
Received March 4, 2021, accepted March 6, 2021, date of publication March 17, 2021, date of current version March 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3066537

Flexible Spare Core Placement in Torus Topology
Based NoCs and Its Validation on an FPGA

P. VEDA BHANU 1, RAHUL GOVINDAN1, PLAVA KATTAMURI1, J. SOUMYA1,
AND LINGA REDDY CENKERAMADDI 2, (Senior Member, IEEE)
1Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Hyderabad 500078, India
2Department of Information and Communication Technology, University of Agder (UiA), 4879 Grimstad, Norway

Corresponding author: Linga Reddy Cenkeramaddi (linga.cenkeramaddi@uia.no)

This work was supported in part by the Science Engineering Research Board (SERB), Government of India, Research Project, under

Grant ECR/2016/001389, Dt. 06/03/2017, and in part by the Indo-Norwegian Collaboration in Autonomous Cyber-Physical

Systems (INCAPS) of the INTPART Program from the Research Council of Norway, under Project 287918.

ABSTRACT In the nano-scale era, Network-on-Chip (NoC) interconnection paradigm has gained impor-

tance to abide by the communication challenges in Chip Multi-Processors (CMPs). With increased inte-

gration density on CMPs, NoC components namely cores, routers, and links are susceptible to failures.

Therefore, to improve system reliability, there is a need for efficient fault-tolerant techniques that mitigate

permanent faults in NoC based CMPs. There exists several fault-tolerant techniques that address the

permanent faults in application cores while placing the spare cores onto NoC topologies. However, these

techniques are limited to Mesh topology based NoCs. There are few approaches that have realized the

fault-tolerant solutions on an FPGA, but the study on architectural aspects of NoC is limited. This paper

presents the flexible placement of spare core onto Torus topology-based NoC design by considering core

faults and validating it on an FPGA. In the first phase, a mathematical formulation based on Integer Linear

Programming (ILP) andmeta-heuristic based Particle SwarmOptimization (PSO) have been proposed for the

placement of spare core. In the second phase, we have implemented NoC router addressing scheme, routing

algorithm, run-time fault injection model, and fault-tolerant placement of spare core onto Torus topology

using an FPGA. Experiments have been done by taking different multimedia and synthetic application

benchmarks. This has been done in both static and dynamic simulation environments followed by hardware

implementation. In the static simulation environment, the experimentations are carried out by scaling the

network size and router faults in the network. The results obtained from our approach outperform the

methods such as Fault-tolerant Spare Core Mapping (FSCM), Simulated Annealing (SA), and Genetic

Algorithm (GA) proposed in the literature. For the experiments carried out by scaling the network size,

our proposed methodology shows an average improvement of 18.83%, 4.55%, 12.12% in communication

cost over the approaches FSCM, SA, and GA, respectively. For the experiments carried out by scaling the

router faults in the network, our approach shows an improvement of 34.27%, 26.26%, and 30.41% over the

approaches FSCM, SA, and GA, respectively. For the dynamic simulations, our approach shows an average

improvement of 5.67%, 0.44%, and 3.69%, over the approaches FSCM, SA, and GA, respectively. In the

hardware implementation, our approach shows an average improvement of 5.38%, 7.45%, 27.10% in terms

of application runtime over the approaches SA, GA, and FSCM, respectively. This shows the superiority of

the proposed approach over the approaches presented in the literature.

INDEX TERMS Network-on-chip, application mapping, torus topology, fault-tolerance, spare core, com-

munication cost, FPGA.

I. INTRODUCTION

In the multi-processor era, processing elements are inter-

connected onto a single chip commonly known as

The associate editor coordinating the review of this manuscript and
approving it for publication was Jagdish Chand Bansal.

System-on-Chip (SoC). The underlying communication plat-

form used for SoCs design is bus-based architecture. With

the increased integration density of processing elements on

SoC, the bus-based architectures do not scale well [1]. Hence,

there is a need for a suitable communication platform to meet

the current application challenges. Network-on-Chip (NoC)

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 45935

https://orcid.org/0000-0001-5663-8407
https://orcid.org/0000-0002-1023-2118


P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

FIGURE 1. MPEG-4 application core graph.

interconnection paradigm has been proposed as a promising

solution to address the current application challenges in the

field of High Performance Computing (HPC) [2]. NoCs play

a major role in the transmission of data from the source

node to the destination node in the multi-processor SoCs

(MPSoCs). The communication between the cores in NoC is

achieved using packet-switching techniques through routers

or switches, and interconnection links [3].

A. BACKGROUND

As per Moore’s law, the number of transistors integrated

onto MPSoCs double every two years [4]. The advent scaling

down of the technology, and the validity of Moore’s law to

the MPSoCs design has led to a focus on reliability. This

necessitates the need for fault-tolerant strategies that can

improve system reliability. NoC components are susceptible

to faults that may occur during the run-time of an application.

Transient, Intermittent, and Permanent are three different

types of faults that may occur in the components of NoC [5].

Among the three different types of faults, permanent faults

are inevitable and vitiates the system performance. Hence,

it is highly important to address the permanent faults that may

occur in cores of an application.

Application mapping and core placement are traditional

problems that have been addressed by several researchers [6].

However, most of the application mapping and core place-

ment techniques that have considered core faults which are

limited toMesh topology only. Torus topology is an improved

version of Mesh and has advantages over it in terms of

hop count, communication latency, and throughput [7]. Core

placement in any topology is depended on the application

mapping techniques. Therefore, it is essential to address the

problem of fault-tolerant application mapping onto Torus

topology by considering the permanent faults in the cores.

This can be illustrated with an example of multimedia bench-

mark Moving Pictures Expert Group (MPEG) - 4, which is

one of the most frequently used applications in hand-held

devices.

Fig. 1 shows the MPEG-4 application core graph that has

twelve cores communicating with each other in terms of

Mega bits per second (Mbps). We assume that each task in

MPEG-4 is assigned to one core and the size of each core

is uniform. As mentioned earlier, the NoC communication

platform for any benchmark applications can be designed

using any one of the regular topologies namely Mesh and

Torus. From the literature [6], [8], it has been noticed that

for an MPEG-4 application, Mesh topology based NoC com-

munication platform has been provided as a primary solution.

This is due to ease of implementation ofMesh topology based

NoCs. However, a little importance is given to Torus topology

while designing a NoC communication platform forMPEG-4

application. The wraparound links in Torus topology help

to minimize the communication cost, network latency, and

average network power consumption of an application. For

multimedia benchmarks, the Torus topology adds an advan-

tage in terms of performance metrics namely communication

cost, network latency, and power consumption. The MPEG-4

application is most widely used in the domain of video pro-

cessing units. The permanent faults in any one of the cores

of an MPEG-4 application might lead to undesired response,

which in turn halt or suspend the system. To mitigate this

issue, there is a need for communication efficient and reliable

fault-tolerant technique that improves the reliability. There-

fore, the reliable Torus topology based NoC communication

platform can be consideredwhile designing a system. Further,

detailed comparison between the Mesh and Torus topologies

in terms of number of hops and communication cost is dis-

cussed in Motivation section.

To date, there are several software remedies that have

been proposed in the literature [8] to address the problem

of fault-tolerant application mapping onto NoCs. These tech-

niques provide an abstract or static view of system perfor-

mance and reliability. However, there is limited focus on the

realization of the fault-tolerant solutions on hardware. The

authors in [9] have realized the fault-tolerant applicationmap-

ping on an FPGA by considering the core faults. However,

they have not disclosed the architectural aspects and estima-

tion of the FPGA resources required for the implementation

of the proposed model [9]. In addition to it, there is also a

need to know about the time taken by the proposed model

in [9] to deliver the data packets. Moreover, a detailed study

of system dynamics on an FPGA is helpful for understanding

its behaviour in real world scenario. Therefore, it is highly

important to investigate these factors that may be helpful

for the realization of fault-tolerant application-mapping onto

an FPGA.

B. KEY CONTRIBUTIONS AND ORGANIZATION

OF THE PAPER

In this paper, we present a fault-tolerant application map-

ping onto Torus topology based NoC design. To address the

problem of fault-tolerant application mapping, a mathemat-

ical formulation based solution namely Integer Linear Pro-

gramming (ILP) andmeta-heuristic algorithmParticle Swarm

Optimization (PSO) based solution have been proposed. For

the FPGA implementation of the proposed fault-tolerant

application mapping solutions, a Virtual Channel (VC) based

45936 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

NoC router architecture for Torus topology has been imple-

mented. The key contributions of this paper are as follows.
• ILP and PSO based solutions have been proposed for

the fault-tolerant application (multimedia and synthetic)

mapping onto Torus topology.

• Router addressing scheme has been proposed for the

implementation of Torus topology on an FPGA.

• Routing algorithm and run time fault-injection model

have been proposed for the FPGA implementation of

Torus topology.

• FPGA implementation of fault-tolerant applicationmap-

ping onto Torus topology.
For the experimentation, we have taken multimedia [6],

synthetic application benchmarks [11] that have been evalu-

ated using static and dynamic simulations based environment.

These benchmarks are most widely used in the literature to

evaluate the effectiveness of the applicationmappingmethod-

ologies. The fault-tolerant solution obtained using static sim-

ulations has been implemented on an FPGA. For prototyping

fault-tolerant applicationmapping solutions onto FPGA, ded-

icated router addressing scheme, run time fault-injection

model, and routing algorithm for Torus topology have been

implemented. The rest of the paper is organised as follows.

Section II briefs the literature survey. Section III describes the

problem formulation. Section IV details proposed method-

ology. Section V presents experimental results. Section VI

presents the limitations of this work and Section VII

concludes the paper.

C. MOTIVATION

From the literature [6], [8], it has been noticed that

the exact method ILP and meta-heuristic algorithm PSO

are successful in finding the fault-tolerant mapping solu-

tions for different application benchmarks. This has moti-

vated us to consider the ILP and PSO methodologies for

fault-tolerant mapping of applications onto Torus topol-

ogy. The fault-tolerant application-mapping ontoMesh-based

NoC has been addressed in the literature [10], [12]–[15].

