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FLEXIBLE VARIETIES AND AUTOMORPHISM GROUPS

I. ARZHANTSEV, H. FLENNER, S. KALIMAN, F. KUTZSCHEBAUCH, M. ZAIDENBERG

Abstract. Given an affine algebraic variety X of dimension n ≥ 2, we let SAut(X)

denote the special automorphism group of X i.e., the subgroup of the full automor-

phism group Aut(X) generated by all one-parameter unipotent subgroups. We show

that if SAut(X) is transitive on the smooth locus Xreg then it is infinitely transitive

on Xreg. In turn, the transitivity is equivalent to the flexibility of X. The latter

means that for every smooth point x ∈ Xreg the tangent space TxX is spanned by the

velocity vectors at x of one-parameter unipotent subgroups of Aut(X). We provide

also different variations and applications.
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Introduction

All algebraic varieties and algebraic groups in this paper are supposed to be defined
over an algebraically closed field k of characteristic zero. Unless we explicitly mention
the opposite, the varieties are supposed to be reduced and irreducible. For such a
variety X we let SAut(X) denote the subgroup of the automorphism group Aut(X)
generated by all one-parameter unipotent subgroups of Aut(X) i.e., subgroups isomor-
phic to the additive group Ga of the field. We call SAut(X) the special automorphism
group of X. In this paper we study transitivity properties of the action of this group
on X.

As an example, let us consider the special automorphism group SAut(An) of the
affine space An = An

k . In the case n = 1 the only automorphisms in SAut(A1) are the
translations, so the group acts transitively but not 2-transitively. However, for n ≥ 2
the situation is completely different. Here SAut(An) is no longer an algebraic group,
e.g. for n ≥ 2 it contains the shears

(x, y) 7→ (x, y + P (x)),

where P ∈ k[x] is a polynomial, which form a family of infinite dimension. It is a well
known and elementary fact that SAut(An), n ≥ 2, acts even infinitely transitively on
An that is, m-transitively for any m ≥ 1.

There is a number of further cases, where SAut(X) acts infinitely transitively. Con-
sider, for instance, an equivariant projective embedding Y ↪→ Pn of a flag variety
Y = G/P . Then the special automorphism group of the affine cone X over Y acts
infinitely transitively on the smooth locus Xreg of X [1]. For any non-degenerate toric
affine variety of dimension ≥ 2 a similar result is true [1]. If Y is an affine variety,
on which SAut(Y ) acts infinitely transitively, then the same holds for the suspension
X = {uv − f(y) = 0} ⊆ A2 × Y over Y , where f ∈ O(Y ) is a non-constant function
([1]; see also [22] for the case where Y = An).

One of the central results of this paper is the following general theorem (cf. Theorem
2.2). It confirms a conjecture formulated in [1, §4].

Theorem 0.1. For an affine variety X of dimension ≥ 2, the following conditions are
equivalent.

(i) The group SAut(X) acts transitively on Xreg.
(ii) The group SAut(X) acts infinitely transitively on Xreg.

Transitivity properties of the special automorphism group are closely related to the
flexibility of a variety, which was studied in the algebraic context in [1]1. We say that
a point x ∈ X is flexible if the tangent space TxX is spanned by the tangent vectors
to the orbits H.x of one-parameter unipotent subgroups H ⊆ Aut(X). The variety X
is called flexible if every smooth point x ∈ Xreg is. Clearly, X is flexible if one point of
X is and the group Aut(X) acts transitively on Xreg. With this notation we can show
in Corollary 1.21 that condition (i) and then also (ii) in Theorem 0.1 is equivalent to

(iii) X is a flexible variety.

1In the analytic context, several other flexibility properties are surveyed in [10].
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For the examples mentioned above flexibility was verified in [1]. As a further ex-
ample, the total space of a homogeneous vector bundle over a flexible affine variety is
flexible (Corollary 4.5). Furthermore, every semisimple algebraic group is well known
to be generated by its unipotent 1-parameter subgroups. This implies that G itself
and any affine homogeneous space G/H are flexible. Hence in case dimG/H ≥ 2
their special automorphism group act infinitely transitively. More generally, if a semi-
simple algebraic group acts with an open orbit on a smooth affine variety X then X is
homogeneous itself and so is flexible (see Theorem 5.5).

In contrast to such results, according to A. Borel a real Lie group cannot act 4-
transitively on a simply connected manifold (see Theorems 5 and 6 in [4]). The lat-
ter remains true (without the assumption of simple connectedness) for the actions of
algebraic groups over algebraically closed fields [25]. This shows that the special au-
tomorphisms of an affine homogeneous space of dimension ≥ 2 form always a ‘large’
group.

Let us mention several applications. As an almost immediate consequence it follows
that in a flexible affine variety X any finite subset Z ⊆ Xreg can be interpolated by a
polynomial curve, that is by a curve C ∼= A1 in Xreg (see Corollary 4.18 below for a
more general statement). Indeed, given a one-dimensional Ga-orbit O in Xreg and a
finite subset Z ′ ⊆ O of the same cardinality as that of Z by infinite transitivity there
is an automorphism g ∈ SAut(X) which sends Z ′ to Z. Then g(O) ∼= A1 is a Ga-orbit
passing through every point of Z.

This interpolation by A1-curves is related to the property of A1-richness [23]. A
smooth variety X is called A1-rich if, given any two disjoint closed subvarieties Y, Z of
X with codimX Y ≥ 2 and dimZ = 0, there exists a polynomial curve in X\Y passing
through every point of Z. For instance, An for n ≥ 2 is A1-rich by the Gromov-
Winkelmann theorem, see [40]. In Corollary 4.18 we show more generally that any
smooth flexible affine variety is A1-rich by means of Ga-orbits.

An interesting case of flexible varieties are the degeneracy loci of generic matrices,
which are the varieties say Xr ⊆ Amn consisting of m × n-matrices of rank ≤ r. It is
a standard fact of linear algebra that SAut(Xr) acts transitively on Xr \Xr−1 unless
r = m = n. Indeed, one can transform each matrix to a normal form by a sequence of
elementary transformations, which replace row i by row i+ t·row j (i ̸= j, t ∈ k), and
similarly for columns. Since these transformations constitute Ga-actions, SAut(Xr)
acts transitively and hence infinitely transitively on Xr \ Xr−1 unless dimXr ≤ 1 or
r = m = n.

We can prove this infinite transitivity even simultaneously for matrices of different
ranks, see Theorem 3.3. This shows that any finite collection of m × n matrices can
be diagonalized simultaneously by means of elementary row- and column transforma-
tions depending polynomially on the matrix entries. Similar statements also hold for
symmetric and skew-symmetric matrices, see Theorems 3.5 and 3.6. Such a collec-
tive infinite transitivity for conjugacy classes of matrices was established earlier by Z.
Reichstein [35] using different methods.

The Gizatullin surfaces represent another interesting class of examples. These are
normal affine surfaces which admit a completion by a chain of smooth rational curves.
Due to Gizatullin’s Theorem [15] (see also [8]), a normal affine surface X different from
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A1×(A1\{0}) is Gizatullin if and only if the special automorphism group SAut(X) has
an open orbit with a finite complement. It follows from Theorem 2.2 below that the
group SAut(X) acts infinitely transitively on this open orbit. It is unknown however
(to the best of our knowledge) whether this orbit coincides with Xreg i.e., whether
every Gizatullin surface is flexible. This is definitely not true in positive characteristic,
where the special automorphism group SAut(X) of a Gizatullin surface X can have
fixed points that are regular points of X [7]. We refer the reader e.g., to [9] and the
references therein for a study of one-parameter groups acting on Gizatullin surfaces.

We can also prove a version of infinite transitivity including infinitesimal near points.
More precisely we will show (see Theorem 4.14 for a slightly more general version):

Theorem 0.2. Let X be a flexible affine variety of dimension n ≥ 2 equipped with
an algebraic volume form2 ω. Then for every m ≥ 0 and every finite subset Z ⊆ Xreg

there exists an automorphism g ∈ G with prescribed m-jets at the points p ∈ Z, provided
these jets preserve ω and inject Z into Xreg.

