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Flexible supercapacitors are highly attractive for the large number of emerging

portable lightweight consumer devices. The novelty of a flexible supercapacitor is the

incorporation of flexible electrode or substrate material to combine structural flexibility

with the inherently high power density of supercapacitors. Flexible supercapacitors

can use non-Faradaic energy storage process as seen in the electric double layer

capacitor type or a Faradaic mechanism as seen in the pseudocapacitors (PCs). In

this review, we account the current progress in pseudocapacitive electrode materials,

fabrication techniques and new materials for electric double layer capacitor, and different

flexible substrates. Future directions in developing new materials toward improved

energy density and cost-effectiveness of the flexible supercapacitors and their usage

in combination with lithium-ion batteries are highlighted.

Keywords: flexible supercapacitor, electrode materials, oxides, chalcogenides, molybdates, flexible substrates

INTRODUCTION

Flexible energy storage devices are fundamental to the development of next-generation wearable,
compact, and portable electronics for medical, military, and civilian applications e.g., flexible
displays on phones, health tracking devices, computers, and televisions (Ko et al., 2017). To
this end, flexible supercapacitors are highly attractive in comparison to batteries (LIBs) as they
combine the inherent high power density (>10 kW/kg), fast charging/discharging capability, longer
operation lifetime, and mechanical flexibility. Conventional supercapacitors consist of an outer
case, current collectors in the form of metal foils, and positive and negative electrodes in electrolyte
separated by ion transport layer. In flexible supercapacitors, the highly conducting and flexible
carbon network serve as both the electrode and current collector (Shi et al., 2013b). A schematic and
an example of a flexible supercapacitor is shown in Figure 1. Therefore, the structural architecture
of flexible supercapacitors is made lightweight and further simplified for portable electronics.
Another key difference from conventional supercapacitors is that each component in flexible
supercapacitors (e.g., electrodes and packing shell) is flexible. These flexible supercapacitors can
typically be of two types, electric double-layer capacitors (EDLCs), and pseudocapacitors (PCs)
(Chee et al., 2016; Liu et al., 2017). EDLCs use the non-Faradaic electrostatic process to store
energy. They function based on the charges accumulated at the interface between the electrolyte
and the electrode, which is primarily carbon-based materials with the high specific area. In PCs,
the electrode formed from conductive polymers or metal oxides use a Faradaic mechanism to store
charges.

A combination of indices e.g., energy and power density, cycling stability, and areal capacitance
(capacitance per unit area, Fcm−2) determine the performance of a flexible supercapacitor. The
following section highlights the equations used to assess performance metric of EDLC and PC
flexible supercapacitors.
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FIGURE 1 | (A) Schematic overview of a flexible supercapacitor as compared to conventional supercapacitor and (B) Photo of flexible supercapacitor composed of

poly(3,4-ethylenedioxythiophene) and graphene oxide composite films on flexible graphite-poly(ethylene terephthalate) substrate and its current-voltage plot;

(Lehtimaki et al., 2015) Copyright: ACS Applied Materials and Interfaces.

Electric Double-Layer Capacitors
In EDLCs, the charge accumulated at the electrode/electrolyte
interfaces or capacitance C can be found using Equation 1 (Endo
et al., 2001).

C =

ε

4πδ

∫

dS (1)

where, ε is the dielectric constant of the electrolyte, S is the
electrode interface surface area, and δ is the distance from the
center of the ion to the electrolyte interface. In recent literature,
the specific capacitance has been calculated from the area under
the cyclic voltammetry (CV) curve using Equation 2 (Lim et al.,
2014).

C = k

∫

i

mS
(2)

where, i is the integrated area of the CV curve, m is the mass
of the electrode material, S is the scan rate of the CV conducted,
and k is a constant multiplier. The specific capacitance can also be
obtained from galvanostatic discharge profile following Equation
3 (Wang et al., 2014; Zhou et al., 2014).

C = k
it

1V .m
(3)

where, i is the current, t is the time elapsed during the discharge
process, m is mass of the electrode material, and V is the working
potential range.

