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Abstract. Today, sensing resources3 are the most valuable assets of crit-
ical tasks (e.g., border monitoring). Although, there are various types of
assets available, each with different capabilities, only a subset of these
assets is useful for a specific task. This is due to the varying informa-
tion needs of tasks. This gives rise to assigning useful assets to tasks
such that the assets fully cover the information requirements of the in-
dividual tasks. The importance of this is amplified in the intelligence,
surveillance, and reconnaissance (ISR) domain, especially in a coalition
context. This is due to a variety of reasons such as the dynamic nature
of the environment, scarcity of assets, high demand placed on available
assets, sharing of assets among coalition parties, and so on. A significant
amount of research been done by different communities to efficiently as-
sign assets to tasks and deliver information to the end user. However,
there is little work done to infer sound alternative means to satisfy the
information requirements of tasks so that the satisfiable tasks are in-
creased. In this paper, we propose a hybrid reasoning approach (viz., a
combination of rule-based and ontology-based reasoning) based on cur-
rent Semantic Web4 technologies to infer assets types that are necessary
and sufficient to satisfy the requirements of tasks in a flexible manner.
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Rules, Hybrid Reasoning

1 Introduction

A sensor network [1] is a collection of heterogeneous sensing resources3, composed
of sensors and platforms. Sensors capture phenomena whereas platforms provide
the durability, mobility, communication capabilities, and so, on to the mounted
sensor(s). Advances in technology have made the deployment of sensor networks
3 A sensing resource (henceforth referred to as an “asset”) is a platform which contains

one or more sensors.
4 http://www.w3.org/2001/sw/
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a robust and viable solution to reliably monitor and obtain timely, continuous,
and comprehensive observations about dynamic situations [17, 19]. Therefore, for
many critical tasks like border monitoring or surveillance, selection of sensing
assets for tasks play a key role in their success or failure. This leads to the
problem of assigning proper assets to tasks such that the assigned assets cover
the information needs of the individual tasks.

Effective and efficient assignment of assets to such tasks is an important
but computationally hard problem in sensor networks domain. The difficulty
of this problem is amplified in the intelligence, surveillance, and reconnaissance
(ISR) domain, and especially in a coalition context, where the assets belonging
to different parties are shared to archive tasks. This is due to a variety of rea-
sons. First, the environments in which these resources are deployed could rapidly
change (i.e., new high-priority tasks emerge, assets become unreliable, weather
conditions change, and so on) yielding new information requirements or assets
requirements. Second, the demand placed on available assets typically exceeds
the inventory [14] resulting in complex assignment choices. Last but not the least,
the inability to obtain a bird’s-eye view of the available assets to tasks makes
it impossible to perform assignments in an informed manner. All these reasons
imply the necessity to infer sound alternative means to satisfy the information
requirements of tasks so that the different capabilities provided by assets can
be used to cover the information requirements of tasks properly, thus increasing
the number of satisfiable tasks.

Many communities have investigated the assignment problem and proposed
different mechanisms that could be applied to solve it. Some of these approaches
rely on having a human in the loop to decide which assets are appropriate to
satisfy the requirements of tasks [4] whereas other approaches have tried to au-
tomate the assignment process [5, 13, 22]. However, these automated approaches
are highly constrained in terms of their assumptions. For example, the work
discussed in [5] assumes an unlimited inventory of assets, whereas [13] assumes
assets to be of the same type (i.e., any assets could provide some utility to a task).
This is not the case in general and especially in the environments highlighted
above. Assets are heterogeneous (different capabilities, operational conditions
etc.) by nature and only suitable for particular tasks.

Most of the current approaches have ignored important qualitative attributes
such as the capability provided by assets, prevailing weather conditions, etc.
These attributes play a major role in deciding which assets could be deployed
to achieve the information needs of tasks. Moreover, important many-to-many
relationships between assets and tasks (i.e., a task could be accomplished in
several different ways; an asset could be used to achieve several different kinds
of tasks) are not considered. We argue that considering these relationships allows
agile management of information providing assets by enabling reasoning about
different capabilities of assets and requirements of tasks.