In the holomorphic context such results were shown in [5] and [19].
Let us give a short overview of the content of the various sections.
In Section 1 we deal with a more general class of groups of automorphisms, namely,

with groups generated by a family of algebraic subgroups. We study the orbits of such
groups, and give a generalization of Kleiman’s Transversality Theorem in this context
(see Theorem 1.15). It is remarkable that for such actions the Rosenlicht Theorem
on the separation of generic orbits by rational invariants remains true (see Theorem
1.12). As a consequence we are able to confirm a conjecture of [27] concerning the field
ML-invariant.

In Section 2 we deduce Theorem 0.1 (cf. the more general Theorems 2.2 and 2.5).
The methods developed there will be applied in Section 3 to show infinite transitiv-
ity on several orbits simultaneously, see Theorem 3.1. In particular, we deduce the
applications to matrix varieties mentioned before.

Section 4 contains the results on the interpolation of curves and automorphisms
as described above. In Section 5 we apply our techniques to homogeneous spaces and
their affine embeddings. Finally in the Appendix 6 we compare our results with similar
facts in complex analytic geometry. We deduce, in particular, that the Oka-Grauert-
Gromov Principle is available for smooth G-fibrations with flexible fibers, where G is
an algebraically generated group of automorphisms (cf. Proposition 6.3 and Corollary
6.7).

1. Flexibility versus transitivity

1.1. Algebraically generated groups of automorphisms. Let X be an algebraic
variety over k.

Definition 1.1. A subgroup G of the automorphism group Aut(X) is said to be
algebraically generated if it is generated by a family G of connected algebraic subgroups
of Aut(X). More precisely, every H ∈ G is a connected algebraic group over k, not

2By this we mean a nowhere vanishing n-form defined on Xreg.
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necessarily affine, contained in G, and G = ⟨H |H ∈ G⟩ is generated by these subgroups
as an abstract group.

Proposition 1.2. If the subgroup G ⊆ Aut(X) is algebraically generated then the
following hold.

(a) For every point x ∈ X the orbit G.x is locally closed.
(b) For every x ∈ X there are (not necessarily distinct) subgroups H1, . . . , Hs ∈ G

such that
G.x = H1.(H2. · · · .(Hs.x) . . .) .

Proof. Replacing X by the Zariski closure of the orbit G.x we may assume that X =
G.x i.e., the orbit of x is dense in X. Notice that for every finite sequence H =
(H1, . . . , Hs) in G the subset XH,x = H1.(H2. · · · .(Hs.x) . . .) ⊆ X is constructible and
irreducible, being the image of the irreducible variety H1 × . . .×Hs under the regular
map

(1) ΦH,x : H1 × . . .×Hs → X, (h1, . . . , hs) 7→ (h1 · . . . · hs).x .
Observe that enlarging H we enlarge XH,x too. By assumption the union of all such
sets XH,x is dense in X, hence also the union of the closures X̄H,x is. Since an increasing
sequence of closed irreducible subsets becomes stationary, X = X̄H,x for some H. In

particular, the interior X̊H,x is nonempty. The union Ω =
∪

H X̊H,x over all such
sequences H ⊆ G is G-invariant and thus equal to the whole orbit G.x, which shows
(a). Since an increasing sequence of open subsets of X becomes stationary we have

X̊H,x = Ω for some sequence H in G and so (b) follows as well. �
We can strengthen (b) as follows.

Proposition 1.3. There are (not necessarily distinct) subgroups H1, . . . , Hs ∈ G such
that

(2) G.x = H1.(H2. · · · .(Hs.x) . . .) ∀x ∈ X.

Proof. Let us introduce a partial order on the set of sequences in G via

(H1, . . . , Hm) < (H ′
1, . . . H

′
s) ⇐⇒ ∃i1 < . . . < is : (H ′

1, . . . , H
′
s) = (Hi1 , . . . , His) .

Obviously any two sequences are dominated by a third one. Given a sequence H =
(H1, . . . , Hs) in G we consider the map

(3) ΦH : H1 × . . .×Hs ×X −→ X ×X, (h1, . . . , hs, x) 7→ (x, (h1 · . . . · hs).x).
The image ZH = ΦH(H1× . . .×Hs×X) is constructible and irreducible. In particular,
the union of closures Z =

∪
H Z̄H stabilizes in X ×X 3 and so is closed.

Let Z̊H be the interior of ZH in Z. It follows as before that also Z̊H becomes
stationary and that the union Z ′ =

∪
H Z̊H is an open dense subset of Z.

Suppose that G acts on X × X via g.(x, y) = (g.x, y). If H = (H1, . . . , Hs) and
H ∈ G then for any (h1, . . . , hs) ∈ H1 × . . .×Hs and h ∈ H we have

h.ΦH(h1, . . . , hs, x) = h.(x, (h1 · . . . · hs)x) = Φ(H,H)(h1, . . . , hs, h
−1, hx) .

Hence h.ZH ⊆ Z(H,H). It follows that Z and Z ′ are G-invariant.

3 I.e., it coincides with Z̄H for H sufficiently large.
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Consider now for H sufficiently large the sets ZH, Z
′ = Z̊H, and Z = Z̄H as families

over X via the first projection p : (x, y) 7→ x. By [17, 9.5.3] there is an open dense
subset V of X such that Z ′(x) is dense in Z(x) for all x ∈ V , where for a subset
M ⊆ X×X we denote by M(x) the fiber of p|M :M → X over x. Since Z and Z ′ are
invariant under the action of G and the projection p is equivariant, we may suppose
that V is as well G-invariant.

In particular there is a sequence H0 such that ZH(x) = (H1 · . . . ·Hs).x is dense in
Z(x) for all x ∈ V and all sequences H = (H1, . . . , Hs) dominating H0. It follows that
Z(x) is the orbit closure of G.x and so (H1 · . . . ·Hs).x is dense in the orbit G.x for all
x ∈ V .

We claim that for every point x ∈ V

(Hs · . . . ·H1 ·H1 · . . . ·Hs).x = G.x .

Indeed, for any y ∈ G.x the sets (H1 · · ·Hs).x and (H1 · · ·Hs).y are both dense in the
orbit G.x = G.y. Hence they have a point, say, z in common. Thus

y ∈ (Hs · . . . ·H1).z ⊆ (Hs · . . . ·H1 ·H1 · . . . ·Hs).x .

Replacing H by the larger sequence (Hs, . . . , H1, H1, . . . , Hs) it follows that

(H1 · . . . ·Hs).x = G.x for all x ∈ V simultaneously.

The complement Y = X\V is closed, and all its irreducible components are of dimen-
sion < dimX. Using induction on the dimension of X it follows that (2) holds for H
sufficiently large and all x ∈ X simultaneously, concluding the proof. �

Remark 1.4. We note that Propositions 1.2 and 1.3 remain true with the same proofs
for varieties over algebraically closed fields of arbitrary characteristic.

Definition 1.5. A sequence H = (H1, . . . , Hs) in G satisfying condition (2) of 1.3 will
be called maximal.

Remark 1.6. It is not true in general that the ‘orbit’ G.Y of a Zariski closed subset
Y ⊆ X under an algebraic group action is locally closed. Nevertheless, applying the
same kind of arguments as in the proofs of 1.2 and 1.3 above one can show that for
any algebraically generated subgroup G ⊆ Aut(X) and a constructible subset Y of X
the orbit G.Y is a constructible subset of X.

Proposition 1.7. Assume that the generating family G of connected algebraic sub-
groups is closed under conjugation in G, i.e., gHg−1 ∈ G for all g ∈ G and H ∈ G.
Then there is a sequence H = (H1, . . . , Hs) in G such that for all x ∈ X the tangent
space Tx(G.x) of the orbit G.x is spanned by the tangent spaces

Tx(H1.x), . . . , Tx(Hs.x) .

Proof. We claim that Tx(G.x) is spanned by the tangent spaces Tx(H.x), where H ∈ G.
Indeed, consider a maximal sequence H1, . . . , Hs ∈ G such that the map ΦH,x : H1 ×
. . .×Hs → G.x in (1) is surjective. Its generic rank is maximal and so for some point
y = (h1 · . . . · hs).x ∈ G.x the tangent map

dΦH,x : T(h1,...,hs)(H1 × . . .×Hs) −→ Ty(G.x)
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is surjective. Multiplication by g = (h1·. . .·hs)−1 yields an isomorphism µg : G.x→ G.x
which sends y to x. Hence the composition µg ◦ ΦH,x has a surjective tangent map

d(µg ◦ ΦH,x) : T(h1,...,hs)(H1 × . . .×Hs) −→ Tx(G.x) .

