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Abstract

Precipitation amounts at daily or hourly scales are skewed to the right
and heavy rainfall is poorly modeled by a simple gamma distribution. An
important, yet challenging topic in hydrometeorology is to find a prob-
ability distribution that is able to model well low, moderate and heavy
rainfall. To address this issue, we present a semiparametric distribution
suitable for modeling the entire-range of rainfall amount. This model
is based on a recent parametric statistical model called the class of Ex-
tended Generalized Pareto Distributions (EGPD). The EGPD family is in
compliance with Extreme Value Theory for both small and large values,
while it keeps a smooth transition between these tails and bypasses the
hurdle of selecting thresholds to define extremes. In particular, return
levels beyond the largest observation can be inferred. To add flexibility to
this EGPD class, we propose to model the transition function in a non-
parametric fashion. A fast and efficient nonparametric scheme based on
Bernstein polynomial approximations is investigated. We perform simula-
tion studies to assess the performance of our approach. It is compared to
two parametric models: a parametric EGPD and the classical Generalized
Pareto Distribution (GPD), the latter being only fitted to excesses above
a high threshold. We also apply our semiparametric version of EGPD to
a large network of 180 precipitation time series over France.

Keywords— precipitation, Extreme Value Theory, Extended Generalized Pareto
Distribution, semiparametric, Bernstein polynomials, maximum likelihood esti-
mator
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1 Introduction

Modeling the distribution of precipitation data is needed in many applications
regarding water resources management, design, or planning, such as urban wa-
ter supplies, hydropower, forecast of flood or droughts events, irrigation sys-
tems. A first and essential step in the statistical modeling is to find probability
distributions that can describe correctly the occurrences and the intensities of
precipitation. As the process of rainfall occurrences is discrete, while its amount
is a continuous one, the most common approach is to have a different model for
these two features. In this work, we only focus on the second part, i.e., the
statistical modeling of strictly positive rainfall amounts, and we refer to Wilks
(1999) and Apipattanavis et al. (2007) to model occurrence processes.

Fitting accurately the full spectrum of rainfall amounts has proven to be a
challenging task, mainly due to the fact that they are heavily skewed to the
right. Different distributions, such as gamma (see e.g., Katz, 1977; Stern and
Coe, 1984; Wilks, 1989), mixed exponential (see e.g., Woolhiser and Pegram,
1979; Richardson, 1981; Wilks, 1999; Garavaglia et al., 2010), Weibull (see e.g.,
Zucchini and Adamson, 1984) or lognormal (see e.g., Apipattanavis et al., 2007)
have been considered as possible candidates. As suggested by Vrac et al. (2007)
and Wilks (2011), gamma and mixed exponential are typically the preferred
choices, but, as pointed out by Katz et al. (2002), the tail of a gamma distri-
bution can be too light to model heavy rainfall and underestimation of extreme
values can occur, an undesirable feature in any hydrological risk analysis.

As mentioned by Evin et al. (2018), stochastic precipitation generators have
become useful tools in risk assessment studies for two reasons. Realistic simu-
lated precipitation draws are needed as inputs of conceptual hydrological mod-
els. In particular, the observed series of streamflows are too short to estimate
the very high floods return levels. In this context, simple but rich probabil-
ity density functions (pdf) to generate precipitation draws, extreme included,
are needed. In this framework, the work in this paper can also be viewed as
proposing a new and flexible tool (the precipitation building unit) to researchers
interested by constructing such stochastic rainfall weather generators.

As the upper tail of the distribution holds crucial information, the General-
ized Pareto Distribution (GPD) is nowadays the common choice for modeling
heavy rainfall in the statistical climatological community (see, e.g., Katz et al.,
2002; Nadarajah, 2005). GPD is defined by the cumulative distribution function
(cdf) Hξ(x/σ) as

Hξ(z) =

{

1− (1 + ξz)
−1/ξ
+ , for ξ 6= 0,

1− e−z, for ξ = 0,

where ξ is the shape parameter, σ > 0 is the scale parameter and a+ =
max(a, 0). It is mathematically justified by extreme value theory (EVT) (see,
e.g., Coles, 2001). In hydrology, ξ is often assumed to be non negative for daily
rainfall (see, e.g., Evin et al., 2018). We keep this hypothesis of ξ ≥ 0 in this
work.
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A practical limitation of the GPD is that it can be only applied to "ex-
treme precipitation" and this leads to the question of how to set a threshold
that differentiates heavy and moderate rainfall. Answering this question be-
comes delicate when the number of time series under study increases, say in a
climate model output analysis with thousands of grid points. In such situations,
graphical device tools like a Quantile-Quantile plot (QQ-plot) (see, e.g., Coles,
2001; Katz et al., 2002) cannot be visually checked anymore. Hence, the thresh-
old in hydrological instances dealing with a large number of datasets is chosen
arbitrarily, classically the 95% quantile of each time series.

To illustrate this issue, a classical GPD analysis was applied to daily Fall
rainfall (1976-2015) at 180 French weather stations, see Figure 1. As often done
for such large sets of weather stations, a site dependent threshold is set and, in
this introductory and motivating example, it corresponds to the 95% quantile at
each location. For such a threshold choice strategy, the left panel provides the
expected scale parameter spatial structure for extreme French precipitation,
with a large variability over the Mediterranean coast (this is mainly due to
the orography and weather patterns produced by the Rhone valley and the
influence of the Mediterranean Sea). The shape parameter displayed in the right
panel also follows a typical behavior in the sense that the spatial variability is
strong with some climatological incoherent features. For example, the weather
station of Chartes (coordinates: 48.46 Lat, 1.5 Lon) located South-West of
Paris has a shape parameter of 0.47. This is extremely high with respect to
its neighbouring stations (which have an estimated ξ ranging from 0 to 0.2).
This is also climatological inconsistent in this Parisian region where weather
and climatological features for extreme rainfall should be spatially coherent due
to the lack of orography and of specific local storms/wind patterns.

