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Abstract—Current clouds SLAs include compensation for
customers (i.e. resource renters) with credits when average
availability drops below a certain point. However, this credit
scheme is too inflexible because consumers lose a non measurable
quantity of performance and are only compensated later (i.e. in
the next charging cycle). We propose to schedule cloud isolation
and execution units, i.e. virtual machines (VMs), driven by the
partial utility of applying a certain amount of resources (CPU,
memory or bandwidth) to a given VM. This partial utility
metric, specified by the customer, allows the provider to transfer
resources between VMs. This is particularly relevant for private
clouds where resources are not so abundant. We have defined a
cost model that incorporates the partial utility the client gives
to a certain level of depreciation when VMs are allocated in
an overcommit environment. CloudSim, a state of the art cloud
simulator, was extended to support our partial utility-driven
scheduling model. Using simulation scenarios with synthetic and
real workloads, we show that our proposed scheduling strategy
brings benefits to providers (i.e. revenue, resource utilization) and
clients (i.e. workloads’ execution time) by incorporating a SLA-
based depreciation of computational power, allowing for more
VMs to be allocated.

Index Terms—Cloud Computing, Community Clouds, Service
Level Agreements, Utility-driven Scheduling

I. INTRODUCTION

Currently cloud providers provide a resource selection inter-

face based on abstract computational units (e.g. EC2 computa-

tional unit). This business model is known as Infrastructure-as-

a-Service (IaaS). Cloud users rent computational units taking

into account the estimated peak usage of their workloads.

To accommodate this simplistic interface, cloud providers

have to deal with massive hardware deployments, and all the

management and environmental costs that are inherent to such

a solution. These costs will eventually be reflected in the price

of each computational unit.

Today, cloud providers’ SLA already establish some com-

pensation in consumption credits when availability, or uptime,

fall below a certain threshold1. The problem with availability

is that, from a quantitative point of view, it is often equivalent

to all or nothing, i.e. either availability level fulfills the agreed

uptime or not. Even so, to get their compensation credits, users

have to fill a form and wait for the next charging cycle.

1http://aws.amazon.com/ec2-sla/
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Fig. 1: Cloud deployments: From heavy clouds to small, geo-

distributed near-the-client datacenters

Some argue that although virtualization brings key benefits

for the organizations, migrating all to a public cloud is not

the better option.2 A middle ground approach is to deploy

workloads in a private (or hybrid) cloud. Doing so has the

potential to limit costs on a foreseeable future and, also

important, keeps private data in-premises. Others propose to

bring private clouds even closer to users [1] to provide a more

environmentally reasonable, and cheaper to cool and operate,

cluster.

A. Overcommitted environments

Figure 1 shows what means to bring the cloud closer

to the user. Small, geo-distributed near-the-client datacenters

(private, shared) save money, the environment, and reduce

latency by keeping data on premises. This kind of vision is

sometimes referred as Community Cloud Computing (C3) [2],

which can take advantage of previous research in peer-to-peer

and grid systems [3]. Nevertheless, many of the fundamental

research and the technological deployments are yet to be

explored. From a resource management point of view, these

new approaches highlight two issues. In one hand, because

the deployment sites are more lightly resourced, overcom-

mitment will become more frequent. Techniques such as

dynamic resource allocation and accurate cost modeling must

be researched to manage this kind of clouds. Because of the

2Adopt the cloud, lose money. Virtualize your datacenter instead.
http://www.theregister.co.uk/2009/04/15/mckinsey cloud report/



federated and low-cost nature, overcommitment of resources

is perhaps a more common (and needed) scenario than in

public clouds. Second, in such environments there will be

many classes of users which, in most cases, are willing to

trade the performance of their workloads for a lower (or even

free) usage cost.

In a public cloud, overcommitting can be used to reduce

the number of machines requiring power when aiming to

reduce energy consumption [4]. In private clouds, given the

potential physical resource scarcity, the problem is even more

critical. To overcommit with minimal impact on performance

and maximum cost-benefits ratio, cloud providers need to

have a depreciation rationale relating how the depreciation of

resources will impact in the workload performance and user

satisfaction. While users can easily decide about their relative

satisfaction in the presence of resource depreciation, they can-

not easily determine how their workloads react to events such

as peak demands, hardware failures, or any reconfiguration in

general.

