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ABSTRACT Eight protein–ligand com-
plexes were simulated by using global optimiza-
tion of a complex energy function, including
solvation, surface tension, and side-chain en-
tropy in the internal coordinate space of the
flexible ligand and the receptor side chains
[Abagyan, R.A., Totrov, M.M. J. Mol. Biol. 235:
983–1002, 1994]. The procedure uses two types
of efficient random moves, a pseudobrownian
positional move [Abagyan, R.A., Totrov, M.M.,
Kuznetsov, D.A. J. Comp. Chem. 15:488–506,
1994] and a Biased-Probability multitorsion move
[Abagyan, R.A., Totrov, M.M. J. Mol. Biol. 235:
983–1002, 1994], each accompanied by full local
energy minimization. The best docking solu-
tions were further ranked according to the
interaction energy, which included intramo-
lecular deformation energies of both receptor
and ligand, the interaction energy, surface ten-
sion, side-chain entropic contribution, and an
electrostatic term evaluated as a boundary
element solution of the Poisson equation with
the molecular surface as a dielectric boundary.
The geometrical accuracy of the docking solu-
tions ranged from 30% to 70% according to the
relative displacement error measure at a 1.5 Å
scale. Similar results were obtained when the
explicit receptor atoms were replaced with a grid
potential. Proteins, Suppl. 1:215–220, 1997.
r 1998 Wiley-Liss, Inc.
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INTRODUCTION

Theoretical prediction of the association of flexible
ligands with protein receptors requires efficient sam-
pling of the conformational space of a flexible ligand,
a sufficiently accurate energy function and an effi-
cient way to account for the receptor flexibility
(reviewed in Refs. 1–4). Flexible docking schemes
can be based on incremental construction of the
docked conformation from separately docked rigid
pieces5–7 or on a limited discrete set of ligand confor-
mations.8,9 Considering the entire continuously flex-
ible ligand molecule with molecular dynamics can be

used to sample the conformational space of relatively
small compounds.1,10–12 Monte Carlo methods allow
to increase the sampling efficiency by making larger
conformational rearrangements.13,14 Typically sam-
pling is performed by making random changes of one
angle by a random value.14,15 Caflish et al.15 used
Monte Carlo combined with local energy minimiza-
tion after each random change of a ligand torsion
(receptor assumed to be rigid), as suggested by Li
and Scheraga16 for peptide structure prediction.

The continuous flexible docking procedure in inter-
nal coordinate space of both the ligand and the side
chains of protein receptor was first introduced in
1994 and applied to predict the association of two
helices.17 This method attempted to globally opti-
mize a rather complex energy function simulta-
neously with ligand and receptor rearrangements
(each followed by local energy minimization) rather
then refine a set of solutions generated with rigid
ligand molecules and with a simpler energy function.
Later, the side-chain entropy and the MIMEL ap-
proximation of the solvation energy were added to
the globally optimized objective function,18 these
terms being evaluated after each local minimization
as outlined in a ‘‘double energy’’ scheme.17 The ICM
docking procedure correctly docked lysozyme and its
antibody in full atom representations with flexible
side-chain association and reached a discrimination
of 19 kcal/mole between the correct lowest energy
conformation and the next false solution.19 Later, the
association of b-lactamase and its inhibitor2,20 were
correctly predicted with a similar energy discrimina-
tion gap, this time under blind prediction conditions.