To explore this issue in more details, the QQ-plot in the upper-right panel
of Figure 2 shows that, despite this high value of ξ around 0.47, the departure
from the red diagonal is not pronounced, and this indicates a rather good fit for
extreme rainfall at this station. The histogram in the lower-left panel also ap-
pears to be in compliance with the estimated GP density. The red flag pointing
towards an overestimation of ξ could be the scatterplot between the estimates
of σ and ξ obtained by bootstrapping the original rainfall data (before thresh-
olding). This last plot indicates that the variability in the estimation of ξ can
be large, ranging from zero to 0.8, and the clear negative correlation between
the estimators of σ and ξ is a well known feature of the GP parameter inference,
i.e. an overestimation of ξ is coupled by an underestimation of σ and vice-versa
(see, e.g. Ribereau et al., 2011). As it is operationally impossible to repeat this
visual inspection for our 180 weather stations and for different threshold values,
this leaves us to wonder if the large estimate of ξ for the Chartres station is just
due to the inherent variability of GP fit for small samples (here 40 exceedances
above the 95% threshold). Later on in Section 5, we will compare this GP anal-
ysis of this rainfall dataset of 180 weather stations with our proposed approach.
In particular, the example of the Chartres station will be revisited in detail.

Besides extremal behaviors, practitioners can be interested in summarizing
the full rainfall range, e.g., to determine in a climate change Detection & Attri-
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Figure 1: Scale (left panel) and shape (right panel) parameters from a classical
GPD analysis applied to daily Fall French rainfall (1976-2015). The threshold
is chosen to be equal to the 95% quantile at each of 180 weather stations.

bution study if rainfall (extremes included) have changed over time (see, e.g.,
Hegerl and Zwiers, 2011). In recent years, a few attempts have been made to
bypass the threshold choice and to characterize the full precipitation spectrum.
Mixture and hybrid models have been proposed, such as the dynamic weighted
model used by Vrac and Naveau (2007), or the hybrid model based on a gamma
and GPD distributions of Furrer and Katz (2008). In practice, these models
have a large number of parameters and the inference remains a challenge (see
also Carreau and Bengio, 2008; MacDonald et al., 2011, for mixture approaches).

Moving away from the idea of a mixture, Naveau et al. (2016) recently pro-
posed a construction that allows a smooth transition between GPD type tails
and the middle part (bulk) of the distribution. Here, this class of models is
referred as the Extended Generalized Pareto Distribution (EGPD) family. It
bypasses the thresholds selection step and it is in compliance with EVT, not
only for heavy rainfall, but also for low precipitation amounts. In particular,
low precipitation amounts are classically modeled by a gamma distribution.

Mathematically, a member of the EGPD model has to be expressed as

F (x) = G {Hξ(x/σ)} , for all x > 0, (1)

or, in terms of densities, as f(x) = 1
σ g {Hξ(x/σ)} · hξ(x/σ), where hξ and Hξ

represent the pdf and the cdf of the GPD, while g (resp. G) denotes a continuous
pdf (resp. cdf) on the unit interval. To insure that the upper tail behavior of F is
driven by a GPD with parameter ξ, the survival function Ḡ = 1−G has to satisfy

that the limit a := lim
u↓0

Ḡ(1−u)
u with u = Hξ(

x
σ ) is finite and positive as x tends to
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Figure 2: GPD analysis of the Chartres station (coordinates: 48.46 Lat, 1.5
Lon)
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infinity (u tends to 0). In this case, the upper tail behavior of F (x) is equivalent

to the original GPD tail used to build F (x), i.e., F (x)

Hξ(
x
σ
)
= Ḡ(1−u)

u ∼ a > 0 as x

tends to +∞.
To force low rainfall (modeled as −X) to follow a GPD for small values near

zero, we need that the limit c := lim
u↓0

G(u)
us is positive and finite for some positive

real s. In this case, F (x) ∼ c
{

Hξ(
x
σ )
}s

∼ c
σsx

s as x tends to zero.
In Naveau et al. (2016), four parametric models for the G function satisfying

the required constraints were proposed and compared. But, besides inferential
convenience, there is not a theoretical reason to choose a particular parametric
G. In this context, the main goal of the present work is to determine if a non-
parametric family for G in Equation (1) can be proposed, and more importantly,
if this model can be quickly and efficiently inferred. This will bring flexibility to
this family and it will be a versatile tool for hydrologists. To reach this target,
we take advantage of Bernstein polynomials approximation by relying on the
link between Bernstein polynomials and the beta distributions.

The paper is organized as follows. In Section 2, a short background on Bern-
stein polynomials and its relationship with density estimation is provided. Our
proposed semiparametric EGPD model is also described in Section 2 . Section
3 discusses in depth the estimation procedure. Sections 4 and 5 are dedicated
to case studies on simulated and rainfall datasets, respectively. Conclusions and
perspectives are presented in Section 6.

2 Semiparametric EGPD model class

Naveau et al. (2016) explained that the key component of the EGPD class is
the continuous function G on [0, 1] (called transition function). The inverse of
G can be viewed as a type of anamorphosis on [0; 1]. It is applied to define X
as X = σH−1(G−1(U)) where U follows an uniform distribution. This building
block G links the bulk of the distribution with both the upper and lower tails.
As our goal is to propose a flexible form for G, a first idea could be to work
with Gaussian mixtures. But, as the support of G is the unit interval, this
option will lead to overly complex truncations and boundaries effects. Another
alternative could be mixtures of beta densities with a few components, e.g., Ji
et al. (2005). However, parametric mixture models become problematic when
the number of components increases, because too many parameters have to be
estimated. Another issue is that observed rainfall is measured in millimeters,
but G describes data on [0, 1]. This implies that the estimation of G is based
on pseudo-observations Hξ(Xi/σ), thus requiring as a first step the estimation
of Hξ(x/σ).

This implies that any nonparametric estimation of G has to be simple in
order to keep at bay computational issues. In this context, kernel density es-
timators, polynomials approximation, or projections techniques, rather than
mixture models, should be favored. A natural way to approximate functions on
the unit interval is to use Bernstein polynomials.
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2.1 Bernstein polynomials and density estimation

In 1912, Bernstein introduced the polynomials named after him in a proof of the
Weierstrass Approximation Theorem. He showed that any continuous function
G on the interval [0, 1] can be approximated up to some degree of accuracy by
Bernstein polynomials. Hence, if G denotes a continuous cdf on [0, 1], it can be
approximated by the Bernstein estimator of degree m > 0 defined by

Pm(t, G) =

m
∑

k=0

G

(

k

m

)

bk,m(t),

where bk,m(t) =
(

m
k

)

tk(1− t)m−k for t ∈ [0, 1]. These so-called Bernstein bases
have attractive properties, e.g., non-negativity, partition of unity and symme-
try (see Farouki, 2012, for details). To use the approximation Pm(t, G) in a
statistical context, one needs to compute G

(

k
m

)

from a sample drawn from G.
The idea of Vitale (1975) was to estimate these coefficients by replacing the
unknown G by its empirical cumulative distribution function (ecdf), say Gn(t).
This strategy led Vitale to propose the following estimator of the pdf g(t)

ĝm,n(t) = m

m−1
∑

k=0

{

Gn

(

k + 1

m

)

−Gn

(

k

m

)}

bk,m−1(t) (2)

that is a valid density (positive and
∫ 1

0
ĝm,n(t)dt = 1) because of Gn(0) = 0

and Gn(1) = 1. Babu et al. (2002) showed that the degree m should be chosen
such that m ∈ {2, . . . , [n/ log(n)]} for large samples of size n. More recently,
Leblanc (2010, 2012a,b) studied the boundary properties of both density and
distribution estimators, (see also Petrone, 1999; Ghosal, 2001; Kakizawa, 2004;
Bouezmarni and Rolin, 2007, for extensions in a Bayesian and/or multivariate
context).