Finally, the energy density (E) and power density (P) for
EDLCs are calculated from the CV profile, following Equations
4 and 5, respectively (Winter and Brodd, 2004; Fan et al., 2011).

Ecell
(

Wh/kg
)

= 1/2CV2 (4)

Pcell
(

W/kg
)

=

Ecell

1t
(5)

where, 1t is the discharge time.

Pseudocapacitors
Recently, the following method has been used to determine the
performance parameters for a PC flexible supercapacitor. The
stored electrode charge, q for PCs is calculated from the mass of
PCmaterial (m), the specific capacitance (C), and the range of CV
operation (1E) following Faraday’s law (Equation 6) (Khomenko
et al., 2006).

q = C × 1E×m (6)

The electrochemical capacitances for CV and galvanostatic
charge/discharge measurements in this type of supercapacitor are
determined using Equations 7 and 8, respectively (Zhang and
Pan, 2015).

C =

∫

i (V) dV

2v1VS
(7)

C =

I1t

1V
(8)
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where, i, v, I, and S are attributed to current, scan rate (mVs−1),
applied current density, and active electrode area, respectively.
The two major performance indices P and E are calculated from
the galvanostatic discharge profile following Equations 9 and 4,
respectively for PCs (Khomenko et al., 2006).

P =

V2

4RS
(9)

where, R is the total resistance found using the voltage drop
between two points in the discharge profile (1iR) and the applied
current (i) as follows (Equation 10) (Khomenko et al., 2006;
Zhang and Pan, 2015):

R =

1iR

2i
(10)

Therefore, power and energy densities are two defining
parameters for the performance of a flexible supercapacitor,
in combination with its structural flexibility. Supercapacitors
are prized for their high power density. Though the energy
density (∼5 Whkg−1) of supercapacitors is lower as compared to
LIBs (∼150 Whkg−1), there has been enormous advancements
in nanostructured materials for supercapacitor electrodes and
functional electrolytes to improve the energy density. The flexible
and conducting electrode that also serves as the current collector
is a key component for flexible supercapacitors. Therefore,
materials for the electrodes are being constantly improved (Li
et al., 2016). Novel device fabrication techniques are also being
pursued to achieve higher architectural flexibility at lower cost.
Recently, Dong et al. reported three broad classifications of
flexible supercapacitors into fiber-like, paper-like, and three-
dimensional porous materials based on their microstructure and
morphology in an attempt to summarize the huge advances in the
field (Dong et al., 2016a). The structural design and its associated
fabrication techniques also greatly influence the flexibility of
supercapacitors as summarized in the review by Zhang et al.
(2015). This brief review captures the recent advances made in
electrode materials for flexible supercapacitors.

RECENT PROGRESS IN FLEXIBLE
SUPERCAPACITOR MATERIALS

Recently, a wide range of new pseudocapacitive electrode
materials has been investigated with the aim of increasing the
energy density of flexible supercapacitors. PCs essentially have a
higher charge storage capacity compared to the EDLCs but are
limited by high cost and poor cyclic stability. Nanostructured
redox active materials are attractive for PCs as they can
increase the active sites for Faradaic redox reaction at the
electrode/electrolyte interface for enhanced charge storage. To
this end, a large group of transition metal oxides are known
for their promising pseudocapacitive behavior. Conventionally,
several binary metal oxides (e.g., iron oxide, RuO2, NiO, Co3O4,
Mo2O3, V2O5, and MnO2) have exhibited large energy and
power density. Among them, RuO2 in its hydrous form has
been known to surpass the capacitance of carbon-based and

