
Flexible Regulation of Distributed Coalitions�

Xuhui Ao�� and Naftaly H. Minsky

Department of Computer Science,
Rutgers University, Piscataway, NJ 08854, USA

{ao,minsky}@cs.rutgers.edu

Abstract. This paper considers a coalition C of enterprises {E1,..., En},
which is to be governed by a coalition policy PC , and where each member-
enterprise Ei has its own internal policy Pi that regulates its participa-
tion in the coalition. The main question addressed in this paper is how
can these three policies be brought to bear, on a single transaction—
given that the two internal policies Pi and Pj may be formulated in-
dependently of each other, and may be considered confidential by the
respective enterprises. We provide an answer to this question via a con-
cept of policy-hierarchy, introduced into a regulatory mechanism called
Law-Governed Interaction (LGI).

Keywords: Distributed coalition, Security policy, Decentralized regu-
latory mechanism, Law-Governed Interaction, Policy hierarchy, Policy
interoperability.

1 Introduction

There is a growing tendency for organizations to form coalitions in order to
collaborate—by sharing some of their resources, or by coordinating some of their
activities. Such coalition are increasingly common in various domains, such as
business-to-business (B2B) commerce, under names such as “virtual enterprises”
of “supply chains;” and in grid computing [16,19,18]; and among educational in-
stitutions and governmental agencies. All such coalitions need to be regulated,
in order to ensure conformance with the policy that is supposed to governs the
coalition as a whole, and in order to protect the interest of member organizations.
This need triggered a great deal of recent access-control research for coalitions
[8,11,12,16,18,19], exhibiting several different views of the problem, and employ-
ing different techniques for its solution. Our own view of this problem, which
is more general than most of the above, is based on the following definition of
coalitions.

Definition 1. A coalition C is a set {E1,..., En} of enterprises1, which interop-
erate under an ensemble of policies [PC , {Pi}], where PC is the coalition policy
� Work supported in part by NSF grant No. CCR-98-03698

�� Work supported in part by DIMACS under contract STC-91- 19999
1 The term “enterprise” in this definition refers to educational and governmental in-

stitutions, as well as to commercial ones.

E. Snekkenes and D. Gollmann (Eds.): ESORICS 2003, LNCS 2808, pp. 39–60, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

40 Xuhui Ao and Naftaly H. Minsky

that governs the coalition as a whole, and Pi is the internal policy of enterprise
Ei, which governs its participation in the coalition.

In Section 2 we will explain the need for a coalition to be governed by such
an ensemble of policies, and illustrate the nature of such an ensemble. Here we
just point out that this definition means that every interaction between an agent
xi of enterprise Ei and an agent xj of Ej must comply with the internal policies
Pi and Pj , as well as with the coalition policy PC .

Two issues need to be addressed when establishing a regulatory framework
for such a coalition: (a) the specification of the policy-ensemble that is to govern a
coalition, and its evolution over time; and (b) the policy-enforcement mechanism.
Regarding the latter issue, we adopt here our own access-control mechanism
called Law-Governed Interaction (LGI)[13,14,15,2]. We will be mostly concerned,
in this paper, with the former issue above. That is, with the structure and
specification of the policy-ensemble of a coalition, requiring it to satisfy the
following principle of flexibility :

Principle 1 (flexibility) Each member-enterprise Ei should be able to formu-
late its internal policy Pi, and to change it at will, independently of the internal
policies of other enterprises in the coalition, and without any knowledge of them.

Such a flexibility is important for several reasons. First, it provides each enter-
prise with the autonomy to define its own policy at will, subject only to the
pre-agreed coalition policy PC . Second, the mutual independence of the inter-
nal policies of member enterprises simplifies their formation and their evolution.
Finally, this principle allows an individual enterprise to keep its own policy con-
fidential, since policies of other enterprises do not depend on it.

To appreciate some of the difficulties in satisfying this principle, consider the
following question: how does one ensure that an interaction between an agent xi

of enterprise Ei and an agent xj of Ej conforms to all three policies Pi, Pj and
PC—which govern it? A seemingly natural answer to this question is to compose
policies Pi, PC , and Pj into a single policy, to be enforced by a reference monitor
mediating all coalition-relevant interactions between the two enterprises Ei, Ej .
This approach has, indeed, been attempted by several researchers [9,5,12,6,20]
concerned with the interoperability between agents subject to different policies.
But such composition of policies has several serious drawbacks in the context of
coalitions.

First, composition of policies could be computationally hard. According to
[12], in particular, such composition is intractable for more than two policies,
even for a relatively simple policy language. This is particularly serious problem
for a coalition, which would require a quadratic number (in terms of its mem-
bership size) of compositions of triples of policies—a truly daunting prospect.
Second, composition violates our principle of flexibility. This is because for an
enterprise Ei to formulate, or change, its internal policy Pi, it will have to be
aware of the internal policies of every other member-enterprise, say Pj—lest its
new policy will prove to be inconsistent, and thus not composable, with Pj .

Flexible Regulation of Distributed Coalitions 41

(We will later review other attempts to regulate coalitions, not based on policy
composition.)

The Proposed Approach: We adopt a top-down approach to the specification of
the policy ensemble of a coalition. That is, we propose to start by formulating
the global coalition policy PC , which specifies its constraints over interoperabil-
ity between different coalition members. We then allow individual members to
formulate their own internal policies, subject to PC , but independent of each
other.

This approach is supported by a hierarchical organization of policies, recently
implemented into LGI. Such a hierarchy is formed via a superior/subordinate
relation between policies, where a subordinate policy is constrained, by con-
struction, to conform to its superior policy. Under such an organization of
policies, the internal policies Pi could be defined as subordinate to PC . A pair
of internal policies Pi and Pj , thus defined, are consistent with each other by
definition, although they have been formed with no knowledge of each other,
because both are guaranteed to conform to the same global policy PC . As we
shall see, the enforcement of such a hierarchical policy-ensemble can be carried
out in a completely decentralized manner, without ever having to compose two
independently defined policies, such as Pi and Pj , into a single policy.

The remainder of the paper is organized as follows: Section 2 motivates the
proposed approaches to the governance of coalitions, illustrating it via a fairly
realistic example; this section also discusses related work. Section 3, provides an
overview of the concept of law-governed interaction (LGI). Section 4 shows how
policies under LGI can be organized into hierarchies, and Section 5 presents a
formalization of the example policy-ensemble introduced in Section 2, via the
LGI hierarchy model. We conclude in Section 6.

2 On the Nature of the Proposed Regulatory Framework
for Coalitions

We have just proposed a regulatory framework for coalitions, under which a
coalition C of enterprises {E1,..., En} is to be governed by an ensemble of policies
[PC , {Pi}], which satisfies the flexibility principle. In this section we will attempt:
(1) to motivate this coalition model and to illustrate it by means of a detailed
example; and (2) to compare our model with other approaches to the governance
of coalitions. But we first offer some general remarks about the roles that the
various policies in this ensemble are expected to play, and about what they are
expected to regulate.