Among these one of our previous works [15] has shown

significant improvements in the performance parameters in

terms of communication cost. However, the formulations

(ILP and PSO) proposed in one of our previous works [15] is

limited to Mesh topology only. Due to the structural changes

in the Torus topology, the formulations proposed for Mesh

will not be applicable to it. The wraparound links in Torus

topology connects the corner routers with a single hop such

that the average hop count is less compared to Mesh topol-

ogy. Therefore, there is a significant difference between the

Mesh and Torus topologies. The major difference is in the

formulation of objective function and fitness function using

our previously proposed methodologies ILP and PSO [15].

The experimentation has been carried out to see the difference

between the mapping information obtained for Mesh and

Torus topologies using our approaches (ILP and PSO).

As mentioned above, with the change in the intercon-

nection pattern between the routers in the topology, the

performance of an application is varied from one topol-

ogy to other. The primary goal of this work is to analyse

the efficiency of the fault-tolerant application mapping onto

Torus topology using our approaches (ILP, PSO) [15] and

the approaches [10], [16]–[18]. The fault-tolerant spare core

mapping (FSCM) techniques proposed by the same group

of authors in [10], [16]–[18] considered the node average

distance (NAD) region and map the spare core in the cen-

ter of the NAD region. This technique has shown improve-

ments over the traditional approaches presented in [12]–

[14], [19]. Therefore, the FSCM technique is considered

for the experimental evaluation. In addition to the FSCM

technique, we have also considered the Simulated Anneal-

ing (SA) algorithm [20] and the Genetic Algorithm (GA) [21]

for the comparison of results. Though, we modify the SA

algorithm [20] and the GA [21] that can be suitable to Torus

topology, we limit the comparison between the Mesh and

Torus topologies to FSCM [10] technique only. However,

a detailed analysis of the SA algorithm and the GA in the

context of fault-tolerant application mapping can be seen

in experimental section. We have modified the formulations

(ILP/PSO) of our previously published work [15] by con-

sidering the wraparound links in the Torus topology. This

is an attempt to analyse the applicability of our approaches

(ILP/PSO) [15] to Torus topology by providing the flexibility

to map the spare cores along with the application cores onto

the routers. The cost function i.e., communication cost is the

figure-of-merit for the application mapping problem. It is

defined as the product of bandwidth and number of hops

required for the cores to get communicated in the topology.

Since the performance of an application is relied on the

efficiency of the application mapping technique, therefore,

it is highly necessary to analyse the fault-tolerant application

mapping solutions in NoC.

Communication cost =
∑

∀edges

(bandwidth ∗ hops) (1)

Table 1 shows the comparison of communication cost

(calculated using equation (1)) between our approaches

(ILP/PSO) [15] and FSCM [10] for an MPEG-4 application

mapped onto 4 × 4 Mesh and Torus topologies, respec-

tively. For a fair comparison between our approaches [15]

and FSCM [10], the most communicating core (C4) in the

MPEG-4 application (shown in Fig. 1) is assumed as failure

in the application. In the event of failure, the spare core (CS)

is used to provide fault-tolerance to an application. From

Table 1 it can be observed that the total communication cost

obtained using our approach for Mesh and Torus topology is

3652 and 3587, respectively. Similarly, the communication

cost obtained using FSCM [10] for Mesh and Torus topolo-

gies is 5290 and 7283, respectively.

The communication cost obtained using FSCM [10] is

high because they have used the NAD region policy to map

the application cores along with the spare core. Since the

selected NAD region has restrictions in terms of the hop

count between the cores, this has resulted in high number

VOLUME 9, 2021 45937



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 1. Communication cost comparison between our approaches (ILP/PSO) and FSCM [10] for Mesh and Torus topologies, respectively.

of hops between the routers in the topology. On contrary,

our approaches (ILP/PSO) have provided flexibility to select

the routers to map the application cores along with spare

one. This has led to achieve less number of hops between

the cores resulting in less communication cost. The per-

centage improvements in communication cost using our

approaches (ILP/PSO) for Mesh [15] and Torus topologies

over FSCM [10] is 30.96% and 50.74%, respectively. The

average hop count for Mesh and Torus topologies using our

approaches (ILP/PSO) are 1.61 and 1.30, respectively. Sim-

ilarly, for FSCM [10] the average hop count for Mesh and

Torus topologies are 1.61 and 1.69, respectively. With the

flexible spare core placement in the Torus topology, there

is an improvement of 19.25% and 1.78% over the Mesh

topology in terms of the average hop count and communi-

cation cost, respectively. Compared to Mesh topology, with

the use of modified ILP and PSO formulations for Torus

topology, the percentage of improvement in communication

cost over FSCM [10] is high. This is due to the advantage

of the wraparound links available in the Torus topology and

the policy of the placement of spare cores as per the com-

munication requirement of an application. Since there is a

significant improvement in terms of average hop count in

Torus topology, this has motivated us to apply the modified

ILP and PSO formulations to the benchmark applications and

synthetic applications generated using the TGFF tool [11].

II. RELATED WORKS

Fault-tolerant application mapping is becoming an impor-

tant problem that needs to be addressed during the design

time of an application. Table 2 presents the comparison of

application-mapping techniques that have been presented in

the literature. The authors in [8] have presented the sum-

mary on fault-tolerant application mapping techniques that

have optimized the parameters such as communication cost,

latency, area, and energy consumption. This survey highlights

several methodologies that are proposed to address the core

faults in an application. The authors in [12] have presented

the fault-aware resource management (FARM) technique to

improve system reliability by performing run-time mapping.

The FARM technique suggests that the mapping of spare

core onto the router (randomly selected from the topology)

has shown significant performance improvement over the

selection of routers specific to edges and center. The authors

in [13], [14], [19] have presented a fault-tolerant spare core

allocation (FASA) approach by providing the locations for the

spare core to be placed in the Mesh topology. The technique

FASA has mapped the spare core near to the most commu-

nicating core of an application. The techniques FARM and

FASA have fixed the position of spare cores to be placed

in the Mesh network. Since, FARM and FASA have per-

formed mapping of healthy cores in an application first and

then selected the spare core to be placed in the network.

This has resulted in a high communication cost and network

latency. To improve system reliability, an energy efficient

fault-tolerant application mapping technique has been pre-

sented in [10], [16]–[18]. They have selected a region that

satisfies the constraint of less number of hops between the

routers. Within the region selected, the spare core has been

placed in the center of the region. This has resulted in signif-

icant improvements over the techniques FARM and FASA,

in terms of communication cost and energy consumption

while providing reliability to system. The major advantage

is that the authors [10], [16]–[18] have considered the spare

core while mapping an application onto Mesh topology. The

authors in [15] have presented flexible spare core place-

ment while performing application mapping onto the Mesh

topology. It has shown significant improvements over the

approaches [10], [16]–[18] in terms of communication cost

and dynamic performance parameters.

From Table 2, it can be noticed that most of the approaches

have focused on 2D Mesh topology. Though, the Torus

topology has many advantages in terms of communica-

tion cost, power consumption, and network latency, there

are very few approaches that have considered it for the

fault-tolerant application-mapping. One of our previous

45938 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 2. Comparison of the recent works in the context of application-mapping onto NoCs and its FPGA implementation.

works presented in [22], has targeted Torus topology

and performed fault-tolerant application-mapping. We have

extended the work proposed in [10], [16]–[18] and com-

pared the results in terms of communication cost. However,

the work addressed in [22] has limited to static simula-

tions. Recently, the authors in [20], [21], [23], [24] have

addressed the problem of application mapping onto NoC

topologies without considering any core faults in the appli-

cation. In [23], a self-adaptive mapping approach has been

presented to address the problem of application-mapping

onto Mesh-based NoC design. Their approach focuses on

fault-free mapping of application cores onto Mesh topol-

ogy using self-adaptive chicken swarm optimization (SCSO)

algorithm. However, the applicability of the SCSO algorithm

to map the application cores onto the Torus-topology is to

be known. In [24], a comparative analysis on different appli-

cation mapping techniques onto NoC design and categoriza-

tion of the trends in implementation of NoCs have been

detailed. An area aware cost function has been proposed by

the authors in [20]. They have used a variant of the Simulated

Annealing (SA) algorithm and proposed a solution to map the

cores onto the routers in Mesh topology. However, the SA

algorithm based solution is limited to Mesh topology and

the applicability of the SA to the problem of fault-tolerant

application mapping has to be known. A dual-population

based Genetic Algorithm (GA) has been proposed in [21] to

address the problem of application-mapping in NoCs. They

have fine-tuned the initial population to achieve best quality

of mapping solution. Though, the GA algorithm has shown

improvements for Mesh topology, the applicability of GA

algorithm to the Torus topology has to be known. From

Table 2 and the survey [8], it can also be noted that the

realization of fault-tolerant mapping solutions on an FPGA

is achieved by very few approaches. The authors in [9]

have presented the FPGA implementation of fault-tolerant

application mapping onto Mesh topology. They have shown

the significance of spare core while performing the FPGA

implementation. The FPGA implementation presented in [9]

has focused on the demonstration of fault-tolerance pro-

vided to an application. The details on the router archi-

tecture and resource utilization on an FPGA is missing in

the approach [9]. Overall, it can be summarized that there

exists many approaches that have addressed the problem

of fault-tolerant application-mapping onto 2D Mesh topol-

ogy [8]. These approaches have not focused on the applicabil-

ity of themethodology to Torus topology. Therefore, there is a

need for the investigation of applicability of the fault-tolerant

application mapping techniques and evaluations of perfor-

mance parameters for Torus based NoCs. Also, there is a

room for exploring the realization of the fault-tolerant appli-

cation mapping solutions on an FPGA to understand and

analyse the practical behavior of NoCs. According to recent

survey [8], this work can be classified as a hardware redun-

dancy based mapping solution that has been proposed to

address the core faults while performing application mapping

onto Torus topology.

III. PROBLEM FORMULATION

Application mapping in NoC is similar to Quadratic Assign-

ment Problem and it is observed to be an NP-Hard [6], [25].