As mentioned by Vitale (1975), all approximations based on bk,m(t) can be
rewritten in terms of linear combinations of beta densities. In particular, we
rewrite ĝm,n(t) as a sum of beta densities with the following notation

ĝm,n(t) =

m
∑

k=1

ωk,mβk,m−k+1(t), (3)

where t ∈ [0, 1], ωk,m = Gn

(

k
m

)

−Gn

(

k−1
m

)

, and βa,b(t) = ta−1(1−t)b−1/B(a, b)
corresponds to the classical beta pdf with parameters a and b, respectively, and
B(a, b) denotes the beta function. Here, we stress that, given m, the approxi-
mation ĝm,n(t) is not a classical mixture of densities with unknown parameters.
The beta coefficients a and b are known (a = k and b = m − k + 1) and the
weights are straightforward to compute if Gn is given. In other words, although
ĝm,n(t) is a mixture of beta pdfs, it has to be interpreted as an expansion on
the beta "bases". This implies that, given Gn, the only unknown is m. It can
be large and interpreted as a type of bandwidth. Finding m corresponds to
resolving a bias-variance tradeoff (see e.g., Vitale, 1975; Leblanc, 2012b).
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2.2 EGPD model class based on Bernstein-beta density

Now, the EGPD family defined by Equation (1) and the Bernstein approxima-
tion captured by Equation (3) can be combined via

Fm,n,θ(x) = Ĝm,n {Hξ(x/σ)} , (4)

where Ĝm,n(t) represents the cdf associated with ĝm,n(t) – see Equation (3) –
and θ = (σ, ξ)t corresponds to the GPD parameters. At this stage, we need to
determine the constraints on Ĝm,n in order that F belongs to the EGDP class.

Lemma 1 If among all the coefficients ωk,m = Gn

(

k
m

)

− Gn

(

k−1
m

)

with k =
1, . . . ,m, the last one is positive, i.e., ωm,m > 0, then we have

1. lim
x→0

Fm,n,θ(x)
xs = m

s σ
−s
(

m−1
s−1

)

ωs,m > 0, where s denotes the position of the

first non-null weight in ω = (ω1,m, . . . , ωm,m)t;

2. lim
x→∞

Fm,n,θ(x)

Hξ(x/σ)
= mωm,m > 0.

In addition, let Y be any non-negative continuous random variable such that the

conditional limit P(Y > x+ u|Y > u) goes, as u gets large, to (1 + ξ̃ x
σ̃ )

−1/ξ̃ for

some parameters σ̃ and ξ̃ > 0.

3. If Y can be rewritten as Y = σH−1
ξ

{

G−1(U)
}

with the survival of the cdf

G satisfying lim
w↓0

G(1−w)
w ∈ (0,∞), then ξ̃ = ξ.

[Proof of Lemma 1] The proof is postponed to the appendix.

Remark 2 From Item 1. of Lemma 1 above, we conclude that the lower tail
behavior of the model described by Equation (4) is controlled by the rank of
the first non-null weight in ω. From Item 2. of Lemma 1, we see that the
assumption ωm,m > 0 is required to prove that the upper tail behavior in our

model is described by a GPD. Item 3. tells us that imposing lim
w↓0

G(1−w)
w ∈ (0,∞)

ensures that our EGPD tail behavior driven by ξ is equivalent to the one obtained
using a genuine EVT argument. This explains why our Bernstein approximation
of G has to satisfy this condition too. As

lim
w→0

Ĝm,n(1− w)

w
= mωm,m,

combining Item 2 and Item 3 implies that the constraint ωm,m > 0 is sufficient

to make sure that our Bernstein approximation, Ĝm,n, does not impact the ex-
pected upper GPD tail behavior (under the condition that the observations can
be rewritten as σH−1

ξ

{

G−1(U)
}

).
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In practice, we have to deal with a few issues. First, we do not observe
random draws from G, but only rainfall measurements from F . Hence, we do
not have a direct way to compute the ecdf Gn, and consequently the weights
ωk,m = Gn

(

k
m

)

−Gn

(

k−1
m

)

. In addition, we have the constraint ωm,m > 0 that
may not be always satisfied. Last but not least, the number of components m in
ĝm,n(t) has to be chosen and the parameters θ = (σ, ξ)t have to be inferred. On
the positive side, we can notice that, if random draws from G were available and
m given, then the weights ωk,m can be instantaneously computed, i.e., there is
no need of running a time consuming optimization scheme in such a case. In
this context, our inferential strategy is to use a recursive argument. Basically,
we infer the hidden values drawn from G, compute and adjust the weights, and
then estimate θ = (σ, ξ)t. This algorithm can be repeated until the values of
some criterion are stable. The next section will detail our strategy.

3 Methodology for fitting a semiparametric EGPD

model

3.1 Initial values for θ = (σ, ξ)t

Suppose that (X1, . . . , Xn) represents our observed rainfall sample with cdf F .
For precipitation data, Naveau et al. (2016) noticed that the special case of
G(u) = uκ with κ > 0 provided a decent fit for hourly and daily precipitation in
France. Evin et al. (2018) used this same G to model precipitation in Switzer-
land. Consequently, this parametric model for G appears to be a good starting
point to give initial estimates for θ = (σ, ξ)t. Let us call them θ̂0 = (σ̂0, ξ̂0)

t.