In this paper, we propose knowledge-rich models and mechanisms based on
Semantic Web4 technologies to address the issues highlighted above. We propose
a rule-based system to infer multiple capabilities that could be used to satisfy the
information requirements of tasks. We then discuss an ontology-based reasoning
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framework to identify suitable asset types that meet those identified capabilities,
thus increasing the flexibility of the assignment. We present tools that are built
around these models to assist the decision makers in the assignment process in
order to identify suitable asset types for tasks. The proposed system not only
recommends asset types in an agile manner but also guarantees the soundness
of the solution inference process.

The rest of this document is structured as follows. In section 2, we survey
related research done in sensor networks and other domains that have inspired
our work. Section 3 introduces a rule-based system that enables inference of
different capabilities to satisfy the goals of tasks and gives some example outputs
from the rule system. In section 4, we highlight an ontology-based matchmaking
framework to infer sound solutions to the assignment problem based on the
capabilities provided by the assets and the requirements advertised by the tasks.
A case study, applying out approach is illustrated in section 5 and we conclude
in section 6, also providing future directions for this work.

2 Related Work

As stated previously, different communities have proposed a variety of approaches
to solve the problem of assigning assets to tasks. These approaches can be
grouped and summarized as follows:
Algorithmic Approaches. Many approaches have proposed a utility-based so-
lution with heuristics-based enhancements. For example, in [5] Byers and Nasser
propose a framework to solve the assignment problem based on energy conser-
vation to maximize the utility of a sensor network while keeping the cost of
the assignment per task under a pre-defined budget. Johnson et al. propose an
energy-aware approach to select assets for tasks in both static and dynamic en-
vironments [13] for competing tasks. One major drawback in these approaches is
the fact that all assets are assumed to be of the same type. We argue that this is
not the general case. Assets are heterogeneous (different capabilities, operational
conditions etc.) by nature and only suitable for particular tasks.

In [22], Tatton proposes an approach to optimize the assignment of assets to
task based on probability of target detection. In [8], Doll has further extended the
sensor allocation model by introducing notion of probability of line of sight and
field-of-view to the model in order to better estimate the asset performance. The
drawback of these approaches is the assumption that there exists a classification
that pre-identifies assets being suitable for some particular tasks in order to
perform the assignment.
Semantic-based Approaches. In [23], Whitehouse et al. propose a framework
based on semantics to allow users to perform declarative queries over a sensor
network (i.e., rather than querying raw data, users query whether a vehicle is
a car or a truck). A major drawback in this approach is the fact that all the
desired inference units must be declared for a sensor network before users can
start using the system. This is difficult, if not impossible, for a heterogeneous
sensor network deployed in a dynamic situation. Also the declarative language
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described in the work is not standardised (i.e., the language is described using
Prolog [6] predicates) which hinders the extensibility of the system.

Recent research has considered standardised descriptive schema represen-
tations (e.g., XML [21], RDFS5, OWL [7]) to assist in assets-to-tasks assign-
ment [4]. The keystone of this approach is to have standardised schemas to
describe assets, asset properties, and requirements. There is already a signif-
icant amount of work done in this area, for example XML-based approaches
such as the OpenGeospatial Consortium (OGC)6 suite of Sensor Web Enable-
ment (SWE) [4] specifications to ontologies such as OntoSensor [10], the Marine
Platforms Ontology [3], etc.

Lack of semantics in SensorML [18] (i.e., descriptions of assets and their
capabilities are in plain text) makes it difficult to be used in automated capability
inference mechanisms. OntoSensor [10] was created to assist in semantic data
fusion. Therefore, a great deal of emphasis has been put on modelling the data
from assets, but not their functional aspects. Hence, it cannot also be used as it
is in capability inferences.

The proposed approach builds upon the existing standards and mechanisms
for knowledge representation and reasoning in order to enable semantic-aware
assignment of assets to tasks. In the next section we propose a knowledge-based
rule system to address the issue of inferring different capabilities that can satisfy
the same information requirements of tasks.