In the DSM level, system reliability can be improved by

performing mapping of application cores along with spare

core onto NoC topology. The communication characteristics

of an application can be represented in the form of a graph

known as Application Core Graph (ACG). The connections

between the routers using links in the topology is known as

Topology Graph (TG). If ‘C’ is the set of cores in an ACG,

‘E’ is the set of edges annotated with bandwidth (in Mega

bits per second), ‘R’ is the set of routers in the TG, then

connecting each core in {C} to a router in {R} to minimize

the cost function is known as application mapping problem.

The application-mapping problem complexity can be defined

as, if there are ‘n’ cores to be mapped onto ‘n’ routers, then

the possible combinations of solution is ‘n!’. If the number

of cores and the routers are increased then the complexity of

the problem may increase further. Similarly, the problem of

fault-tolerant application mapping is defined as connecting

each core that includes spare core in {C} of an ACG to the

routers in TG such that cost function is minimized. To address

the problem of fault-tolerant application mapping, we have

also considered the spare core while performing application

mapping onto Torus topology.

VOLUME 9, 2021 45939



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

FIGURE 2. Fault-tolerant MPEG-4 application mapped onto 4 × 4 Torus
topology.

IV. METHODOLOGY

In this section we present the exact method ILP,

meta-heuristic PSO formulations, NoC router architecture,

addressing scheme, routing algorithm, and run time fault

injection model for software and FPGA based simulations.

Since, Torus topology is a modified version of the Mesh

with wrap around links, there will be limited modifications

in the ILP and PSO formulations proposed by the authors

in [15]. The key modifications in ILP and PSO are finding a

path between the source core and destination cores that are

mapped onto the routers in the Torus topology. Fig. 1 shows

the MPEG application core graph having twelve cores (C0-

C11), among these cores, core C4 is the highest communi-

cating one. Fig. 2(a) and 2(b) show the fault-tolerant MPEG

applicationmapped onto 4×4 Torus topology (having sixteen

routers numbered from R1 to R16) using FSCM [10] and our

approach, respectively. Among these sixteen router positions,

thirteen are occupied by the application and three of them are

left idle.

As it can be observed from Fig. 2, unlike Mesh topology,

the connection pattern between the corner and edge routers

in the Torus topology are using wrap around links. Therefore,

the ILP and PSO formulations proposed by the authors in [15]

may not be applied directly for Torus topology. Hence, there

is a need for the modifications in ILP and PSO formulations

that consider the path using wrap around links in the Torus

topology.

A. ILP FORMULATIONS

ILP aims to minimize the objective function i.e., communica-

tion cost for the problem of fault-tolerant applicationmapping

onto Torus topology based NoC. For the problem defined

in Section IV, the ILP can be formulated as follows. For

an edge eab ǫ E in the ACG, the cores ca, cb ǫ C have a

communication requirement with a bandwidth Bwab. If cores

ca, cb are mapped to the routers ri, rj ǫ R, then there exists

a path P
rirj
cacb having Drirj number of hops between them. The

equations (2) to (10) represent the description of variables,

parameters, objective function, mapping constraints, and path

constraints, respectively used for the formulation of an ILP.

Please note that the equations (2-3) and (5-8) are similar to the

formulations of Mesh topology presented in [15]. However,

to understand the ILP process flow the equations (modified

from [15]) are necessary to be mentioned.

1) VARIABLES AND PARAMETERS

• The mapping variable M
ri
ca is of binary type. If M

ri
ca is

one, then core ca is connected to router ri, otherwise it

is zero.

M ri
ca

=

{

1, Connection exists

0, No connection
(2)

• The path variable P
rirj
cacb is of binary type. If P

rirj
cacb is one,

then there exists a path between the cores ca, cb via

routers ri, rj, otherwise it is zero.

P
rirj
cacb =

{

1, Path exists

0, No path
(3)

• The distance variable Drirj is of integer type. If ri 6= rj,

then the lower and upper limits of distance variable in

mxn Torus topology is 1 and 2(m - 1). If ri is equal to rj,

then the distance between the routers is zero.

Drirj = Z
+
, 1 ≤ Drirj ≤ 2(m− 1) (4)

2) OBJECTIVE FUNCTION

Minimize [
∑

∀eabǫE

Bwab ∗ (
∑

∀rirjǫR

Drirj ∗ P
rirj
cacb )] (5)

3) MAPPING CONSTRAINTS

For fault-tolerant application mapping we have considered

the spare core and performed mapping onto routers in the

Torus topology.

• Each core ca ǫ C including spare core cs is mapped onto

routers ri ǫ R in the topology.

∀ caǫC;
∑

riǫR

M ri
ca

= 1 (6)

• Each router ri ǫ R can have atmost one core ca ǫ C

connected to it.

∀ riǫR;
∑

caǫC

M ri
ca

≤ 1 (7)

From equations (6) and (7), the application cores (including

spare core) are mapped onto the routers in the topology.

Next, the communication path has to be established using the

routing algorithm.

4) PATH CONSTRAINTS

The communication path has to be established for the cores

in the ACG. In the event of core failure, the tasks have to

be migrated from the failed core to spare core. Unlike ILP

formulations presented for Mesh topology in [15], the path

constraints for Torus topology are different. We consider

the path and distance variables to calculate the number of

hops required for the communication. For a given source

45940 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

and destination core pair, we have used modified XY routing

algorithm to find out the routing path and corresponding

distance between the routers.

• The pre-calculated distance is stored in the distance

array shown below.

Drirj =











Dr1r1 Dr1r2 · · · Dr1rj
Dr2r1 Dr2r2 · · · Dr2rj

.

.

.

.

.

.
.
.
.

.

.

.

Drir1 Drir2 · · · Drirj











(8)

• As we have already mentioned in equation (4), that the

distance between the routers of same index will be zero.

Drirj =











0 Dr1r2 · · · Dr1rj
Dr2r1 0 · · · Dr2rj

.

.

.

.

.

.
.
.
.

.

.

.

Drir1 Drir2 · · · 0











• If the cores are mapped onto routers, then there exists

a path between the cores via routers (represented in

equation (9)). However, there should not be any path in

the topology between the failed core cf and other healthy

cores ca ǫ C of an ACG. This can be represented by

equation (10).

∀eabǫE, a 6= b 6= f ; M ri
ca

+M
rj
cb − P

rirj
cacb ≤ 1 (9)

∀eabǫE, a == f ; b 6= f M rk
cs

+M
rj
cb − P

rk rj
cscb ≤1 (10)

The equations (2) to (10) are given to the ILP solver tool

CPLEX [26]. The solution obtained is the fault-tolerant appli-

cation mapping onto Torus topology based NoC design. This

completes the exact method formulations. As the problem

complexity is increased, the number of variables used for the

ILP formulation increases which results in the out of memory

status. Therefore, for the higher network sizes meta-heuristic

PSO is proposed.

B. PSO FORMULATION

PSO was proposed by Eberhart and Kennedy in 1995 [27].

It is inspired by the nature of birds swarm and fish schooling

to address the problems that involve global and local opti-

mization. Most of the researchers have been successful in

applying the discrete version of PSO (DPSO) to address the

problem of application mapping in NoC. With this motiva-

tion, the authors [15], [22] have applied the DPSO to solve

the problem of fault-tolerant application mapping onto Mesh

and Torus topology, respectively. The detailed description of

PSO can be known from [22]. Since, PSO is one of the contri-

butions in this paper; therefore, authors feel it is necessary to

discuss in brief about PSO for the fault-tolerant application

mapping onto Torus topology. The step by step procedure

required for the formulation of PSO are as follows.

1) INITIALIZATION OF PARTICLES

The first step is to initialize the particles randomly in the prob-

lem space to find the optimum solution. Prior to initialization,

FIGURE 3. Particle Structure for MPEG ACG shown in Fig. 1.

particle structure has to be formulated. Therefore, particle

structure can be represented as an array of elements whose

entries are cores (including spare core) and indices are routers

in the Torus topology. Fig. 3 shows the particle structure of

MPEG ACG shown in Fig. 1. Since, Torus topology differs

from Mesh in terms of wrap around links only, therefore

the particle structure formulated for Mesh [15] and Torus

are same. However, the solution differs in the formulation of

fitness function in terms of hop array.

2) FITNESS FUNCTION

In PSO, the solution’s quality depends on the fitness function,

i.e., communication cost defined in equation (1). For better

fitness values, the communication cost has to be minimized

for each edge in the ACG while providing fault-tolerance to

the system. From equation (1), it is evident that the commu-

nication cost is dependent on the number of hops between

the routers. As mentioned in Section IV.A, the number of

hops between the routers in Torus topology is calculated using

the modified XY routing algorithm. Therefore, the hop array

obtained for Mesh topology might not be useful to Torus

topology. Since the router connection pattern and the routing

algorithm used for Torus are different from those of Mesh

topology, there is a need to formulate PSO for Torus topology.

The hop array for Torus topology is shown in equation (8),

which differentiates from Mesh topology in terms of the

distance between the corner and edge routers.

3) CREATION OF NEW GENERATION

The initial generation of particles is created randomly. The

evolution of particles is partially guided by local best and

global best. The local best is the minimum communication

cost, the particle has seen so far in the process of evolution.

The global best is the minimum communication cost for a

particular generation. The new generation is created by apply-

ing the swap sequences on a particle. For detailed explanation

regarding local best, global best, swap sequences, please refer

to the PSO section in [15].

4) TERMINATION CRITERIA

PSO can be terminated in two different ways. The first and

frequently used terminating condition is to check the gener-

ation count. If the generation count for an independent run

of PSO is expired, then the PSO is terminated. Secondly,

for a certain number of generations if the fitness value is

unchanged, then the PSO is terminated. For the experimen-

tation, we have considered the first terminating condition

for PSO.

VOLUME 9, 2021 45941



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

FIGURE 4. NoC router architecture modified version of [28].

FIGURE 5. Input channel of the router [28].

FIGURE 6. Output channel of the router [28].

This briefs the PSO formulation for the problem of

fault-tolerant application mapping onto Torus topology.