3.2 Bernstein weights approximation given x = (x1, . . . , xn)
t, σ, ξ,m

From Equation (1), it is possible to show that the random variable Z = Hξ (X/σ)
follows the cdf G and that the random variable V = σHξ (G(Z)) is simply the
Generalized Pareto Hξ(./σ). In this context, it makes sense to introduce the
random sample

Ẑi = Hξ̂0

(

Xi

σ̂0

)

, for i = 1, . . . , n. (5)

These reconstructed random variables should mimic the hidden sample driven
by G. Consequently, the weights ωk,m at this stage could be estimated by

ω̂k,m = Ĝn

(

k

m

)

− Ĝn

(

k − 1

m

)

where Ĝn represents the ecdf obtained from (Ẑ1, . . . , Ẑn). To complete our
weights inference, we need to force the last weight ω̂m,m to be non null. If ω̂m,m is

non null, then we are done. Otherwise, we recall that the cdf Ĝm,n(t) associated
with ĝm,n(t) – see Equation (3) – can be viewed as a mixture of Beta cdfs,
and consequently, given the estimated weights (ω̂1,m . . . , ω̂m−1,m, 0), the value
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Ĝm,n(t) can be computed for any t ∈ [0, 1], and in particular for t = 1 − 1/m.
The last weight ωm,m = Gm,n(1)−Gm,n(1− 1/m) = 1−Gm,n(1− 1/m) can be

estimated by 1− Ĝm,n(1−1/m). This quantity is positive because, at least, one
of the weights in front of the Beta cdfs in the mixture is non null for t = 1−1/m.
With this new non-null estimate of ωm,m, we need to renormalize all weights to
insure that their sum is equal to one, see Algorithm 1 below.

Algorithm 1 Weights approximation given x = (x1, . . . , xn)
t, σ, ξ,m

1: procedure Inputs:(x, σ, ξ,m)
2: n = length(x)
3: zi = Hξ(xi/σ)
4: for each integer k in 1 : m do
5: ωk,m = Gn(

k
m )−Gn(

k−1
m ) with Gn ecdf obtained from (z1, . . . , zn)

t

6: end for
7: if (ωm,m = 0) then

8: ωm,m = 1− Ĝm,n(
m−1
m ) with Ĝm,n(t) derived from (3)

9: end if
10: ω = ω/

∑

ω ⊲ normalization to add to 1
11: Return ω

12: end procedure

3.3 Sequential estimation of θ = (σ, ξ)t via Probability

Weighted Moments

For this step, we assume that m and initial parameters of the GP part are
given, say θ0 = (σ0, ξ0)

t. From Algorithm 1, the weights describing G can be
estimated. So, the next step is to update the two parameters θ = (σ, ξ)t. In
Section 3.1, we notice that the random variable V = σHξ (G(Z)) always follows
the Generalized Pareto Hξ(./σ). In hydrology, there is a long history of using
the so-called Probability Weighted Moments (PWM) to infer the parameters
of a GPD (see, e.g., Hosking and Wallis, 1987; Ribereau et al., 2011; Naveau
et al., 2016; Carreau et al., 2017). The PWM estimation method is easy to
understand, fast, robust and efficient (if ξ < 0.5, a reasonable assumption for
our rainfall data). To emphasise the speed of this inference method, we recall
that the estimates of σ and ξ are explicit in terms of the sampled PWMs, m0

and m1 defined as follows,

ξ̂ =
m0 − 4m1

m0 − 2m1
and σ̂ = m0(1−ξ), where m0 =

1

n

n
∑

i=1

Vi and m1 =
1

n

n
∑

i=1

n− i

n− 1
Vi,

(6)
whenever (V1, . . . , Vn)

T represents a GPD distributed random sample with pa-
rameters σ and ξ.

10



For this reason, we define from (5) the following random variables

V̂i = σ̂0Hξ̂0

(

Ĝm,n(Ẑi)
)

, for i = 1, . . . , n. (7)

and we can apply (6) to the sample (V̂1, . . . , V̂n)
T and get new estimates of σ and

ξ. If these estimates are close to θ0 = (σ0, ξ0)
t, then the algorithm converges

towards stable values. If it is not the case, θ0 = (σ0, ξ0)
t have to be replaced

by the new ones and the procedure starts over. Algorithm 2 in the next section
summarizes the details of such a loop.

3.4 Main algorithm

Algorithm 2 Estimation of (ω1,m, . . . , ωm,m)t, σ and ξ in Equation (4) for a
given m

1: procedure Inputs(x and m)
2: θ0 = (σ0, ξ0)

t ⊲ Give initial values, e.g., by fitting a EGDP to x with
G(u) = uκ;

3: cond = true, eps = 0.001 and θinit = θ0

4: while cond = true do
5: ωnew = Algorithm 1(x, σinit, ξinit,m) ⊲ getting weights

6: Compute Ẑi = Hξ̂init

(

Xi

σ̂init

)

7: Compute Ĝm,n(Ẑi) from (3) with the weights ωnew ⊲ getting
Bernstein values

8: Compute V̂i = σ̂initHξ̂init

(

Ĝm,n(Ẑi)
)

9: and m0 = 1
n

∑n
i=1 V̂i and m1 = 1

n

∑n
i=1

n−i
n−1 V̂i, ⊲ PWMs estimates

10: Estimate ξ̂new = m0−4m1

m0−2m1
and σ̂new = m0(1− ξ̂new) ⊲ estimate θ

from PWMs

11: if abs(ξ̂new − ξ̂init) < eps then
12: cond = false
13: end if

14: θinit = θnew

15: end while
16: Return θnew,ωnew

17: end procedure

Remark 3 All numerical computation within each “While cond = true" step
are explicit and consequently extremely fast. This contrasts with a likelihood
approach for which a maximisation would have been required. Still, at each
time step, the likelihood can be easily obtained by plugging (θnew,ωnew) in

11



f̂m,n,θ(x) =
1
σ ĝm,n {Hξ(x/σ)} · hξ(x/σ) with ĝm,n(t) =

∑m
k=1 ωk,mβk,m−k+1(t).

In particular, it would be possible to replace our stopping criterion abs(ξ̂new −

ξ̂init) < eps by the increment between the "init" and "new" log-likelihoods. We
prefer monitoring the change in the shape parameter because it is expected to be-
come constant in a EVT setting and a large variability in ξ will be a worrisome
sign of our algorithm.