3 Agile Inference of Capabilities: A Rule-based Approach

In an environment where there are many-to-many relationships between tasks
and assets, it is prudent to allow tasks’ requirements to be specified in manner
that is independent of specific capabilities of assets. For example, in a surveillance
task rather than asking for infrared capability one could specify the information
requirement for detecting vehicles. Let us assume that, according to the available
inventory, detecting a vehicle could be done with infrared, radar, or acoustic
capabilities, thus, yielding multiple degrees of freedom in (re)assignment of assets
to tasks.

We propose a rule-based system to address this issue. The proposed system
allows users to describe what they want to achieve (e.g., detect vehicles, identify
a particular building, etc.) and use the rule-based system to infer the different
capabilities that could be used to achieve tasks. In order to infer the required
capabilities to achieve tasks, tasks must be formalised with respect to the capa-
bilities that are required to achieve them. There are many knowledge corpora
that provide adequate information about the different capabilities required to
achieve the same task. In the next subsections, we discuss one of these knowledge
corpora and show how we have formalised it so that different capabilities can be
inferred to satisfy the same task.

5 http://www.w3.org/TR/rdf-schema/
6 http://www.opengeospatial.org
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3.1 National Image Interpretability Rating Scale (NIIRS)

NIIRS7 is an approach embraced by intelligence and civilian communities to
express the information potential of different image types [12]. NIIRS is defined
for visible, infrared, radar, and multispectral imagery, providing a 10-level scale
with each level containing several interpretation tasks or criteria. Within each
spectrum higher NIIRS levels inherit the criteria of their subordinates. For ex-
ample, with a NIIRS-3-rated image one can satisfy criteria set out by NIIRS 1
and 2.

The criteria indicate the expressivity of an image in terms of the amount
of information that could be extracted from it at the given scale. For example,
with visible NIIRS 4, identification of individual tracks is possible whereas with
an image of visible NIIRS 6, identification of a vehicle is made possible (i.e., the
make/model of the vehicle can be identified). Additionally a task can be achieved
using different spectra with different NIIRS values. For example, detecting a large
aircraft could be done with infrared and visible imagery using ratings 2 and 3
respectively. The image classification criteria could be broadly categorized as
detect8, distinguish9, and identify10

In section 3.3 we show how we formalised the NIIRS knowledge corpus. In
order to formalise NIIRS, first we need to come up with a classification of the
elements in the environment. In the next section, we discuss a possible represen-
tation for this classification using an OWL-DL ontology.

3.2 Detectable Ontology

Let us first introduce the notion of detectable: detectable are the objects (e.g.,
vehicles, building, people and so on) of interest. For example let us take the task
detect large buildings (e.g., hospitals, factories). In this case detectables can be
classified as buildings. Let us take another example task detect individual vehicles
in a row at a known motor pool. Vehicles are the detectables in this example.

We have created a detectables ontology to represent these concepts. Figure
1 shows a fragment of the taxonomies we have developed. We have used these
concepts in the formalization of the criteria described in NIIRS, as we explain
in Section 3.3. As Figure 1 shows, detectable concepts are broadly categorized
into Area, Component, Equipment, LinesOfTranspotation, Platform, Sensor, and
Structure. We have classified other detectable concepts as subclasses of these
main concepts. A Car which is a subconcept of WheeledVehicle is a GroundPlat-
form (i.e., Figure 1(b)). SiteConfiguration represents a collection of buildings
whereas SiteComponent refers to an individual building such as Pier, Hanger

7 http://www.fas.org/irp/imint/niirs.htm
8 Ability to find or discover the presence of an item of interest, based on its general

shape, contextual information, etc.
9 Ability to determine that two detected objects are of different types or classes based

on one or more distinguishing features
10 Ability to name an object by type or class, based primarily on its configuration and

detailed components
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(b) Site Configurations