C. NoC ROUTER ARCHITECTURE AND ADDRESSING

SCHEME

In this section, we present the NoC router architecture and

addressing scheme used for the implementation of Torus

topology based NoC design onto an FPGA. The basic

router architecture is taken from the work presented in [28].

The overview of NoC router architecture (modified version

of [28]) is shown in Fig. 4.

We have used five port (four links and one core) Virtual

Channel (VC) based NoC router. It has one input and output

channel. The data flow in input channel and output chan-

nel is shown in Fig. 5 and 6, respectively. The application

data in NoC is transferred using packet-switching technique.

According to this technique, the data packet is divided into

Header Flit (HF), Payload Flit (PF), and Tailer Flit (TF).

The flits entering into a router will pass through the input

channel, via crossbar, and reach the output channel. The input

buffer (FIFO) in the input channel collects the flit and pass it

to the route computation (RC) unit. In RC unit, the routing

algorithm is responsible to request the corresponding output

FIGURE 7. The overall data-flow in NoC router [28].

FIGURE 8. Router addressing scheme for 4 × 4 Torus topology.

port to pass the flits from source to destination. The input read

switch (IRS) monitors the status of the FIFO. Based on the

availability of the FIFO, the next flits will be processed. The

output channel majorly consists of VC allocate and Switch

allocate modules. They involve in switching the data from

an input channel to the output port. The VC allocate module

monitors the status of the VCs used in the output links and

grant a response to the request received from the input chan-

nel. The arbiter is used to grant the response based on the

requests received. In the switch allocate module, the output

port is assigned with the help of an encoder. In one of the

output ports selected, the flits from the input channel will

be passed through it by updating its VC-id. The overall

data-flow noticed from input port of a router to the output

port can be realized using the Fig. 7. It can be noticed that

from the entire data flow process that the router addresses

in HF and routing algorithm are the key blocks, which can

request the corresponding output link for successful delivery

of data flits. Therefore, in this work, the router addressing

scheme and routing algorithm have also been proposed for

the implementation of Torus topology on an FPGA.

Fig. 8 shows the router addressing scheme proposed for

the 4× 4 Torus topology with the indication of North, South,

East, and West links of a router. We have used the concept

of reflected binary (RB) code for addressing the routers.

According to RB coding scheme, the neighbouring routers

are differentiated by one bit only. This adds an advantage in

terms of the comparison between two routers in the topology

by checking single bit change in the router addresses. The

router addressing scheme for 4 × 4 Torus topology requires

45942 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

four bits D[3:0]. The router architecture used for the 4 × 4

Torus topology is of five ports (north, south, east, west, and

local). As we can observe from the Fig. 5, the routers can be

compared by considering one binary bit in the address. This

can be scalable to higher network size of Torus topology.

D. ROUTING ALGORITHM AND RUN TIME

FAULT-INJECTION MODEL

1) ROUTING ALGORITHM

In this section, we present the routing algorithm designed for

4 × 4 Torus topology by considering the router addressing

scheme discussed in Section IV.C. Algorithm 1 shows the

routing algorithm proposed for the Torus topology. Input and

output to this algorithm are Header Flit (HF) and current

router link request, respectively. Once the HF is received at

the current router, the destination router address D[3:0] is

taken and compared with the current address C[3:0]. Accord-

ing to this algorithm, the current and destination routers

are compared bit wise. Since the router addressing scheme

is based on binary, therefore, bit-wise comparisons are

done.

As we have mentioned in Section IV.C, the router arbitra-

tion unit grants the access to the output links requested by

routing algorithm. Therefore, the routing algorithm proposed

will request the output links of the current router. According

to the Algorithm 1, there are four different conditions to be

checked before requesting the current router’s output links.

The description of each condition is given below.
1) East or West link: The first bit C[0] in current address

and D[0] in destination address are compared. If they

are not equal, then the first bit C[0] and second bit C[1]

in the current address will be compared. If C[0] and

C[1] are equal, then the proposed algorithm requests

the current router’s East link. If C[0] and C[1] are not

equal, then the current router’s West link is requested.

If the first bit in current address C[0] and destination

address D[0] are equal, then the proposed algorithm

compares with its next bit, i.e., the second bit of the

current and destination address.

2) West or East link: The second bit C[1] in the current

address and D[1] in destination address are compared.

If they are not equal, then the first bit C[0] and sec-

ond bit C[1] in the current address will be compared.

If C[0] and C[1] are equal, then the proposed algorithm

requests the current router’sWest link. If C[0] and C[1]

are not equal, then the current router’s East link is

requested. If the second bit in current and destination

address are equal, then the proposed algorithm will

compare with its third bit, i.e., C[2] and D[2].

3) North or South link: The third bit C[2] in the cur-

rent address and D[2] in destination address are com-

pared. If they are not equal, then the third bit C[2] and

fourth bit C[3] in the current address will be compared.

If C[2] and C[3] are equal, then the proposed algorithm

requests the current router’s South link. If C[2] and C[3]

are not equal, then it requests North link of the current

Algorithm 1 Routing Algorithm for Torus Topology

Input : Header Flit (HF)

Output: Link request of current router

1 Read the destination address D[3:0] from HF

2 for Each HF received at the router do

3 Compare the destination address D[3:0] with current

address C[3:0]

4 if (C[0] 6= D[0]) then

5 if (C[0] == C[1]) then

6 request East link

7 else

8 request West link

9 else if (C[1] 6= D[1]) then

10 if (C[0] == C[1]) then

11 request West link

12 else

13 request East link

14 else if (C[2] 6= D[2]) then

15 if (C[2] == C[3]) then

16 request South link

17 else

18 request North link

19 else if (C[3] 6= D[3]) then

20 if (C[2] == C[3]) then

21 request North link

22 else

23 request South link

24 else

25 request local link

26 end

27 Once the link connection is established PF, TF follow

the path

router. If the third bit of the current C[2] and destination

address D[2] are equal, then the proposed algorithm

compares with its next bit, i.e., C[3] and D[3].

4) South or North link: The fourth bit in the current

address C[3] and destination address D[3] are com-

pared. If they are not equal, then the third C[2] and

fourth bit C[3] in the current address will be compared.

If C[2] and C[3] are equal, then the proposed algorithm

requests the current router’s North link. If C[2] and

C[3] are not equal, then it requests South link of the

current router. If the fourth bit of the current C[3] and

destination address D[3] are equal, then the proposed

algorithm requests the local link.

2) RUN TIME FAULT-INJECTION MODEL

We have proposed a run time fault-injection model for the

FPGA implementation of fault-tolerant application mapping

onto Torus topology. In general, there are several ways to

inject the faults on an FPGA to test the design. The authors

in [29] have proposed an emulation based fault-injection

VOLUME 9, 2021 45943



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 3. FPGA switch operations used for fault injection model.

control and monitoring technique. They have injected the

faults into a specific location of the design, i.e., flip-flops, and

observed the functional characteristics while monitoring the

state of flip-flops. In contrast to it, our proposed model shown

in Algorithm 2 has the flexibility to inject the faults into the

cores. Instead of injecting the faults in selected flip-flops

of the design, our proposed model considers the failures

in a higher level of the design like cores and deactivates

it. Since we assume that the most communicating core has

high chances of failure, the fault is injected into it using the

switches on a Kintex-7 KC705 FPGA. Compared to the work

proposed in [29], our proposed model is a proof-of-concept

that shows the fault-tolerance can be achieved with the help

of spare cores. However, the methodology proposed in [29]

can be considered as an extension to this work.

The inputs to our proposed model are Header Flit (HF),

fault information (FI), and spare core activation (SCA). The

output is to establish a routing path from the spare core to

the other cores in an application. Since we have assumed

that the most communicating core is failed in an application,

the fault is injected into it. However, the fault can be injected

into any one of the cores of an application. The term fault

injection in this work refers to the deactivation of the most

communicating core from the network. Once the fault has

been injected in runtime, the failed core will not exchange the

flits from other cores in an application. In such a case, based

on the spare core activation, the communications associated

with failed core will be taken up by the spare core.

Table 3 represents the FPGA onboard switch operations

used for the fault-injection model. The first column rep-

resents the status of FI, the second column represents the

status of SCA, and the third column represents the switch

operations. There are multiple switches on the KC705 FPGA

board. We have used the 4-bit DIP switch (SW11) (denoted

by the SW11[s4:s1]) to configure the fault-injection model.

The Low and High represent the DIP switch status 0 and 1,

respectively. Out of the four bits in the DIP switch SW11,

the second bit SW11[s2] is used for the injection of fault in

the cores, and the third bit SW11[s3] is used for the activation

of the spare core. The first bit and fourth bit of SW11 has not

been used for the fault-injection model. If SW11[s2] is high,

then it denotes that the fault has been injected into the core;

otherwise, there is no fault injected in the core. If SW11[s3]

is high, then it denotes that the spare core is activated in

the design; otherwise, there is no fault-tolerance provided

to the design. From Table 3, it can be observed that there

Algorithm 2 Run Time Fault-Injection Model

Input : Header Flit (HF), DIP switch status

SW11[s4:s1]

Output: Establish the routing path from the spare core

1 Read the HF, the switch SW11[s2] and SW11[s3] status

from the KC705 FPGA

2 for each HF received at the router do

3 if ((SW11[s2] == 0)&&(SW11[s3] == 1)) then

4 Establish the routing path between the fault-free

cores and spare core.

5 Invalid operation

6 if ((SW11[s2] == 1)&&(SW11[s3] == 0)) then

7 Establish the routing path between the cores

except the failed one.

8 Unreliable operation

9 if ((SW11[s2] == 1)&&(SW11[s3] == 1)) then

10 if (source core is failed) then

11 Establish the routing path from spare core.

12 Spare core sends the HF.

13 end

14 if (destination core is failed) then

15 Establish the routing path from spare core.

16 Spare core receives the HF.

17 end

18 else

19 Fault-free cores exchange the HFs

20 end

21 Payload Flit (PF), Tailer Flit (TF) follows the routing

path established by spare core

are four different switch modes that can be used to verify

the functionality of the fault-injection model. Fig. 9 shows

different switch configurations discussed in Table 3. Each one

of these configurations is detailed below.
1) No failure: If the second bit (SW11[s2]) and third bit

(SW11[s3]) of the switch SW11 is configured to low,

then it is considered as fault-free mode. Fig. 9(a) shows

the SW11 configuration, it can be seen that the second

and third bit is configured to 0 or low. In fault-free

mode, the data will be exchanged between the healthy

cores of an application.

