 

appropriate.

3.3  Verification of predictability of target motion 
with neural network models

We thus sought to determine whether short latency responses 

were coincidental by examining the predictability of target 

motion with neural network models which predict the future 

position of the target through a mapping between the cur-

rent state and the future state in a learning-based method 

(Fig. 4a). The input of the neural network models corre-

sponded to the sensory information often used in chase 

(Ghose et al. 2006; Kane et al. 2015) or escape (Domenici 

2002) models, namely the velocity vectors of pursuer and 

target, and the range vector, which is defined as a vector 

pointing from the position of the pursuer to that of the tar-

get. The output was the estimated position of the target, as 

represented by a bivariate Gaussian distribution. Note that 

inputs of the neural network models did not include accel-

erations or information on explicit barriers such as distance 

to the edge of the pitch. The models were trained using the 

error-based algorithm, a comparison between the predicted 

and actual consequences of the target position, using data 

from all but one participant, whose data were used to test 

the fidelity of the model prediction. To obtain insights into 

the important information for accurate prediction of the tar-

get motion, we computed three neural network models. The 

linear neural network (LN) model was composed only of 

linear transformations, while the nonlinear neural network 

(NN) model included a widely-used nonlinear transforma-

tion (Glorot et al. 2011; Lecun et al. 2015). The recurrent 

(nonlinear) neural network (RNN) model had a recurrent 

structure in addition to the nonlinear transformation. Thus, 

if nonlinearity is necessary for accurate prediction, the per-

formance of the NN model should outperform that of the 

LN model, and if recurrence (time-series information) is 

necessary for accurate prediction, the performance of the 

RNN model should outperform that of the NN model. For 

comparison, we also computed two extrapolation models, 

linear (L) and curvilinear (C), as proposed in previous stud-

ies (Mrotek and Soechting 2007a, b; Borghuis and Leonardo 

2015).

We first examined the model accuracy in predicting the 

movement direction of the target at the next time-step. 

To visualize the association between the predicted and 

actual angles, we showed the two-dimensional relative 

frequency distribution (Fig. 4b). The angles in this fig-

ure represent the movement direction of the target with 

respect to the pursuer. This relative movement direction 

was defined between − 180 and 180 degrees, with 0 degree 
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indicating movement directly toward the pursuer, and posi-

tive and negative values indicating movement to the left 

and right sides, respectively, with respect to the pursuer. 

As shown in this figure, the predicted and actual angles 

were roughly matched in all models, while some devia-

tion was found especially where the angles had different 

signs (Fig. 4b, second and fourth quadrants). Note that 

the deviations were lower in the neural network models 

(LN, NN, and RNN) than in the conventional ones (L and 

C). On average, the neural network models showed better 

agreement between the angles than the conventional ones 

under all conditions (Fig. 4c). These results suggest that 

the neural network models can more accurately predict 

the target motion for various situations including sudden 

directional change (e.g., left to right, or vice versa) (see 

also Supplementary Fig. 4).

3.4  Flexible and accurate longer-term prediction 
by neural network models

Given that the sensorimotor delay during the pursuit was 

about 250 ms (see Fig. 3c), it would be desirable to be 

able to predict 250 ms ahead to spatiotemporally match 

our own motion with the target motion accurately for suc-

cessful interception. Thus, we then examined the model 

performance of sequential prediction for the target motion 

by testing the prediction accuracy up to 250 ms ahead in 

each model (Fig. 5a). In this analysis, the estimated target 

state (position and velocity) at time t  was used sequen-

tially as input for the prediction at next time-step t + 1 , 

up to 250 ms (5 time-steps) ahead. Representative exam-

ples show that the neural network models were able to 

accurately predict a variety of trajectories, including the 
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Fig. 4  Prediction of target movement direction at the next time-step 

with models. a Illustration of neural network models. The models 

predicted a next state of attacker (target) using the current states of 

attacker and defender (pursuer). The linear neural network (LN) 