The restriction of µg ◦ ΦH,x to the factor

h1 × . . .× hσ−1 ×Hσ × hσ+1 × . . .× hs

can be identified with the map

H ′
σ = g−1

σ Hσgσ → G.x, h′ 7→ h′.x ,

where gσ = hσ+1 · . . . · hs ∈ G. Taking the tangent maps provides the claim.
Consider further the map ΦH : H1 × . . .×Hs ×X → Z as in (3) associated with a

maximal sequence H, where Z ⊆ X × X is the closure of the image of ΦH as in the
proof of 1.3. Choose an invariant open subset V ⊆ Xreg such that the first projection
p : Z → X is smooth over V . Note that the fiber of ZV = p−1(V ) → V over x is just
the orbit G.x. Let us consider the map of relative tangent bundles

dΦH : T (H1 × . . .×Hs × V/V ) → Φ∗
H(T (ZV /V ))

and its restriction to (1, . . . , 1)× V ∼= V ,

dΦH : T1H1 × . . .× T1Hs × V → Φ∗
H(T (ZV /V ))|V .

The set UH of points in V where this map is surjective, is open. By the above claim,
their union

∪
H UH coincides with V . Since an increasing union of open subsets stabi-

lizes, we obtain that V = UH for H sufficiently large. Induction on the dimension of
X as in the proof of Proposition 1.3 ends the proof. �

Remark 1.8. It may happen for a family G which is not closed under conjugation that
for some point x ∈ X the tangent spaces

Tx(H1.x), . . . , Tx(Hs.x)

do not span Tx(G.x), whatever is the sequence H = (H1, . . . , Hs) in G. For instance,
the group G = SL2 is generated by the family G = {U+, U−}, where U± are the
subgroups of upper and lower triangular unipotent matrices. Letting SL2 act on itself
by left multiplication the tangent space T1G of the orbit G = G.1 is sl2, while for any
sequence H = (H1, . . . , Hs) in G the tangent spaces T1(H1), . . . , T1(Hs) are contained
in the 2-dimensional subspace T1(U

+) + T1(U
−).

Definition 1.9. LetG ⊆ Aut(X) be algebraically generated by a family G of connected
algebraic subgroups, which is closed under conjugation. We say that a point p ∈ Xreg

is G-flexible if the tangent space TpX at p is generated by the subspaces Tp(H.p), where
H ∈ G.

Corollary 1.10. With G and G as in Definition 1.9 the following hold.

(a) A point p ∈ Xreg is G-flexible if and only if the orbit G.p is open.
(b) An open G-orbit (if it exists) is unique and consists of all G-flexible points in Xreg.

Proof. (a) is immediate from Proposition 1.7. Moreover (b) follows from (a) since any
two open G-orbits overlap and so must coincide. �
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Let us note that by Corollary 1.10(a) the definition of a G-flexible point only depends
on G and not on the choice of the generating set G.

Using the semicontinuity of the fiber dimension we can deduce the following semi-
continuity result for orbits of groups that are algebraically generated.

Corollary 1.11. If a group G ⊆ Aut(X) is algebraically generated then the function
x 7→ dimG.x is lower semicontinuous on X. In particular, there is a Zariski open
subset U ⊆ X filled in by orbits of maximal dimension.

Proof. We may suppose that G = ⟨G⟩, where G is a family of connected algebraic
subgroups of Aut(X) closed under conjugation in G. For a maximal sequence H =
(H1, . . . , Hs) consider the map ΦH from (3). By the semicontinuity of fiber dimension
the function

X ∋ x 7−→ dimτ(x)Φ
−1
H (x, x)

is upper semicontinuous on X, where τ(x) = (1, . . . , 1, x) ∈ H1 × . . . ×Hs ×X. Here
Φ−1

H (x, x) is just the fiber of the map ΦH,x : H1 × . . .×Hs → G.x over x.
Fix a point x0 ∈ X. Enlarging H we may assume that ΦH,x0 is a submersion. Thus

for x in a suitable neighborhood U of x0

dimG.x0 =
s∑

σ=1

dimHσ − dimΦ−1(x0, x0)

≤
s∑

σ=1

dimHσ − dimΦ−1(x, x)

≤ dimG.x.

It follows that dimG.x ≥ dimG.x0 for x ∈ U , as required. �
In view of our preceding results the following analog of the Rosenlicht Theorem on

rational invariants holds in our setting with an almost identical proof, see e.g. [33,
Theorem 2.3]. For the reader’s convenience we add the argument.

Theorem 1.12. Let G be an algebraically generated group acting on a variety X.
Then there exists a finite collection of rational G-invariants which separate G-orbits in
general position.

Proof. Replacing X by a subset U as in Corollary 1.11 we may assume that all orbits
of G are of maximal dimension. In particular then all G-orbits are closed in X. Let
Γ ⊆ X ×X consist of all pairs (x, x′) such that x and x′ are in the same G-orbit. Note
that this is just the the image of the map G×X → X ×X with (g, x) 7→ (g.x, x). As
we have seen in the proof of Proposition 1.3, Γ contains an open dense subset, say Γ0,
of the closure Γ in X ×X.

Letting G act on the first component of X × X we may assume that Γ0 is G-
invariant, since otherwise we can replace it by the union of all translates of Γ0. If
p2 : Γ0 → X denotes the second projection then for a general point x ∈ X the fibre
p−1
2 (x) = G.x× {x} is closed in X × {x}. Hence there is an open dense subset U ⊆ X
such that Γ0 ∩ p−1

2 (U) is closed in X × U . In particular it follows that Γ ∩ X × U is
closed in X × U . Shrinking U we may also assume that U is affine.
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Let I ⊆ OX×U be the ideal sheaf of Γ ∩ X × U and let J be the ideal generated
by I in the algebra k(X) ⊗ k[U ]4. The ideal J is G-invariant assuming that G acts
on the first factor of X ×X. Moreover, J is generated as a k(X)-vector subspace by
G-invariant elements (see [33, Lemma 2.4]). We can find a finite set of generators of
J , say F1, ..., Fp, among these elements. We have

Fi =
∑
s

fis ⊗ uis, where fis ∈ k(X)G and uis ∈ k[U ] .

Let us show that the functions fis separate orbits in general position.
Shrinking U once again we may assume that all the fis are regular functions on U

and that the elements Fi generate the ideal I. Then the orbit of a point x ∈ U is
defined by the equations Fi(x, y) =

∑
s fis(x)uis(y) = 0, i = 1, ..., p. Consequently, the

equalities fis(x1) = fis(x2) for all i and s imply that G.x1 = G.x2 on U . �
As in [33, Corollary on p. 156] this theorem has the following consequence.

Corollary 1.13. Let G be an algebraically generated group acting on a variety X of
dimension n. Then

trdeg(k(X)G : k) = min
x∈X

{codimXG.x} .

In particular, there is an open orbit of G if and only if k(X)G = k.

Remark 1.14. It may happen that all G-orbits in X have a common point in their
closures and so the only regular G-invariants are the constants. This is the case, for
instance, for the group G = Gm acting on An by homotheties. Cf. also an example in
[27, §4.2], where the group G is generated by its one-parameter unipotent subgroups.

1.2. Transversality. If an algebraic group G acts transitively on an algebraic variety
X and Z, Y are smooth subvarieties of X then by Kleiman’s Transversality Theorem
[24] a general g-translate g.Z (g ∈ G) meets Y transversally. In this subsection we
establish the following analogue of Kleiman’s Theorem for an arbitrary algebraically
generated group (which might be of infinite dimension).

Theorem 1.15. Let a subgroup G ⊆ Aut(X) be algebraically generated by a system G
of connected algebraic subgroups closed under conjugation in G. Suppose that G acts
with an open orbit O ⊆ X.

Then there exist subgroups H1, . . . , Hs ∈ G such that for any locally closed reduced
subschemes Y and Z in O one can find a Zariski dense open subset U = U(Y, Z) ⊆
H1 × . . .×Hs such that every element (h1, . . . , hs) ∈ U satisfies the following.

(a) The translate (h1 · . . . · hs).Zreg meets Yreg transversally.
(b) dim(Y ∩ (h1 · . . . · hs).Z) ≤ dimY + dimZ − dimX.

In particular Y ∩ (h1 · . . . · hs).Z = ∅ if dimY + dimZ < dimX.

The proof is based on the following auxiliary result, which is complementary to
Proposition 1.7.