In this article, we apply the ICM docking method
to small flexible ligands that are globally energy-
optimized together with the active site side chains by
using the double energy scheme. Additionally, we use
an accurate boundary element solution of the Pois-
son equation to evaluate the 30 best docking solu-
tions for each compound.
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METHOD

The ICM method describes both the relative posi-
tions of two molecules and their conformations by a
uniform set of internal variables. Any subset of
internal variables can be subjected to local or global
energy minimization procedures. Docking of flexible
ligands into a flexible receptor requires three groups
of free variables: positional variables of the ligand,
intramolecular variables of the ligand and the tor-
sion angles of the active site side chains (Fig. 1).
Flexible loops can also be sampled simultaneously
with the ligand (e.g., in antibodies). All the other
variables are fixed to accelerate energy evaluation
and sampling. The global minimization procedure
involves a random change of the internal variables
followed by local energy minimization and selection
by the Metropolis criterion. Pseudobrownian ran-
dom moves change the position of the ligand mol-
ecule as a whole with a certain amplitude (here we
used 2 Å), as well as randomly rotate it around its
center of gravity by an angle close to the translation
amplitude over the radius of gyration.17 Internal
torsion angles of the ligand are randomly changed
one at a time, with an amplitude of 180°. Coupled
groups of receptor side-chain torsion angles were
sampled with biased probability moves.18

Once the set of free variables is defined, the ICM
global energy optimization was performed from mul-
tiple starting points. The number of starting points
depends on the size of a ligand and here we used six
random starting points. The energy optimization
routine consisted of the following iterative steps17:

1. Make a random conformational change of three
possible types (Figure 1: loops were not consid-
ered here).

2. Perform local energy optimization of the vacuum
ECEPP3 energy21 with a distant-dependent dielec-
tric constant e 5 4r.

3. Evaluate surface-based solvation energy and en-
tropic contribution from the receptor side chains
and add it to the ECEPP3 energy.

4. Apply Metropolis et al.22 selection criterion at a
certain temperature T and make another step.

Geometrically different (as evaluated by the root-
mean-square displacement [RMSD] of the ligand
atoms) and low-energy conformations were accumu-
lated in the conformational stack as described in Ref.
23. At the end of simulations, the conformational
stacks were merged and the 30 best energy conforma-
tions were ranked with a more rigorous evaluation of
the electrostatic free energy. Electrostatic free en-
ergy was calculated by a numerical solution to the
Poisson equation by using the boundary element
algorithm.24 Our implementation of the boundary
element algorithm uses the accurate analytical mo-
lecular surface build by the fast contour buildup
method.25 The ECEPP charges26 were used for the
protein atoms; charges of the ligand atoms were
calculated with the Gaussian program.27

RESULTS

The techniques developed were tested on the dock-
ing prediction targets in the CASP-2 (critical assess-
ment of structure prediction techniques) protein
structure prediction contest. For the docking simula-
tions, eight ligand–protein complexes were proposed
(Table I). We made predictions for all eight com-
plexes. For each of the targets, the coordinates for a
complex of the protein with some other ligand(s)
were found in the protein structure database (PDB),
which allowed us to establish the approximate loca-
tions of the binding sites as a first step of the
prediction. Next, three-dimensional models of the
ligands had to be built. The chemical structures of
the ligands were available in the form of the connec-
tivity tables. Since the experimental 3D coordinates
for the ligands were not available, we built the
models in the ICM program28 from the fragments of
the compounds found in the Cambridge structural
database (CSD)29 with known three-dimensional (3D)
structures. To find those, CSD was searched for the
compounds with chemical structures similar to the
chemical structure of the ligand. The third step was
the assignment of partial charges to the individual

Fig. 1. ICM docking setup with flexible ligand and explicit
flexible receptor. Most of the receptor variables are fixed.

Fig. 2. Predicted docking conformations are shown in red and
conformations determined by x-ray crystallography are shown in
green. Analytical molecular surface of protein receptors was
generated with the contour-buildup method25 as implemented in
the ICM program.28
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Fig. 2 (legend on preceding page).



atoms of the ligand, which were needed for the
subsequent energy calculations. This was done with
the help of the quantum-chemical program package
Gaussian.27 A CNDO hamiltonian was used to obtain
the ligand atomic charges that are the most consis-
tent with the standard ECEPP3 charges used for the
protein molecule. The fourth and central step of the
procedure was global energy optimization of the
ligand–protein complex. The ligand was placed in
the vicinity of the binding site of the protein, and the
system was subjected to the ICM docking procedure
described above. During the procedure, torsion angles
of the ligand and of the protein side chains in a 7-Å
vicinity of the binding site were randomly changed.
Each random change was followed by up to 100 steps
of local conjugate–gradient minimization. New con-
formations were accepted or rejected according to the
Metropolis criterion by using the temperature of 600
K. Several independent Monte Carlo runs of 300,000
energy evaluations were done for each ligand to
ensure the convergence of the optimization.