model was composed only of linear transformations (left panel). The 

nonlinear neural network (NN) model included nonlinear transfor-

mations (middle panel). The recurrent neural network (RNN) model 

had a recurrent structure in addition to the nonlinear transforma-

tion (right panel). b Two-dimensional relative frequency distribu-

tion between predicted and actual directions of target movement 

for each of the experimental conditions (Pooled data for all partici-

pants). L, C, LN, NN, and RNN denote the linear, curvilinear, lin-

ear neural network, nonlinear neural network, and recurrent neu-

ral network model, respectively. Bin width was set to 5 degrees. c 

Angular error of the model prediction for each of the experimental 

conditions. Two-way repeated-measures ANOVA with the Holm–

Bonferroni method was used (Fcondition(1.29, 14.18) = 68.184, P < 0.001, 

η2 = 0.393; Fmodel(1.60, 17.63) = 151.485, P < 0.001, η2 = 0.341; 

Fcondition×model(1.91, 21.02) = 10.900, P < 0.001, η2 = 0.020). For detailed 

statistics, see Supplementary Table 2. For all panels, quantitative data 

represent the mean ± s.e.m across participants
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straight, gentle curve, and sharp curve phases (Fig. 5b, 

upper panels). Even though the predictions were occa-

sionally incorrect (Fig. 5b, lower panels), on average, the 

neural network models made more accurate predictions 

than the conventional ones for both the average and final 

displacement errors (Fig. 5c, d). These results indicate 

that the neural network models also worked well in pre-

dicting target motion over a longer period of time and 

therefore would be of practical usefulness.

3.5  Ineffectiveness of the recurrent structure

Although the RNN model appeared to contain richer infor-

mation due to its recurrent structure, its predictive per-

formance was similar to or slightly lower than that of the 

NN model. While we also examined whether predictive 

performance improved using the long short-term memory 

(LSTM) model, which can hold information for longer 

time periods, the prediction accuracy was almost the same 
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Fig. 5  Sequential prediction of target motion with models. a Illus-

tration of sequential prediction by neural network models. The 

predicted state of the attacker (target) was used as a part of model 

input at the next time-step, and the prediction was made sequen-

tially up to 5 steps (250 ms) ahead. Assuming that the own state of 

the defender (pursuer) could be accurately estimated by the inter-

nal model of own motion, we used the actual state of the defender 

as a part of the model input for sequential prediction. The same 

procedure was used for all neural network models. b Examples of 

predicted and actual trajectories. L, C, LN, NN, and RNN denote 

the linear, curvilinear, linear neural network, nonlinear neural net-

work, and recurrent nonlinear neural network models, respec-

tively. Red and blue lines show the actual trajectory of attacker and 

defender, respectively. The disks denote the end points of the pre-

dicted and actual trajectories. For ease of visibility, the trajectories 

of attacker and defender from the 10 time-steps (500  ms) before, 

to the time of prediction start, are shown by dashed red and blue 

lines. c Average displacement error of the sequential model predic-

tion up to 5 time-steps (250  ms) ahead for each of the experimen-

tal conditions. Three-way repeated-measures ANOVA with the 

Holm–Bonferroni method was used (Fcondition(1.11, 12.26) = 21.006, 

P < 0.001, η2 = 0.144; Fmodel(1.18, 12.93) = 76.106, P < 0.001, 

η2 = 0.0952; Ftime length(1.00, 11.04) = 471.038, P < 0.001, η2 = 0.511; 

Fcondition×model(1.30, 14.29) = 8.486, P = 0.008, η2 = 0.015; 

Fmodel×time length(1.39, 15.33) = 44.454, P < 0.001, η2 = 0.009; 

Fcondition×time length(1.12, 12.35) = 20.470, P < 0.001, η2 = 0.032; 