First, we expect the coalition policy PC to represent prior agreement, or
contract, between its member enterprises—as well as possible governmental reg-
ulation of such coalitions. For example, PC might specify such things as the
coalition membership, and the required interaction protocol between agents of
different member enterprises. It might also provide certain coalition officers with
a limited ability to regulate dynamically the interaction between member en-
terprises. We will not be concerned in this paper with how such a policy is

42 Xuhui Ao and Naftaly H. Minsky

established. This issue has been addressed elsewhere, such as in [8], where a
negotiation process between member enterprises to establish a compromised PC

has been presented.
Second, we expect the internal policy Pi of an enterprise Ei to be concerned

with internal matters of this enterprise, as they are related to coalition activities.
Thus, Pi might specify such things as: (a) which of its agents (i.e., people or
system-components) are allowed to participate in the coalition activity, either as
servers for fellow coalition members, or as clients for services provided by fellow
members; (b) the amount of usage a given agent of this enterprise is allowed
to make, of services provided by fellow member enterprises, and the amount of
services a given server is allowed to provide to the coalition; and (c) the required
behavior of agents of this enterprise, when serving requests from other coalition
members, or when making such requests—for example, Pi may require certain
coalition activities of its agents to be monitored.

2.1 An Example of a Policy-Ensemble

Consider a set {E1,..., En} of enterprises that form a coalition C in order to
collaborate by using some of each other’s services—as is increasingly common
in grid computing. Suppose that the coalition as a whole has a distinguished
agent DC called its director, and that each member enterprise Ei has its own
director Di. The function of these directors is, in part, to serve as certification
authorities (CAs), as follows: DC would certify the directors of the member
enterprises, which, in turn, would certify the names and roles of agents within
their respective enterprises. These and other roles of the directors, along with
other aspects of this coalition are governed by the global coalition policy PC ,
and by the internal policies of individual enterprises defined as subordinate to
PC , forming a two-level hierarchy depicted in Figure 1(a). These policies would
now be described informally, and discussed. They would be formalized as “laws”
under LGI in Section 5.

The Coalition Policy PC : This policy deals with two issues, as described infor-
mally below:

1. Director’s control over the usage of enterprise-resources:
(a) The total amount of services offered by an enterprise Ei to other coalition

members is determined by director Di, by offering to the coalition director
DC a budget Bi for using its services. This budget is expressed in terms
of what we call Ei-currency, which can be created (minted, in effect) only
by the director Di, as described above.

(b) The coalition director DC can distribute Ei-currencies he got from Di

among the directors of other member-enterprises.
(c) Ei-currency can be used to pay for services provided by agents of Ei.

Such currency can also be moved from one agent to another within an
enterprise, subject to the internal policy of that enterprise—but it cannot
be forged.

Flexible Regulation of Distributed Coalitions 43

21

(b)(a)

321

---- Coalition Director---- Enterprise Director---- Enterprise AgentLegend:

Enterprise 2
Policy P

 Pc

Enterprise 1

 Coalition

P P

 Policy Pc

P

Policy P

Fig. 1. (a) The policy ensemble governing coalition C; (b) The distributed coalition
composed of multiple enterprises and their policies

2. Regulation over service requests by agents at enterprise Ei to agents in Ej :
(a) each such request must carry the name of the sender, as authenticated

by director Di, and must be sent to an agent authenticated as a server
by the director Dj.

(b) Each such request must carry a payment in Ej-currency, which would be
moved by this request from the client to the server. However, if the request
is rejected, for whatever reason2, then the payment will be refunded to
the client.

Thus, policy PC mandates various global aspects of the coalition, including:
(a) the authority, and implied responsibilities, of the various directors; (b) the
requirement that service budgets minted by directors should be treated as cur-
rency, which can be moved from one agent to another, in particular as part
of a service request, but cannot be copied or forged; and (c) the requirement
that service requests must carry the proper authentication of the clients and be
accepted by authenticated servers.

But policy PC does not address many aspects of the coalition, leaving them
for the internal policies of member enterprises to specify. These include, for an
enterprise Ei, say, such things as: (a) how is Ej-currency, provided to Di by
the coalition director, to be distributed among the various agents of Ei; (b) how
much should servers in Ei charge for their services, and what should they do with
payments received; and (c) various conditions that must be satisfied, for agents
of Ei to use services of other enterprises, or to provide services to others—such
as time constraints and auditing requirements. The following are two example
of such internal policies, for member enterprises E1 and E2.

2 The following are among the reasons for a service request to be rejected: (1) the
receiver is not an authenticated server; (2) the type of currency used for payment
doesn’t match the server’s enterprise; and (3) the request is not allowed to be served,
according to the server enterprise’s internal policy.

44 Xuhui Ao and Naftaly H. Minsky

Policy P1 of Enterprise E1:

1. The director D1 of this enterprise (E1) can move service currencies obtained
from DC to any other authenticated agent in its enterprise.

2. Copies of all service requests sent by agents of this enterprise, and of all
requests received by its servers, must be sent to a designated audit-trail server.

Policy P2 of Enterprise E2:

1. Any agent in this enterprise (E2) can give service currencies it has, to any
other agents that has been duly authenticated by the director D2. (That is,
currencies can move freely from one agents to another, unlike under P1,
where currencies can only be granted by the director to regular agents.)
Also, every transfer of currency is to be audited by a distinguished audit-
trail server.

2. Agents of this enterprise are allowed to provide services to other coalition
members, or to request such services, only after normal working hours
(namely, from 6:00PM to 8:00AM).

Note that it is an essential aspect of the policy-ensemble of this coalition that
it is hierarchical, as depicted in Figure 1(a). As we shall see in Section 4, this
means that all internal policies Pi conform to PC , so that none of them would be
able to violate any of the provisions of PC . For example, it would not be possible
to write a internal policy for an enterprise Ej , say, that allows agents of Ej to
forge Ei-currency. This provides an assurance for the director Di of enterprise
Ei that the total amount of Ei-currency circulating among the agents of the
various coalition members—and, thus, the total amount of services its agents
may be asked to perform—does not exceed the service budget Bi he originally
sent to the coalition director DC .

Therefore, the various member enterprises have the flexibility of being able
to write their policies independently of the policies of other members, and they
can change their policies at will. And yet, each enterprise can be confident that
its interlocutors conform to the same common coalition-policy PC .

Figure 1(b) provides an overview of the governance of coalition C by its
hierarchical policy-ensemble. The outer box in this figure represents policy PC ,
which governs the internal policies Pi— represented by boxes nested in it—as
well as the coalition director, which operates directly under PC . The directors
of member-enterprises, represented by shaded shapes, along with other agents
of such enterprises, are governed directly by their own policies, but indirectly by
PC . This figure attempts to illustrate two notable aspects of these policies: (1)
the coalition director DC is only involved in the distribution of service currency
among the directors of member enterprises. He (she, or it) is not involved in the
actual sharing of services (represented by the thick arrows) which is done directly
between the agents of different member enterprises. (2) the internal policy Pi

does not, necessarily, govern the entire enterprise Ei, but only the involvement
of Ei in the working of coalition C.