3.5 Selection of the Bernstein polynomial degree m

The number of components in the mixture, or alternatively the degree of the
polynomial, is a very important feature of the model as it directly influences the
smoothness of the estimator. Babu et al. (2002) showed that m should be of

order o
{

[ n
logn ]

}

for consistent convergence results. Also, their numerical study

indicated that the setting m = [ n
logn ] works well. But, they only covered small

sample sizes (up to 125 observations), so when working with larger samples, the
degree m = [ n

logn ] could be too large.
To avoid this issue, we prefer to rely on a data driven approach and use

the Least Square Cross Validation (LSCV) scheme which is based on the min-
imization of the Mean Integrated Squared Error (MISE) (see Kakizawa, 2004;

Leblanc, 2010). The notation f̂
(−i)
m,n,θ(x) and ĝ

(−i)
m,n (t) indicate the same estima-

tors based on all data but Xi, respectively. The optimal polynomial degree m
(see Bouezmarni and Rolin, 2007, in the case of Bernstein estimators) is the
integer that minimizes

MISE(m) =E

[
∫ ∞

0

{

f̂m,n,θ(x)− f(x)
}2

dx

]

=E

{
∫ ∞

0

f̂2
m,n,θ(x)dx

}

− 2E

{
∫ ∞

0

f̂m,n,θ(x)f(x)dx

}

+

∫ ∞

0

f2(x)dx.

(8)
The last term in Equation (8) does not depend on m, thus it can be dropped

to seek for the minimizer of MISE(m). We then search for the degree that mini-

mizes the quantity MISE(m)−
∫∞

0
f2(x)dx = E

{

∫∞

0
f̂2
m,n,θ(x)dx

}

−2E
{

∫∞

0
f̂m,n,θ(x)f(x)dx

}

,

which depends on the unknown f . A common practice is to replace this last
quantity by an estimator built from a data-driven procedure based on

LSCV(m) =

∫ ∞

0

f̂2
m,n,θ(x)dx−

2

n

n
∑

i=1

f̂
(−i)
m,n,θ(Xi), (9)

and then to infer the optimal positive integer that minimises this criterion, i.e.
mLSCV = min

m∈Z+
LSCV(m).

As f̂m,n,θ(x) =
1
σ ĝm,n {Hξ(x/σ)} · hξ(x/σ), we have

f̂m,n,θ(x) =
1

σ
ĝm,n(u) · (1− u)1+ξ with u = H( xσ ) = 1−

(

1 + ξ x
σ

)− 1
ξ ,
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and the cross validation criterion for our specific GP-Berstein model becomes

LSCV(m) =
1

σ

(

∫ 1

0

ĝ2m,n(u) · (1− u)1+ξdu−
2

n

n
∑

i=1

ĝ(−i)
m,n {Hξ(Xi/σ)} · hξ(Xi/σ)

)

,

=
1

σ

(

∫ 1

0

ĝ2m,n(u) · (1− u)1+ξdu−
2

n

n
∑

i=1

ĝ(−i)
m,n (Zi) · (1− Zi)

1+ξ

)

,

with Z = Hξ (X/σ). This last equality indicates that the optimisation does not
depend on σ, but could be impacted by ξ. For ξ = −1, i.e. when the GPD
corresponds to an uniform random variable, LSCV(m) is equal to the expression
for the classical Bernstein polynomial approximation

∫ 1

0

ĝ2m,n(u)du−
2

n

n
∑

i=1

ĝ(−i)
m,n (Zi).

For this latter quantity, we recall that Leblanc (2010) on page 469 expressed it
as

∫ 1

0

ĝ2m,n(u)du−
2

n

n
∑

i=1

ĝ(−i)
m,n (Zi) =

m2

2m− 1
G

T
mAm,mGm−

2

n− 1

(

n
∑

i=1

ĝm,n(Zi)−

n
∑

i=1

βki+1,m−ki
(Zi)

)

,

(10)
where the vector G

T
m equals (Gn(1/m), Gn(2/m) − Gn(1/m), . . . , 1 − Gn(1 −

1/m)), Am,m = (ak,l)1≤k,l≤m , is the matrix with elements

ak,l =

(

m−1
k

) (

m−1
l

)

(

2(m−1)
k+l

)
,

and ki = [mZi] corresponds to the sequence of integers such that Zi ∈ (ki/m, (ki+
1)/m]. Computationally, the advantage of the right-hand side of Equation (10)

over its left-hand side is enormous because there is no need to estimate ĝ
(−i)
m,n for

each i =, 1 . . . , n. Applying similar mathematical derivations found in Kakizawa
(2004) and Leblanc (2010), it is possible to show that σ × LSCVθ(m) is equal
to

m2

2m+ ξ
G

T
mAm,mGm−

2

n− 1

(

n
∑

i=1

ĝm,n(Zi)(1− Zi)
1+ξ −

1

n

n
∑

i=1

βki+1,m−ki
(Zi)(1− Zi)

1+ξ

)

,

(11)
where Am,m and Gm are identical to their definitions in (10). This new expres-
sion makes the optimization of the criterion computationally feasible.

4 Simulation study

In this section, we test our approach with the three following models. The first
one belongs to the class of EGPD model and it is defined by taking G(u) = u2,
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σ = 1 and ξ = 0.2 in (1). To move away from the class of EGPD model, we
also consider two kinds of gamma-GPD mixtures. The first one is a non con-
taminated mixture (called mixture in the following), whose tail is thus exactly
GPD. It is described as follows

P(X ≤ x) =











Fa,b(x), ∀x ≤ s,

Fa,b(u) + (1− F (u))Hξ

(

x− u

σ̃

)

∀x > s,
(12)

with s > 0 a given threshold and Fa,b the cdf of a gamma distribution of shape
parameter a > 0 and scale parameter b > 0. The second contaminated mixture
model, for which we expect a real improvement by using our semiparametric
estimation procedure rather than traditional EVT modeling, is described by

P(X ≤ x) = pFa,b(x) + (1− p)Hξ

(x

σ̃

)

, ∀x > 0, (13)

with p ∈ [0, 1] a given mixture parameter. From EVT, we know that for any
large threshold u and any x ≥ u

F (x) = P(X > u)P(X > x|X > u),

≈ (1− qu)
(

1 + ξ̃ x−u
σu

)−1/ξ

,

with qu the probability that the threshold u is not exceeded. As the upper
tail of this mixture model is driven by the GPD component, we thus get, by
identification, ξ̃ = ξ.

Concerning the sample size and the number of replica, we investigate two
sample sizes with n = 700, the order of magnitude of the number of observations
in our rainfall application in Section 5, and n = 1500 for exploring large sample
behaviors. The number of replica is set to 500 for all simulations. The range of
the polynomial degree m is always equal to the set {1, 2, . . . , 100}.