In the last step, putative solutions accumulated in
the conformational stacks were reevaluated by using
a more precise solvation electrostatic energy approxi-
mation based on the boundary element solution of
the Poisson equation. The solution that scored best
in this energy approximation was taken as the
answer and submitted. When the experimental struc-
tures became available, we were able to check the
predictions. In most cases, the parts of the ligand
inside the binding center were predicted with good
accuracy. Relatively large deviations occurred only
for atoms that were outside of the binding center. We
used relative displacement error30 (RDE) as well as
RMSD to evaluate our solutions. The results are
summarized on the Table I. The high RMSD values
for several complexes are somewhat misleading,

because in fact only about half of the atoms of these
ligands have large deviations, as the RDE measure
correctly suggests. In the case of target 35, elastase/
elastase inhibitor, the actual structure of the ligand
has undergone chemical changes that were impos-
sible to predict.

After the CASP2 meeting, an attempt was made to
predict the same complexes with the explicit recep-
tor replaced by the grid potential. Four types of
potentials were precalculated: the van der Waals
potential for a hydrogen atom probe, the van der
Waals potential for a heavy atom probe (generic
carbon of 1.7 Å radius was used), an electrostatic
potential from the receptor atoms, and the hydrogen-
bonding potential calculated as spherical gaussians
centered at the ideal putative donor and/or acceptor
sites. Simulations took only about 5 minutes per
compound and results similar to the results of the
full-atom simulations were obtained. While this ap-
proach does not allow the explicit receptor flexibility,
it might be preferred when the calculation speed is
crucial, for example, in database scanning.

DISCUSSION

Accurate prediction of protein–ligand association
requires inclusion of the ligand flexibility and pro-
tein surface flexibility in the docking procedure as
well as precise evaluation of the interaction energy.
The docking technique described here allows continu-
ous and efficient sampling of internal torsions of the
ligand and receptor side chains as well as sampling
of the variables that define the mutual orientation of
the receptor and ligand within the same Monte
Carlo-based global optimization framework. The
pseudobrownian random rearrangements are differ-
ent from other schemes of random positional sam-
pling, such as local minimizations from multiple

TABLE I. Results for the Docking of Eight Ligands to Their Receptors Evaluated byAll HeavyAtom RMSD
and the Relative Displacement Error*

Target Ligand
Receptor

(PDB template code) Site Restraints RMSD†
Fraction

correct (%)‡

t13 Methyl alpha-D-arabinofuranoside Concanavalin A (5cna) Pocket No 3.5 49.6
t33 Pentamidine Pancreatic trypsin (2tbs) Pocket Tip§ 9.27 51.7
t34 Amiloride Pancreatic trypsin (2tbs) Pocket Tip 4.2 48.1
t35¶ SBA\ Pancreatic elastase (1inc) Covalent Chem. bond 10.6 31.2
t36 SBB\ Pancreatic elastase (1inc) Covalent Chem. bond 10.7 35.6
t39 Aica-riboside phosphate Fructose bis-phosphotase (1fpd) Pocket No 1.8 70.1
t40 INH\ Pancreatic trypsin (2tbs) Pocket Tip 6.7 49.7
t41 INI\ Pancreatic trypsin (2tbs) Pocket Tip 7.8 44.6