Fcondition×model×time length(1.48, 16.25) = 6.433, P = 0.014, η2 = 0.002). For 

detailed statistics, see Supplementary Table  2. (d) Final displace-

ment error of the sequential model prediction up to 5 time-steps 

(250  ms) ahead. Three-way repeated-measures ANOVA with the 

Holm–Bonferroni method was used (Fcondition(1.12, 12.28) = 20.660, 

P < 0.001, η2 = 0.105; Fmodel(1.24, 13.61) = 62.994, P < 0.0001, 

η2 = 0.049; Ftime length(1.01, 11.07) = 505.531, P < 0.001, η2 = 0.637; 

Fcondition×model(1.34, 14.70) = 7.689, P = 0.010, η2 = 0.008; 

Fmodel×time length(1.44, 15.87) = 38.561, P < 0.001, η2 = 0.009; 

Fcondition×time length(1.13, 12.39) = 19.900, P < 0.001, η2 = 0.036; 

Fcondition×model×time length(1.48, 16.33) = 5.915, P = 0.017, η2 = 0.002). For 

detailed statistics, see Supplementary Table 2. For all panels, quanti-

tative data represent the mean ± s.e.m across participants
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(Supplementary Figs. 5, 6, and 7). To clarify why the recur-

rent structure did not lead to a performance improvement in 

the sequential prediction, we investigated the properties of 

target motion in terms of directional changes in the horizon-

tal position. Based on the findings of the previous research 

(Tsutsui et al. 2019a), we focused on frequency distribu-

tions in spatial and temporal aspects regarding the change in 

the horizontal direction of the target. First, we investigated 

the spatial bias in the frequency per time of the directional 

change of the target and found that it was almost uniform 

within the pitch under all experimental conditions (Fig. 6a). 

Next, we investigated the relative frequency distribution of 

the time interval between directional changes and found that 

it decayed exponentially over time, particularly after a sec-

ond peak at approximately 500 ms (Fig. 6b). These results 

indicate that directional changes in the horizontal posi-

tion of the target showed the Poisson-like property known 

as “memorylessness” (see also Supplementary Fig. 8). In 

other words, whether the target changes movement direc-

tion in any moment may be little influenced by the prior 

process, and it suggests that this spatiotemporal property of 

target motion may be a reason why the recurrent structure 

did not lead to improvement of performance in the sequential 

prediction.

4  Discussion

Traditionally, pursuit behavior, from insects to mammals, 

has been described as movement along a local shortest path 

toward the estimated future position of the target based on 

its current position and velocity (Land and Collett 1974; 

Olberg et al. 2000; Fajen and Warren 2004; Ghose et al. 

2006; Olberg 2012; Kane et al. 2015; Tsutsui et al. 2019b). 

In these studies, it is often (implicitly) assumed that the 

motion (or trajectory) of a target is predicted by linear 

extrapolation, and under such an assumption, the pursuer (or 

defender) should be purely reactive to a sudden directional 

change of the target (or attacker). Here we have shown that, 

in striking contrast to these traditional descriptions, pursuers 

sometimes change their movement direction before perceiv-

ing (or even without occurring) a directional change of the 

target. Our results are consistent with a recent finding that 

pursuit behavior relies on predictions through target mod-

els (Mischiati et al. 2014), presenting the possibility that 

the predictive mechanisms that humans (or animals) use to 

compensate for sensorimotor delays during pursuit are more 

sophisticated than previously thought.

Previous studies on human interception behavior have 

predominantly used target objects moving in a predict-

able manner—at a constant velocity (Brenner and Smeets 

1996, 2007, 2009, 2015a, b; Brenner et al. 1998, 2013; 

Brouwer et al. 2000, 2002; De Lussanet et al. 2001) or 

accelerated by gravity (Lacquaniti and Maioli 1989; Zago 

et al. 2004, 2009, 2010; Senot et al. 2005, 2012; Zago 

and Lacquaniti 2005; López-Moliner et al. 2010; López-

Moliner and Brenner 2016). Presumably, the reason that 

these experimental paradigms have dominated, despite the 

fact that we often encounter less predictable situations in 

daily life or sports, is that these paradigms allow investiga-

tion under strict experimental controls. However, due to 

their simplicity, these paradigms may occasionally allow 

multiple interpretations for experimental observations. 