Concerning the model parameters, we set σ̃ = 1, ξ = 0.2 and G(u) = u2

for all models, and fix s ∈ {q0.7, q0.9}, a = 2, b = 3 for the mixture defined
by (12) where q0.7 and q0.9 denote respectively the 70% and the 90% quantiles
of the gamma distribution, and fix p ∈ {0.7, 0.9}, a = 2 and b = 3 for the
contaminated mixture defined by (13). Note that σ̃ = 1 in models (12) and (13)
does not imply that σ = 1 in our EGPD model (1).

4.1 Finding the optimal polynomial degree m

In Figure 3, our LSCV criterion defined by (11) is computed for the chosen
EGPD model. The left and right panels corresponds to n = 700 and n = 1500,
respectively. The y-axis represents the different values of m ∈ {2, 4, ..., 100},
and the x-axis shows the boxplot of 500 optimal values of LSCV. Note that here
and through the whole paper, the whiskers extend to the most extreme data
point which is no more than 1.5 times the interquartile range. It is compared
to the Integrated Absolute Error (IAE,

∫∞

0
|f̂(x)− f(x)|dx) and the Integrated
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Figure 3: Boxplots of the optimal Bernstein polynomial degree m of the 500
samples of size n = 700 (left panel) and size n = 1500 (right panel) described
in Section 4.1 obtained with the LSCV, ISE, IAE approaches

Model EGPD with G(u) = u2, σ = 1 and ξ = 0.2

Squared Error (ISE,
∫∞

0

{

f̂(x)− f(x)
}2

dx) approaches, both can be computed

if the true f(.) is known. Overall, the three boxplots are similar for the three
measures, independently of the sample size. This shows the robustness of the
method for choosing m. Table 1 shows the median value of m obtained using
the LSCV for the three models under study and for the two sample sizes. In
the following, for each model, m is fixed to the value stated in Table 1. Note
that the choice of m suggested in Babu et al. (2002), i.e., m̄(n) = [ n

logn ], yields

m̄(700) = 106 and m̄(1500) = 205, which clearly overfits in our framework.

Table 1: Median value of m obtained using the LSCV for the three models under
study.

Model n = 700 n = 1500

EGPD 50 52
Mixture s = q0.7 43 60
Mixture s = q0.9 50 58

Contaminated mixture p = 0.7 60 66
Contaminated mixture p = 0.9 64 46

Now, we want to compare the fit under two setups. In the first one, we
make inference with the knowledge that the true model is based on G of the
form G(u) = Gκ(u) = uκ. In that setup, we denote the true model by fκ. In
the second setup, we approximate the nonparametric function G with Bernstein
polynomials, see equations (3) and (4). It leads to a semiparametric estimation.
Intuitively, the inference should be better in the first setup. Still, the upper
panels of Figure 4 indicate that our semiparametric EGPD fit (EGPDm,n) based
on Bernstein polynomials (dotted boxplots) performs well for the inference of
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scale and shape parameters (left) and even better for the inference of quantiles
(right). In the lower panels of Figure 4, we represent the functional boxplots
obtained from the 500 estimates of the densities f (on the left) and g (on the
right). Functional boxplots were introduced in Sun and Genton (2011). These
type of boxplots use the band depth introduced by López-Pintado and Romo
(2009) to order the functions. The band depth measures the centrality of the
curves: the greater the band depth, the more the curve is central. The median
curve is represented with a black solid line. Half of the curves (the more central
ones) are contained in the bag colored in pink. The fence, which separates the
outlier curves from the other ones, is delimited by blue lines. Outlier curves are
represented with red dashed lines. The loop is defined as the curves contained
in the fence, but outside the bag. We refer to Sun and Genton (2011) for more
details on functional boxplots. Concerning the shape of the densities f , our
Bernstein polynomials approach provides comparable estimates with the one
obtained under the true model (left lower panel of Figure 4). The shape of the
densities g are rather different under both different models. We also remark
that there are many outlier curves (in red) for the estimates of g with the true
model, which probably explains why the quantiles are better estimated under
the semiparametric model.

4.2 Sensitivity studies under gamma-GPD mixtures

To assess the quality of our approach when the data are drawn from a model
outside of the EGPD class, we now focus on the two models defined by (12) and
(13).

We compare our EGPDm,n model fit with the ones obtained from the sim-
plest parametric EGPD with G(u) = uκ (denoted EGPDκ) and also from a
classical GPD model. For the latter, excesses are defined with respect to two
classical threshold values: (a) the 95% − empirical quantile (GPDq95) and (b)
the 98%− empirical quantile (GPDq98).

In this comparison exercise, our main goal is to assess the performance of
each approach to infer large quantiles and also very large quantiles to assess their
capacity to extrapolate beyond the largest observation. Table 2 summarizes
the RMSE obtained for the 80%, 90%, 95%, 97.5% and 99.5% quantiles. The
EGPDm,n and EGPDκ models clearly outperform the classical GPD analysis,
either based on excesses above the 95% quantile or the 98% quantile, which
could seem particularly surprising for the estimation of large quantiles. This
can be explained by two main reasons. First, the threshold choice (here the
95% and 98% quantiles) is a difficult task. Then, thresholding the data leads
to a drastic information reduction. Indeed, for n = 1500, we only keep 75 or 30
data according to the chosen threshold, while for n = 700, we keep 35 or 14 data.
Concerning the estimations based on the EGPDκ model or on the EGPDm,n

model, we remark that increasing the sample size n does not always lead to a
decrease of the RMSE values. Note that it is probably due to a residual bias in
both models induced by the modeling of the bulk either by a power function or
by truncated Bernstein series.
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Figure 4: Comparing our Bernstein EGPD fit (EGPDm,n) with a parametric
EGPD fit when the true model is g(u) = 2u (EGPDκ). The boxplots for the
shape and scale parameters (left upper panel) and for the 95% and 99.9% quan-
tiles (right upper panel) are obtained from 500 samples. The red horizontal lines
in the upper panels indicate the true parameter and quantile values. Functional
boxplots are obtained from the densities f (left lower panel) and g (right lower
panel) estimated from the 500 samples. The semiparametric model is estimated
with m = m̄LSCV = 40

n = 700 for EGPD with g(u) = 2u, σ = 1 and ξ = 0.2

n = 1500 for EGPD with g(u) = 2u, σ = 1 and ξ = 0.2
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RMSE values increase with the order of the quantiles which is not surprising
as larger quantiles are more difficult to estimate. We can also notice that our
semiparametric model EGPDm,n is superior to the simpler model EGPDκ for
each quantile for the mixture model when s = q0.7 and for the contaminated
mixture when p = 0.7 for both sample sizes. Then, choosing s = q0.9 for the
mixture or p = 0.9 for the contaminated mixture, respectively, we decrease the
weight of the bulk in the whole distribution. This explains why both semipara-
metric and parametric approaches behave similarly with respect to the RMSE
values in these last cases, while EGPDm,n is not systematically outperforming
EGPDκ.