4Here k(X) denotes the function field of X.
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Proposition 1.16. Let the assumption of Theorem 1.15 hold. Then there is a sequence
H = (H1, . . . , Hs) in G so that for a suitable open dense subset U ⊆ Hs× . . .×H1, the
map

(4) Φs : Hs × . . .×H1 ×O −→ O ×O with (hs, . . . , h1, x) 7→ ((hs · . . . · h1).x, x)
is smooth on U ×O.

Proof. According to Proposition 1.3 there are subgroups H1, . . . , Hs ⊆ G in G such
that Φs is surjective. Hence there is an open dense subset Us ⊆ Hs × . . .×H1 ×O on
which Φs is smooth. Assuming that Us is maximal with this property we consider the
complement As = (Hs × . . .×H1 ×O)\Us.

Let us study the effect of increasing the number of factors, i.e., passing to

Φs+1 : Hs+1 × . . .×H1 ×O −→ O ×O

The map Φs+1 is smooth on Hs+1 × Us. Indeed, for every hs+1 ∈ Hs+1 we have a
commutative diagram

Hs+1 × . . .×H1 ×O
Φs+1- O ×O

{1} ×Hs × . . .×H1 ×O

hs+1×id
6

Φs- O ×O

hs+1×id
6

where the lower horizontal map is smooth on Us. In other words, Us+1 ⊇ Hs+1 × Us
or, equivalently, As+1 ⊆ Hs+1×As. We claim that increasing the number of factors by
Hs+1, . . . , Hs+t in a suitable way, we can achieve that

(5) dimAs+t < dim(Hs+t × . . .×Hs+1 × As) .

If (hs, . . . , h1, x) ∈ As and y = (hs · . . . · h1).x then for suitable Hs+t, . . . , Hs+1 the map

Hs+t × . . .×Hs+1 ×O −→ O ×O

is smooth in all points (1, . . . , 1, y), see Proposition 1.7. In particular Φs+t is smooth
in all points (1, . . . , 1, hs, . . . , h1, x) with x ∈ O, i.e.

(1, . . . , 1)× As ∩ As+t = ∅.

Now (5) follows.
Thus increasing the number of factors suitably we can achieve that5

dimAs < dim(Hs × . . .×H1) .

In particular, the image of As under the projection

π : Hs × . . .×H1 ×O −→ Hs × . . .×H1

is nowhere dense. Hence there is an open dense subset U ⊆ Hs × . . . × H1 such that
Φs : U ×O → O ×O is smooth. �

5In fact we can make the difference dim(Hs × . . .×H1)− dimAs arbitrarily large.
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Proof of Theorem 1.15. Let us first show (a). Replacing Y and Z by Yreg and Zreg,
respectively, we may assume that Y and Z are smooth. Applying Proposition 1.16
there are subgroups H1, . . . , Hs in G such that Φs : U ×O → O×O is smooth for some
open subset U ⊆ H1 × . . . × Hs. In particular Y = Φ−1

s (Y × Z) ∩ (U × O) ⊆ U × Z
is smooth. By Sard’s Theorem the general fiber of the projection Y → U is smooth as
well. In other words, shrinking U we may assume that all fibers of this projection are
smooth. Since for a point h = (h1, . . . , hs) ∈ U the fiber Y ∩ π−1(h) maps bijectively
via Φs onto Y ∩ (h1 · . . . · hs).Z, (a) follows.

Now (b) follows by an easy induction on l = dimY + dimZ, the case of l = 0
being trivial. Indeed, applying (a) and the induction hypothesis to Ysing and Z and
also to Y and Zsing, for suitable connected algebraic subgroups H1, . . . , Hs and general
(h1, . . . , hs) ∈ H1 × . . .×Hs we have that Yreg and (h1 · . . . · hs).Zreg meet transversally
and that

dim(Ysing ∩ (h1 · . . . · hs).Z) ≤ dimYsing + dimZ − dimX;

dim(Y ∩ (h1 · . . . · hs).Zsing) ≤ dimY + dimZsing − dimX .

This immediately implies the desired result. �
1.3. Special subgroups. Let X be an algebraic variety. The following notion is
central in the sequel.

Definition 1.17. A subgroup G of the automorphism group Aut(X) will be called spe-
cial6 if it is generated by a family of one-parameter unipotent subgroups i.e., subgroups
isomorphic to Ga.

We give two simple examples.

Example 1.18. (1) The group SAut(X) is special. The image of SAut(X) under the
diagonal embedding SAut(X) ↪→ SAut(Xm) is also a special subgroup.

(2) A connected affine algebraic group is special if and only if it does not admit
nontrivial characters [32]. In particular, every semi-simple algebraic group is special.

In the sequel it will be important to deal with the infinitesimal generators of sub-
groups of Aut(X) isomorphic to Ga. Let us collect the necessary facts.

1.19. (1) ([36]) If the groupGa acts on an affine varietyX = SpecA then the associated
derivation ∂ on A is locally nilpotent, i.e. for every f ∈ A we can find n ∈ N such that
∂n(f) = 0.

(2) Conversely, given a locally nilpotent k-linear derivation7 ∂ : A → A and t ∈ k,
the map exp(t∂) : A → A is an automorphism of A or, equivalently, of X. Thus for
∂ ̸= 0, H = exp(k∂) can be regarded as a subgroup of Aut(X) isomorphic to Ga (see
[12]). Considering ∂ as a vector field on X the action of H ∼= Ga on X is just the
associated phase flow.

(3) The ring of invariants k[X]H = ker ∂ has transcendence degree8 dimX − 1.
Furthermore, for any H-invariant function f ∈ k[X]H the one-parameter unipotent

6 In the case where X = An these groups were called ∂-generated in [31, Definition 2.1].
7Or LND, for short.
8Or the Gelfand-Kirillov dimension.
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subgroup Hf = exp(kf∂) will play an important role in the sequel. It will be called a
replica of H.

It acts on X in the same direction as H does, but with a different speed along the
orbits. In this way ker ∂ is presented as an abelian subalgebra9 of the Lie algebra of all
regular vector fields on X.

For a special group G ⊆ SAut(X) we let LND(G) denote the set of all locally
nilpotent vector fields on X which generate the one-parameter unipotent subgroups of
G. This set is stable under conjugation in G and is a cone, i.e., k ·LND(G) ⊆ LND(G).
In the sequel we consider often subsets N ⊆ LND(G) of locally nilpotent vector fields
such that the associated set of one-parameter subgroups G = {exp(k∂) : ∂ ∈ N} form
a generating set of algebraic subgroups for G. By abuse of language, we often say that
N is a generating set of G, and we write G = ⟨N⟩.

From Proposition 1.7 we deduce the following result.

Corollary 1.20. Given a special subgroup G = ⟨N⟩ of Aut(X), where N ⊆ LND(G)
is stable under conjugation in G, there are locally nilpotent vector fields ∂1, . . . , ∂s ∈ N
which span the tangent space Tp(G.p) at every point p ∈ X.

For a point p ∈ X we let LNDp(G) ⊆ TpX denote the nilpotent cone of all tan-
gent vectors ∂(p), where ∂ runs over LND(G). By Corollary 1.20 we have Tp(G.p) =
SpanLNDp(G).

10 Thus a point p ∈ Xreg is G-flexible (see Definition 1.9) if and only if
the cone LNDp(G) spans the whole tangent space TpX at p.

Applying Corollary 1.10 to the special automorphism group G = SAut(X) yields the
equivalence (i)⇔(iii) in the introduction, cf. Theorem 0.1.

Corollary 1.21. Given an affine variety X the action of SAut(X) on Xreg is transitive
if and only if X is flexible.

In the following example we illustrate the notions of replica and of a special group
in the case of the special automorphism group SAut(An) of an affine space An over k.

Example 1.22. This group contains the one-parameter unipotent subgroup of trans-
lations in any given direction. The infinitesimal generator of such a subgroup is a
directional partial derivative. Such a derivative defines a locally nilpotent derivation
of the polynomial ring in n variables, with the associated phase flow being the group
of translations in this direction. Its replicas are the one parameter groups of shears in
the same direction.

As another example, consider the locally nilpotent derivation ∂ = X ∂
∂Y

+ Y ∂
∂Z

of
the polynomial ring k[X, Y, Z] and an invariant function f = Y 2 − 2XZ ∈ ker ∂.
The corresponding replica Hf contains in particular the famous Nagata automorphism
Hf (1) = exp(f · ∂) ∈ SAut(A3), see [37].