All or nothing resource allocation is not flexible enough for

these multi-tenant multi-typed user environments, especially

when users may not know exactly how many resources are

actually required. Users may be just as happy, or at least con-

tent, with slightly or even significantly reduced performance

if they are compensated by lower cost or almost cost-free.

From the provider or owner point of view, this is important if

there can be cost reductions and/or are environmental gains by

restricting resources, which will still be more favorable than

simply delaying or queuing their workloads as a whole.

Both memory and CPU/cores [5], [6] are common targets

of overcommitment. The two major approaches consist of

adapting the resources based on current observation of the

system performance [5], [7] or using predictive methods that

estimate the best resource allocation in the future based on past

observations [8]. These systems try to reach equilibrium in the

share allocated to each user targeting previously established

performance goals, based on offline profiling. They do not

consider the partial utility of applying resource allocation, i.e.

that reducing shares equally or in equal proportion may not

yield the best overall result. Others build a model to estimate

the costs of running workloads in the cloud but they assume

a specific kind of workloads (e.g. master-slave [9]) or assume

users are only satisfied by a certain amount of resources [10],

[11].

B. Scheduling Based on Partial-Utility

In this work we propose to schedule CPU processing capac-

ity to VMs (the isolation unit of IaaS) using an algorithm that

strives to account for user’ and provider’s potentially opposing

interests. While the users want their workloads to complete

with maximum performance and minimal cost, the provider

will eventually need to consolidate workloads, overcommitting

resources and so inevitably depreciating the performance of

some of them.

The proposed strategy takes the user’s partial utility specifi-

cation, which relates the user’s satisfaction for a given amount

of resources, and correlates it with the provider analysis of the

workload progress given the resources applied. This gives an

operational interval which the provider can use to maximize

the user satisfaction and the need to save resources. Resources

can be taken from workloads that use them poorly, or do not

mind in having an agreed performance degradation (and so pay

less for the service), and assign them to workloads that can

used them better, or belong to users with a more demanding

satisfaction rate (and so are willing to pay more).

We have implemented our algorithm as an extension to

scheduling policies of a state of the art cloud infrastructures

simulator, CloudSim [4], [12]. After extensive simulations

using synthetic and real workloads, the results are encour-

aging and show that resources can be taken from workloads,

improving global utility of the user renting cost and of the

provider infrastructure management.

In summary the contributions of this paper are the following:

• An architectural extension to the current relation between

cloud users and providers, particularly useful for private

and hybrid cloud deployments;

• A cost model which takes into account the clients’

partial utility of having their VMs depreciated when in

overcommit;

• Strategies to determine, in a overcommitted scenario, the

best distribution of workloads (from different classes of

users) among VMs with different execution capacities,

aiming to maximize the utility of the allocation;

• Extension of state of the art cloud simulator. Implemen-

tation and evaluation of the cost model in the extended

simulator.

C. Document roadmap

The rest of the paper is organized as follows. Section II

starts by framing our contributions with other related works.

In Section III we describe our utility model and in Section IV

the scheduling strategies are presented. Section V discusses

the extensions made to the simulation environment in order to

support our requisites. Section VI discusses the development

and deployment in the simulation environment of CloudSim,

and presents the results of our evaluation in simulated work-

loads. Section VII presents our conclusions and future work

to address.

II. RELATED WORK

With the advent of Cloud Computing, particularly with the

Infrastructure-as-a-Service business model, resource schedul-

ing in virtualized environments received a prominent attention

from the research community [13], [6], [14], [15], [16], [17],

addressed as either a resource management or a fair allocation

challenge.