(a) Main Concepts of Detectables (c) Lines of Transportation

Fig. 1. Taxonomy of “Detectables”

or part of a building such as BoilerHall. Factory is not classified under either
of them since it could be a single building structure or a multiple building con-
figuration. Also we have introduced an object property hasFeature to describe
the distinctive features of Detectables. For example, piers and hangars are both
detectable concepts but they also are parts of a port, which makes them features
of the port. Furthermore, this classification helps us formally define the concepts
detectable, distinguishable, and identifiable:

1. Detectable: If the concept of interest has any sub-concept then it is de-
tectable (e.g., WheeledVehicle).

2. Distinguishable: If a set of concepts are detectable, then they are also
distinguishable. For example, if we detect a Jeep and a Car, then we can
distinguish between them based on their shape.

3. Identifiable: If the concept of interest has no sub-concepts, then it is iden-
tifiable. For example, one can say a SAAB 9-3 sedan is identifiable.

3.3 Formalisation of Interpretation Tasks

We define a criterion as a 6-element tuple FIT (T, W, F,C, I, V ), where T rep-
resents the type of the interpretation task to perform (e.g., detect, distinguish,
identify, and so on); I is the type of capability/intelligence (e.g., imagery spec-
tra in NIIRS) that could be used to perform the interpretation task; W =
{w1,w2,. . . ,wi} is a set of detectables (e.g., {port, hospital}) that can be ob-
served using the capability/intelligence I; F = {f1,f2, . . . ,fj} is a set of features
(e.g., {pier, warehouse, loading bay, ambulance}) describing W ; C represents the
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context of the detectables; V is a numeric value that represents the quality of the
intelligence (e.g., the rating of an imagery source in NIIRS). Below we provide
examples of this formalism based on NIIRS criteria.

With an image rated Visible NIIRS 1, one can detect a medium-sized port
facility and/or distinguish between taxi-ways and runways at a large airfield [12].
So, from this criterion, we can derive if there is a port facility in the image then
one can detect it. Also according to the Radar NIIRS 1, one can detect a port
facility based on its features (i.e., presence of piers and warehouses). Example 1
and Example 2 shortly describe how tasks could be presented in our formalism
to exploit features and context of criteria while inferring different capability.

Example 1 The task of detecting a port can be formalised as FIT(detect, {Port},
{}, {}, image(Visible), 1). In this case, a reasoner can infer detection of a port can
be achieved by using Visible NIIRS 1. However, in many cases, using explicit
features of ports (e.g., piers and warehouses), we can detect objects more ac-
curately. Therefore, the representation FIT(detect, {Port}, {Pier,Warehouse}, {},
image(Radar), 1) allows a reasoner to use some explicit features of a port while
detecting it.

Example 2 Some tasks are highly sensitive to the context. For example, dis-
tinguishing between a taxiway and a runway using imagery intelligence can only
be achieved if the context of the task enables clear images to be taken. If the
context is airfield, which means that the task will be executed over an airfield,
it is possible to distinguish between a taxiway and a runway. This can be rep-
resented as FIT(distinguish, {Taxiway,Runway}, {}, {AirField}, image(Visible), 1).
Similarly, to detect individual vehicles in a row at a known motor pool using
radar intelligence, we have FIT(detect, {Vehicle}, {}, {Motor-Pool}, image(Radar),

4).

We believe the proposed FIT formalism can be used to formalise knowledge
from other intelligence domains too. For example, Guo et al. [11] propose an
approach to detect and distinguish vehicles based on their acoustic signatures.
Therefore, detect and distinguish tasks in our framework can also be formalised
using acoustic signatures instead of NIIRS. In this case, if an acoustic signature
of value 5 enables us to detecting a vehicle, we should formalise our statement
as FIT(detect,{Vehicle},{},{},5,Acoustic).

An extensive knowledge base has been created using the representation above
by formalizing the NIIRS corpus. In the next section, we present a set of rules
that are implemented to draw conclusions from this knowledge base to find di-
verse but feasible set of capabilities to perform a task. This makes the assignment
of assets to tasks more flexible and agile; we reason about multiple ways in which
assets can satisfy the requirements of a task.