Notice that any automorphism α ∈ SAut(An) preserves the usual volume form on
An (see [31] or Lemma 4.10 below). Hence SAut(An) ⊆ Gn, where Gn denotes the
subgroup of Aut(An) consisting of all automorphisms with Jacobian determinant 1.

9It is contained in the centralizer of ∂. So the latter is infinite dimensional provided that dimX ≥ 2.
10Cf. Corollary 4.3 below.
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Recall that the tame subgroup Tn ⊆ Aut(An) is the subgroup generated by all
elementary automorphisms σ ∈ AutAn of the form

σ = σi,α,f : (x1, . . . , xi−1, xi, xi+1, . . . , xn) 7−→ (x1, . . . , xi−1, αxi + f, xi+1 . . . , xn) ,

where f ∈ k[x1, . . . , xi−1, xi+1 . . . , xn] and α ∈ Gm. An elementary automorphism σ
with α = 1 can be included into a one parameter unipotent subgroup {σi,1,tf}t∈k. Since
for any λ ∈ Gm the conjugate hλ ◦ σ ◦ h−1

λ , where hλ(x) = λx, is again elementary,
any tame automorphism β with Jacobian determinant 1 can be written as a product
of elementary automorphisms with Jacobian determinant 1 (cf. [31, Examples 2.3 and
2.5] or [13, Proposition 9]). Hence

(6) Tn ∩Gn ⊆ SAut(An) ⊆ Gn .

For n = 3 the first inclusion is proper. Indeed, due to the well known Shestakov-
Umirbaev Theorem [37] the Nagata automorphism Hf (1) is wild. Hence Hf (1) ∈
SAut(A3) \ (T3 ∩G3).

However, for n = 2 by the Jung-van der Kulk Theorem Aut(A2) = T2 and so by
(6) SAut(A2) = G2. It is known that G2 is perfect and is the commutator subgroup
of the group Aut(A2) (see e.g., [13, Proposition 10]). The question arises whether the
equality SAut(An) = Gn holds as well for n ≥ 3 (cf. [31, Problem 2.1]).

2. Infinite transitivity

2.1. Main theorem. In this section we show that the special automorphism group
of a flexible variety X acts infinitely transitively on Xreg. We state this in a more
general setup which turns out to be necessary for later applications. Let us first fix
some notation and assumptions for this and the next subsection.

2.1. Let X be an affine algebraic variety over k. Let G ⊆ SAut(X) be a subgroup
generated by a given set, say, N of locally nilpotent vector fields such that the following
conditions are satisfied.

(1) N is closed under conjugation by elements in G.
(2) N is closed under taking replicas, i.e. for all ∂ ∈ N and f ∈ ker ∂ we also have

f∂ ∈ N .

We call such a generating set saturated11. We note that the important condition here
is (2), since starting from a set of locally nilpotent vector fields N0 generating G and
only satisfying (2) we can add all conjugates of elements in N0 and obtain thereby a
saturated set N generating the same group G.

By Corollary 1.20 there are finitely many vector fields ∂1, . . . , ∂s in N that span the
tangent space Tx(G.x) at every point x ∈ X. Throughout this section these vector
fields will be fixed.

The next result implies Theorem 0.1 in the Introduction.

Theorem 2.2. Let X be an affine algebraic variety of dimension ≥ 2 and let G ⊆
SAut(X) be a subgroup generated by a saturated set N of locally nilpotent vector fields,
which acts with an open orbit O ⊆ X. Then G acts infinitely transitively on O.

11 See [31, Definition 2.2] for a closely related notion of a finitely ∂-generated group of automor-

phisms of X = An.
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Remark 2.3. In fact, the equivalence (i)⇔(ii)⇔(iii) of Theorem 0.1 is valid for any
quasi-affine variety U which is the complement to a codimension ≥ 2 subvariety in
a normal affine variety X = SpecA. This can be deduced from Theorem 2.2 by a
straightforward argument since the group SAut(U) of an open subset U ⊆ X acts also
on A = Γ(U,OU).

2.4. For a subset Z ⊆ X we let NZ = {∂ ∈ N : ∂|Z = 0} be the set of derivations in
N vanishing on Z, and let

GN ,Z = ⟨H = exp(k∂) : ∂ ∈ NZ⟩
be the subgroup of G generated by all exponentials in NZ . Clearly the automorphisms
in GN ,Z fix the set Z pointwise. In the case N = LND(G) we simply write GZ instead
of GN ,Z . Since NZ is GN ,Z-saturated the group GN ,Z = ⟨NZ⟩ is again generated by a
saturated set of locally nilpotent derivations.

With these notation and assumptions our main technical result can be formulated
as follows.

Theorem 2.5. Let X be an affine algebraic variety of dimension ≥ 2 and let G ⊆
SAut(X) be a subgroup generated by a saturated set N of locally nilpotent vector fields,
which acts with an open orbit O ⊆ X. Then for every finite subset Z ⊆ O the group
GN ,Z acts transitively on O\Z.

Before embarking on the proof let us show how Theorem 2.2 follows.

Proof of Theorem 2.2. Let x1, . . . , xm and x′1, . . . , x
′
m be sequences of points in O with

xi ̸= xj and x′i ̸= x′j for i ̸= j. Let us show by induction on m that there is an
automorphism g ∈ G with g.xi = x′i for all i = 1, . . . ,m. As G acts transitively on O
this is certainly true for m = 1. For the induction step suppose that there is already
an automorphism α ∈ G with α.xi = x′i for i = 1, . . . ,m− 1. Applying Theorem 2.5 to
Z = {x′1, . . . , x′m−1} we can also find an automorphism β ∈ GN ,Z with β(α(xm)) = x′m.
Clearly then g = β ◦ α satisfies g.xi = x′i for all i = 1, . . . ,m. �
2.2. Proof of Theorem 2.5. To deduce Theorem 2.5 we need a few preparations. As
before X stands for an affine algebraic variety over k. Let us introduce the following
technical notion.

Definition 2.6. Let G ⊆ SAut(X) be a special subgroup and let Ω ⊆ X be a subset
stabilized by G. We say that a locally nilpotent vector field ∂ ∈ LND(G) with asso-
ciated one-parameter subgroup H = exp(k∂) satisfies the orbit separation property on
Ω, if there is an H-stable subset U(H) ⊆ Ω such that

(a) for each G-orbit O contained in Ω, the intersection U(H)∩O is open and dense in
O, and

(b) the global H-invariants OX(X)H separate all one-dimensional H-orbits in U(H).

The reader should note that we allow U(H) ∩ O to contain or even to consist of 0-
dimensional H-orbits. We also emphasize that Ω can be any union of orbits and can
e.g. contain orbits in the singular part of X.

Similarly we say that a set of locally nilpotent vector fields N satisfies the orbit
separation property on Ω if this holds for every ∂ ∈ N .
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Remarks 2.7. 1. Let ∂ be a locally nilpotent vector field on X and let H = exp(k∂)
be the subgroup of SAut(X) generated by ∂. By a corollary of the Rosenlicht Theorem
on rational invariants [33, Proposition 3.4] there exists an H-invariant Zariski open set
U(H) such that the restriction H|U(H) admits a geometric quotient

π : U(H) → U(H)/H

given by a finite set of regular H-invariant functions on X. If G possesses an open
orbit O then we can choose such an open set U(H) contained in O. Letting Ω = O
every ∂ ∈ LND(G) satisfies the orbit separation property on Ω.

2. Given a locally nilpotent derivation ∂ ∈ LND(G), it satisfies the orbit separation
property on any set Ω which is a union of G-orbits meeting U(H). In particular this
property holds for general G-orbits (cf. Corollary 1.11).

3. As we shall see in Example 2.14 the orbit separation property is not necessarily
satisfied on any G-orbit. However, there are interesting geometric situations where this
property holds for arbitrary G-orbits, see Subsection 3.2.

We need the following simple Lemma.

Lemma 2.8. If a locally nilpotent vector field ∂ ∈ LND(G) satisfies the orbit separation
property on a G-stable subset Ω ⊆ X then also every replica f∂, f ∈ ker ∂, and every
g-conjugate g∗(∂) = g ◦ ∂ ◦ g−1, g ∈ G, has this property.