Flexible Regulation of Distributed Coalitions 45

2.2 Other Approaches to the Governance of Coalitions

Our view that coalitions need to be governed by an ensemble of policies [PC , {Pi}]
is not the common view of the governance of coalitions—not to speak of our
hierarchical structure of such an ensemble, which is quite unique. In this section
we review several other approaches to this issue—starting with projects that
employ only internal policies, and ending with those that employ both internal
and global policies, but in different manners from ours. All the projects to be
reviewed below also differ from ours in their enforcement mechanisms, and in
their expressive power—which is generally based on stateless RBAC models,
and are much weaker than ours. We will comment about these issues, wherever
appropriate.

(I) Shands et al. [18], employ only internal Pi policies, with no global coalition
policy. Moreover, the only control that these policies may have over the ability
of agents to issue service requests, is by assigning them to roles. The server
enforces its own policy, as well as that of its client, for each service request. In
the approach of Thomson et al. [19], enterprises define their policies regarding
a resource in which they have a stake, by issuing digitally-signed certificates.
Only when all the stakeholders’ access requirements are met can the access be
performed. Similarly to [18], all policies are enforced by the server asked to
perform a service.

There are several problems with this kind of server-centric policy enforcement
approach in the coalition context: First, the client enterprise needs to trust the
distributed heterogeneous servers to implement and enforce correctly not only
their internal enterprise policy, but also that of the client enterprise. Further-
more, the server needs to know the internal policy of the client enterprise, which
violates the confidentiality requirement of our principle of flexibility. Finally, it
is virtually impossible for a server to enforce a stateful client’s policy, such as
our policies regarding the movement of currency on the client side.

(II) Several projects take a bottom-up approach. They start with the internal
Pi policies, but attempt, in various ways, to form a global coalition policy from
them. These include the already mentioned work of McDaniel et al. [12], which
attempted to compose the internal policies automatically into a single common
policy, finding this task to be computationally hard. Another approach to this
problem is that of Gligor et al. [8], which tries to establish the common access
policy via negotiation among the coalition members.

(III) Finally, we are aware of two projects that, like us, view a coalition as
being governed by a global coalition policy as well as by the internal policies
of individual coalition members. One of these is the project of Pearlman et
al. [16], where servers are expected to take into account certificates issued by a
centralized enforcer, driven by the coalition policy. The other such project, which
is philosophically closest to our own, is that of Belokosztolszki and Moody [4].
They introduce the concept of meta policy, which is expected to be conformed
to by all internal policies of member enterprises, and is, thus, analogous to our
coalition policy PC . However, this work is based on the RBAC model for access
control, which is much weaker than LGI. In particular, a statful policy, which is

46 Xuhui Ao and Naftaly H. Minsky

sensitive to “service currency,” such as our example policy, cannot be represented
via RBAC. It is not clear to us how their construction could be extended to such
policies.

3 Law-Governed Interaction (LGI) – An Overview

LGI is a message-exchange mechanism that allows an open group of distributed
agents to engage in a mode of interaction governed by an explicitly specified
policy, called the law of the group. The messages thus exchanged under a given
law L are called L-messages, and the group of agents interacting via L-messages
is called a community C, or, more specifically, an L-community CL. This mech-
anism has been originally proposed by one of the authors (Minsky) in 1991 [13],
and then implemented, as described in [15,1].

By the phrase “open group” we mean (a) that the membership of this group
(or, community) can change dynamically, and can be very large; and (b) that
the members of a given community can be heterogeneous. here All the members
are treated as black boxes by LGI, which deals only with the interaction between
them via L-messages, ensuring conformance to the law of the community.

We now give a brief discussion of the concept of law, emphasizing its local
nature, a description of the decentralized LGI mechanism for law enforcement,
and its treatment of digital certificates. We do not discuss here several important
aspects of LGI, including its concepts of obligations and of exceptions, the ex-
pressive power of LGI, and its efficiency. For these issues, and for implementation
details, the reader is referred to [15,1].

3.1 On the Nature of LGI Laws,
and Their Decentralized Enforcement

The function of an LGI law L is to regulate the exchange of L-messages between
members of a community CL. Such regulation may involve (a) restriction of the
kind of messages that can be exchanged between various members of CL, which
is the traditional function of access-control policies; (b) transformation of cer-
tain messages, possibly rerouting them to different destinations; and (c) causing
certain messages to be emitted spontaneously, under specified circumstances, for
monitoring purposes, say.

A crucial feature of LGI is that its laws can be stateful. That is, a law L
can be sensitive to the dynamically changing state of the interaction among
members of CL. Where by “state” we mean some function of the history of this
interaction, called the control-state (CS) of the community. The dependency of
this control-state on the history of interaction is defined by the law L itself. For
example, under law PC to be introduced in section 5, as a formalization of our
example PC policy, the term budget(Bi,Ei) in the control-state of an agent
denotes the amount of budget this agent gets from its director or other agents.

But the most salient and unconventional aspects of LGI laws are their strictly
local formulation, and the decentralized nature of their enforcement. To motivate

Flexible Regulation of Distributed Coalitions 47

these aspects of LGI we start with an outline of a centralized treatment of
interaction-laws in distributed systems. Finding this treatment unscalable, we
will show how it can be decentralized.

On a Centralized Enforcement of Interaction Laws: Suppose that the exchange
of L-messages between the members of a given community CL is mediated by
a reference monitor T , which is trusted by all of them. Let T consist of the
following three part: (a) the law L of this community, written in a given language
for writing laws; (b) a generic law enforcer E , built to interpret any well formed
law written in the given law-language, and to carry out its rulings; and (c) the
control-state (CS) of community CL (see Figure 2(a)).

The structure of the control-state, and its effect on the exchange of messages
between members of CL are both determined by law L. For example, under law
PC , a message giveCurrency(...) will cause the specific service currency to be
reduced from the CS of the sender and added to that of the receiver.

This straightforward mechanism provides for very expressive laws. The cen-
tral reference monitor T has access to the entire history of interaction within
the community in question. And a law can be written to maintain any function
of this history as the control-state of the community, which may have any de-
sired effect on the interaction between community members. Unfortunately, this
mechanism is inherently unscalable, as it can become a bottleneck, when serving
a large community, and a dangerous single point of failure.

Moreover, when dealing with stateful policies, these drawbacks of centraliza-
tion cannot be easily alleviated by replicating the reference monitor T , as it is
done in the Tivoli system [10], for example. The problem, in a nutshell, is that if
there are several replicas of T , then any change in CS, like the reduction of the
service currency from a sender x of message giveCurrency(...), in the example
above, would have to be carried out synchronously at all the replicas; otherwise
x may be able to send more service currency to other agents than what it actu-
ally has, via different replicas. Such maintenance of consistency between replicas
is very time consuming, and is quite unscalable with respect to the number of
replicas of T .