The management of virtual machines, and particularly their

assignment to the execution of different workloads, is a critical

operation in these infrastructures. Although virtual machine

monitors provide the necessary mechanisms to determine how

resources are shared [18], finding an efficiency balance of



allocations, for the customer and the provider, is a non trivial

task.
Early3 work of Zhang et al. [5] uses a feedback control

model to equalize resource demand in a set of VMs (running

on top of a VMM). Their distinct idea is that VMs should

regulate themselves based on a single congestion signal (the

real time needed to update the virtual time clock), instead

of using complex resource management strategies. Profiling

VMs for cloud placement has been used in [19]. In e-science

scenarios, performance predictability in scheduling has been

addressed in [20] and [21].
The current trend is towards cloud computing infrastructures

(public, private, hybrid). Clouds inherit the potential for re-

source sharing and pooling due to their inherent multi-tenancy

support. In Grids, resource allocation and scheduling can be

performed mostly based on initially predefined, a priori and

static, job requirements [15]. In clouds, resource allocation can

also be changed elastically (up or down) at runtime in order

to meet the application load and effective needs at each time,

improving flexibility and resource usage.
In [22] a novel business model is proposed where unused

resources, i.e. system VM instances, can be rented to sec-

ondary users whose workloads may execute intermittently.

Kingsher [23] is a cost-aware elasticity provisioning system

targeting application owners who want to select the provider

with the best configuration to support their peak workloads

(i.e. maximum number of requests/second successfully han-

dled), minimizing the application owner cost.
Resource management can also be based on microeconomic

game theory models, mostly in two directions: i) forecast

the number of virtual machines (or their characteristics) a

given workload will need to operate [9], [11] and ii) change

allocations at runtime to improve a given metric such as

workload fairness or provider energy costs [24], [17]. Auction-

based approaches have also been proposed in the context of

provisioning VMs [22], [25] when available resources are

less abundant than requests. Commercial systems such as the

Amazon EC2 Spot Instances have adopted this strategy.
Still, most works until now have been focused on finding

resource allocations in the most efficient way for the provider

[13], [26], [8], [10], usually based on energy and/or cooling

and environmental costs. Few works consider that the cus-

tomer accepts a negotiable performance during the workload

execution. This type of flexibility usually requires the adoption

of an economic or cost theoretical model. Besides the work

in [8], Cloudpack [17] provides support for users to specify

workloads in a way they can declare their quantitative resource

requirements and temporal flexibilities.
Our work is the first that we are aware of that clearly

accepts and incorporates in the economic model the notions of

partial utility degradation in the context of VM scheduling in

virtualized infrastructures, such as data centers, public, private

or hybrid clouds. It demonstrates that it can render benefits

3The word early is to be understood as in the beginning of the modern
virtualization era, after a hibernation of more than 30 years following IBM’s
virtual machine in the 70’s

for the providers as well as reduce user dissatisfaction in a

structured and principled-based way, instead of the typical all-

or-nothing approach of queuing or delaying requests, while

still able to prioritize user classes in an SLA-like manner.

III. A PARTIAL UTILITY MODEL FOR CLOUD SCHEDULING

To schedule VMs based on the partial utility of the

clients we have to define the several elements that con-

stitute our system model. The provider can offer several

categories of virtual machines, more compute or memory

optimized. In each category (e.g. compute optimized) we

consider that VMs are represented by the set VMtypes =
{VMt1 , V Mt2 , V Mt3 , . . . V Mtm}. Elements of this set have

a transitive less-than order, where VMt1 < VMt2 iff

virtual-power(VMt1) < virtual-power(VMt2). The function

virtual-power represents the provider’s metric to advertise each

VM computational power. For example, Amazon EC2 uses

the Elastic Computation Unit (ECU) which is an aggregated

metric of several proprietary benchmarks. Other examples

include the HP Cloud Compute Unit (CCU).

Current cloud providers determine a price for a charging

period, e.g. $ / hour, for each VM type. This value, determined

by the function Price(VMti), is the monetary value to pay

when a VM of type ti is not in overcommit with other VMs

(from the same type or not). Considering that for a given VM

instance, vm, the type (i.e. element of the set VMtypes) can

be determined by the function VMType(vm), the price can

be determined by Pr(VMType(vm)).