Proof. Let ∂′ = f∂ be a replica of ∂ with associated one-parameter subgroup H ′. In
the case f = 0 the assertion is obvious. Otherwise the one dimensional orbits of H ′ are
also one dimensional orbits of H, and the H and H ′ invariant functions are the same.
Hence setting U(H ′) = U(H), (a) and (b) in Definition 2.6 are again satisfied for H ′.
The fact that any g-conjugate of ∂ has again the orbit separation property, is easy and
can be left to the reader. �

For the remaining part of this subsection we fix the following notation.

2.9. Let G ⊆ SAut(X) be a special subgroup generated by a saturated set N of locally
nilpotent vector fields. Let Ω ⊆ X a G-stable subset. We choose ∂1, . . . , ∂s ∈ N with
associated one-parameter subgroups Hσ = exp(k∂σ) and assume that the following two
conditions are satisfied.

(1) ∂1, . . . , ∂s ∈ N span Tx(G.x) for every point x ∈ Ω (see 1.20), and
(2) ∂σ has the orbit separation property on Ω for all σ = 1, . . . , s.

Consequently there are subsets U(Hσ) ⊆ Ω such that conditions (a) and (b) in Defini-
tion 2.6 are satisfied with H = Hσ. We let

V =
s∩

σ=1

U(Hσ) .

In particular,

(i) V ∩O is open and dense in O for every orbit O contained in Ω, and
(ii) any two points in V in different one dimensional Hσ-orbits can be separated by

an Hσ-invariant function on X for all σ = 1, . . . , s.
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Lemma 2.10. Under the assumptions of 2.9 let x, y ∈ Ω be distinct points lying in
G-orbits of dimension ≥ 2. Then there is an automorphism g ∈ G such that

(a) g.x, g.y ∈ V , and
(b) g.x and g.y are lying in different Hσ-orbits

12 for all σ = 1, . . . , s.

Proof. (a) Since G acts transitively on every G-orbit O in Ω and V ∩O is dense in O,
we can find g ∈ G with g.x ∈ V . Replacing x by g.x we may assume that x ∈ V . For
some σ ∈ {1, . . . , s} we have Hσ.y ∩ V ̸= ∅. Taking h ∈ Hσ general we have h.x ∈ V
and h.y ∈ V , as required.

(b) By (a) we may assume that x, y ∈ V . The property that g.x and g.y are in
different Hσ-orbits is an open condition. Thus by recursion it suffices to find g ∈ G
such that (b) is satisfied for a fixed σ. If x and y are already in different Hσ-orbits
then there is nothing to show.

So suppose that this is not the case and so x, y are sitting on the same Hσ-orbit,
which is then necessarily one dimensional. By assumption the vector fields ∂1, . . . , ∂s
span the tangent space Tx(G.x) at x, and the G-orbit of x has dimension ≥ 2. Hence
∂τ is not tangent to Hσ.x at x for some τ . In particular the orbits Hσ.x and Hτ .x are
both of dimension one and have only finitely many points in common.

If x and y are in different Hτ -orbits then we can choose a global Hτ -invariant f with
f(x) = 1 and f(y) = 0. The group H = exp(kf∂τ ) is contained in G, fixes y and moves
x along Hτ .x. Hence for a general g ∈ Hτ the points g.x and g.y = y lie on different
Hσ-orbits.

Assume now that x and y belong to the same Hτ -orbit. We claim that again g.x
and g.y are in different Hσ-orbits for a general g ∈ Hτ .

To show this claim we consider ht = exp(t∂τ ) ∈ Hτ . By assumption ha.x = y for
some a ∈ k, a ̸= 0. We can find an Hσ-invariant function f on X, which induces a
polynomial p(t) = f(ht.x) of positive degree in t ∈ k. If ht.x and ht.y are in the same
Hσ-orbits for a general t ∈ k then

p(t) = f(ht.x) = f(ht.y) = f(ht.(ha.x)) = f(ha+t.x) = p(t+ a),

which is impossible. Hence for a general g = ht ∈ Hτ the points g.x and g.y are in
different Hσ-orbits, as desired. �
Lemma 2.11. With the notations as in 2.9 assume that x, y ∈ V are distinct points
lying in different (possibly zero dimensional) Hσ-orbits for all σ = 1, . . . , s. Then the
vector fields ∂ ∈ N vanishing at x span Ty(G.y).

Proof. The vectors ∂σ(y) with 1 ≤ σ ≤ s span the tangent space Ty(G.y). Thus it
suffices to find replicas ∂′1, . . . , ∂

′
s of ∂1, . . . , ∂s, which vanish at x and are equal to ∂σ

at the point y.
If the Hσ-orbit of x is a point, then necessarily ∂σ vanishes at x and we can choose

∂′σ = ∂σ. If the Hσ-orbit of y is a point then ∂σ(y) = 0 and so we can take ∂′σ = 0.
Assume now that both Hσ.x and Hσ.y are one dimensional. By our construction of
V there is an Hσ-invariant function fσ on X with fσ(x) = 0 and fσ(y) = 1. Hence
∂′σ = fσ∂σ is a locally nilpotent vector field on X vanishing in x and equal to ∂σ at
y. �

12Possibly of dimension 0.



FLEXIBLE VARIETIES AND AUTOMORPHISM GROUPS 17

Corollary 2.12. For each x ∈ Ω and every G-orbit O ⊆ Ω the group GN ,x as in 2.4
acts transitively on O\{x}.13

Proof. Let y be a point in O\{x}. With the notations as in 2.9, according to Lemma
2.10 there is an automorphism g ∈ G with g.x, g.y ∈ V such that g.x, g.y are in
different (possibly 0-dimensional) Hσ-orbits for i = 1, . . . , s. By Lemma 2.11 the
vector fields ∂ ∈ N vanishing at g.x span Tg.y(O). Using the fact that N is stable
under conjugation by elements g ∈ G it follows that the vector fields in N vanishing
at x span the tangent space Ty(O). In other words, y is a GN ,x-flexible point on the
orbit closure Ō. Applying 1.10 we obtain that GN ,x acts transitively on O\{x}. �
Proof of Theorem 2.5. By Remark 2.7(1) the orbit separation property is satisfied on
the open orbit Ω = O. Given a set Z = {x1, . . . , xm} ⊆ O of m distinct points we
consider Zµ = {x1, . . . , xµ} for µ = 1, . . . ,m. Let us show by induction on µ that GN ,Zµ

acts transitively on O\Zµ. For µ = 1 this follows from Corollary 2.12. Assuming
for some µ < m that GN ,Zµ acts transitively on O\Zµ, Corollary 2.12 implies that
(GN ,Zµ)xµ+1 = GN ,Zµ+1 acts transitively on O\Zµ+1. �
2.3. Examples of non-separation of orbits. Suppose as before that a subgroup
G ⊆ SAut(X) is generated by a saturated set N of locally nilpotent vector fields.
While N satisfies the orbit separation property 2.6 on a general G-orbit (see Remark
2.7(2)), this is not always true on an arbitrary G-orbit. Furthermore, the following
example shows that on the union of two G-orbits this property might fail although it
is satisfied on every single orbit.

Example 2.13. On the affine 4-space X = A4 = Spec k[X,Y, Z, U ] let us consider the
locally nilpotent vector fields

∂1 = Y
∂

∂X
+ Z

∂

∂Y
and ∂2 =

∂

∂U
.

Let G ⊆ SAut(X) be the special subgroup generated by ∂1, ∂2 and all their replicas,
and let N ⊆ LND(G) denote the saturated set generated by ∂1 and ∂2. It is easily
seen that ker ∂1 = k[Z, Y 2 − 2XZ,U ] and ker ∂2 = k[X,Y, Z]. Hence the G-orbits
O± = {Y = ±1, Z = 0} of dimension two are not separated by H1-invariants, where
Hi = exp(k∂i), i = 1, 2. In particular, N does not satisfy the orbit separation property
on O+ ∪ O−. However, this property is satisfied on Ω = O+ and also on Ω = O−
separately as this is the case for ∂1 and ∂2 (cf. Lemma 2.8).

We note also that the isomorphism σ : O+ → O− with σ(x, 1, 0, u) = (−x,−1, 0, u)
commutes with the actions of H1 and H2. Hence there is no collective transitivity on
O+ ∪ O− in the sense of Theorem 3.1 below while G acts on every single orbit O±
indeed infinitely transitively.