Fortunately, as we shall see below, law enforcement can be genuinely decen-
tralized, and carried out by a distributed set {Tx | x ∈ C} of, what we call,
controllers, one for each members of community C (see Figure 2(b)). Unlike the
central reference monitor T above, which carries the CS of the entire commu-
nity, controller Tx carries only the local control-state CSx of x—where CSx is
some function, defined by law L, of the history of communication between x
and the rest of the L-community. In other words, changes of CSx are strictly
local, not having to be correlated with the control-states of other members of
the L-community.

The Local Nature of LGI Laws: An LGI law is defined over a certain types of
events occurring at members of a community C subject to it, mandating the
effect that any such event should have. Such a mandate is called the ruling of
the law for the given event. The events subject to laws, called regulated events,

48 Xuhui Ao and Naftaly H. Minsky

L

E

CS

X Y

U V

T

X Y

U V
L

E

L

E

CS

CS

u

x

Tu

CSy

Ty

L

E

CSv

Tv

Tx

L

E

(a) (b)

Fig. 2. Law Enforcement: (a) centralized version; (b) decentralized law enforcement
under LGI

include (among others): the sending and the arrival of an L-message; and the
submission of a digital certificate. The operations that can be included in the
ruling for a given regulated event, called primitive operations, are all local with
respect to the agent in which the event occurred (called, the “home agent”).
They include, operations on the control-state of the home agent and operations
on messages, such as forward and deliver. To summarize, an LGI law must
satisfy the following locality properties:

(a) a law can regulate explicitly only local events at individual agents; (b)
the ruling for an event e at agent x can depend only on e itself, and on the local
control-state CSx; and (c) the ruling for an event that occurs at x can mandate
only local operations to be carried out at x.

Decentralization of Law-Enforcement: As has been pointed out, we replace the
central reference monitor T with a distributed set {Tx | x ∈ C} of controllers, one
for each members of community C. Structurally, all these controllers are generic,
with the same law-enforcer E , and all must be trusted to interpret correctly
any law they might operate under. When serving members of community CL,
however, they all carry the same law L. And each controller Tx associated with
an agent x of this community carries only the local control-state CSx of x (see
Figure 2(b)).

Due to the local nature of LGI laws, each controller Tx can handle events
that occur at its client x strictly locally, with no explicit dependency on anything
that might be happening with other members in the community. It should also
be pointed out that controller Tx handles the events at x strictly sequentially,
in the order of their occurrence, and atomically. This, and the locality of laws,
greatly simplifies the structure of the controllers, making them easier to use as
our trusted computing base (TCB).

Finally, we point out that the LGI model is silent on the placement of con-
trollers vis-a-vis the agents they serve, and it allows for the sharing of a single
controller by several agents. This provides us with welcome flexibilities, which
can be used to minimize the overhead of LGI under various conditions.

Flexible Regulation of Distributed Coalitions 49

On the Structure and Formulation of Laws: Broadly speaking, the law of a
community is a function that returns a ruling for any possible regulated event
that might occur at any one of its members. The ruling returned by the law is
a possibly empty sequence of primitive operations, which is to be carried out
locally at the location of the event from which the ruling was derived (called
the home of the event). (By default, an empty ruling implies that the event in
question has no consequences—such an event is effectively ignored.)

More formally, an LGI law L is a function (called the ruling function) of the
following form:

r = L(e, cs), e ∈ E, cs ∈ CS, r ∈ R (1)
where E is the set of regulated events, CS is the set of control states, and R is
the set of all possible sequences of operations that constitute the ruling of the
law.

Concretely, such a function can be expressed in many languages. Our mid-
dleware currently provides two languages for writing laws: Java, and a somewhat
restricted version of Prolog [7]. We employ Prolog in this paper. In this case,
the law is defined by means of a Prolog-like program L which, when presented
with a goal e, representing a regulated-event at a given agent x, is evaluated in
the context of the control-state of this agent cs, producing the list of primitive-
operations r representing the ruling of the law for this event. In addition to the
standard types of Prolog goals, the body of a rule may contain two distinguished
types of goals that have special roles to play in the interpretation of the law.
These are the sensor-goals (in the form t@CS), which allow the law to “sense”
the control-state of the home agent, and the do-goals (in the form do(p)) that
contribute to the ruling of the law.

On the Basis for Trust between Members of a Community: For a member of
an L-community to trust its interlocutors to observe the same law, one needs
the following assurances: (a) that the exchange of L-messages is mediated by
correctly implemented controllers; (b) that these controllers are interpreting the
same law L; and (c) that L-messages are securely transmitted over the network.
If these conditions are satisfied, then it follows that if x receives an L-message
from some y, this message must have been sent as an L-message; in other words,
that L-messages cannot be forged.

Broadly speaking, these assurances are provided as follows: Controllers used
for mediating the exchange of L-messages authenticate themselves to each other
via certificates signed by a certification authority specified by the value of the
ca attribute in the law clause of law L (see, for example, Figure 4, in the case of
law PC). Note that different laws may, thus, require different certification levels
for the controllers used for its enforcement. Messages sent across the network
are digitally signed by the sending controller, and the signature is verified by the
receiving controller. To ensure that a message forwarded by a controller Tx under
law L would be handled by another controller Ty operating under the same law,
Tx appends a one-way hash [17] H of law L to the message it forwards to Ty. Ty

would accept this as a valid L-message under L if and only if H is identical to
the hash of its own law.

50 Xuhui Ao and Naftaly H. Minsky

The Deployment of LGI. All one needs for the deployment of LGI is the avail-
ability of a set of trustworthy controllers, and a way for a prospective client
to locate an available controller. This can be accomplished via one or more
controller-services, each of which maintains a set of controllers, and one or more
certification authorities that certifies the correctness of controllers. For an agent
x to engage in LGI communication under a law L, it needs to locate a controller,
via a controller-service, and supply this controller with the law L it wants to
employ. Once x is operating under law L it may need to distinguish itself as
playing a certain role, or having a certain unique name, which would provide it
with some distinct privileges under law L. One can do this by presenting cer-
tain digital certificates to the controller. For the details of how to deal with the
certificate, including its expiration and revocation in LGI, the reader is referred
to [2].

4 The LGI Law-Hierarchy

We will introduce here the concept of law-hierarchy that formalizes the policy-
hierarchy described in Section 2. Each such hierarchy, or tree, of laws t(L0),
is rooted in some law L0. And each law in t(L0) is said to be (transitively)
subordinate to its parent, and (transitively) superior to its descendents. (As a
concrete example of such a hierarchy we will use the two-level tree t(PC) which
is the formalization under LGI of the policy hierarchy depicted in Figure 1(a).)

Generally speaking, each law L′ in a hierarchy t(L0) is created by refining
a law L, the parent of L′, via a delta L′, where a delta is a collection of rules
defined as a refinement of an existing law (we will, generally denote a delta via
an overline above the name of the law they create). The root L0 of a hierarchy
is a normal LGI law, except that it is created to be open for refinements, in a
sense to be explained below. This process of refinement is defined in a manner
that guarantees that every law in a hierarchy conforms to its superior law—as
we shall see later.