A. Depreciation factor and Partial utility

For each VM the provider can determine which is the

depreciation factor, that is, which percentage of the VM

virtual power is diminished because of resource sharing and

overcommit with other VMs. For a given VM instance, vm,

the depreciation factor is determined by the function Df(vm).
In scenarios of overcommit described in the previous section,

each user can choose which fraction of the price he will

pay when workloads are executed. When overcommit must

be used, the same client will pay as described in Equation 1,

where the function Pu represents the partial utility the owner

of the VM gives to the depreciation. Both the depreciation

factor and the partial utility are percentage values.

Cost(vm) =

Pr(VMType(vm)) · (1−Df(vm)) · Pu(Df(vm)) (1)

For example, if Df(vm) is 20% and Pu(Df(vm)) is 100%
it means that the client is willing to accept the overcommit

of 20% and pay a value proportional to the degradation.

But if in the same scenario Pu(Df(vm)) is 50% it means

the client will only pay half of the value resulting from the

overcommit, i.e. Pr(VMType(vm)) × (1 − 0.2) × 0.5 =
Pr(VMType(vm))× 0.4.

In general, overcommit can vary during the renting period.

During a single hour, which we consider the charging period,

a single VM can have more than one depreciation factor as

depicted in Figure 2. In this example, during the first hour no
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Fig. 2: Scenario where depreciation varies during renting

period

depreciation is necessary while during part of the third hour

and the fourth hour, the provider needs to take 20% of the

computation power. So, because a VM can be hibernated or

destroyed by their owners, and new VMs can be requested, the

depreciation factor, given by Df , must also depend on time.

To take this into account, Dfh(vm, i) is the inth depreciation

period of hour h. This is similar to the epoch concept of [17]

but more fine grained and usable in the partial utility model

as described next.

B. Classes for prices and partial utility

Clients can rent several types of VMs and choose the class

associated to each one. Classes have two proposes. The first

is to establish a partial utility based on the overcommit factor.

The second is to set the base price for each VM type. Clients,

and the VMs they rent, are organized into classes which are

represented as a set C = {C1, C2, C3, . . . , Cn}. Elements of

this set have a transitive less-than order (<) where C1 < C2

iff base-price(C1) < base-price(C2). The function base-price

represents the base price for each VM type. The class of

a given virtual machine instance vm is represented by the

function class(vm), while the owner (i.e. the client who is

renting the VM) can be determined by owner(vm).

Each class determines, for each overcommit factor, the

partial utility degradation. Because the overcommit factor

can have several values we define R as a set of ranges:

R = {]0..0.2[, [0.2..0.4[, [0.4..0.6[, [0.6..0.8[, [0.8..1]}. The

Pu function must be rewritten to take into account the class of

the VM and the interval of the overcommit factor, as presented

in definition 2. Doing so, Pu is a matrix of partial utilities.

Each provider can have a different matrix which it advertises

so that clients can choose the best option.

Pu : C ×R → [0..1] (2)

The Pr function for each VM must also be extended to

take into account the VM’s class, in addition to the VM’s

type. We redefine the Pr function as presented in Equation 3.

Similarly to the matrix of partial utilities, each provider can

have a different price matrix.

Pr : C × VMtypes → ℜ (3)

In summary, the proposed partial utility model and the

associated cost structure is based on three elements: i) the

base price of each VM type, ii) the overcommit factor, iii) the

partial utility degradation class associated to each VM.

C. Total costs

For a given client, the total cost of renting is simply

determined by the total cost of renting each VM, as presented

in Equation 4, where RentVMs(c) represent the VMs rented

by client c.

RentingCost(c) =

RentVMs(c)
∑

vm

VMCost(vm) (4)

The cost of each VM is presented in Equation 5 where N is

the number of hours the VM was running, and P the number

of depreciation periods in hour h. If after allocation the VM’s

depreciation factor remains constant, the P equals 1.

