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Abstract— This paper presents ultrathin chips (UTCs) based 

flexible tactile sensing system for dynamic contact pressure 
measurement. The device comprises of an AlN piezocapacitor 
based UTCs tightly coupled with another UTCs having metal-
oxide-semiconductor field-effect transistors (MOSFETs). In 
this arrangement the AlN piezocapacitor forms the extended 
gate of MOSFETs. Both AlN piezocapacitor and MOSFET 
based UTCs are obtained by post-process reduction of wafer 
thicknesses to ~35µm using backside lapping. The 
performances of both UTCs were evaluated both before and 
after thinning and there was no noticeable performance 
degradation. The UTC-based AlN piezocapacitor exhibited six times higher sensitivity (43.79mV/N) than the thin film-
based AlN sensors. When coupled with MOSFETs based UTC, the observed sensitivity was 0.43N-1. The excellent 
performance, flexible form factor and compactness shows the potential of presented device in applications such 
minimal invasive surgical instruments where high-resolution tactile feedback is much needed.  
 

Index Terms— AlN, Flexible electronics, Piezocapacitor, Tactile sensors, Ultra-thin Chips 
 

 
I.  Introduction 

NSPIRED by human skin, the smart sensors and electronic skin 
(e-Skins) are being explored for advancements in applications 

such as human-machine interaction, robotics, interactive 
vehicles, and wearables systems for health monitoring [1-7]. In 
this regard, various sensing systems have been widely studied 
using capacitive, piezoelectric, triboelectric, piezoresistive, 
inductive, optical mechanisms, and their combinations [6, 8-
14]. Amongst these, piezoelectric pressure sensors have drawn 
attention owing to their capability to detect dynamic contact 
forces [15, 16]. The piezoelectric sensing materials used in 
these sensors are either organic or inorganic.  

Organic piezo materials include natural materials such as silk 
and collagen, and the more commonly used synthetic materials 
such as polyvinylidene fluoride (PVDF) and poly(L-lactic acid) 
(PLLA), etc. [17]. PVDF and its copolymer (PVDF-TrFE) have 
been preferred as piezo sensing layers due to their cost 
efficiency, chemical stability, biocompatibility, and flexibility 
[18-20]. However, a high voltage poling treatment (100kV/cm) 
is required for crystallite rearrangement and hence an improved 
piezoelectric effect [21, 22]. Materials such as PLLA do not 
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require poling due to its helical structure, but they require 
thermal stretching and the elongated PLLA films have much 
lower piezoelectric constant and no spontaneous polarisation 
[23, 24]. The poling or stretching needed for organic piezo 
materials not only adds complexity to the device manufacturing 
but also increases the cost.  

In this regard, their inorganic counterparts such as aluminium 
nitride (AlN), zinc oxide (ZnO), lead zirconate titanate (PZT), 
potassium sodium niobate (KNN) etc. offer better solution [25-
28]. Amongst these, PZT is not recommended due to presence 
of toxic lead element (over 60 wt.%) [29]. Alternatively, KNN 
has been considered as an eco-friendly lead-free substitute [30, 
31]. However, pure KNN has shown challenges in terms of 
processing due to insufficient densification and off-
stoichiometry introduced by the volatility of potassium oxide, 
for which additional processes such as doping are inevitable 
[32, 33]. Although ZnO nanostructure-based piezoelectric 
sensors have been extensively investigated, their physical 
stability, caused by the nanostructure misalignment, remains  a 
challenges when large-scale devices are needed [34]. Therefore, 
AlN has been chosen as the piezo sensing material in this work 
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as it exhibits efficient piezoelectric and dielectric properties, 
high thermal stability, as well as low dielectric loss tangent and 
high signal to noise ratio [35-37]. Additionally, no poling or 
stretching is needed [38].  