For example, in catching a falling ball, some researchers 

have proposed that an internal model, which allows us to 

extrapolate a nonlinear trajectory, is used to predict the 

target motion because we can catch a ball accelerated by 

gravity in spite of being poor at perceiving accelerations, 

while some others have questioned this proposal (Baurès 

et  al. 2007). The question results from considerations 

that the capture of a falling ball can also be performed by 

continuous prediction using a linear extrapolation in each 

a b

Fig. 6  Spatiotemporal property of change in the horizontal direc-

tion of the target. (a) Frequency distribution of time spent of the 

attacker (left), frequency distribution of directional changes in 

horizontal position of the attacker (middle), and frequency distribu-

tion per time of directional changes (right) within each horizontal 

position on the pitch. Bin width was set to divide the pitch into 4, 

8, and 16 columns for the respective conditions. Dashed circles and 

error bars denote that the bin contained missing values. Because 

the number of bins was different across the conditions and we were 

interested in differences of the frequency per time within the pitch, 

we used one-way repeated-measures ANOVA with Holm–Bonfer-

roni method in each experimental condition (Fnarrow(1.32, 14.52) = 2.870, 

P = 0.104, η2 = 0.150; Fsquare(2.16, 23.78) = 2.115, P = 0.140, η2 = 0.142; 

Fwide(3.66, 40.25) = 2.159, P = 0.096, η2 = 0.125). b Frequency distribu-

tion (left) and cumulative frequency distribution (right) of time from 

previous directional change. For all panels, quantitative data represent 

the mean ± s.e.m across participants
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instance. Indeed, in this case, the predictions of the two 

predictive manners are not much different (Baurès et al. 

2007). However, our experiment allowed us to distinguish 

between the two manners. Our results that pursuers antici-

patorily changed their movement directions obviously can-

not be explained by continuous linear extrapolation, and 

support the idea that an internal model is used to predict 

target motion.

Predictions of target motion through internal repre-

sentations have an ability to comprehensively describe 

the experimental observations in various situations. We 

found that pursuers flexibly change their frequency of 

anticipating directional change of the target in response 

to the expectation that the target would go straight in each 

instance. This result implies that in situations where the 

target is always straight ahead, the pursuer will predict 

that the target moves in a straight line. In such situations, 

the prediction of nonlinear extrapolation is equivalent to 

that of linear extrapolation. Following this reasoning, a 

linear extrapolation conventionally considered as the basis 

or default (Mrotek and Soechting 2007a, b) in predicting 

target motion may instead be considered as the prediction 

in a special situation when a target moves at a constant 

velocity. This novel perspective may explain contradic-

tions such as situational and individual differences in the 

prediction of target motion (Mrotek and Soechting 2007a, 

b).

On the basis of computational neuroscience studies, the 

existence of an internal model in the central nervous system 

has been established (Wolpert et al. 1998, 2011; Kawato 

1999; Imamizu et al. 2000). In general, internal models are 

associated with predicting the motion of one's own body 

(e.g., arm) and tools, and can be used to maintain stability 

in the presence of feedback (or sensorimotor) delays when 

trying to make rapid movements under feedback control. 

On the other hand, some researchers have proposed that the 

notion of internal models can be extended to predicting the 

behavior of other persons (Wolpert et al. 2003), but there 

is little experimental evidence. Here, we have shown that 

neural network models were able to learn a flexible and 

accurate predictions that could be useful against unknown 

opponents, and these results suggest the feasibility of acquir-

ing the “internal model of opponent motion,” especially in 

this type of interaction.
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