5 Application study - daily rainfall in France

In this section, we apply our Bernstein GPD model to the daily Fall positive
rainfall (i.e., above 2 mm) recorded at 180 French weather stations during the
period 1976-2015. This analysis can be compared to the classical GP study
presented in the introduction, see Figure 1.

To visualize the impact of the choice of m, the Bernstein polynomial expan-
sion order, the four panels in Figures 5 and 6 display the estimates of ξ and
σ for four different values of m = 5, 15, 30 and 50. Overall, the choice of m
does not appear to change much the inferred values of ξ and σ. This robustness
with respect to the choice of m simplifies the comparison with a classical Pareto
analysis on excesses above a threshold. Contrasting the right panel of Figure
1 with Figure 5 shows that our EGPD estimates of ξ, regardless of m, have
less spatial variability than the classical GPD approach based on a 95% thresh-
old. The spatially coherent structure where the Rhône valley from Lyon to the
Mediterranean coast indicates higher values of ξ is climatologically expected for
the South of France (e.g., see Carreau et al., 2017, for a EVT analysis of this
region). This spatial structure can also be viewed in the estimates of σ, see
Figure 6.

Focusing now on the Chartres weather station, we recall, see Section 1,
that the shape parameter estimated by using a classical GP analysis with 40
exceedances above the 95% threshold (around 18 mm) was equal to 0.47. This
shape estimate was consider very large in comparison to its climatological similar
neighboring stations. Applying our Bernstein GP model to the full sample of 786
positive rainfall values provides a more coherent estimate of ξ. For m = 5, 15, 30
and 15, the shape parameter is estimated to be equal to 0.16, 0.18, 0.22 and
0.22, respectively. These inferred ξ̂ are in the typical range of values expected
around the Paris region. To visually access the quality of the fit, the QQ-
plots for m = 5, 15, 30 are shown in the left panels of Figure1 7. Compared to
the one obtained with a classical GP analysis solely based on exceedances, see
Figure 2, the fit of the five largest rainfall values appear to be even better. In
addition, we have modeled the full spectrum of positive precipitation and avoid

1The same type of QQ-plot is obtained for m = 50, but we kept only six panels instead of

eight to make this figure readable.
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Table 2: Root Mean Square Error (RMSE) between true and estimated quan-
tiles. Each RMSE is computed by fitting four different models (columns) to 500
samples of size n = 700 (left panel) and size n = 1500 (right panel) drawn from
the gamma-Fréchet mixture defined by (12) with s = q0.7, a = 1, b = 2.5 and
α = 2, the gamma-Fréchet mixture with s = q0.9, a = 1, b = 2.5 and α = 2,
the contaminated model defined by (13) with p = 0.7, a = 2, b = 3, G(u) = u2,
σ = 1 and ξ = 0.2, and the contaminated model with p = 0.9, a = 2, b = 3,
G(u) = u2, σ = 1 and ξ = 0.2

Mixture model with s = q0.7, a = 2, b = 3, G(u) = u2, σ = 1 and ξ = 0.2

q EGPDm,n EGPDκ GPq95 GPq98

80% 0.332 0.353 22.089 26.274

90% 1.075 2.118 34.846 37.597

95% 1.860 3.396 52.664 50.481

97.5% 2.307 3.884 77.728 65.301

99.5% 9.084 12.347 184.736 110.082

EGPDm,n EGPDκ GPq95 GPq98

0.438 0.527 16.058 17.598

1.200 2.521 22.875 23.267

2.113 4.092 31.220 28.945

2.704 4.871 41.492 34.625

4.618 8.071 75.857 47.816

Mixture model with s = q0.9, a = 2, b = 3, G(u) = u2, σ = 1 and ξ = 0.2

q EGPDm,n EGPDκ GPq95 GPq98

80% 0.124 0.334 15.311 21.225

90% 0.535 1.001 25.936 32.522

95% 1.730 1.376 36.749 41.945

97.5% 3.449 3.435 51.951 52.642

99.5% 5.440 7.127 115.802 84.064

EGPDm,n EGPDκ GPq95 GPq98

0.106 0.253 12.139 14.923

0.493 0.826 19.337 22.131

1.948 1.637 24.559 26.374

4.034 3.929 30.973 30.563

6.162 7.574 52.194 39.947

Contaminated mixture with p = .7, a = 2, b = 3, G(u) = u2, σ = 1 and ξ = 0.2

q EGPDm,n EGPDκ GPq95 GPq98

80% 0.369 0.435 12.245 22.909

90% 0.644 1.352 15.040 34.452

95% 1.255 2.794 17.371 49.392

97.5% 1.839 3.556 19.370 69.355

99.5% 7.997 11.247 22.679 148.663

EGPDm,n EGPDκ GPq95 GPq98

0.177 0.202 14.397 18.757

0.866 1.745 18.319 25.862

1.718 3.427 21.902 33.686

2.175 4.363 25.276 42.617

5.987 8.193 32.108 69.390

Contaminated mixture with p = .9, a = 2, b = 3, G(u) = u2, σ = 1 and ξ = 0.2

q EGPDm,n EGPDκ GPq95 GPq98

80% 0.056 0.163 12.976 18.562

90% 0.226 0.498 20.673 29.323

95% 0.577 0.467 28.759 41.023

97.5% 2.650 2.512 36.786 53.369

99.5% 5.842 6.528 64.685 95.282

EGPDm,n EGPDκ GPq95 GPq98

0.070 0.131 10.543 17.664

0.264 0.415 16.687 29.565

0.500 0.455 22.768 44.051

2.694 2.739 28.186 61.671

5.904 6.951 46.443 133.571
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Figure 5: Shape parameters from the Bernstein GPD analysis applied to daily
Fall French rainfall (1976-2015). Each panel corresponds to a different Bernstein
polynomial order with m = 5, 15, 30, 50 for the upper left, upper right, lower
left and lower right panels respectively. Overall, the estimation of ξ is spatially
robust with respect to the choice of m.
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Figure 6: Same as Figure 5 but for the scale parameter σ.
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the difficult step of threshold selection. Instead, we have to select the value of
m that has the advantage of being robust with respect to the value of ξ and
the QQ-plot fit. The left panels of Figure 2 display the estimated Bernstein
densities ĝm,n(u) for n = 786 and m = 5, 15, 30, respectively. Recalling that the
identity case g(u) = 1 corresponds to a GP density, an increase in the value of m
produces an added flexibility to capture variations either in small, moderate or
large precipitation. This flexibility is particularly interesting if the geophysical
processes driving small rainfall amounts differ from the ones responsible of heavy
rainfall.