As inorganic bulk piezo materials are inherently brittle and 
emerging applications discussed above require mechanical 
flexibility, recent studies have focussed on overcoming such 
issues. For example, AlN-based thin films can be deposited 
directly on polymeric substrates. However, they usually require 
high temperature and vacuum systems such as molecular beam 
epitaxy (MBE) or chemical vapour deposition (CVD) and 
flexible polymeric substrates are highly likely to become 
unstable under such condition [36]. The ‘grow-transfer’ method 
has also been explored, namely transferring the inorganic piezo 
material fabricated on rigid substrates to their plastic and 
flexible counterparts. However, the transfer process can cause 
lattice mismatch in the organic-inorganic interface and affect 
the device performance [39, 40]. Alternatively, inorganic piezo 
materials such as AlN can be directly deposited on bulk silicon 
(Si) chips and enhanced performance can be achieved. The 
device rigidity can be addressed by reducing the thickness of 
bulk Si chips via thinning technologies [41], and to realise 
mechanically flexible piezocapacitors. For better signal-to-
noise ratio and higher spatial resolution, these piezocapacitors 
can be coupled with field effect transistors (FETs), as reported 
for some tactile sensors using conventional silicon technology 
and organic semiconductor-based FETs [26, 42]. In this 
context, Si-based rigid metal-oxide-semiconductor field-effect 
transistor (MOSFET) chip has also been coupled with the 
inorganic AlN thin film to realise extended gate piezoelectric 
oxide semiconductor field effect transistors (POSFETs) [36]. 
However, a fully flexible POSFET type arrangement is not yet 

reported, and the work presented in this paper is step in this 
direction. 
 The work presented here extends our initial study reported in 
IEEE FLEPS 2021 [43]. In conference paper, we reported AlN 
based ultra-thin chip (UTC). Here, we also introduce 
MOSFEETs based UTC and extend the previous work by 
connecting the flexible AlN piezocapacitors as the extended 
gate of flexible MOSFETs present on other UTC. Together the 
two UTCs (Fig. 1) lead to a POSFET device type arrangement, 
which can be further extended in future by directly depositing 
the AlN layer on the MOSFETs. Such compact arrangement is 
needed for tactile or haptic feedback in applications such as the 
end-effectors of instruments used in minimal-invasive surgery. 
Further, presence of transducer layer on top of MOSFETs will 
lead to lower cost. 

This paper is organised as follows: Section II presents the 
device thinning process. Section III shows the device 
characterisation results, i.e., UTC-based AlN and MOSFET 
devices as well as their connection leading to POSFET type 
configuration. Finally, Section IV summarises key outcomes of 
this work. 

II. DEVICE THINNING 
 The AlN-based piezocapacitors were fabricated on a bulk Si 
substrate (~500µm thickness). The AlN sensing layer (~500nm 
thickness) was deposited on Pt coated Si substrates. Top 
electrode, Ti/Au (10/100nm), was deposited using an electron-
beam (e-beam) evaporator through a hard mask with 0.5mm2 
openings. The fabrication steps of the n-type MOSFET chip 
with ~520µm thickness were reported in our previous work [44, 
45].  
 To achieve the mechanical flexibility, both samples i.e., AlN 
piezocapacitor and MOSFET chips were thinned using 

 

Fig. 1 Schematic illustration of realising UTC-based flexible tactile sensor using AlN piezocapacitor coupled with metal-oxide-semiconductor field-
effect transistors (MOSFETs) (a) Fabrication steps of rigid AlN piezocapacitor: (a1) AlN thin layer directly fabricated on a conductive layer on top of 
a Si wafer; (a2) Ti/Au deposition as the top electrodes; (a3) The cross-sectional scheme of Si-based AlN piezocapacitor; (b) Thinning preparation: 
(b1) spin-coating PMMA sacrificial layer on the MOSFET chip; (b2) Exposing the bottom electrode of the AlN piezocapacitor followed by spin-coating 
PMMA layer; (c) Bulk chip firmly placed onto the sample holder via wax, attached onto the lapping machine for thinning; (d) Both UTC-based AlN 
piezocapacitor and MOSFETs attached on a flexible PCB.  
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backside lapping assisted with the polymethylmethacrylate 
(PMMA) sacrificial technique [46]. The PMMA sacrificial 
layer reduces the thermal stress, typically experienced by UTCs 
during their separation or debonding from the chuck holding 
them after thinning. Therefore, the same technique was adopted 
in this work. Prior to thinning, the AlN thin layer was carefully 
scratched by a diamond cutter to expose the bottom electrode 
(Pt). Next, the device sides of both chips were spin-coated with 
~20µm-thick PMMA sacrificial layers at 1500rpm. Then, 
commercial quartz wax (Logitech) was applied at the centre of 
a glass substrate and then it was melted at 100°C using a 
hotplate. Subsequently, the chip was placed on top of the wax 
with the device side facing down. The sample was then placed 
under the contact pressure set up for 30 minutes at room 
temperature to ensure a firm attachment between the chip and 
the glass substrate. The sample holder was sequentially placed 
onto the lapping jigs through vacuum and the Logitech lapping 
machine was used to reduce the samples’ thickness from above 
500µm to ~35µm. After thinning, UTCs were separated from 
the glass sample holders by placing it on a hot plate to melt the 
wax. The residual wax and PMMA sacrificial layers were 
dissolved and removed using acetone solution. The scanning 
electron microscope (SEM) image in Fig. 2(a) shows the 
comparison of thickness between the bulk (~500µm) and 
thinned (~35µm) chip. Finally, both AlN-UTC and MOSFET-
UTC were attached to a flexible PCB using the low-stress 
epoxy adhesive (EpoTEK 301-2), as shown in Fig. 1(e). 