For example, in coalition C, the local law P1 of enterprise E1 would be created
by refining the coalition law PC by means of delta P1, defined in Figure 5. This
is how the hierarchy t(PC)—the ensemble of policies governing coalition C—is
formed.

We will introduce here an abstract—language-independent—model for law-
refinement. This is followed by a description of a concrete realization of this
model, for laws written in Prolog. Finally, we will discuss the basis for trust
between members of different communities under our law-hierarchy model.

4.1 An Abstract Model

Recall that an LGI law L as described in Section 3 is essentially a ruling function
defined in Equation 1, and illustrated in Figure 3(a). We will now open up this
law, by: (a) allowing it to consult a collection of rules designed to refine it—
called a delta; and (b) by taking the advice returned by this delta into account,

Flexible Regulation of Distributed Coalitions 51

when computing its ruling. This is done by replacing the L function defined
in Equation 1 with a pair of functions: a consultation function LC , defined in
Equation 2, which computes a pseudo event pe to be presented to the refining
delta for evaluation; and a ruling function LR, defined in Equation 3, which
takes the proposed ruling pr returned by the refining delta, and computes the
final ruling of the law. The open law is illustrated in Figure 3(b), and this law
with a specific delta is depicted in Figure 3(c).

pe = LC(e, cs) (2)

r = LR(e, cs, pr) (3)

These two functions are evaluated in succession, as follows: when an event e is
submitted to law L for evaluation, the function LC is evaluated first, producing a
pseudo event pe, which is passed to delta L′ for consultation. The delta operates
just like the standard LGI law, producing its ruling—called, in this context, a
“proposed ruling” pr—which is then fed as an input to the ruling function LR.
The result r produced by LR is, finally the ruling of law L.

Suppose now that unlike the open law L, its delta L′ is closed; that is, it is
a single function, defined by Equation 4, which computes its proposed ruling pr
without consulting anything.

pr = L′(pe, cs), pe ∈ E, cs ∈ CS, pr ∈ R (4)

Then the refinement of law L via delta L′, produces a regular LGI law L′—which
is not open to further refinements—as illustrated by Figure 3(c).

Now, note that the ruling function of this closed law L′ is a composition of
functions 2, 3 and 4 above, which has the following form:

r = L′(e, cs) = LR(e, cs, L′(LC(e, cs), cs)) (5)

Law L′ defined by this ruling function is called a subordinate to law L.
It should be pointed out that we limited ourselves here to closed deltas,

which do not consult anything when computing their rulings. Such deltas can
produce hierarchies of depth two, at most—which is all we need in this paper.
However, this model can be extended to open deltas that consult other deltas
at a lower level, thus producing a cascade of refinements, and a hierarchy of
arbitrary depth. Such a model is outlined in [3], but is beyond the scope of this
paper.

Finally, we can now explain the sense in which a law L′, which is subordinate
to L in a hierarchy, is said to conform to its superior law L: Law L′ is created
by refining L via a delta L′. As is evident from both Figure 3 and Equation 5,
this is done by having the ruling of the delta submitted as an input to the ruling
function of L, which finally produces the ruling. Thus, the final decision about
the ruling of law L′ is made by its superior law L, leaving to its deltas only an
advisory role.

52 Xuhui Ao and Naftaly H. Minsky

’

Controller

cs

cs
C

cs

Controller

’

’

C R

(b) (c)(a)

cs
R

Controller

L

pr

L
pr

L

pe

L L
e r

L

r

e r

e

L L L

pe

Fig. 3. (a) An closed LGI law L, in context; (b) An open-up law L; (c) Refinement of
law L via delta L′, producing law L′

4.2 A Concrete Realization of Law Hierarchy,
for Laws Written in Prolog

We now describe how our current Prolog-based language for writing laws has
been extended to implement the abstract model of law hierarchies. We start with
the manner that a law can consult its deltas, then we describe the structure of
the deltas themselves, and we conclude with the way that a law can decide on
the disposition of ruling proposals returned to it by its deltas.

Consulting Deltas: Suppose that we are operating under law L′, which is a
refinement of law L via delta L′. An arbitrary consultation function LC (see
Equation 2) can be defined into a law L, by inserting a clause of the form
delegate(g), anywhere in the body of any rule of L, where g is an arbitrary
Prolog term. The presence of a delegate(g) clause serves to invite refining
deltas to propose operations to be added to the ruling being computed.

To see the effect of the delegate(g) clause, more specifically, suppose that
law L contains the following rule r:

h :- ..., delegate(g), ...

If the evaluation of L gets to the delegate(g) clause of rule r, then goal g is
submitted to the delta L′ for evaluation, playing the role of the pseudo event
pe in Equation 2. This evaluation by the delta will produce a list of operations
pr, which would be fed back to L, as the ruling proposal of the delta, for goal
g. The operations thus proposed are provisionally added to the ruling, but their
final disposition will be determined by L, as we shall see later.

Finally, note that delegate(g) clause in a law L has no effect when L has
no delta.

The Structure of Law Deltas: A refining delta L′ of a law L looks pretty much
like the root-law L0 of the law-tree, with two distinctions:

First, the top clause in the delta is

law(name(L’),ca(pk)) refines L,

Flexible Regulation of Distributed Coalitions 53

where L is the name of the law being refined, L’ is the name of this delta, and pk
is the public key of the certifying authority to certify the controllers enforcing
law L’.

Second, the heads of the rules in L′ need to match the goals delegated to it by
law L, and not the original regulated events that must be matched by the rules
of the root-law L0. Although the goals delegated to a refining delta can, and
often do, take the form of regulated events, like sent(...), and arrived(...),
as is the case in our case study in Section 5.

Finally, note that each delta has read access to the entire control-state (CS)
of the agent. That is, the rules that constitute a given delta can contain arbitrary
conditions involving all the terms of the CS.

The Disposition of Ruling Proposals: A law L can specify the disposition of
operation in the ruling proposal returned to it by any refining delta L′. This is
done via rewrite rules of the form:

rewrite(O) :- C,replace(Olist)

where O is some term, C is some condition, and Olist is a possibly empty list
of operations. The effect of these rules are as follows. First let rp be the set
of terms proposed by a refining delta in response to the execution of a delegate
clause in L. For each term p in rp, a goal rewrite(p) is submitted for evaluation
by law L. If this evaluation fails, which happens, in particular, if none of the
rewrite(O) rules in L matches this goal, then term p is added to the ruling of
law L.

If, on the other hand, the evaluation succeeds by matching one of the rewrite
rules and condition C of this rule evaluates to true, then p is replaced by the list
Olist. Olist is then added to the ruling of L. Note that if Olist is empty,
then term p would be discarded in spite of its inclusion in the ruling proposal
made by the refining delta. For example, the rewrite rule of law PC in Figure 4,
which is the implementation of our example coalition policy, will discard any
proposed forward operations of service currency movement from its refining
delta to make sure no service currency can be forged. Further, C cannot contain
a delegate clause so that no further consultation is possible with the refining
delta on the disposition of p; we believe that this constraint keeps the model
easy to understand without real loss of flexibility.