3.4 Rules to Derive Capabilities

In this section, we present a set of rules to make inferences from the created
knowledge base using the FIT formalism. These rules derive minimal, but nec-
essary and sufficient capabilities needed to achieve a particular task. For example,
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let X be a set of objects that need to be observed. Detecting an element xi ∈ X
is defined using the rules below.

detect(xj , ij , vj) ← distinguish(xj , ij , vj) (1)

distinguish(xj , ij , vj) ← identify(xj , ij , vj) (2)

detect(xj , ij , vj) ← FIT (detect, w, f, c, ij , vj) ∧ xj ∈ w (3)

identify(xj , ij , vj) ← FIT (identify, w, f, c, ij , vj) ∧ xj ∈ w (4)

distinguish(xj , ij , vj) ← FIT (distinguish, w, f, c, ij , vj) ∧ xj ∈ w (5)

These rules can be interpreted as follows. Rule 1 states that the object of
interest xi can be detected using intelligence ij and the quality of intelligence vj

(corresponds to ratings in NIIRS terminology) if it can be distinguished using
ij and vj . Similarly, Rule 2 states that xi can be distinguished using ij and vj if
it can be identified using ij and vj . Rules 3, 5 and 4 state that you can detect,
identify or distinguish an object xi if you can find a related FIT statement in
which xi is a member of the set w of detectables declared in the statement.

3.5 Example Results

We have developed a proof-of-concept prototype using CIAO Prolog11 to show
how these rules draw conclusions from the knowledge base. For this purpose, we
first query the system for required capabilities of the tasks detect, distinguish,
and identify. Then, in this section we summarize the inferred capabilities. For
example, a query to detect a large airplane returns the following result set.

?- detect(largeAirliner,Results).

Results = [(image(infrared),2),(image(radar),2),(image(visible,3))]

The inferred solution recommends three capabilities that could be used to
perform the task using one of visible, infrared, or radar imagery with a minimum
NIIRS of 3, 2, and 2 respectively. However, detection of a small airplane can
only be achieved using an infrared imagery with a minimum NIIRS of 3.

?- detect(smallAirliner,Results).

Results = [(image(infrared),3)]

Therefore, according to the definitions of the interpretation tasks, distinguish-
ing between a large plane and a small plane could only be done using infrared
image with a minimum NIIRS of 3. This is because, infrared NIIRS 3 is the
smallest common denominator in the above two queries to detect a large plane
and a small plane. Below is the result of the query that confirms the expected
result.

?- distinguish([largeAirliner,smallAirliner],Results).

Results = [(image(infrared),3)]

11 http://clip.dia.fi.upm.es/Software/Ciao/
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4 Capability-Requirement Matching

In [9, 16], we proposed the Sensor Assignment to Missions (SAM)12 framework
to improve asset-to-task assignments based on current Semantic Web technolo-
gies together with semantic matchmaking [15]. The core of the approach is a set
of interlinking ontologies to describe scenarios (i.e., missions, operations, tasks),
assets (i.e., sensors and platforms), capabilities of the assets, and the require-
ments of the tasks. These ontologies are represented in OWL DL [7].

This approach was inspired by the Missions and Means Framework (MMF) [20].
MMF was developed by the US Army Research Laboratory to provide means
for specifying a military mission in order to evaluate the utility of alternative
means (i.e., assets) to accomplish the goals. Based on MMF we have defined
an architecture to infer the types of assets that are fit for the purpose (i.e.,
can meet the information requirements of the task). We use semantic reasoning
and a matchmaking mechanism to derive these asset types. Figure 2 depicts the
architecture of the system.