To conclude this example, one has to keep in mind that this analysis is
preliminary. By independently fitting our EGPD model to each station, we did
not take into account the spatial structure. It would be of interest to adapt our
model to make a regional analysis that will spatially share spatial information,
marginally and in a multivariate way (see, e.g. Cooley et al., 2007; Davison
et al., 2012; Carreau et al., 2017). In addition, the point estimates in Figures
6 and 5 were obtained by using all positive rainfall in order to work with large
samples, e.g. 786 values above 2 mm for the Chartres station. Although daily
rainfall become quickly uncorrelated with time, this temporal dependence (see,
e.g. Fawcett and Walshaw, 2007) could affect the confidence intervals.

6 Conclusions and perspectives

This work addresses the statistical modeling of the entire range of precipitation
amounts. The main benefit of our proposed approach is that low and large
rainfall are in compliance with EVT and moderate precipitation is captured by
a semiparametric model based on Bernstein polynomials. In other words, we
have flexibility when we need flexibility (in the pdf bulk) and constraints when
we need them (in the tails).

The performance of our semiparametric EGPD model has been evaluated
with two simulation studies. For these examples, our inference method seems to
accurately estimate moderate to high quantiles, and to outperform the classical
GPD approach.

We also consider a real application composed with a large network of 180
precipitation time series over France. This analysis has shown the inherent
variability of the shape parameter with the classical GPD approach and has
highlighted the flexibility of our semiparametric approach with respect to rainfall
data.

With our semiparametric model, an appropriate Bernstein polynomial degree
m has to be selected. A criterion based on cross validation, LSCV, is used to this
end. The criterion is computed with an algebraic formula, which only requires
one fit of the model, thus reducing drastically the computational time.

On the real application, we have noticed that the choice of m does not appear
to strongly affect the inferred ξ. This robustness with respect to m is rather
reassuring and contrasts with the other classical option: selecting a threshold
for the GPD model can, often, change a lot the estimated ξ.
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Figure 7: Chartres weather station: estimated qq plots (left panels) and es-
timated Bernstein densities ĝm,n(u) (right panels) for m = 5 (upper panels),
m = 15 (middle panels) and m = 30 (lower panels)
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Concerning future work, our semiparametric EGPD model can be viewed as
a "building block" for more complex statistical models (such as rainfall weather
generators). In particular, the coupling with precipitation occurrences models
could be very fruitful for assessment studies, like sensitivity of floods, erosion or
crops models. On the same token, the modeling of the entire-range of precipita-
tion amounts at multiple sites would be a welcome addition. More specifically,
Evin et al. (2016) showed that a regional model can considerably improve the
estimation of the GPD shape parameter.
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[Proof of Lemma 1]

1. We write:

Ĝm,n {Hξ(x/σ)}

xs
=
Ĝm,n

{

v
Hξ(v)

v

}

Ĝm,n(v)

Ĝm,n(v)

vs
σ−s

where v = x/σ. Note that lim
v→0

Hξ(v)
v = 1. Thus, from the polynomial

assumption on our model – Ĝm,n(t) =
∑m

k=0 Gn(
k
m )bk,m(t), t ∈ [0, 1] – we

deduce:

lim
x→0

Ĝm,n {Hξ(x/σ)}

xs
=lim

v→0

Ĝm,n

{

v
Hξ(v)

v

}

Ĝm,n(v)

Ĝm,n(v)

vs
σ−s = σ−s lim

v→0

Ĝm,n(v)

vs
.

Then, from l’Hôpital’s rule, and from Equation (2),

lim
v→0

Ĝm,n(v)

vs
=lim

x→0

ĝm,n(v)

svs−1

is equivalent to
m(m−1

s−1 )ωs,mvs−1

svs−1 =
m(m−1

s−1 )ωs,m

s with s the position of the
first non-null weight in ω.

2. Let u = Hξ(x/σ). We have

lim
x→∞

Ĝm,n {Hξ(x/σ)}

Hξ(x/σ)
= lim

u→0

Ĝm,n(1− u)

u
.
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Then, by applying l’Hôpital’s rule, we get

lim
u→0

Ĝm,n(1− u)

u
=lim

v→0
ĝm,n(1− u) = ĝm,n(1) = mωm,m.

Therefore, to force the upper tail behavior in our model, we assume
ωm,m > 0.

3. As the random variable Y can be written (in distribution) as Y = σH−1
ξ

{

G−1(U)
}

,
where U follows an uniform distribution on [0, 1], i.e., P(U > w) = 1− w
for any w ∈ [0, 1], it follows that

P(Y > x+ u|Y > u) =
P(σH−1

ξ

{

G−1(U)
}

> x+ u)

P(σH−1
ξ {G−1(U)} > u)

,

=
P(U > G [Hξ {(x+ u)/σ}])

P(U > G {Hξ(u/σ)})
,

=
1−G [Hξ {(x+ u)/σ}]

1−G {Hξ(u/σ)}
,

=
G(1− w)

G(1− w∗)
, with w = Hξ {(x+ u)/σ} and w∗ = Hξ(u/σ),

=
G(1− w)

w

w∗

G(1− w∗)

w

w∗
.

We assume that Y follows the classical EVT theory, i.e., P(Y > x+u|Y >

u), goes to (1 + ξ̃ x
σ̃ )

−1/ξ̃, as u gets large. Our constraint on G implies

that G(1−w)
w

w∗

G(1−w∗)
→ 1 for large u. So, the righthand side behaves as

w
w∗

= (1+ξ x
σu

)−1/ξ with σu = σ+ξu. This implies that ξ̃ = ξ and σ̃ = σu

for large u.
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