According to our next example one cannot expect infinite transitivity of G on an
arbitrary G-orbit O of dimension ≥ 2 without assuming the orbit separation property
on O. However, compare Theorem 3.1 below for a positive result.

13In particular, it is transitive on O if x ̸∈ O.
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Example 2.14. Consider the locally nilpotent derivations

∂1 = Y
∂

∂X
+ Z

∂

∂Y
+ U

∂

∂Z
and ∂2 = Z

∂

∂X
+X

∂

∂Y
+ U

∂

∂Z

of the polynomial ring k[X,Y, Z, U ]. We claim that ker ∂1 = k[p1, p2, p3, p4], where

p1 = U, p2 = Z2 − 2Y U, p3 = Z3 − 3Y ZU + 3XU2 , and

p4 =
p32 − p23
p21

= 9X2U2 − 18XY ZU + 6XZ3 − 3Y 2Z2 + 8Y 3U .

Indeed, the image of the map

ρ = (p1, . . . , p4) : A4 → A4

is contained in the hypersurface

F = {X2
1X4 −X3

2 +X2
3 = 0}

which is singular along the line Fsing = {X1 = X2 = X3 = 0}. Being regular in
codimension one, F is normal. We have

0̄ ∈ Fsing and ρ−1(0̄) = ρ−1(Fsing) = {Z = U = 0} =: L ⊆ A4 .

By the Weitzenböck Theorem (see e.g. [26]) there exists a quotient E = Spec(ker ∂1).
The inclusions

k[p1, p2, p3, p4] ⊆ ker ∂1 ⊆ k[X, Y, Z, T ]
lead to morphisms

A4 π−→ E
µ−→ F , where µ ◦ π = ρ .

We claim that µ is an isomorphism. Since both E and F are normal affine threefolds, by
the Hartogs Principle [6, Proposition 7.1] µ is an isomorphism if it is so in codimension
one. In turn, it suffices to check that µ admits an inverse morphism defined on Freg. The
latter follows once we know that ρ separates the H1-orbits in A4 outside the plane L.
Indeed, then π separates them as well, and µ induces a bijection between π(A4\L) ⊆ E
and Freg = ρ(A4\L).

The action of H1 on A4 is given by

(7) t.


x
y
z
u

 =


x+ ty + t2

2
z + t3

6
u

y + tz + t2

2
u

z + tu
u

 .

Let O be an H1-orbit contained in A4\L. Suppose first that p1|O = U |O = u ̸= 0.
Letting t = −z/u in (7) we get a point A = (x, y, 0, u) ∈ O. Since

p2(A) = −2yu and p3(A) = 3xu2

we can recover the coordinates

(8) y = −(p2|O)/2u and x = (p3|O)/3u2 .
Thus O is uniquely determined by the image ρ(O) ∈ F .
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Suppose further that p1|O = U |O = 0. Since O ∩ L = ∅ then Z|O = z ̸= 0. Taking
t = −y/z in (7) yields a point A = (x, 0, z, 0) ∈ O. Since

p2(A) = z2, p3(A) = z3, and p4(A) = 6xz3

we can recover the values14

(9) z = (p3|O)/(p2|O) and x = (p4|O)/6z3 .
Now both claims follow.

The generators p1, . . . , p4 of the algebra of H1-invariants vanish on the plane L =
{Z = U = 0} so that every H1-invariant is constant on L. Since ∂2 is obtained from ∂1
by interchanging X,Y , by symmetry also every H2-invariant is constant on L. Letting
G = ⟨Sat(H1, H2)⟩ be the subgroup generated by H1, H2, and all their replicas, it easily
follows that G stabilizes L and that the G-action on L factors through the SL2-action.
In particular, the action of G on its orbit L\{0} is not even 2-transitive, the linear
dependence being an obstruction.

Observe finally that the three dimensional G-orbits in A4 are separated by the G-
invariant function U .

2.4. GY -orbits. Let as before G ⊆ SAut(X) be generated by a saturated set N of
locally nilpotent vector fields on an affine variety X. For a subvariety Y ⊆ X we
consider the subgroup GN ,Y of G as defined in 2.4.

Theorem 2.15. If G acts on the affine variety X = SpecA of dimension ≥ 2 with an
open orbit O and Y = X\O is the complement, then GN ,Y acts transitively and hence
infinitely transitively on O.

Proof. Since GN ,Y is generated by a saturated set of locally nilpotent derivations, by
Theorem 2.2 it suffices to show that GN ,Y acts transitively on O.

Using Corollary 1.20 we can choose ∂1, . . . , ∂s ∈ N spanning the tangent space
TxX at each point x ∈ O. Letting I denote the ideal of Y in A, we claim that for
every σ = 1, . . . , s there is a nonzero function fσ ∈ I ∩ ker ∂σ. Indeed, Y being G-
invariant, for every nonzero function f ∈ I the span E of the orbit Hσ.f in A, where
Hσ = exp(k∂σ) ⊆ G, is an Hσ-invariant finite dimensional subspace contained in I. By
the Lie-Kolchin Theorem there is a nonzero element fσ ∈ E fixed by Hσ. This proves
the claim.

Let p ∈ X be a general point so that fσ(p) ̸= 0 for σ = 1, . . . , s. We can normalize
the invariants fσ so that fσ(p) = 1 and fσ|Y = 0. The derivation fσ∂σ then vanishes
on Y and so the replica Hσ,fσ = exp(kfσ∂σ) ⊆ GN ,Y of Hσ fixes Y pointwise while
moving p in the direction of ∂σ(p). It follows that the GN ,Y -orbit of p is open.

Let now q ∈ O be an arbitrary point. Choose g ∈ G with g.p = q. Since g stabilizes
Y the subgroup H ′

σ,fσ
= gHσ,fσg

−1 ⊆ GN ,Y fixes Y pointwise and moves q into the
direction of dg(∂σ)(q). It follows that also the GN ,Y -orbit of q is open. Finally GN ,Y

has O as an open orbit. �
14Formulas (8) and (9) define sections of ρ in the open sets U ̸= 0 and Z ̸= 0, respectively. This

shows that ρ : A4\L → Freg is a principal A1-bundle.
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3. Collective infinite transitivity

3.1. Collective transitivity on G-varieties. By collective infinite transitivity we
mean a possibility to transform simultaneously (that is, by the same automorphism)
arbitrary finite sets of points from different orbits into a standard position. Applying
the methods developed in Section 2 we can deduce the following generalization of
Theorem 2.5. In the sequel X stands for an affine algebraic variety.

Theorem 3.1. Let G ⊆ SAut(X) be a subgroup generated by a saturated set N of
locally nilpotent vector fields, which has the orbit separation property on a G-invariant
subset Ω ⊆ X. Suppose that x1, . . . , xm and x′1, . . . , x

′
m are points in Ω with xi ̸= xj

and x′i ̸= x′j for i ̸= j such that for each j the orbits G.xj and G.x′j are equal and
of dimension ≥ 2. Then there exists an element g ∈ G such that g.xj = x′j for
j = 1, . . . ,m.

As in Section 2 this will be deduced from the following more technical result.

Theorem 3.2. Let G ⊆ SAut(X) be a subgroup generated by a saturated set N of
locally nilpotent vector fields. Suppose that N has the orbit separation property on a
G-invariant subset Ω. If Z ⊆ Ω is a finite subset and O ⊆ Ω is an orbit of dimension
≥ 2, then the group GN ,Z acts transitively on O\Z.

Proof. With Zµ = {x1, . . . , xµ} let us show by induction on µ that GN ,Zµ acts tran-
sitively on O\Zµ for every G-orbit O ⊆ Ω of dimension ≥ 2. For µ = 1 this is just
Corollary 2.12. Assuming for some µ < m that GN ,Zµ acts transitively on O\Zµ, Corol-
lary 2.12 also implies that (GN ,Zµ)xµ+1 = GN ,Zµ+1 acts transitively on O\Zµ+1. Note
that by Lemma 2.8 at each step the set NZµ has again the orbit separation property
on Ω so that Corollary 2.12 is indeed applicable. �
Proof of Theorem 3.1. As in the proof Theorem 2.2 we proceed by induction on m,
the case m = 1 being trivial. For the induction step suppose that there is already an
automorphism α ∈ G with α.xi = x′i for i = 1, . . . ,m − 1. Applying Theorem 3.2 to
Z = {x′1, . . . , x′m−1} we can also find an automorphism β ∈ GN ,Z with β(α(xm)) = x′m.
Clearly then g = β ◦ α has the required property. �
3.2. Infinite transitivity on matrix varieties. In this subsection we apply our
methods in a concrete setting where X = Mat(n,m) is the set of all n ×m matrices
over k endowed with the natural stratification by rank. We always assume thatmn ≥ 2.
Let us precise the terminology. Let Xr ⊆ X denote the subset of matrices of rank r.
The product SLn× SLm acts naturally on X via the left-right multiplication preserving
the strata Xr. For every k ̸= l we let Ekl ∈ sln and Ekl ∈ slm denote the nilpotent
matrices with xkl = 1 and the other entries equal zero. Let further Hkl = In + kEkl ⊆
SLn and Hkl = Im + kEkl ⊆ SLm be the corresponding one-parameter unipotent
subgroups acting on the stratification X =

∪
rXr, and let δkl and δ

kl, respectively, be
the corresponding locally nilpotent vector fields on X tangent to the strata.