*Runtimes for simulations with fully flexible receptor side chains and ligand varied from 5 to 15 hours. From Ref. 30, with permission.
†Cartesian RMSD was calculated for all ligand heavy atoms with the receptor models superimposed.
‡Fraction correct, or 100% relative displacement error30 is calculated for all N heavy atoms of a ligand by using this formula: 100%
(L/N ) S(L 1 Dii)21, where Dii is the deviation of the model atom i from the corresponding atom in the reference structure, and the scale
parameter L 5 1.5 Å.
§Tip indicates a distance restraint imposed on the carbon atom of the guanyl group.
¶Predictions were misled by the wrong chemical structure of the t35 ligand suggested for predictions.
\We use abbreviations suggested by the CASP2 organizers. SMILES strings of these compounds can be found at
http://PredictionCenter.llnl.gov/casp2/targets.html.
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starting points,13 or random translations and rota-
tions (e.g., Ref. 15), and has the advantage of imitat-
ing local ligand rearrangements. The proposed bi-
ased-probability sampling method18 for all surface
side chains in the vicinity of the active site is much
more efficient than either discrete sampling9 or
changing one side-chain torsion angle at a time.15,31

This method also can be used to sample the ligand if
its conformational preferences in the form of continu-
ous distributions are preliminary generated or evalu-
ated by using the database.

However, even if the global optimization of the
ligand/side-chain subsystem is fast and convergent,
deformations of the backbone may still be crucial to
docking with detailed atomic models. An adequate
simulation of the backbone flexibility simulta-
neously with the ligand docking is still out of reach
for the current computational approach. To some
extent, softening the potential (e.g., Refs. 32 and 33)
or using an approximate grid potential,12,14,34 which
is less steep than the realistic van der Waals repul-
sion, may be a practical way of overcoming this
problem. Furthermore, simulations with the grid
potential are much faster than the explicit flexible
docking simulations and can be used for scanning
large databases. Clearly, the choice between the
explicit receptor model or the grid potential model
depends on the docking problem and the available
computer time.

In this work the receptor side chains were sampled
together with the ligand. Previously we found that
for protein–protein docking this approach leads to a
better discrimination between the correct and incor-
rect solutions.19,20 It is unclear, however, that in this
work this flexibility was essential.

The energy function optimized with the procedure
included a detailed vacuum energy complemented
with the surface-based solvation and side-chain en-
tropies. Since we intended to compare different
conformations of the same ligand rather than bind-
ing affinities of different ligands, we did not estimate
the ligand entropy loss.35 However, inclusion of the
side-chain entropies into global optimization18 may
be essential for discrimination between putative
binding sites, since these contributions can reach 2
kcal/mol per residue.

Numerical solutions of the Poisson or the Poisson-
Boltzmann equations (reviewed in Refs. 36 and 37)
provide the most accurate representation of the
electrostatic solvation component of the ligand-
binding energy and can be added to the molecular
mechanical force field to rank the docking solu-
tion.38–40 We ranked the 30 best solutions by using a
more accurate evaluation of the electrostatic free
energy calculated with the boundary element algo-
rithm.24,41,42 However, even these energies could not
identify the correct positions of the solvent exposed
parts of the long ligands. Technically, explicit water
molecules could have been sampled together with

the ligand, but explicit solvation can only be ad-
equately considered within the framework of molecu-
lar dynamics.

Although the smaller compounds were predicted
reasonably well, the relatively poor quality of predic-
tion for the longer ligands suggests that the part of
the ligand outside the binding pocket might not have
a strong preference toward any one conformation.
Presumably, the experimental structure in these
cases is defined by a fine balance of energy terms,
which is still beyond the accuracy of the available
energy approximations, or even perhaps by the
crystallographic packing. The presence of many alter-
native configurations for such parts of the ligand
molecule among the low-energy conformations accu-
mulated during the simulations also suggests that
the energy minimum for them is less well defined.
Some of these alternative configurations are closer to
the native conformation, but also have significantly
higher energy then the lowest-energy conformation,
suggesting that sampling of the conformational space
of the ligand is sufficient. Further improvement in
the free energy evaluation is necessary to achieve
better docking precision for the weakly bound groups.
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