2) Invalid: If the second bit of the switch SW11 is con-

figured to Low and the third bit of the switch SW11 is

configured to high, then it is an invalid mode. In this

mode, only the spare core is activated which sends the

redundant data to the other cores of the application.

Therefore, it is considered as the invalid mode.

3) Fault-injected but the spare core is not activated: If

the second bit of the switch SW11 is configured to High

and the third bit of the switch SW11 is configured to

Low, then the fault is injected into the core which is

assumed to be failed. In the event of failure, the spare

45944 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

FIGURE 9. DIP Switch SW11 configuration on KC705 FPGA board, (a) No failure, (b) Invalid, (c) fault is injected but spare core not activated, and (d) fault
is injected and spare core is activated.

core need to send the data flits to the cores associated

with the failed one. Since the spare core is not activated,

it will not send the data flits to the other cores. This

results in the degradation of system performance.

4) Fault injected and the spare core is activated: If

the second bit and third bit of the switch SW11 is High,

then the fault is injected into the core and the spare

core is activated. In the event of core failure, the spare

core will send or receive the data flits to or from the

cores associated with the failed one. Based on the role

of failed core as either source or destination, the spare

core will send or receive the data flits by establishing a

routing path.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the fault-tolerant application

mapping using software and hardware (FPGA) implementa-

tion. The major aim of this study is to understand and analyse

the performance parameters of an application with inclu-

sion of spare core while providing fault-tolerance to system.

We have taken multimedia application benchmarks [6] and

synthetic applications [11] for the experimentation. Further,

to analyze the fault-tolerant application mapping solution

obtained using our approach and the approaches FSCM [10],

SA algorithm [20], GA [21] an FPGA implementation is

done. For a fair comparison with our approaches (ILP/PSO),

we have extended the approaches based on FSCM tech-

nique [10], SA algorithm [20] and the GA [21] to Torus

topology by considering the core faults. The experimenta-

tions are carried out with the same configuration settings used

for our approach and the approaches FSCM [10], SA algo-

rithm [20], and the GA [21]. The experimental flow is shown

in Fig. 10 and the results are organized based on the software

and FPGA implementation.

The primary input to the experimentations are

application-core graphs and the outputs are static, dynamic,

and on-chip parameters. The fault-tolerant application-

mapping algorithms such as PSO, SA, GA, and FSCM are

evaluated using the software and hardware platform and its

efficiency is analyzed in terms of solution quality. The quality

ofmapping solution can be ranked by the communication cost

defined in equation (1). In software implementation, we have

performed static simulations for our approaches (ILP, PSO)

and FSCM [10], SA [20], GA [21]. To understand the static

behavior of fault-tolerant application mapping solutions,

we have performed the experimentations with the following

configurations.

• Scaling the number of cores in the applications (multi-

media and synthetic).

• Scaling the Torus network size from 5 × 5 to 12 × 12

• Scaling the percentage of router faults in 9 × 9 Torus

network.

Similarly, the dynamic behavior of the proposed solutions is

analysed using the cycle accurate NoC simulator and com-

pared the results in terms of network latency (in clock cycles),

throughput (in flits/cycle/core), and router power consump-

tion (in mW). In hardware implementation, the fault-tolerant

application mapping information is prototyped onto FPGA

and on-chip parameters namely resource utilization, appli-

cation runtime on an FPGA, and static/dynamic power

consumption are analyzed. To compare our approach and

FSCM [10], SA algorithm [20], and GA [21] the applications

are run on an FPGA with the respective mapping information

obtained in the software implementation stage and the overall

runtime is noted. These application mapping algorithms are

validated on an FPGA by providing real application traffic

patterns in terms of flits. We have used Virtual Input Out-

put (VIO) IP core to assign the cores to the routers and

send the data flits. Based on the analysis, the efficacy of the

fault-tolerant application mapping algorithms is known.

A. EXPERIMENTAL SETUP

The algorithms PSO (our approach), SA [20], and GA [21]

are coded in high-level language and performed static sim-

ulations. They are independently run for 30 times and the

best results are reported. The parameters used for the PSO

VOLUME 9, 2021 45945



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

FIGURE 10. Experimental flow of the fault-tolerant application mapping onto Torus topology based NoC.

algorithm are the number of particles (1000), number of gen-

erations (200), acceleration co-efficient alpha (0.5), and beta

(0.3). The parameters used for the SA algorithm are initial

temperature (40), damping rate (0.95), annealing loop (500),

and thermal equilibrium loop (10). Similarly, the parameters

used for the GA are population size (500), number of gener-

ations (100), mutation probability (0.9), and crossover prob-

ability (0.1). We have used IBM CPLEX-ILOG tool [26] to

run ILP formulations, cycle-accurate NoC simulator [28] for

dynamic simulations, and Kintex KC705 FPGA for hardware

implementation. The simulator settings are detailed below.
• Simulation time: 2,00,000 clock cycles

• Saturation time: 10,000 clock cycles

• Flit size: 32 bits

• Clock period: 5 ns

• Number of flits per packet: 64

• Traffic: application specific

• Router ports: 5 (4 global, 1 local)

• Mapping information: Our approach (PSO), FSCM [10],

SA [20], and GA [21]

• Routing algorithm: Modified XY
Please note for the experimentation (software and FPGA) the

most communicating core in the application is assumed to be

failed. This assumption is valid in most of the approaches [9],

[10], [12]–[14], [16]–[19] reported in the literature.

1) COMPARISON OF COMMUNICATION COST BETWEEN

OUR APPROACHES (ILP AND PSO) AND THE APPROACHES

FSCM [10], SA [20], AND GA [21] BY SCALING THE TORUS

NETWORK SIZE

This section presents the experimental results obtained by

mapping the application cores (including spare core) onto

the routers by scaling the network size. We have assumed

that the most communicating core has high chances of failure

for the applications considered and performed fault-tolerant

application mapping. Table 4 shows the comparison of com-

munication cost between our approach and the approaches

FSCM [10], SA [20], and GA [21] by scaling the Torus

network size from 5 × 5 to 12 × 12. In Table 4, column one

represents the application to be mapped onto Torus topology.

The second column represents the number of cores present in

the application. Columns three to seven, eight to twelve, thir-

teen to seventeen represent the communication cost results for

the 5×5, 9×9, and 12×12, respectively. From theMotivation

section, it has been seen that; if there is a fixed region for

mapping the cores (including spare core), then it has resulted

in a high communication cost. With this motivation, we have

modified the approaches SA [20] and the GA [21] without

considering any fixed region. This can be considered as a

major modification to the approaches SA [20] and GA [21]

while extending it to Torus topology. As we can observe from

Table 4, the communication cost results for the 5 × 5, 9 × 9,

12 × 12 Torus network obtained using our approaches (ILP

and PSO) are less than the approaches FSCM [10], SA [20],

and GA [21]. From the experimental results, it has been

observed that the FSCM technique used by the authors in [10]

has placed the spare core in the center of the NAD region

selected in the topology. With the change in communication

requirement of the applications, the FSCM [10] has fixed the

position for the placement of the spare core in the network.

In contrast to FSCM, our approaches (ILP/PSO) and the

approaches SA [20] and GA [21] have provided the flexibility

to place the spare core while performing the fault-tolerant

application mapping. Fig. 11 shows the comparison of the

communication costs obtained by the approaches SA [20],

GA [21], and FSCM [10]. In Fig. 11, X-axis represents the

application benchmarks, and Y-axis represents the commu-

nication cost results normalized to our approach PSO algo-

rithm. It can be noted that the approaches SA [20] and the

GA [21] have resulted in less communication cost compared

to the FSCM technique [10]. From Fig. 11(a), it can be

seen that the modified approaches SA [20] and GA [21]

have performed well for the smaller application benchmarks.

As the number of cores and the network size are increased,

the approaches SA [20] and GA [21] have shown very little

improvements (Fig. 11(b) and 11(c)) over our approach PSO

algorithm. This is due to the increase in the search space from

25 routers (in 5 × 5) to 81 routers (in 9 × 9) and 144 routers

(in 12× 12). As the search space is increased, the algorithms

SA [20] and GA [21] have not converged to the best solution.

On the other hand, though the search space is increased, our

approach PSO has converged to the best solution. This is

possible due to the swarm intelligence policy that exists in

the PSO algorithm.

Fig. 12 shows the average percentage improvement in

communication cost obtained using our approach over the

approaches FSCM [10], SA [20], and GA [21] by scal-

ing the network size, from 5 × 5 to 9 × 9 and 12 × 12,

45946 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 4. Communication cost comparison between our approaches (ILP/PSO) and the approaches FSCM [10], SA [20], GA [21], by varying the Torus
topology size.

FIGURE 11. Normalized communication cost comparison of PSO algorithm with SA algorithm [20], GA [21], and FSCM approach [10] by scaling
the Torus topology size from 5 × 5 to 12 × 12.

FIGURE 12. Average percentage improvements in communication costs
obtained by scaling the network size using our approach over the
approaches FSCM [10], SA [20], and GA [21].

respectively. On an average, by scaling the network size,

our approach has shown an improvement of 18.83%, 4.55%,

and 12.12% in communication cost over the approaches

FSCM [10], SA [20], and GA [21], respectively. This shows

our approach’s efficiency in mapping the cores (including

spare core) onto the different network sizes of Torus topology.