III. DEVICE CHARACTERISATION 
A. AlN Piezocapacitor Characterisation 
 The AlN-based piezoelectric pressure sensor was 
characterised using a 1004 aluminium single point low-capacity 
load cell with a linear motor that was controlled through a 

custom-made LabView programme (2018 Robotics v18.0f2, 
National Instruments, Texas, USA). The output piezopotential 
was measured by a digital multimeter (Agilent 34461A). The 
sensing performances of both bulk and UTC-based devices 
were evaluated and compared. The effect of thinning the AlN 
pressure sensor was firstly investigated through the 
measurement of capacitance before and after thinning, which 
indicated similar values (Fig. 2(b)). This confirms the reliability 
of the thinning process. Further, to evaluate the sensing 
response, an external force (0.1N) was applied on both bulk and 
UTC-based AlN devices at 0.1Hz and 0.5Hz (Fig. 2(c)-(f)). 
When a vertically compressive force is applied, an electric 
polarisation (potential) is induced in the AlN sensing layer, 
owing to the relative displacement of the centres of the cations 
and anions in the AlN, resulting in a microscale dipole moment.  

Due to the generated electric field, charges accumulate at the 
top and bottom electrodes. According to the AlN crystal 
orientation, positive charges accumulate at the surface of AlN. 
While the pressure or force remains constant, free charges with 
opposite polarities are attracted to the surface (screening effect) 
and thus, a new equilibrium is reached. This leads to a rapid 
decrease in the piezo output which finally reaches to zero. 
When the force is released, the piezoelectric polarisation 
disappears, giving rise to a negative peak (electrons flows in 
backwards direction to achieve the new equilibrium) [47].  

Next, a continuous force was applied to both bulk and UTC-
based AlN devices at 0.5Hz frequency and the force was 
increased from 0.25N to 1N with a step of 0.25N, as shown in 
Fig. 3(a). The result showed a repeatable, stable, and fast 
response (<100ms) before and after thinning. Meanwhile, as the 
applied force was increased, a rise in piezopotential was 
observed. It is well known that for piezoelectric devices the 
voltage generation is directly proportional to the applied stress. 
Therefore, it is expected that the output voltage will be pressure 

 

Fig. 2 AlN-based piezoelectric pressure sensor characterisation: (a) SEM image showing the thickness comparison between the bulk and thinned 
chips; (b) Capacitance characterisation before and after thinning; (c) and (d) Bulk and ultra-thin AlN chip under 0.1N at 0.1Hz; (e) and (f) Bulk and 
ultra-thin AlN chip under 0.1N at 0.5Hz.  
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sensitive [48]. The sensitivities of the bulk and UTC-based AlN 
pressure or touch sensors were extracted from Fig. 3(a). The 
results indicate a slight increase in sensitivity by ~3.7% after 
thinning, from 42.16mV/N to 43.79mV/N, which is within the 
acceptable limit for such deviation (Fig. 3(b)). Furthermore, 
compared with our previous research on tactile sensors using 

AlN thin films, the sensitivity of UTC-based AlN is drastically 
improved by almost six times i.e., from 7.37mV/N to 
43.79mV/N. A hysteresis test for UTC-based AlN 
piezocapacitors was conducted by increasing and decreasing 
the applied force, as shown on Fig.3(c). The sensitivity 
extracted showed a negligible difference (1.46%). Finally, the 
effect of device performance under bending was studied. Fig. 
4(a) displays the ultra-thin AlN piezocapacitor placed on a 
bending test rig with 40mm radius of curvature. Fig. 4(b) 
demonstrates the characterisation results for the bulk and 
thinned devices, showing negligible changes. The results under 
planar and bending conditions compared with bulk devices 
prove that the UTC-based AlN piezocapacitors exhibit good 
robustness, reliability, and sensitivity. Hence, they are suitable 
for high performance flexible electronics.  