So, the rewrite rules of a law L determine what is to be done with each
operation proposed by a refining delta: whether it should be blocked, included
in the ruling, or replaced by some list of operations. Note that each rewrite
rule is applied to the ruling proposal returned by a refining delta, regardless of
which delegate clause originally led to the consultation with the refining delta.

Finally, LGI features another technique to regulate the effect of a refining
delta on the eventual ruling of the law. It can protect certain terms in the
control-state from modification by refining deltas of a given law L. This is done
by including the clause

protected(T)

54 Xuhui Ao and Naftaly H. Minsky

in the Preamble clause of law L (see Figure 4 for example), where T is a list of
terms. For example, if the following statement appears in L,

protected([name(),role()])

then no refinement of L can propose an operation that modifies the terms name
and/or role. Strictly speaking, such protection of terms in the control state can
be carried out via rewrite rules, but the protected clauses are much more
convenient for this purpose.

4.3 On the Basis for Trust between Members
of Different Communities

Recall that a law may require that all the controllers used to interpret it are
certified by a specific CA. And different, independent, laws may require different
CAs for this purpose (see Section 3.1). The situation with laws related via the
subordinate relation is as follows: Consider a law L that requires certification
by ca, and suppose that law L′, which is subordinate to L, requires certification
by ca′. In this case we require the controllers interpreting law L′ to be certified
by both CAs: ca and ca′.

Now, consider agents x and y operating under laws Lx and Ly, respectively.
And suppose that these laws permit these agents to exchange messages, provided
that both laws above are subordinate to a common law, say L. When these two
agents communicate, it would be necessary to ensure that: (a) the exchange
is mediated by properly certified controllers; and (b) that these controllers are
interpreting laws that have a common superior.

The first assurance above is obtained by having the controller of x (and
similarly for that of y) authenticated by the CA required by the common superior
law L, as well as by the CA required by law Lx, if any. The second assurance is
obtained by checking the subordinate relationship of the laws (all the laws are
identified by their one-way hashes). In our law-language this kind of check is
carried out by the predicate

conforms(L′,L),

which is true if and only if law L′ is identical, or subordinate, to law L. (See
Figure 4 for an example of the use of this predicate.)

5 A Case Study

We now show how the policy hierarchy described in Section 2 can be specified in
LGI, using the mechanisms just introduced. We start by formalizing the coalition
policy PC , making it into an LGI law PC . We then formalize policies P1 and P2
via deltas that refine law PC .

Flexible Regulation of Distributed Coalitions 55

5.1 Establishing the Coalition Policy PC

Law PC , which implements policy PC , is shown in Figures 4. This, like any other
LGI laws, has two parts: (a) a Preamble, which specifies such things as certifying
authorities acceptable to this law, and the initial control state of agents operating
under it; and (b) the set of rules, whose formal statement is followed by informal
comments, in italics.

PC ’s Preamble has several clauses. The law clause indicate that this is a
root-law, specifying its name, and the public key of the CA that is to be used
for certifying the controllers interpreting this law. The authority clause spec-
ifies the public key of a CA—the coalition director Dc, whose certification
would be accepted by this law for the authentication of the member enterprise
directors Di—as we shall see. The initialCS clause specifies that the ini-
tial control state of everybody who adopt this law would be empty. Finally, the
protected clause specifies four control-state terms that would be protected from
change by refining deltas. They are: myDirector(,), budget(,), name(),
and role(), which we will discuss later.

Our discussion of the rules of this law is organized as follows: We start with
how directors of enterprises, and agents working for them, are authenticated;
and how an agent can claim his official names and the role he is to play within
its enterprise. Second, we show how service budgets are allocated by enterprise
directors, how they are distributed by the coalition director, and service currency
is to be moved from one agent to another. Third, we discuss how service request
are sent, and what happens if a request is rejected. Finally, we show how the
coalition law PC limits the power of the deltas that might be used to refine it.

(a) Coalition Membership, and Agent Authentication: For the director D of
enterprise E to claim his role under this law, he needs to present a certificate
issued by the coalition director DC , with the attribute role(directorOf(E)).
By Rule R1, this would cause the term directorOf(E) to be added to his
control-state.

For any other agent x of the enterprise E to join the coalition, it needs
to present two certificates: One, issued by coalition director DC to certify its
director D, and getting its public key ; this is done via Rule R1, which will add
the term myDirector(D,E) to the CS of x. The other, issued by its director D
to certify the name and role of x; this is done via Rule R2, which will add the
attribute name(N) and possible role(R), to the CS of x.

Note that the terms added to the CS of various agents as the result of such
certification serve as a kind of seals that authenticate the role of these agents
for their interaction with other agents in the coalition.

(b) Allocation of Budgets, and Moving Currencies: By Rule R3, a director D
of enterprise E can send a message grantBudget(B,E) to the coalition director
DC , which (by Rule R4) will add the term budget(B,E) to the CS of DC , upon
its arrival. This budget for services by enterprise E can be redistributed (by
Rules R5 and R6) among the directors of other enterprises.

56 Xuhui Ao and Naftaly H. Minsky

Preamble:
law(name(PC),ca(publicKey1)).
authority(DC ,publicKey2).
initialCS([]).
protected([myDirector(,),budget(,),name(),role()]).

certified([issuer([e1Admin,e2Admin]),subject(E3Admin),attributes([join(newEnt)])]) :- gets a
R1. certified([issuer(DC),subject(D),attributes([role(directorOf(E))])])

:- if (D==Self) then do(+role(directorOf(E))) else do(+myDirector(D,E)).
The director D of enterprise E needs to be certified by a certificate issued by the coalition director
DC .

R2. certified([issuer(D),subject(Self),attributes(A)]) :- myDirector(D,E)@CS,name(N)@A,
do(+name(N)), if role(server)@A then do(+role(server)).

Claiming the name and role within one coalition member enterprise E via certificate issued by the
director D of that enterprise.

R3. sent(D,grantBudget(B,E),[DC,ThisLaw]) :- role(directorOf(E))@CS, do(forward).
Only the director of the member enterprise E can contribute the initial budget (B,E) to the coalition
director DC .

R4. arrived([D,Ld],grantBudget(B,E),DC) :- conforms(Ld,ThisLaw),
if (budget(B1,E)@CS) then do(budget(B1,E)<-budget(B1+B,E)) else
do(+budget(B,E)), do(deliver).

The contributed budget B from enterprise E will be recorded as term budget(B,E) in the control
state of the coalition director.

R5. sent(DC,grantBudget(B,E),[D,Ld]) :- conforms(Ld,ThisLaw),
budget(B1,E)@CS, B1 >= B, do(budget(B1,E)<-budget(B1-B,E)), do(forward).