conducting polymeric materials (Hu and Chen, 2004; Oh and
Nazar, 2010). MnO2 has also proved to be promising for its
environmental benignity, cost-effectiveness, and good specific
capacitance (Lee and Goodenough, 1999; Hu and Chen, 2004;
Miller and Simon, 2008). However, ternary and higher order
metal oxides are specifically attractive because they provide
additional sites for pseudocapacitive redox processes to facilitate
higher capacitance. For example, the ternary oxide NiCo2O4 is
highly suitable for supporting multiple electrochemical processes
as it contains mixed valence metals (Zhang and Lou, 2013;
Zhang D. et al., 2014). NiCo2O4 nanocrystals grown on
different substrates such as carbon fiber paper, nickel foam,
and titanium sheets have shown good cyclic stability and
high capacitance (Zhang et al., 2012; Huang et al., 2013;
Mitchell et al., 2015). Recently, a highly flexible quasi solid-state
supercapacitor device was fabricated by sandwiching electrodes
of flower-shaped NiCo2O4 nanocrystals on graphene oxide (GO)
substrate (Gupta et al., 2015). The device showed excellent cyclic
stability, suggesting that this NiCo2O4-GO electrode material is
highly suitable for fabrication of variable temperature and high
performance flexible supercapacitor devices.

Transition metal chalcogenides (VS2, CuS, CoE2, NiE2, E =

S, Se), rare-earth metal sulfides (La2S3 and Sm2S3), and layer-
structured chalcogenides (MoS2 and SnSe) form another class of
attractive electrode material for flexible supercapacitors because
of their chemically rich surface area to host redox reactions
(Feng et al., 2011; Cao et al., 2013; Ratha and Rout, 2013;
Jiang et al., 2014; Peng et al., 2014; Wei et al., 2014; Zhang
C. et al., 2014). Ternary and higher-order chalcogenide-based
materials have recently been successfully synthesized owing
to tremendous advances in wet-chemical synthesis techniques
(Ramasamy et al., 2014b, 2015). These materials are further
appealing for supercapacitor electrodes as they contain different
metal ions to facilitate rich redox reactions and the tunable
gap between the layers can host a wide range of ions from
the electrolyte to enhance the specific capacitance. For example,
the CuSbS2 and CuSbSexS2−x mesocrystals provided exceptional
cyclic stability at high current densities, making them attractive
for fast charging applications (Ramasamy et al., 2014a,c).

There have been several works on metal molybdate hetero-
structures as they are cost-effective, environment-friendly, and
show high electrochemical performance. Different morphologies
and composition of molybdates e.g., three-dimensional
MnMoO4/CoMoO4 hetero-structures, CoMoO4-graphene
composite, hierarchical NiMoO4 nanospheres, and NiMoO4

nanowires have been investigated (Mai et al., 2011; Cai et al.,
2013; Xia X. et al., 2013). In NiMoO4, it was observed that the
spherical morphology facilitated increased capacitance owing
to its high surface area and electrical conductivity. The effect
of morphology was investigated in detail with shape-controlled
CoMoO4 nanostructures (e.g., cauliflower, brick-like, and
spherical) (Candler et al., 2015). The charge storage capacity
of the material is dependent on its morphology. The flexible
supercapacitor device fabricated with the shape-controlled
cobalt molybdate electrodes exhibited improved stability with an
increase in number of cyclic CV performance. The device was
also found to be an attractive candidate for high-temperature
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FIGURE 2 | Advanced pseudocapacitive materials for supercapacitor

electrodes. (A) scanning electron microscope (SEM) image of NiCo2O4

nanocrystals grown on nickel foam, an attractive electrode material for variable

temperature operation; Copyright: Scientific Reports, (Gupta et al., 2015) (B)

top, SEM image and power density of layered ternary sulfide CuSbS2
nanoplates; Copyright: Journal of Materials Chemistry A (Ramasamy et al.,

2015) and bottom, CuSbSe2 mesocrystals with controlled inter-layer gap;

Copyright: Chemistry of Materials, (Ramasamy et al., 2014a) and (C) SEM

image of CoMoO4 nanocrystals and CV curves at different bending angles of

the flexible device; Copyright: New Journal of Chemistry (Candler et al., 2015).

supercapacitor operations. Figure 2 shows the new ternary
metal oxide, higher order chalcogenide, and metal molybdate
pseudocapacitive electrode materials synthesized.