SAM

ISTAR

Sensor 
Infrastructure

Sensor 
Catalog

Mission Script

< packages >

< requirements >

Fig. 2. SAM architecture

The architecture is composed of two main components, SAM the reasoner
and the sensor infrastructure, and some data sources (viz., ISTAR ontology,
and sensor catalogue). The ISTAR13 ontology represents the domain knowledge
of intelligence, surveillance, target acquisition, and reconnaissance aspects (e.g.,
types of intelligence). Figure 3 depicts the main concepts of the ISTAR ontology.
The left-hand side decomposes a mission into a collection of tasks with specific
information requirements (e.g., surveillance) and the right-hand side represents
capabilities provided by assets (e.g., target detection provided by an UAV) as a
12 http://www.csd.abdn.ac.uk/research/ita/sam
13 http://www.csd.abdn.ac.uk/research/ita/sam/downloads/ontology/ISTAR.owl
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composition of the functions provided by sensors and platforms. Requirements
of tasks are broadly categorized into two sections: intelligence (i.e., kinds of
intelligence disciplines such as imagery intelligence) and operational (i.e., desired
capabilities of a task such as constant surveillance) requirements.

The sensor catalogue contains the attributes of assets (i.e., location, energy,
current status, and so on.). These assets are particular instances of the asset
types described in sensor and platform ontologies of the ISTAR ontology. The
attributes of assets are retrieved from a sensor infrastructure [2].

Task Capability

Operation

Mission

Asset

Platform System

Sensor

comprises toAccomplish

comprises toAccomplish

toPerform

is-a

is-a

is-a

mounts

attachedTo

requires

providesallocatedTo

interferesWith

entails

Fig. 3. Main concepts and relations in the ISTAR ontology. Reproduced from [9]

The reasoner checks the requirements of a given task and suggests asset types
that are feasible and logically sound for the task. These solutions are logically
sound due to the logical properties of OWL-DL [7] and the inference mecha-
nisms used. We use Pellet14 as a DL reasoner for inferences. Some solutions
recommended by the reasoner are collection of asset types. This is because a
task may not be satisfied with only one asset. For example, to achieve the goals
of the task, visual and audio information are needed but there is no single asset
to provide both. SAM uses a set-covering algorithm to compute this. Since a
solution may contain more than one asset type, we refer to a solution collectively
as an asset package. Furthermore, using subsumption15 relationships, the rea-
soner finds all the plausible assets types for a particular task. We believe these
solutions can be used in many useful ways, such as to analyse the feasibility of a
mission with respect to an assets inventory, to assist in planning and re-planning
stages of the mission, and so on.

14 http://clarkparsia.com/pellet/
15 A concept A subsumes a concept B if the definitions of A and B logically imply that

members of B must also be members of A.
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SAM

ISTAR

Sensor 
Infrastructure

Sensor 
Catalog

Mission Script

< packages >

< requirements >

Rule System

Acoustic 
KB

Imagery 
KB

< tasks >

< capabilities >

Fig. 4. SAM architecture with integrated rule system

We have extended the SAM architecture by incorporating the rule system
discussed in Section 3 as shown in Figure 4. With the resulting integrated system,
users can specify their information needs at higher level. That is, they do not
have to express every capability requirement of a task explicitly; instead they
simply let the rule system infer multiple capabilities in which the task could
be accomplished. These inferences allow the system to compute many different
asset types that could be used to satisfy the requirements of a given task.

5 A Case Study

In this section, we introduce an example scenario and demonstrate how the
system proposed in Section 4 computes feasible asset types for tasks in a realistic
situation. Let us suppose a mission where an international peacekeeping force
has to maintain a safe corridor between two countries. In order to perform this
mission, many operations need to be carried out. Let one of those operations be
“Perimeter Surveillance”, which could be broken down into a set of tasks. Some
possible tasks for the operation are:

1. Detect human activity in the region. This task is a part of the operation
because a suspicious gathering near or in the region of the safe corridor may
imply a critical breach in perimeter.

2. Detect vehicle movement. This may imply the movement of troops or
militia.

3. Identify vehicle of particular type. For example armoured vehicles might
imply an imminent treat.

Let us consider the task identify vehicle. A high-level requirement of iden-
tifying a vehicle task could be identifying jeeps. The SAM tool discussed in
section 4 allows users to specify their requirements in this manner (e.g., detect
vehicles, identify jeeps, etc.) as shown in figure 5.