VMCost(vm) =
N
∑

h=1

P
∑

p=1

Pr(class(vm), V MType(vm))

P

·(1−Dfh(vm, p))

·Pu(class(vm), Dfh(vm, p)) (5)

The provider’s revenue is given by how much all clients pay

for the VMs they rent. The provider wants to maximize the

revenue by minimizing the depreciation factor imposed to each

virtual machine. Because there are several classes of VMs,

each with a particular partial utility for a given depreciation

factor, the provider scheduler must find the allocation that

maximizes (5). There are different ways to do so which we

analyze in Section IV.

D. Practical scenario

As a practical scenario we consider that the partial utility

model has three classes (High, Normal, Low) according to

their willingness to relinquish resources in exchange for a

lower payment. More classes could be added but these three

illustrate:

• High users that represent those with more stringent

requirements, deadlines, and that are willing to pay more

for a higher performance assurance but in exchange

demand to be compensated if they are not met. Com-

pensation may include not simply refund but also some

level of significant penalization.

• Normal users who are willing to pay but will accept some

depreciation for the sake of lesser payment and other

externalities such as reduced carbon footprint impact, but

have some level of expectation on execution time, and

• careless Low users who do not mind waiting for their

workloads to complete if they pay less;

Partial utility profiles could also be organized around cloud

providers, and assume that each provider would be specialized

in a given profile. For example, flexible would represent

shared infrastructures with no obligations, and many well

dimensioned private clouds; business public clouds or high-

load private or hybrid clouds; critical clouds where budgets



and deadlines of workloads are of high relevance, and penalties

are relevant; SLA-Oriented top scenario where penalties should

be avoided at all cost. For simplicity we focus on a single cloud

provider that supports several classes of partial utility which

clients can choose when renting VMs.

For the three classes of our example, the cloud provider can

define a partial utility matrix, represented by M in (6).

M =













High Medium Low

[0..0.2[ 1.0 1.0 1.0
[0.2..0.4[ 0.6 1.0 1.0
[0.4..0.6[ 0.4 0.8 1.0
[0.6..0.8[ 0.0 0.6 0.8
[0.8..1] 0.0 0.0 0.6













(6)

The provider must also advertise the base price for each type

of VM. We assume there are four types of virtual machines

with increasing virtual power, for example, micro, small,

regular and extra. The matrix presented in (7) determines

the base price ($/hour) for these types of VMs.

P =









High Medium Low

micro 0.40 0.32 0.26
small 0.80 0.64 0.51
regular 1.60 1.28 1.02
extra 2.40 1.92 1.54









(7)

IV. PARTIAL UTILITY BASED SCHEDULING FOR IAAS

DEPLOYMENTS

In general, the problem we have described is equivalent to a

bin packing problem [27]. So, the schedules must impose con-

strains on what would be a heavy search problem. Algorithm 1

presents what is hereafter identified as the base allocation

algorithm. It looks for the host with more available cores and

checks if it has available computational power, i.e. available

number of millions of instructions per second (MIPS). It will

eventually fail if no host is found with the number of requested

MIPS, regardless of the class of each VM.

Algorithm 1 Base allocation

Require: hosts list of available hosts
Require: vm VM to be allocated

1: function BASESCHEDULING(hosts,vm)
2: allocated← false
3: tmpHosts← hosts
4: while allocated 6= true & SIZE(tmpHosts) ≥ 1 do
5: maxCores← 0
6: for all h ∈ tmpHosts do
7: if AVAILABLECORES(h) > maxCores then
8: maxCores← AVAILABLECORES(hosts[i])
9: freeHost← h

10: end if
11: end for
12: allocated← TRYALLOCATE(freeHost, vm)
13: tmpHosts← tmpHosts− {freeHost}
14: end while
15: return allocated
16: end function

Algorithm 2 checks if a VM can be allocated in a given host

(h), that is, it returns true if there are still available computa-

tional power in host h. If allocation cannot be done it returns

false. Function allocV mMipsInCores tries to allocate vm

in the available cores. It will fail if the computational power

(MIPS) of the VM is bigger than the cores of the host. It

will end successfully if the VM can fit in any core, eventually

shared with other VMs.