In a recent breakthrough, Ko et al. reported a new ligand-
mediated layer-by-layer technique to assemble metal (Au)
and metal oxide (MnO) pseudocapacitive nanoparticles on
flexible paper substrate to form supercapacitor electrodes (Ko

et al., 2017). The device showed substantially high energy
(15.1 mWcm−2) and power (267.3 µWhcm−2) densities.
The method is an improvement over conventional physical
adsorption processes like dip coating, painting, Meyer rod
coating, and dispensing-writing because it allows controlled
loading of both the conducting polymer and the active materials
onto the substrate. In another breakthrough report, a lamellar
electrode material of vanadium nitride nanodots intercalated
in carbon nanosheets has shown an ultrahigh volumetric
capacitance (1203.6 Fcm−3 at 1.1 Acm−3; rate capability of
703.1 Fcm−3 at 210 Acm−3) that exceeds most carbon-transition
metal oxide/nitride PCs known to date (Gao et al., 2015;
Li et al., 2018). This vanadium nitride based electrode is a
significant improvement over previous reports of vanadium
nitride nanostructures with limited specific surface area and
capacitive performance. Therefore, the type of material and
assembly technique are two key parameters to achieve high
performing charge storage in flexible PCs. Liu et al. recently
developed a new oxidative chemical vapor deposition method
for fabricating electrodes coated with pseudocapacitive poly(3,4-
ethylene dioxythiophene) polymer (Liu et al., 2017).