2) COMPARISON OF COMMUNICATION COST BETWEEN

OUR APPROACH (PSO) AND THE APPROACHES FSCM [10],

SA [20], GA [21] BY SCALING THE PERCENTAGE OF ROUTER

FAULTS IN 9 × 9 TORUS TOPOLOGY

In the previous experiment, we have seen the efficacy of the

approaches by increasing the network size. This experiment

demonstrates our approach’s efficiency while performing

fault-tolerant application mapping onto 9× 9 Torus topology

by changing the percentage of router faults. Please note that

the same kind of experiments can be done with any size of the

network. This kind of study helps to analyze the efficiency of

the approaches PSO, FSCM, SA, and GA in finding the best

possible router locations for mapping the cores (including

spare core) onto the network. The term percentage of router

faults is defined as the number of unavailable routers in the

mxn for mapping the cores of an application. For example,

if we consider 15% router faults in 9×9 Torus topology, then

out of 81 routers, 12 of them are unavailable formapping [15].

As the percentage of router faults is increasing, the selection

of routers for mapping an application plays a key role in

the quality of the solution. Further, the quality of a mapping

solution depends on the communication cost.

Table 5 shows the communication cost results comparison

between our approaches (ILP and PSO) and the approaches

FSCM [10], SA [20], and GA [21] by varying the percentage

of router faults in 9 × 9 network. The term NA represents

that the concerned application is not suitable for mapping

because the number of routers required for mapping is less

than the cores. As we can observe from Table 5, with an

increase in the percentage of router faults, our approach

could place the cores (including spare core) efficiently. The

communication cost obtained using our approach isminimum

when compared with the approaches FSCM [10], SA [20],

and GA [21]. We have normalized the communication cost

values to our approach, and the results for different applica-

tion benchmarks are shown in Fig. 13. In Fig. 13, the X-axis

represents the application benchmarks, and Y-axis represents

the communication cost normalized to our approach PSO

algorithm. As mentioned earlier, compared to our approach

and the approaches SA [20] and GA [21], the FSCM tech-

nique has fixed the NAD region to map the cores (including

spare ones) onto the routers. This resulted in high communi-

cation costs because the number of hops required to commu-

nicate between the healthy cores and the spare core is high.

VOLUME 9, 2021 45947



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 5. Communication cost comparison between our approaches (ILP/PSO) and the approaches FSCM [10], SA [20], GA [21], by scaling the percentage
of router faults.

FIGURE 13. Normalized communication cost comparison of PSO algorithm with SA algorithm [20], GA [21], and FSCM approach [10] by scaling the
percentage of router faults in Torus topology size of 9 × 9.

FIGURE 14. Average percentage improvements in communication costs
obtained by scaling the percentage of router faults using our approach
over the approaches FSCM [10], SA [20], and GA [21].

From Fig. 13, it can be observed that as the number of

cores in an application and the percentage of router faults are

increased, our approach PSO has shown significant improve-

ments over the approaches SA [20], GA [21], and FSCM [10].

Fig. 13(a), 13(b), and 13(c) show the normalized communica-

tion cost results for the applications mapped onto 9×9 Torus

topology with 15%, 35%, and 50% router faults, respectively.

It can be observed that from Fig. 13, our approach and the

approaches SA [20] and GA [21] have performed better

compared to the approach FSCM [10]. This is due to the

utilization of the entire search space by the approaches PSO,

SA, and GA over the approach FSCM, to map the cores

(including the spare core) onto the Torus network.

With increase in the router faults, the search space for the

algorithms PSO, SA and GA is limited. Within the limited

search space, the approaches SA and GA could not per-

form well because of the poor convergence in obtaining the

minimum communication cost for GA [21] and the premature

convergence in SA algorithm [20]. Fig. 14 shows the aver-

age percentage improvement in communication cost obtained

using our approach over the approaches FSCM [10], SA [20],

andGA [21] by scaling the router faults, in 9×9 network from

15% to 35% and 50%, respectively. On an average, by scaling

the router faults our approach has shown an improvement

of 34.27%, 26.26%, and 30.41% in communication cost over

the approaches FSCM [10], SA [20], and GA [21], respec-

tively. This improvements are due to the efficient placement

of spare core in the network over the FSCM [10] and better

convergence of the PSO algorithm over the SA algorithm [20]

and GA [21]. Compared to the scaling in network size,

the average percentage improvements in communication cost

achieved using our approach is high while we scale the router

fault-percentage in the network. It is due to efficiency of the

PSO algorithm that has the capability to explore entire search

space of the solutions.

3) COMPARISON OF DYNAMIC SIMULATION RESULTS

BETWEEN OUR APPROACH AND THE APPROACHES

FSCM [10], SA [20], GA [21]

This experiment demonstrates the dynamic behavior of the

application benchmarks simulated using the cycle-accurate

NoC simulator [28]. The inputs to the simulator are mapping

information (obtained for different applications using our

approach and the approaches FSCM [10], SA [20], GA [21]),

routing algorithm, application traffic, simulation, and satura-

tion time. The outputs are average network latency (in clock

cycles), throughput (in flits/cycle/core), and router power

consumption (in mW). For the router power consumption

45948 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 6. Average network latency, throughput, and router power consumption comparison between our approaches ILP, PSO and the approaches
FSCM [10], SA [20], GA [21] in 9 × 9 Torus topology.

FIGURE 15. Normalized network latency, throughput, and router power consumption comparison of PSO algorithm with SA algorithm [20],
GA [21], and FSCM approach [10] by performing dynamic simulations.

calculations, we have used ORION 2.0 tool [30]. Table 6

shows the comparison of dynamic simulation results between

our approach and the approaches FSCM [10], SA [20],

GA [21] for 9 × 9 Torus topology. In Table 6, first column

represents the application type, and the second column rep-

resents the number of cores. Columns three to six, seven to

ten, eleven to fourteen represent the network latency, through-

put, router power consumption results obtained using our

approach and the approaches FSCM [10], SA [20], GA [21],

respectively. Fig. 15 shows the results of the approaches

FSCM [10], SA [20], GA [21] normalized to the results

obtained using our approach. In Fig. 15, X-axis represents

application benchmarks shown in Table 6 and Y-axis rep-

resents normalized values of dynamic simulation param-

eters namely network latency (in Fig. 15(a)), throughput

(in Fig. 15(b)), and router power consumption (in Fig. 15(c)).

As it can be seen from Fig. 15(a), the network latency for the

approach FSCM [10] is comparatively higher than that of our

approach PSO algorithm, SA algorithm [20], and GA [21].

From Fig. 15(b), it is evident that the throughput for the

approach FSCM [10] is less than our approach. This improve-

ments using our approach could be possible because of the

efficient placement of spare core in the network. However, for

the router power consumption there are little improvements

using our approach over the approaches FSCM [10], SA [20]

and GA [21]. This is due to the static power consumption and

switching activity of the routers in the topology. In addition to

these, the leakage power consumption of the routers will also

add to the total power consumption of the network. Therefore,

we could not see much improvements in the router power

consumption.

FIGURE 16. Average percentage improvements in dynamic simulations
using our approach over the approaches FSCM [10], SA [20], and GA [21].

Fig. 16 shows the average percentage improvements in

dynamic simulations performed for the fault-tolerant appli-

cation mapping onto Torus topology using our approach and

the approaches FSCM [10], SA [20], and GA [21]. In Fig. 16,

the X-axis represents the simulation parameters namely net-

work latency, throughput, and the router power consumption.

The Y-axis represents the average percentage of improve-

ments using our approach over the approaches FSCM [10],

SA [20] and GA [21], respectively. On an average, our

approach has achieved an improvement of 5.67%, 0.44%, and

3.69% in terms of dynamic simulation parameters over the

approaches FSCM [10], SA [20], and GA [21], respectively.

It has been observed from the dynamic simulation results

that the mapping of spare core onto the topology affects

the system performance. From the software implementation,

i.e., static and dynamic results, it has been noticed that in

the event of core failures, selection of mapping algorithm

plays a major role in analyzing the performance of an appli-

cation. This completes the software implementation of the

VOLUME 9, 2021 45949



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

fault-tolerant applicationmapping onto Torus topology. How-

ever, the software implementation gives only an estimation

of system performance. To realize the practical behavior of

the mapping solutions obtained using our approach and the

approaches proposed in the literature, hardware prototyping

of the fault-tolerant application mapping solutions is highly

essential. This study helps us to analyze the communica-

tion latency behavior of different application benchmarks.

Next, we look into FPGA implementation of the proposed

fault-tolerant application mapping techniques.

B. FPGA IMPLEMENTATION

This section presents the experimental results of the

fault-tolerant application mapping solutions validated using

an FPGA. From the software implementation results, we have

observed that fault-tolerant application mapping performed

using our approach has achieved significant improvements

over the approaches FSCM, SA, and GA. As mentioned ear-

lier, to analyze an application’s practical behavior, an FPGA

prototyping of fault-tolerant mapping of applications has

been carried out. As part of FPGA prototyping, we have

used the fault-injection model proposed in Algorithm-2 of

Section IV.D. The faults are injected in the run-time of an

application, and the communication latency or application

run-time is calculated. Since communication latency plays

a major role in time-critical applications, it is necessary to

analyze the fault-tolerant mapping solutions by injecting the

core faults and running them on an FPGA.

With the specifications mentioned above, 4 × 4 Torus

topology is implemented on an FPGA and the fault-tolerant

application mapping solutions obtained using our approach,

FSCM [10], SA [20], and GA [21] are validated. The figure-

of-merit for the validation process is the application run time

on FPGA, which is dependent on the number of hops between

the routers. Further, the number of hops required for the com-

munication between the cores varies from one application

mapping approach to another. In other words, it is depen-

dent on the fault-tolerant application mapping algorithm. The

step by step procedure for the validation of fault-tolerant

applicationmapping solutions onto Torus topology is detailed

below.

1) 4 × 4 TORUS TOPOLOGY IMPLEMENTATION

ON FPGA BOARD

As part of the validation, firstly a communication platform

has to be implemented on an FPGA. For the FPGA imple-

mentation of Torus topology, we have considered five port

VC based wormhole router architecture [28]. Initially, single

NoC router is synthesized with the addressing scheme and

routing algorithm discussed in Section IV.C. Later, the 4 × 4

Torus topology is generated by connecting the routers as

shown in Fig. 2. After the generation of 4×4 Torus topology,

the design has been tested with different use cases to ensure

the routing algorithm and proposed addressing scheme is

working. This completes the 4×4 Torus topology implemen-

tation on an FPGA.