The initial budget assignment from the coalition director to the member enterprise directors.
R6. arrived([DC,ThisLaw],grantBudget(B,E),D) :- role(directorOf(Ei))@CS,

if (budget(B1,E)@CS) then do(budget(B1,E)<-budget(B1+B,E)) else
do(+budget(B,E)), do(deliver).

Only the member enterprise’s director can receive the initial budget from the coalition director.
R7. sent(X,giveCurrency(B,E),[Y,Ly])

:- conforms(Ly,ThisLaw), budget(B1,E)@CS, B1>=B, delegate(ThisGoal), if
(permitS@Ruling) then do(budget(B1,E)<-budget(B1-B,E)), do(forward).

An agent can give part of its service currency to others if it is authorized by the local law delta of
its enterprise.

R8. arrived([X,Lx],giveCurrency(B,E),Y) :- conforms(Lx,ThisLaw),
if (budget(B1,E)@CS) then do(budget(B1,E)<-budget(B1+B,E)) else
do(+budget(B,E)), do(deliver).

The service currency given by other agents will be added into the receiver’s account.
R9. sent(X,sr(from(N),service(S),payment(P,E)),[Y,Ly]) :- conforms(Ly,ThisLaw),

name(N)@CS, budget(B,E)@CS,B >= P, delegate(ThisGoal),
if (permitS@Ruling) do(budget(B,E)<-budget(B-P,E)), do(forward).

Any service request must contain the name of the sender and the payment, and be authorized by
the local law delta of the sender enterprise.

R10.
arrived([X,Lx],sr(from(N),service(S),payment(P,E)),Y) :- conforms(Lx,ThisLaw),

if (myDirector(D,E)@CS, role(server)@CS, delegate(ThisGoal),
permitA@Ruling) then
(budget(B,E)@CS, do(budget(B,E)<-budget(B+P,E)), do(deliver))
else (name(M)@CS,
do(forward(Self,srReject(from(M),service(S),payment(P,E)),[X,Lx]))).

Only a certified server can process the service request if it is authorized by its local enterprise law
delta. Otherwise, the request will be rejected.

R11.
arrived([X,Lx],srReject(from(N),service(S),payment(P,E)),Y) :-

conforms(Lx,ThisLaw), budget(B,E)@CS, do(budget(B,E)<-budget(B+P,E)),
do(deliver).

The arrival of the service reject message will restore the client’s budget by that payment.
R12.

rewrite(forward(X,M,[Y,Ly])) :- conforms(Ly,ThisLaw),
if (M==(grantBudget(,)
|giveCurrency(,)|sr(, ,)
|srReject(, ,))) then replace([]).

Make sure that no subordinate law delta can violate the properties of this law. without

Fig. 4. Law PC

Flexible Regulation of Distributed Coalitions 57

Note that the term budget(B,E) in the CS of any agent represents under this
law what we have called E-currency, i.e., currency that can be used for paying
servers in enterprise E. The law allows such currencies to be moved from one
agent to another, subject to the various policies, but it provides no means for
forging currencies. E-currency can be moved by any agent to another via the
giveCurrency(B,E) message, regulated by Rules R7 and Rule R8, provided
that such transfer is permitted by the enterprise refining delta.

It is instructive to observe how Rule R7 checks for the permission of currency
transfer by a refining delta. After the delegate(ThisGoal) clause (ThisGoal
would be bound to the head of the evaluated rule, in this case, the currency
sent event), a check is performed to see whether an operation permitS is in
the ruling compiled thus far (Ruling); if permitS is present, then the currency
transfer is performed.

Finally, we note that both the redistribution of the service currency by the en-
terprise’s director, and the subsequent movement of it among the regular agents,
are governed by the same Rule R7 and Rule R8.

(c) Regulation over Service Requests: By Rule R9, an agent with official name
N, certified by its enterprise director, can issue request for service S of enterprise
E via message:

sr(from(N),service(S),payment(P,E))

if the payment P doesn’t exceed its current budget and the request is authorized
by its refining delta. If it is the case, the corresponding payment will be reduced
from the sender’s budget before the service request is forwarded.

By Rule R10, only the certified server can receive a service request if the
payment type is correct and the request is authorized by the server’s local en-
terprise refining law delta. If this is the case, the two operations will be carried
out: (1) the server’s budget will increase by that payment, and (2) the request
will be delivered to the server.

Otherwise, a service rejection message with the previous payment will be
forwarded back to the client and the client will get the refund of that payment
as in Rule R11. Both Rule R9 and Rule R10 use the similar process as Rule R7
to check the permission of the request sending and receiving from the refining
delta.

(d) Limiting the Power of Refining Deltas: Finally, PC imposes some limitations
on the possible effects of refining deltas, to ensure such things as that currencies
cannot be forged. First, as has already been pointed out, the protected clause
in the preamble of this law does not allow certain terms to be changed by deltas.

Second, by Rule R12, this law would reject any recommendation by delta
to forward certain messages, such as grantBudget and giveCurrency messages
that might cause, effectively, currency to be forged. This is done because PC
cannot depend on refining deltas not to violate these important properties that
our law is responsible for.

58 Xuhui Ao and Naftaly H. Minsky

5.2 Establishing Local Policies of Member-Enterprises

Law P1 of Enterprise E1: This law is formed by refining law PC via delta P1,
which is shown in Figure 5. As specified in the preamble of this delta, the con-
trollers interpreting this law would be required to be certified by the CA identi-
fied by the public key publicKey3—as well as by the CA required by the superior
law PC . Furthermore, the preamble specifies the address of agent, which is to be
used as an audit-trail server under this law.

Preamble:
law(name(P1),ca(publicKey3)) refines PC .
alias(e1Auditor,”e1Auditor@e1.com”).

R1. sent(X,giveCurrency(B,E),[Y,Ly]) :-
role(directorOf(e1))@CS, do(permitS).

In this enterprise, only the enterprise director can give its own service currency to others.
R2. sent(X,sr(from(N),service(S),payment(P,E)),[Y,Ly]) :-

do(permitS), do(deliver(Self,ThisGoal,e1Auditor)).
Authorize all the service requests. Furthermore, monitor all the service requests sent by the agents
of this enterprise.

R3. arrived([X,Lx],sr(from(N),service(S),payment(P,E)),Y) :-
do(permitA), do(deliver(Self,ThisGoal,e1Auditor)).

Authorize all the service requests. Furthermore, monitor all the service requests received by the
servers of this enterprise.

Fig. 5. Law delta P1

By Rule R1, law P1 allows only the director of enterprise E1 to distribute
currencies within the enterprise. No other agent can transfer its currencies to
others.

Rules R2 and R3 ensure that copies of all the service requests sent by agents
of E1 and those received by the servers of E1 will be sent to its own audit-trail
server–e1Auditor.

Law P2 of Enterprise E2: This law is formed by refining law PC via delta P2,
which is shown in Figure 6. This law differs from P1, in the following respects:
First, by Rule R1, any agent in enterprise E2 can transfer part of any service
currency it has to others, and any such currency movement will be audited by
the enterprise’s auditor e2Auditor.