As seen from the literature review, one of the primary
strategies to render the PCs flexible and lightweight for suitable
operation has been to use a variety of cost-effective and eco-
friendly flexible substrates (e.g., metals, carbon paper and
foam, conventional paper, textile, sponge, and cable). Metal
substrates have the merits of high electric conductivity and
mechanical strength (Dubal and Holze, 2013a; Dubal et al.,
2013; Jagadale et al., 2013). Flexible stainless steel has been one
of the most widely used metal substrates to directly fabricate
electroactive electrode materials such as MnO2 nanorod forests
and shape-controlled Ni(OH)2 nanostructures (Gund et al., 2013;
Santhanagopalan et al., 2013). Electrodeposition has been used
to form Co(OH)2 nanoflake films on flexible stainless steel
substrates (Chou et al., 2008). Facile chemical methods have
also been reported for depositing stacked Mn3O4 nanosheets,
Mn3O4 thin films, as well as nanostructured polyaniline electrode
materials on flexible stainless steel substrates (Dhawale et al.,
2011; Dubal et al., 2012; Dubal and Holze, 2013b). These stainless
steel supercapacitors are highly promising in terms of long-term
stability. Other metallic substrates, including Al, Ti, Cu, and Ni-
foam, have also been successfully used to fabricate hierarchical
and bendable supercapacitors with excellent cycling stability (Liu
et al., 2010; Le et al., 2011; Lin et al., 2011; Yuan et al., 2011;
Zhang et al., 2011; Kai et al., 2012; Kim et al., 2012; Wang et al.,
2012, 2013; Zhou et al., 2012, 2013; Dorfler et al., 2013; Reit et al.,
2013; Xia H. et al., 2013). Metal-supported flexible electrodes
are however, opaque and less stretchable. Therefore, flexible
plastic substrates are preferred in supercapacitor electrodes for
touch-screen displays (Yu et al., 2010; Niu et al., 2013; Shi
et al., 2013a; Chen et al., 2014; Hao et al., 2014). Flexible
supercapacitor electrodes of graphene films supported on
polyethylene terephthalate (PET), MnO2 nanosheets on indium
tin oxide-PET substrates, or single-walled carbon nanotubes
on polydimethylsiloxane and polyaniline substrates have proved
to be highly promising for transparent electronics in terms
of capacitance and stretchability. However, plastic substrates
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are limited in electrical conductivity. Paper-based flexible
supercapacitors, being lightweight, bendable, transparent, and
easily processable are attractive alternatives for electronic screens
of portable devices (e.g., mobile phones, digital cameras, and
laptops). In this regard, both free-standing electrodes such
as carbon nanotube (CNT)-paper composites and deposition
of PCs on recyclable paper substrates have been successfully
investigated. The hierarchical macroporous and network-
free morphology in flexible sponge substrates facilitate high
liquid absorption, increased surface area, continuous coating,
and enhanced interaction between electrodes and electrolyte.
Symmetrical flexible supercapacitors consisting of CNT sponge
assembly and synthesized via chemical vapor deposition have
been reported to show excellent cyclic stability (Li et al., 2013).
In addition, Fe3O4 and MnO2 are attractive PC materials to
further increase the energy density of carbonaceous sponge
substrates (Chen et al., 2011; Wu et al., 2013). Textile substrates
like cotton cloth, polyester microfiber twill, and carbon fabric
are synthesized from natural or synthetic fibers via weaving,
pressing, knitting, or felting. These substrates have the advantage
of high stretchability, lightweight, three-dimensional open-pore
structure, good mechanical strength, and low cost compared to
other substrates for flexible supercapacitors. Stretchable textile
electrodes have been fabricated by impregnating single-walled
carbon nanotubes into cotton cloth or porous carbon materials
into woven cotton/polyester textile (Hu et al., 2010; Jost et al.,
2011). To further increase the electrochemical capacitance, metal
oxide nanoparticles (e.g., MnO2) have been coated on carbon
fiber-based textile substrates to form the flexible electrodes (Yuan
et al., 2012; Zhao et al., 2013; Tao et al., 2014; Yang et al.,
2014a,b). The electrochemically active material coating is the
primary contributor for the total capacitance of textile-based
flexible electrode, since textiles have inherently low capacitance.
Therefore, a flexible activated carbon felt/MnO2/CNT assembly
have recently been fabricated to obtain enhanced capacitance and
high performance (Dong et al., 2016b). In addition, metal organic
frameworks (MOFs), a class of co-ordination polymers having
high specific surface area and controllable pore size to anchor
the active materials are being used to address the limitations of
carbon textile substrates (Xu et al., 2017; Liu et al., 2018; Zhao
et al., 2018). The MOFs can be applied in three ways for flexible
supercapacitors, directly as an electrode material, as a composite
electrode, or as a flexible substrate for active electrode materials
(Zhao et al., 2018). Polyoxometalates are another class of porous
substrates with novel electronic properties, robust structure, and
capability to behave like an acid during synthesis owing to
their metal-oxygen clusters. The polyoxometalates have recently
been used to significantly improve the electrical conductivity
of low-cost electrode materials like MnO2 nanoparticles (Wang
et al., 2018). Another emerging direction in flexible substrates is
biomass-derived substrates and wood substrates (Lv et al., 2015;
Herou et al., 2018). Wood transverse section slice is a promising
candidate for flexible substrates as it shows excellent hydrophilic
property, but does not require any harsh and expensive chemical
processing steps involved in the preparation of other substrates
(e.g., cellulosic paper). Recently, a new anode material of low
crystalline FeOOH nanoparticles coated on carbon fiber cloth

has achieved both high energy (104 Whkg−1) and power (1.27
kWkg−1) densities (Owusu et al., 2017).