FIGURE 17. Packet format used for transferring the data.

We have scaled the Torus topology from 4 × 4 to 5 × 5,

9 × 9, 12 × 12 and attempted to implement them on the

FPGA board. Table 7 shows the FPGA resource utiliza-

tion and on-chip power (in Watts) calculated using Xilinx

Xpower analyzer for the Torus topologies 4 × 4, 5 × 5,

9 × 9, and 12 × 12. The resource utilization shown in this

Table consists of post-synthesis and post-implementation of

the proposed fault-injection model for the 4 × 4, 5 × 5,

and 12 × 12 Torus topology. The major reason to calculate

the resource utilization independently for the post-synthesis

and post-implementation is to know the number of Lookup

Tables (LUTs) and Flip-Flops (FFs) required for the design.

Due to the limited resources on KC705 FPGA, the Torus

topologies 5 × 5, 9 × 9, and 12 × 12 have only been synthe-

sized. They have not been implemented on the FPGA. Once

the Torus topologies are synthesized on the FPGA, on-chip

static and dynamic powers have been calculated using the

Xilinx power analyzer tool. This gives the resource utilization

and power profiles that can be used for the validation of the

application-mapping solutions. Next, fault-tolerant applica-

tion mapping solutions are validated on the KC705 FPGA

board.

2) FAULT-TOLERANT APPLICATION MAPPING

PROTOTYPING ON FPGA

The fault-tolerant application mapping solutions obtained

using our approach and the approaches FSCM [10], SA [20],

GA [21] are taken. Since the 4 × 4 Torus topology is imple-

mented on an FPGA, the applications having the number

of cores less than sixteen are mapped onto it. While map-

ping an application onto routers in the topology, the spare

cores are also considered to provide fault-tolerance. Once

the application is mapped onto the Torus topology, the real

application traffic traces are given to the cores via Virtual

Input Output (VIO) IP core. The application traffic traces

are taken from the NoC simulator [28] and the number of

flits (Header Flit (HF), Payload Flit (PF), Tailer Flit (TF)) are

calculated.

Fig. 17 shows the packet format used for transferring the

application data. To calculate the number of flits required

per edge in the ACG is given by equation (11). From

Fig. 17, it can be noticed that the number of data bits per

PF is 27 bits. Therefore, for a given application Bandwidth

(Bw), the number of flits required can be calculated using

equation (11).

No. of Flits = (HF +
Bw (in bits)

27
+ TF) (11)

45950 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 7. Estimation of resource utilization and on-chip power utilization report of different Torus topology sizes synthesized and implemented on Kintex
KC705 FPGA [31].

FIGURE 18. Screenshot of the post-implementation sending and receiving the data flits for an edge C3 - C4 in the MPEG-4 application ACG shown
in Fig. 1.

FIGURE 19. Screenshot of the post-implementation sending and receiving the data flits for an edge C2 - C4 (failed core) in the MPEG-4 application ACG
shown in Fig. 1.

We have used the VIO IP core to send and receive the

data flits from the source core to the destination core. Since

the inputs, i.e., data flits to be given to core, are of 32 bits,

the available on-board switches are not sufficient. Hence,

theVIO IP core has been used to send and receive the data flits

from source core to destination core. Fig. 18 and Fig. 19 show

the screenshot of the post-implementationwaveform showing

the functional validation of spare core sending and receiving

the data in the event of core-failure. The screenshot of the

post-implementation of data flits sent and received for an

edge C3-C4 in the MPEG-4 ACG shown in Fig. 1. There are

six different signals whose transitions are captured in Fig. 18.

The signals are Fault_Inj, Start, clk, Data Sent by C3, Data

Received at C4, and Data Received at C15. The signals

Fault_Inj and Start represent the status of fault injected and

activation of spare core. They are connected to the DIP switch

SW11 (as shown in Fig. 9) available on FPGA board [31].

The operation of these switches is shown in Table 3. The

signal clk represents the FPGA clock working at 100 MHZ

frequency. The signals Data Sent by C3, Data Received at

C4, and Data Received at C15 represents the transition of

data flits sent and received from the cores. The core C3 has to

send the data to core C4 in the fault-free case. In the event of

failure, the data from C4 will be sent to spare core C15. The

mapping information used for this experimentation is shown

in Fig. 2(a) and Fig. 2(b).

From Fig. 18, it can be observed that if the signal Fault_Inj

is high, then the core C4 is failed (most communicating).

In this case, the data from core C3 will be sent to spare core

C15 instead of C4. It is also evident from the screenshot

shown in Fig. 18, the failed core C4 has not received any data

from the core C3, instead, the data has been received by the

spare core C15. This shows that the functionality is matching

with the description shown in Table 3. Since the cores C3 and

C15 are connected to routers R2 and R14 using the wrap

around link; therefore, the hop count is one. For one-hop

count, the time taken for sending or receiving the data flits

(32 bits) is 100 ns. Similarly, we have experimented with

other edges of the MPEG-4 ACG, and the results are shown

in Table 8. In Table 8, columns one and two represent the

edge of the MPEG-4 ACG. Columns three and four represent

the bandwidth (in Megabits per second) and the number of

flits (HF+PF+TF) per edge in the application. Columns five

and six represent the number of hops required for an edge to

communicate using the FSCM [10] and our approach map-

ping information (shown in Fig. 2(a) and 2(b)), respectively.

VOLUME 9, 2021 45951



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 8. Comparison of communication latency (application run time) between our approach and FSCM [10] for an MPEG-4 application running on an
FPGA.

TABLE 9. Comparison of application run time on an FPGA between our
approach and the approaches FSCM [10], SA [20], and GA [21] for 4 × 4
Torus topology.

Columns seven and eight represent the time taken to send

or receive one flit for the FSCM [10] and our approach,

respectively. Columns nine and ten represent the total time

taken to deliver the data flits (shown in column four) per an

edge using the FSCM [10], and our approach, respectively.

The total time took to run the application (all edges in the

ACG) using the FSCM [10] and our approach, in the event of

core faults, is 19.11 and 13.66 seconds, respectively. This is

due to the mapping of the spare core along with other cores

onto the topology by the FSCM [10] and our approach. It can

be observed that the flexibility provided by our approach to

map the spare core along with healthy cores of an appli-

cation can result in less communication latency. Similarly,

we have calculated the communication cost and application

run time for the applications shown in the first column of

Table 4. Please note that in Table 8, the detailed comparisons

are shown between our approach and the FSCM [10] only.

A similar method is used to calculate the application run-time

on an FPGA for the approaches SA [20] and GA [21], and

results are shown in Table 9. As it can be seen from Table 9,

our approach has achieved significant improvements in terms

of application runtime on an FPGA over the approaches

FSCM [10], SA [20], and GA [21]. On an average there is an

improvement of 5.38%, 7.45%, 27.10% using our approach

over the approaches SA [20], GA [21], and FSCM [10],

respectively. These improvements are due to the selection

of possible router locations for the cores (including spare

core) in 4 × 4 Torus topology using our approach over the

approaches SA [20], GA [21], and FSCM [10].

VI. LIMITATIONS OF THE STUDY

The fault-tolerant application-mapping onto NoCs is well

researched area and there exists many approaches in the

literature [8]. The meta-heuristic algorithms PSO, SA, and

GA are not the only remedies to solve the problem of

fault-tolerant application-mapping. The possible limitation

of the meta-heuristic PSO algorithm proposed in this paper

is fine-tuning of parameters namely number of particles,

number of generations, local and global swarm confidence

values. Selection of these parameters require thorough inves-

tigation of the convergence of PSO algorithm in the context

of fault-tolerant application mapping. There exists several

meta-heuristic algorithms which advances the PSO, SA, and

GA algorithms in terms of fine-tuning parameters. Though,

the work addressed in this paper is limited to PSO, SA,

and GA algorithms, there is still a room to explore other

meta-heuristics presented in the literature.

VII. CONCLUSION

In this paper, we have presented fault-tolerant Torus topology

based NoC design and validated the fault-tolerant solutions

via FPGA implementation. The techniques ILP and PSO are

proposed as the solutions for the fault-tolerant application

mapping onto the Torus topology. An FPGA implementation

of the fault-tolerant application mapping onto Torus topology

has performed. For the FPGA implementation, fault-injection

model, router addressing scheme, and routing algorithm has

been proposed. The experimentations have been performed

on the multimedia and synthetic application benchmarks. The

behavior of fault-tolerant application mapping techniques is

analysed using the software and hardware implementations.

The results have shown significant improvements in terms

of software and FPGA implementation. In software imple-

mentation, parameters such as communication cost, num-

ber of hops, network latency, throughput, and router power

consumption calculated using our approach are superior

when compared to the approaches reported in the literature.

In FPGA implementation, communication latency or appli-

cation run time obtained using our approach is superior when

45952 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

compared with approaches reported in the literature. Future

work includes extending the proposed techniques to consider

multiple core failures by assuming the link, and router faults

in the NoC topologies. A multi-application fault-tolerant

mapping onto Torus topologies can also be considered as one

of the possible extensions to this work.

REFERENCES

[1] W. J. Dally and B. Towles, ‘‘Route packets, net wires: On-chip inte-

connectoin networks,’’ in Proc. 38th Conf. Design Autom. - DAC, 2001,

pp. 684–689.

[2] L. Benini and G. De Micheli, ‘‘Networks on chips: A new SoC paradigm,’’

Computer, vol. 35, no. 1, pp. 70–78, 2002.

[3] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, ‘‘HERMES: An

infrastructure for low area overhead packet-switching networks on chip,’’

Integration, vol. 38, no. 1, pp. 69–93, Oct. 2004.

[4] G. Moore, ‘‘Moores law,’’ Electron. Mag., vol. 38, no. 8, p. 114, 1965.

[5] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, ‘‘Methods for fault toler-

ance in networks-on-chip,’’ ACM Comput. Surv., vol. 46, no. 1, pp. 1–38,

Oct. 2013, doi: 10.1145/2522968.2522976.