When the SAM tool receives such requirements, they are automatically
passed onto the rule system discussed in section 3.4. Within the rule system, the
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Fig. 5. SAM tool

appropriate rule is executed (e.g., detect rule is fired for detect activities whereas
for identifying activities, identify rule is fired.). The rule traverses through the
knowledge-bases (KBs) known to the rule system, and infer minimum capability
ratings required to satisfy requirements. These KBs are created with respect
to the formalism described in section 3.3. In order to satisfy the requirement
identify jeeps, the rule system derives {VisibleNIIRSRating6, RadarNIIRSRating6,

ACSignature7} as the required ratings.
This result set represents the fact that, in order to identify a jeep, one needs

assets that could either provide visual, radar, or acoustic capability at a particu-
lar rating or above. These results are handed back to the SAM tool as shown in
figure 4. SAM tool then passes these results to the ontology-based reasoner to
identify the potential assets types that satisfy these capability requirements. It is
important to note that these capability ratings are provided by an asset: sensors
provide the capabilities such as radar, acoustic whereas platforms provide the
capabilities such as altitude, range capabilities required to compute a particular
rating. We represent this using the following logical formula.

Asset([P,S]):providesCapabilityRating([C,R]) ← Platform(P):canProvideRating([C,R]) ∧
Platform(P):carriesSensor(S) ∧
Sensor(S):providesCapability(C)

Therefore, in order to infer suitable asset types the reasoner first has to iden-
tify the suitable platform and sensor types based on the above capability ratings.
We have created an ontology to represent these ratings and rating types concepts.
The figure 6 depicts the NIIRS [12] imagery types and NIIRS imagery rating
concepts of this ontology. We have imported this ontology into our ISTAR13

ontology and associated these concepts with sensors and platforms types. At the
reasoner level, we then use Pellet14 to identify platform types that could provide
a particular rating or above (using subsumption relationships among the rat-
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NIIRS TypesNIIRS Ratings

Fig. 6. NIIRS imagery types and ratings

ings) and sensor types that could be used to satisfy the capabilities for a specific
rating. The reasoner then uses a set covering algorithm to compute all possible
asset types that could be used to satisfy the task requirements. For example, to
identify a jeep following asset types are recommended.

Asset Type Explanation

iRobotPackbot with AcousticArray Provides an acoustic signature of value 9
Raven with DaylightTV Provides a visual rating of value 7
Reaper with DaylightTV Provides a visual rating of value 6
Reaper with SAR Provides a radar rating of value 6
GlobalHawk with EOCamera Provides a visual rating of value 6
GlobalHawk with SAR Provides a radar rating of value 6
HarrierGR9 with EOCamera Provides a visual rating of value 7
NimrodMR2 with EOCamera Provides a visual rating of value 6

Table 1. Assets capable of identifying a jeep

6 Conclusions and Future Work

In this paper, for the assets-to-tasks assignment problem, we have proposed
an approach motivated by the importance of the litheness to the assignment
problem. We have combined an ontology-based and rule-based reasoning mech-
anisms to achieve this. We have proposed a formalism to represent tasks. A well
known knowledge corpus is formalised to create a knowledge-base, based on this
formalism. A set of rules has been implemented to draw conclusions from this
knowledge-base and we have validated the flexibility of this inference process by
examples and a case study. In this architecture, the rule-based system is used to
infer the information providing capabilities whilst an ontology-based reasoner is
used to produce sound asset types that are necessary and sufficient to meet the
information requirements of the tasks.

We have demonstrated the usefulness of the proposed approach by means of
an example scenario. Our experiments imply that the research is promising even
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though it is currently in its early stages. Hence, we plan to investigate the follow-
ing issues as a future work. First, we want to generalize the task representation
so that a number of other domains could be represented using the same formal-
ism. Second, the current version of the rule-based reasoning depends on the rule
engines such as Prolog and Jess16. This is partly due to the existing limitations
of the rule languages and tools catered for Semantic Web (e.g., SWRL does not
support negation). We are currently investigating other rule representations that
enable us to formalise rules using first order logics constructs.
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