Also, by Rules R2 and R3, agents of E2 are allowed to engaged in coalition
activities only between 6:00PM to 8:00AM; where, by “coalition activity” we
mean sending or receiving service requests.

6 Conclusions

This paper introduces a new, and fully implemented, regulatory mechanism for
coalitions. The main contributions of this mechanism are as follows:

First, this mechanism is based on a very general view of the governance of
coalitions, assuming that each coalition C is governed by a global policy PC ,

Flexible Regulation of Distributed Coalitions 59

Preamble:
law(name(P2),ca(publicKey4)) refines PC .
alias(e2Auditor,”e2Auditor@e2.com”).

R1. sent(X,giveCurrency(B,E),[Y,Ly]) :-
do(permitS), do(deliver(Self,ThisGoal,e2Auditor)).

Any agent in this enterprise can give part of its service currency to others and that currency movement
will be monitored by this enterprise.

R2. sent(X,sr(from(N),service(S),payment(P,E)),[Y,Ly]) :-
clock(T)@CS, if (T > 6:00PM; T < 8:00AM) then do(permitS).

The agents of E2 are allowed to send the coalition service requests only after the normal working
hour,namely, from 6:00PM to 8:00AM.

R3. arrived([X,Lx],sr(from(N),service(S),payment(P,E)),Y) :-
clock(T)@CS, if (T > 6:00PM; T < 8:00AM) then do(permitA).

The servers of E2 are allowed to receive and process the coalition service requests only after the
normal working hour, namely, from 6:00PM to 8:00AM.

Fig. 6. Law delta P2

and that each coalition member Ei is governed by its own policy Pi, which must
conform to PC .

Second, since it is based on LGI, our mechanism can support a wide range
of highly dynamic (stateful) policies, and it enforces these policies in an efficient
and decentralized manner.

Finally, our mechanism satisfies the following flexibility property:

Each internal policy Pi can be defined and changed independently of the
internal policies of other coalition members, and without any knowledge
of them.

Such a flexibility is important for several reasons. First, it provides each enter-
prise with the autonomy to define its own policy at will, subject only to the
pre-agreed coalition policy PC . Second, the mutual independence of the inter-
nal policies of member enterprises simplifies their formation and their evolution.
Finally, this principle allows an individual enterprise to keep its own policy con-
fidential, since policies of other enterprises do not depend on it.

References

1. X. Ao, N. Minsky, T. Nguyen, and V. Ungureanu. Law-governed communities over
the internet. In Proc. of Fourth International Conference on Coordination Models
and Languages; Limassol, Cyprus; LNCS 1906, pages 133–147, September 2000.

2. X. Ao, N. Minsky, and V. Ungureanu. Formal treatment of certificate revocation
under communal access control. In Proc. of the 2001 IEEE Symposium on Security
and Privacy, May 2001, Oakland California, pages 116–127, May 2001.

3. X. Ao, N.H. Minsky, and T.D. Nguyen. A hierarchical policy specification language,
and enforcement mechanism, for governing digital enterprises. In Proc. of the IEEE
3rd International Workshop on Policies for Distributed Systems and Networks,
Monterey, California, pages 38–49, June 2002.

60 Xuhui Ao and Naftaly H. Minsky

4. A. Belokosztolszki and K. Moody. Meta-policies for distributed role-based access
control systems. In Proc. of the IEEE 3rd International Workshop on Policies
for Distributed Systems and Networks, Monterey, California, pages 106–115, June
2002.

5. C. Bidan and V. Issarny. Dealing with multi-policy security in large open dis-
tributed systems. In Proceedings of 5th European Symposium on Research in Com-
puter Security, pages 51–66, September 1998.

6. P. Bonatti, S. D. Vimercati, and P. Samarati. A modular approach to composing
access control policies. In Proceedings of the 7th ACM conference on Computer
and communications security, pages 164–173, 2000.

7. W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, 1981.
8. V. Gligor, H. Khurana, R. Koleva, V. Bharadwaj, and J. Baras. On the negotiation

of access control policies. In Proc. of the Security Protocols Workshop, Cambridge,
UK, April 2001.

9. L. Gong and X. Qian. Computational issues in secure interoperation. IEEE Tran-
sctions on Software Engineering, pages 43–52, January 1996.

10. G. Karjoth. The authorization service of tivoli policy director. In Proc. of the
17th Annual Computer Security Applications Conference (ACSAC 2001), Decem-
ber 2001. (to appear).

11. H. Khurana, V. Gligor, and J. Linn. Reasoning about joint administration of access
policies for coalition resources. In Proc. of IEEE Int. Conf. On Distr. Computing
(ICDCS),Vienna, Austria, pages 429–440, July 2002.

12. P. McDaniel and A. Prakash. Methods and limitations of security policy recon-
ciliation. In Proceedings of the IEEE Symposium on Security and Privacy, pages
66–80, May 2002.

13. N.H. Minsky. The imposition of protocols over open distributed systems. IEEE
Transactions on Software Engineering, February 1991.

14. N.H. Minsky and V. Ungureanu. Unified support for heterogeneous security policies
in distributed systems. In 7th USENIX Security Symposium, January 1998.

15. N.H. Minsky and V. Ungureanu. Law-governed interaction: a coordination and
control mechanism for heterogeneous distributed systems. TOSEM, ACM Trans-
actions on Software Engineering and Methodology, 9(3):273–305, July 2000.

16. L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A community au-
thorization service for group collaboration. In Proc. of the IEEE 3rd International
Workshop on Policies for Distributed Systems and Networks, Monterey, California,
pages 50–59, June 2002.

17. B. Schneier. Applied Cryptography. John Wiley and Sons, 1996.
18. D. Shands, R. Yee, J. Jacobs, and E. Sebes. Secure virtual enclaves: Supporting

coalition use of distributed application technologies. In Proc. of Network and
Distributed System Security Symposium, San Diego, California, Feb 2000.

19. M. Thomson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiari.
Certificate-based access control for widely distrbuted resources. In Proceedings of
8th USENIX Security Symposium, August 1999.

20. D. Wijesekera and S. Jajodia. Policy algebras for access control: the propositional
case. In Proceedings of the 8th ACM conference on Computer and communications
security, pages 38–47, 2001.

	1 Introduction
	2 On the Nature of the Proposed Regulatory Framework for Coalitions
	2.1 An Example of a Policy-Ensemble
	2.2 Other Approaches to the Governance of Coalitions

	3 Law-Governed Interaction (LGI) -- An Overview
	3.1 On the Nature of LGI Laws, and Their Decentralized Enforcement

	4 The LGI Law-Hierarchy
	4.1 An Abstract Model
	4.2 A Concrete Realization of Law Hierarchy, for Laws Written in Prolog
	4.3 On the Basis for Trust between Members of Different Communities

	5 A Case Study
	5.1 Establishing the Coalition Policy P_C
	5.2 Establishing Local Policies of Member-Enterprises

	6 Conclusions
	References