B. MOSFET Characterisation 
 To investigate the n-type MOSFET device performance, 
Keysight B1500A semiconductor device parameter analyser 
was used to obtain the transfer (Ids – Vgs) and output (Ids – Vds) 
functions before and after thinning. Fig. 5(a) shows the transfer 
curves at different drain voltages (0.3V, 0.5V, 1V and 1.5V) 
while the gate-source voltage (Vgs) swept from -0.5V to 2V. 
The output characteristics, as shown in Fig. 5(b), demonstrates 
the variation of Ids by sweeping Vds from 0 to 2V with Vgs being 
increased at a step of 0.5V from 0.5V to 2V. Both transfer and 
output characteristics depict similar performances before and 

 

Fig. 3 The response of AlN piezocapacitors for both bulk and thinned 
samples: (a) Under different applied forces; (b) Comparison of 
sensitivities; (c) Hysteresis test for UTC-based AlN piezocapacitor. 

 

 

Fig. 4 AlN piezocapacitors bending test: (a) Photograph of UTC under 
40mm bending; (b) Performance comparison before and after thinning 
under bending. 
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after thinning the MOSFET device. To further study the device 
electrical performance, the threshold voltage (Vth) was 
extracted using the linear extrapolation method. The intercept 
value of Ids = 0 in the linear extrapolation of Ids – Vgs provides 
the value of Vth. The results revealed the same value of Vth 
(0.6V) before and after thinning. Next, the device field effect 
mobility (µFE) was evaluated by first calculating the peak 
transconductance (gm) using Eq. (1). 
 
𝑔! =	 "#!"

"$#"
|𝑉%& = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡               (1) 

 
Where Ids is the drain current, Vgs is the gate voltage and Vds is 
the drain voltage. Then the device mobility was obtained using 
Eq. 2 below:  
 
µ'( =	

)$
*%&(,/.)$!"

                     (2) 
 
where COX is the oxide capacitance (thickness of the dielectric 
layer, SiO2 = 50nm), W is the gate width (W = 2000µm), and L 
is the gate length (L = 12µm). The extracted values for both 
transconductance and mobility remained same before and after 
thinning, i.e., 2.6mS and 780cm2/Vs respectively.  

C. Tactile Sensor Characterisation 
 Once the reliability of thinning process and thinned chips was 
confirmed, both devices were then integrated on a single 
flexible PI substrate to obtain flexible UTC-based tactile sensor 
coupled with MOSFETs. The sensor configuration is shown as 
Fig. 6(a), where the AlN-UTC is connected as the extended gate 
to the MOSFET-UTC. The device characterisation was 
performed by connecting the Vdd and Vss to the Keysight 
modulator source measure unit (U2723A). As the range of force 
from human natural manipulation is less than 0.9N, the external 
force applied in this study ranged from 0.25 to 1N with a step 
of 0.25N, as shown in Fig. 6(b) [49]. Meanwhile, a biasing 
condition of Vds = 0.2V and Vgs = 0V was applied to the sensor 
during characterisation. As explained above, with an external 
force applied on the AlN piezoelectric pressure sensor, a 
piezopotential is generated due to the charge polarisation. When 
the AlN pressure sensor is connected to the gate terminal of 
MOSFETs, as an extended gate, the generated piezopotential 
modulates the channel current or change in the drain current 
(Ids). The increase in Ids is proportional to the increase in the 
external force. The obtained peak current for different applied 
force was plotted to extract the sensitivity. Using this data, the 
device sensitivity was found to be 0.43N-1.  

IV. CONCLUSION 
 The UTC-based AlN piezocapacitors coupled with 
MOSFETs on another UTCs have been investigated here for a 
fully flexible POSFET like touch sensing system. To this end, 
The ultra-thin AlN piezocapacitor were connected to ultra-thin 
MOSFET chip in an extended gate configuration. The 

 

Fig. 6 (a) POSFET configuration; (b) Device characterisation under 
different force applied and the extracted sensitivity (inset). 

 

 

Fig. 5 MOSFET characterisation before and after thinning: (a) Transfer 
function; (b) Output function.  
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performance of both AlN piezocapacitors and MOSFETs 
before and after thinning demonstrates negligible changes, 
proving the reliability of our thinning technique using backside 
lapping assisted with PMMA sacrificial layer. The results show 
significantly higher sensitivity (43.79mV/N) of UTC-based 
AlN piezocapacitors with respect to AlN thin films from our 
previous work (7.36mV/N). The low sensitivity of the POSFET 
system in this work (0.43N-1) could be due to the substrate 
capacitance and propagation delay caused by the extended gate. 
This can be improved in future by directly depositing AlN thin 
layer on the gate region of the MOSFETs.  
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