Algorithm 2 Try to allocate VM in host

Require: host host used for allocation
Require: vm VM to be allocated

1: function TRYALLOCATE(host,vm)
2: allocated← false
3: availableMips← AVAILABLEMIPS(host)
4: requestedMips← REQUESTEDMIPS(vm)
5: if availableMips ≥ requestedMips then
6: ALLOCVMMIPSINCORES(host, requestedMips)
7: allocated← true
8: end if
9: return allocated

10: end function

When there are no hosts that can be used to allocate the

requested VM some depreciation strategy must be used, while

maximizing the renting cost as defined in Section III. This

means that the provider can use different strategies to do

so giving priority to bigger or smaller VMs (regarding their

virtual power) or to classes with higher base price.

We have developed four strategies/heuristics to guide our

utility-driven algorithm. They differ in the way a host and

victim VM is selected for depreciation. All start by looking

for the host with more resources available, that is, with more

unitary available cores and with more total computation power

(MIPS). After a host is selected a VM must the chosen from

the list of allocated VMs in that host. This VM (the victim)

is selected either by choosing the smallest VM (which we call

min strategy) or the one with the biggest size (which we call

max strategy). There is also the possibility to instead look for

VMs smaller than the VM which is trying to be allocated.

In resume there are four allocation strategies: min, max,

min-class, max-class which we evaluate in Section VI.

V. IMPLEMENTATION DETAILS

We have implemented and evaluated our partial utility

model on a state of the art simulator, CloudSim [12].

CloudSim is a simulation framework that must be program-

matically configured, or extended, to reflect the characteristics

and scheduling strategies of a cloud provider. The framework

has an object domain representing the elements of a data center

(physical hosts, virtual machines and execution tasks). Extensi-

bility points include the strategy to allocate physical resources

to VMs, allocate execution tasks to resources available at each

VM. Furthermore, at the data center level, it is possible to

define how VMs are allocated to hosts (including energy-aware

policies [4]) and how execution tasks are assigned to VMs.

Regarding the CloudSim’s base object model we have added

information to the VM type regarding its partial utility class.



Number of hosts Cores Hz Memory (Gbytes)

10 2 1860 4
10 2 2660 4

TABLE I: Hosts configured in the simulation

VM type Virtual power Memory (Gbytes)

micro 0.5 0.63
small 1 1.7

regular 2 3.75
extra 2.5 0.85

TABLE II: Characteristics of each VM type used in the

simulation

The scheduling algorithms were implemented as extensions

of the type that determines how a VM is assigned to a host

(VmAllocationPolicy). It can use different matrices of

partial utility classes and VM base prices, defined in the type

that represents the partial utility-driven datacenter.

The type in CloudSim that represents the dynamic use of

the available (virtual) CPU is the Cloudlet type. Because

cloudlets represent work being done, each cloudlet must run

in a VM with the appropriate type, simulating work being

done on several VMs with different computational power.

So, regarding the Cloudlet class we added information

about which VM type must be used to run the task. To

ensure that each cloudlet is executed in the correct VM

(depreciated or not), we also created a new broker (extended

from DatacenterBroker).

VI. EVALUATION

In this section we evaluate the proposed scheduling based on

partial utility. To do so, we first describe the small datacenter

used in the simulation and the VM types whose base price

was already presented in Section III-D. The datacenter is

characterized by the number and type of hosts as described

in Table I. Available VM types are presented in Table II.

A. Utility Unware Allocation

Figures 3 and 4 show the effects of using two different

allocations strategies but still without taking into account

each client’s partial utility. Common to both experiences is

the algorithm of allocating VMs, which chooses the host

with more cores available, as described in Algorithm 1. The

difference is the VMM scheduler. In Figure 3 each VMM (one

for each host) allocates one or more cores to each VM and

does not allow sharing of cores by different VMs. In Figure 4

each VMM (one for each host) allocates one or more cores to

each VM and, if necessary, allocates a share of the same core

to a different VM.