EDLCs primarily use carbon materials as electrode (Hu et al.,
2010; Dong et al., 2016a). The single carbon electrodes in EDLCs
are made of carbon networks (e.g., carbon fabric, cloth, film,
coating, paper, or textile) fabricated from one dimensional (1D)
carbon nanotubes or carbon fibers and/or two dimensional (2D)
graphene or graphite sheets (Weng et al., 2011; Chen and Dai,
2014). Different fabrication techniques like weaving, chemical
vapor deposition, filtration, printing, evaporation, or dip-drying
are used to form carbon networks by van der Waals interaction
or hydrogen bonding of carbon particles (Cheng and Liu, 2013;
Tan et al., 2017). Carbon fabric, a highly suitable carbon network
for flexible supercapacitors in terms of strength, stiffness, and
flexibility is primarily manufactured by plain, satin, or twill
weaving technique (Cheng and Liu, 2013; Qian et al., 2013;
Dong et al., 2016a). A stable dispersion of carbon material and
ligand such as sodium dodecylbenzene sulfonate in a suitable
solvent serves as the starting agent for the other types of carbon
network including carbon film, paper, or textile. Carbon films can
be formed using chemical vapor deposition to assemble single-
walled carbon nanotubes on polydimethylsiloxane substrates.
They can also be formed by ink-jet printing or spin-coating
the carbon materials on flexible plastic or paper substrates.
Paper forms a highly suitable substrate due to its high porosity
and surface area, but large pore sizes can cause the carbon
nanostructures to penetrate into the substrate (Lee et al., 2017)
(Pushparaj et al., 2007). Applying polyvinylidene fluoride coating
on the substrate has been used as a facile pre-treatment method
to facilitate maximum adhesion of carbon electrode materials
to the porous paper substrate while maintaining the electrical
conductivity. Carbon paper, in contrast, is prepared by the
filtration or evaporation techniques. A dipping-drying method
similar to the cloth dyeing process is essentially used to fabricate
carbon textiles. In a typical synthesis, the fabric is dipped in
the pre-formed dye solution containing carbon materials before
drying the solvent from the fabric to form the electrode. In
addition to the electrode material, an ultrathin in-plane geometry
of the electrode is seen to facilitate higher interaction of the
electrode/electrolyte for EDLCs as compared to a planar stacked
geometry (Chen and Dai, 2014). Vertical alignment of the active
electrode material on the substrate has also been known to
significantly enhance the capacitance (Izadi-Najafabadi et al.,
2010; Eftekhari, 2018). Investigating the underlying mechanism
of the role played by alignment in graphene supercapacitors will
be a key future direction in increasing the energy density in
EDLCs and building ultrafast supercapacitors (Eftekhari, 2018).
Recently, ionic liquids have been successfully investigated as
solvent/electrolyte for EDLCs due to their attractive properties
like high ionic conductivity, a wide range of electrochemical
potential, and excellent moisture stability, and relatively low
volatility (Lehtimaki et al., 2015; Lorenzo and Srinivasan, 2018).
In addition to graphene and carbon based EDLCs, black
phosphorus, a two-dimensional layered and p-type direct band-
gap semiconducting electrode material has recently coupled high
power density with high energy density in EDLCs (Yang et al.,
2017).
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CONCLUSION

In this review, we have summarized the recent progress in
the development of novel electrode materials of high specific
supercapacitance for both EDLC and PC flexible supercapacitors.
Ternary and higher order nanostructures of metal oxides, layered
structure transition metal chalcogenides, metal molybdates,
vanadium nitride, and polyoxometalate-MnO2 have proved
attractive for PC electrodes. The shape-controlled CoMoO4

nanostructure PC electrodes are promising in high-temperature
operation. Advances in EDLC electrodes such as new fabrication
techniques and use of ionic liquids as solvent/electrolytes have
been described in the review. In addition, we have summarized
the emerging advances in low-cost flexible substrates in terms
of material categories (e.g., metal, paper, carbon-paper, sponges,
textiles, or cable-type substrates) and their corresponding
advantages and limitations.

In brief, flexible supercapacitors are highly attractive for
their excellent power density and the major challenges in
the technology lie in their low energy density and high
production cost. Therefore, one of the future directions in flexible
supercapacitors is combining commonly found EDLC materials
with cost-effective PC active materials to form novel hybrid
electrodes. Recently, a significant increase in energy density
(104.3 Whkg−1) has been achieved with a hybrid supercapacitor
composed of an capacitive dominant anode of iron oxide
hydroxide nanoparticles grown on flexible carbon fiber cloth
and a PC NiMoO4 cathode, while maintaining exceptional
stability and power density (Owusu et al., 2017). Another
scientific thrust is to develop solution-based processes and
robust fabrication routes for large-scale manufacturing of flexible
supercapacitors. Novel electrolytes and electrode materials are
also being investigated to enable high-temperature operation of

the flexible supercapacitors. Therefore, flexible supercapacitors
is a rapidly advancing and environment-friendly technology for
energy storage. It is envisioned to both serve as a primary energy
storage and in combination with LIBs.
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