[6] P. K. Sahu and S. Chattopadhyay, ‘‘A survey on application mapping

strategies for network-on-chip design,’’ J. Syst. Archit., vol. 59, no. 1,

pp. 60–76, Jan. 2013.

[7] M. E. Gomez, J. Duato, J. Flich, P. Lopez, A. Robles, N. A. Nordbotten,

O. Lysne, and T. Skeie, ‘‘An efficient fault-tolerant routing methodology

for meshes and tori,’’ IEEE Comput. Archit. Lett., vol. 3, no. 1, p. 3,

Jan. 2004.

[8] N. Kadri and M. Koudil, ‘‘A survey on fault-tolerant application map-

ping techniques for network-on-chip,’’ J. Syst. Archit., vol. 92, pp. 39–52,

Jan. 2019. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S1383762118301498

[9] N. K. R. Beechu, V. M. Harishchandra, and N. K. Y. Balachandra, ‘‘Hard-

ware implementation of fault tolerance NoC core mapping,’’ Telecommun.

Syst., vol. 68, no. 4, pp. 621–630, Aug. 2018.

[10] N. K. R. Beechu, V. M. Harishchandra, and N. K. Y. Balachandra,

‘‘An energy-efficient fault-aware core mapping in mesh-based network on

chip systems,’’ J. Netw. Comput. Appl., vol. 105, pp. 79–87, Mar. 2018.

[11] R. P. Dick, D. L. Rhodes, and W. Wolf, ‘‘TGFF: Task graphs for free,’’

in Proc. 6th Int. Workshop Hardw./Softw. Codesign (CODES/CASHE),

Seattle, WA, USA, 1998, pp. 97–101, doi: 10.1109/HSC.1998.66624.

[12] C.-L. Chou and R. Marculescu, ‘‘FARM: Fault-aware resource manage-

ment in NoC-based multiprocessor platforms,’’ in Proc. Design, Autom.

Test Eur., Mar. 2011, pp. 1–6.

[13] F. Khalili and H. R. Zarandi, ‘‘A fault-aware low-energy spare core alloca-

tion in networks-on-chip,’’ in Proc. NORCHIP, Nov. 2012, pp. 1–4.

[14] F. Khalili and H. R. Zarandi, ‘‘A fault-tolerant low-energy multi-

application mapping onto NoC-based multiprocessors,’’ in Proc. IEEE

15th Int. Conf. Comput. Sci. Eng., Dec. 2012, pp. 421–428.

[15] P. V. Bhanu, P. V. Kulkarni, and J. Soumya, ‘‘Fault-tolerant network-on-

chip design with flexible spare core placement,’’ ACM J. Emerg. Technol.

Comput. Syst., vol. 15, no. 1, p. 23, 2019.

[16] B. N. Kumar and D. Sharma, ‘‘Communication energy constrained spare

core on NoC,’’ in Proc. 11th Conf. Ph.D. Res. Microelectron. Electron.

(PRIME), Jun. 2015, pp. 21–24.

[17] B. N. K. Reddy,M.H. Vasantha, andY. B. N. Kumar, ‘‘A gracefully degrad-

ing and energy-efficient fault tolerant NoC using spare core,’’ in Proc.

IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2016, pp. 146–151.

[18] N. K. R. Beechu, V. M. Harishchandra, and N. K. Y. Balachandra, ‘‘High-

performance and energy-efficient fault-tolerance core mapping in NoC,’’

Sustain. Comput., Informat. Syst., vol. 16, pp. 1–10, Dec. 2017.

[19] F. Khalili and H. R. Zarandi, ‘‘A fault-tolerant core mapping technique in

networks-on-chip,’’ IET Comput. Digit. Techn., vol. 7, no. 6, pp. 238–245,

Nov. 2013.

[20] J. M. Joseph, D. Ermel, L. Bamberg, A. García-Oritz, and T. Pionteck,

‘‘Application-specific SoC design using core mapping to 3D mesh NoCs

with nonlinear area optimization and simulated annealing,’’ Technologies,

vol. 8, no. 1, p. 10, Jan. 2020.

[21] J. Fang, H. Zong, and H. Zhao, ‘‘DI_GA: A heuristic mapping algorithm

for heterogeneous network-on-chip,’’ IOP Conf. Ser., Mater. Sci. Eng.,

vol. 490, Apr. 2019, Art. no. 042021.

[22] P. V. Bhanu, P. Kulkarni, S. J., L. R. Cenkarmaddi, and H. Idsoe, ‘‘Torus

topology based fault-tolerant Network-on-Chip design with flexible spare

core placement,’’ in Proc. 14th Conf. Ph.D. Res. Microelectron. Electron.

(PRIME), Jul. 2018, pp. 97–100.

[23] A. Alagarsamy, L. Gopalakrishnan, S. Mahilmaran, and S.-B. Ko, ‘‘A self-

adaptive mapping approach for network on chip with low power consump-

tion,’’ IEEE Access, vol. 7, pp. 84066–84081, 2019.

[24] W. Amin, F. Hussain, S. Anjum, S. Khan, N. K. Baloch, Z. Nain, and

S. W. Kim, ‘‘Performance evaluation of application mapping approaches

for Network-on-Chip designs,’’ IEEE Access, vol. 8, pp. 63607–63631,

2020.

[25] W. E. Donath, ‘‘Complexity theory and design automation,’’ in Proc. 17th

Design Autom. Conf. Design Autom. DAC, 1980, pp. 412–419.

[26] IBM Corporation, ‘‘V12. 1: Users manual for CPLEX,’’ Int. Bus. Mach.

Corp., vol. 46, no. 53, p. 157, 2009.

[27] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. IEEE

ICNN, vol. 4, Nov./Dec. 1995, pp. 1942–1948.

[28] S. Kundu, J. Soumya, and S. Chattopadhyay, ‘‘Design and evaluation of

mesh-of-tree based network-on-chip using virtual channel router,’’Micro-

processors Microsyst., vol. 36, no. 6, pp. 471–488, Aug. 2012.

[29] Z. U. Abideen and M. Rashid, ‘‘EFIC-ME: A fast emulation based fault

injection control and monitoring enhancement,’’ IEEE Access, vol. 8,

pp. 207705–207716, 2020.

[30] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, ‘‘ORION 2.0: A power-area

simulator for interconnection networks,’’ IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 20, no. 1, pp. 191–196, Jan. 2012.

[31] M. A. Finlayson, KC705 Evaluation Board for the Kintex-7 FPGA Users

Guide UG 810. San Jose, CA, USA: Xilinx, 2019.

P. VEDA BHANU received the bachelor’s degree

in electronics and communication engineering

from Jawaharlal Nehru Technological University

at Hyderabad, Telangana, India, in 2015, and the

master’s degree in embedded systems from the

National Institute of Electronics and Information

Technology at Calicut, Kerala, India, in 2017.

He is currently pursuing the Ph.D. degree with

the Department of Electrical and Electronics Engi-

neering, Birla Institute of Technology and Sci-

ence (BITS), Pilani, Hyderabad-Campus, Telangana.

From 2016 to 2017, he was an Electronic Design Intern with Panacea

Medical Technologies, Bengaluru, India. From 2017 to 2020, he was a Junior

Research Fellow with the Department of EEE, BITS-Pilani, Hyderabad

Campus working for the Department of Science and Technology, Govern-

ment of India, sponsored project. His research interests include network-

on-chip (NoC) design, FPGA-based system design, optimization of perfor-

mance parameters in NoC basedmulti-processor system-on-chips (MPSoCs)

design, and high-performance computing.

RAHUL GOVINDAN received the bachelor’s

degree in engineering from the Electrical and Elec-

tronics Department, BITS Pilani, Hyderabad Cam-

pus, in 2020. His research interests include digital

design, computer architecture, VLSI design, and

FPGA implementation.

VOLUME 9, 2021 45953

http://dx.doi.org/10.1145/2522968.2522976
http://dx.doi.org/10.1109/HSC.1998.66624


P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

PLAVA KATTAMURI is currently pursuing the

bachelor’s degree in engineering in electronics

and communication engineering fromBITS Pilani,

Hyderabad Campus, India. Her research interests

include the field of VLSI design, hardware secu-

rity, and FPGA implementations.

J. SOUMYA received the bachelor’s degree in

electronics and communication engineering from

Jawaharlal Nehru Technological University at

Hyderabad, Telangana, India, in 2007, and the

master’s and Ph.D. degrees in electronics and

electrical communication engineering from the

Indian Institute of Technology, Kharagpur, India,

in 2010 and 2015, respectively.

From 2011 to 2012, she was a Scientist ‘SC’

with Indian Space Research Organization (ISRO),

Bengaluru, India. From 2014 to 2015, she was a faculty with the National

Institute of Technology (NIT), Goa. India. Since 2015, she has been an Assis-

tant Professor with the Department of EEE, BITS-Pilani, Hyderabad campus,

Telangana, India. Her research interests include network-on-chip design,

reconfigurable computing, fault-tolerant system design, and real-time sys-

tems. As a Principal Investigator, she has been implementing several funded

projects from DST, Government of India, and has been collaborating with

various research groups in India and abroad. Her research interests led to a

credit of more than 25 publications in peer-reviewed journals and reputed

international conferences held in India and abroad.

LINGA REDDY CENKERAMADDI (Senior

Member, IEEE) received the master’s degree in

electrical engineering from the Indian Institute of

Technology, New Delhi, India, in 2004, and the

Ph.D. degree in electrical engineering from the

Norwegian University of Science and Technology,

Trondheim, Norway, in 2011. Heworked for Texas

Instruments in mixed signal circuit design before

joining the Ph.D. program at NTNU. After finish-

ing his Ph.D., he worked in radiation imaging for

an atmosphere space interaction monitor (ASIM mission to International

Space Station) with the University of Bergen, Norway, from 2010 to 2012.

He is currently working as an Associate Professor with the University of

Agder, Campus Grimstad, Norway. His main research interests include

cyber-physical systems, autonomous systems, and wireless embedded

systems.

45954 VOLUME 9, 2021