As expected, the core sharing algorithm promotes better

resource utilization because the maximum effective allocation

is 75% of the datacenter which compares with 71% maximum

utilization of the other strategy. Nevertheless, in both cases, the

datacenter starts rejecting the allocation of new VMs when it
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Fig. 3: Base algorithm with cores not shared between different

VMs. Resource utilization ratio (effective allocation), potential

allocation and requested but not allocated MIPS.
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Fig. 4: Base algorithm when cores are shared between different

VMs. Resource utilization ratio (effective allocation), potential

allocation and requested but not allocated MIPS.

is about at 66% of its capacity, as can be observed by the

difference between the potential allocation and the effective

allocation series. The effective allocation yet continues to

increase, at a slower rate, because there are still VMs that

can be allocated. Figure 5 shows the counting of VM failures

grouped by the VM type and VMM scheduling strategy. The

datacenter rejects VMs of type high and small.

B. Utility-driven Allocation

In utility driven allocation all requested VMs will eventually

be allocated until the datacenter is overcommitted by a factor

that can be defined for each provider. We used several synthetic

workloads with an increasing number of VMs trying to be

allocated, as in the experimentations of the previous section.

Each requested VM has a type (e.g. micro) and a partial utility

class (e.g. high). We considered VM’s types to be uniformly

distributed (realistic assumption). Regarding the partial utility

class distribution profile, in each workload, there are 20% of

high, 50% of medium and 30% of low.

First we compare our approaches with the base algorithm

described in Section IV regarding the number of VMs that

were requested but not allocated. Figure 6 shows that while

the base algorithm fails to allocate some VMs when 40 or more

VMs are requested, the other four utility-driven strategies can

allocate all requests.
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Fig. 6: Number of requested but not allocated VMs using

different strategies

To further investigate the benefits of the proposed ap-

proaches we must evaluate how available resources are uti-

lized, the revenue of the provider and the execution time of

workloads. Figure 7 shows the percentage of resource utiliza-

tion with an increasing number of VMs being requested for

allocation. Two observations are worth noting. First, although

with base allocation strategy some VMs are not scheduled, as

demonstrated in Figure 6, others can still be allocated and can

use some of the remaining resources. Second, it is clear that

our four strategies achieve better resource utilization, while

allocating all VMs, and that strategy min is the one that can

better occupy available resources. Regarding revenue for the

provider, Figure 8 further demonstrates the benefits of using

a depreciation and utility-driven approach, showing that the

provider’s revenue can indeed increase if the rejected VMs

(above 40) are allocated.

Finally, and regarding the execution time, we have evaluated

the scheduling of VM resources to each profile based on

the partial utility. The data used is from workloads executed

during 10 days by thousands of PlanetLab VMs provisioned

for multiple users [4], [28]. The average execution times are

presented in Figure 9. The results shows that with more VMs

allocated, even if depreciated, as it is the case, the average

execution time of tasks running on those VMs is below the

execution times achieved with the base strategy.
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VII. CONCLUSION

There is an increasing interest in small, geo-distributed

and near-the-client datacenters, what is sometimes known as

Community Cloud Computing (C3). In these deployments,

overcommitting resources is a relevant technique to lower

environmental and operational costs. Nevertheless, users may

be just as happy, or at least content, with slightly or even

significantly reduced performance if they are compensated by

lower cost or almost cost-free.

In this paper we have proposed a cost model take takes

into account the user’s partial utility specification when the

provider needs to transfer resources between VMs. We devel-

oped extensions to the scheduling policies of a state of the art

cloud infrastructures simulator, CloudSim [4], [12]. The cost
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model and partial utility-driven strategies were applied to the

oversubscription of CPU. We have measured the provider’s

revenue, resource utilization and client’s workloads execution

time. Results show that, although our strategies depreciate

the computational power of VMs when resources are scarce,

they overcome the classic allocation strategy which would

not be able to allocate above a certain number of VMs. As

future work we want to extend the scheduling process to

incorporate progress information collected from workloads,

such that resources can also be taken from workloads that use

them less efficiently. This will need some extensions to the

execution model of CloudSim. We also plan to incorporate

this approach in private cloud solutions such as Eucalyptus.4
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