We call elementary the one-parameter unipotent subgroups Hkl, H
kl, and all their

replicas. In the following theorem we establish the collective infinite transitivity on
the above stratification of the subgroup G of SAut(X) generated by the two sides
elementary subgroups (cf. [35]).
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By a well known theorem of linear algebra, the subgroup SLn× SLm ⊆ G acts
transitively on each stratum Xr (and so these strata are G-orbits) except for the open
stratum Xn in the case where m = n. In the latter case the G-orbits contained in Xn

are the level sets of the determinant.

Theorem 3.3. Given two finite ordered collections B and B′ of distinct matrices in
Mat(n,m) of the same cardinality, with the same sequence of ranks15, and in the case
where m = n with the same sequence of determinants, we can simultaneously transform
B into B′ by means of an element g ∈ G, where G ⊆ SAut(Mat(n,m)) is the subgroup
generated by all elementary one-parameter unipotent subgroups.

Theorem 3.3 is an immediate consequence of Theorem 3.1 and Lemma 3.4 below. To
formulate this Lemma, we let N be the saturated set of locally nilpotent derivations on
X generated by all locally nilpotent vector fields δkl and δ

kl (k ̸= l) that is, the set of
all conjugates of these derivations along with their replicas. The important observation
is the following Lemma.

Lemma 3.4. N has the orbit separation property on Ω = X.

Proof. In view of Lemma 2.8 it suffices to show that the derivations δkl and δ
kl have

the orbit separation property. Clearly it suffices to prove this for δkl. The action of the
corresponding one-parameter subgroupHkl = exp(kδkl) on a matrix B = (b1, . . . , bm) ∈
X with column vectors b1, . . . , bm ∈ kn is explicitely given by

exp(tδkl).B = (b1, . . . , bl + tbk, . . . , bn),

where bl + tbk is the lth column of the matrix on the right. Thus the Hkl-orbit of B
has dimension one if and only if bk ̸= 0. The functions

B 7→ bij (j ̸= l) and B 7→
∣∣∣∣ bik bil
bjk bjl

∣∣∣∣ (i ̸= j)

on Mat(n,m) are Hkl-invariants that obviously separate all Hkl-orbits of dimension
one, as the reader may easily verify. �
3.3. The case of symmetric and skew-symmetric matrices. We can apply the
same reasoning to the varieties

X = Spec(k[Tij]1≤i,j≤n/(Tij − Tji)1≤i,j≤n)

of symmetric n× n matrices over k and to the variety

Y = Spec(k[Tij]1≤i,j≤n/(Tij + Tji)1≤i,j≤n)

of skew symmetric matrices. The group SLn acts on both varieties via

A.B = ABAT ,where A ∈ SLn and B ∈ X(∈ Y , resp.).

The subvariety Xr of symmetric matrices of rank r in X is stabilized by this action,
and also the determinant of a matrix is preserved. In the skew symmetric case again
the subvarieties Yr of matrices of rank r are stabilized, and also the Pfaffian Pf(B)16

of a matrix B ∈ Y is preserved.

15In particular, we can choose B′ consisting of diagonal matrices.
16We keep the usual convention that the Pfaffian of a matrix of odd order equals zero.
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By a well known theorem in linear algebra the orbits of the SLn-action on X are
the subsets Xr of matrices of rank r in X for r < n, whereas for r = n the orbits are
the level sets of the determinant. Similarly, the orbits of the SLn-action on Y are the
subsets Yr for r < n, whereas for r = n the orbits are the level sets of the Pfaffian.

As in subsection 3.2 the elementary matrix Eij (i ̸= j) generates a one-parameter
subgroupHij = In+kEij that acts onX and on Y . The corresponding locally nilpotent
vector field will be denoted by δij.

LetGsym ⊆ SAut(X) andGskew ⊆ SAut(Y ), respectively, be the subgroups generated
by all Hij along with their replicas. With these notations the following results hold.

Theorem 3.5. Let M1, . . . ,Mk be a sequence of pairwise distinct symmetric matrices
of order n ≥ 2 over k. Assume that M ′

1, . . . ,M
′
k is another such sequence with

rk(Mi) = rk(M ′
i) ≥ 2 and det(Mi) = det(M ′

i) ∀i = 1, . . . k .

Then there exists an automorphism g ∈ Gsym with g.Mi =M ′
i for i = 1, . . . k.

A similar result holds in the skew symmetric case.

Theorem 3.6. Let M1, . . . ,Mk be a sequence of pairwise distinct skew-symmetric ma-
trices of order n ≥ 2 over k. Assume that M ′

1, . . . ,M
′
k is another such sequence with

rk(Mi) = rk(M ′
i) and Pf(Mi) = Pf(M ′

i) ∀i = 1, . . . k .

Then there exists an automorphism g ∈ Gskew with g.Mi =M ′
i for i = 1, . . . k.

We give a sketch of the proof in the symmetric case only and leave the skew-
symmetric one to the reader. As in the case of generic matrices (see Theorem 3.3)
Theorem 3.5 is an immediate consequence of Theorem 3.2 and Lemma 3.7 below. In
this lemma we letN be the saturated set of locally nilpotent derivations onX generated
by all locally nilpotent vector fields δkl.

Lemma 3.7. N has the orbit separation property on Ω = X.

Proof. In view of Lemma 2.8 it suffices to show that the derivations δkl have the orbit
separation property. We only treat the case k < l the other one being similar. The
action of the corresponding one-parameter subgroup Hkl = exp(kδkl) on a matrix
B ∈ X with entries bij = bji is explicitely given by exp(tδkl).B = (b′ij), where

b′ij = bij if i, j ̸= k , b′ki = b′ik = bik + tbil if i ̸= k , and b′kk = bkk + 2tbkl + t2bll .

Thus the Hkl-orbit of B has dimension 0 if and only if bil = 0 ∀i. The functions

B 7→ bij (i, j ̸= k) , B 7→
∣∣∣∣ bik bil
bjk bjl

∣∣∣∣ (i, j ̸= k) , and B 7→
∣∣∣∣ bkk bkl
blk bll

∣∣∣∣
are Hkl-invariants that are easily seen to separate all Hkl-orbits of dimension one. �

4. Tangential flexibility, interpolation by automorphisms, and
A1-richness

4.1. Flexibility of the tangent bundle. We start with the following fact (see the
Claim in the proof of Corollary 2.8 in [21]).
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Lemma 4.1. Let ∂ be a locally nilpotent vector field on the affine k-scheme X = SpecA
and let p ∈ X be a point. Assume that f ∈ ker ∂ is an invariant of ∂ with f(p) = 0. If
Φ = exp(f∂) is the automorphism associated with the locally nilpotent vector field f∂,
then

(10) dpΦ(w) = w + df(w)∂(p) for all w ∈ TpX .

Proof. The tangent space TpX is the space of all derivations w : A→ k centered at p.
For such a tangent vector its image dΦ(w) ∈ TpX is the derivation

A ∋ g 7→ w(Φ(g)) = w

(∑
i≥0

f i∂i(g)

i!

)
=
∑
i≥0

1

i!
w(f i∂i(g))

= w(g) + w(f)∂(g)(p) ,

as f(p) = 0. Since by definition w(f) = df(w), the result follows. �
Now we can show the following result.

Theorem 4.2. Let X be an affine algebraic variety and let G ⊆ Aut(X) be a subgroup
generated by a saturated set N of locally nilpotent vector fields. Assume that N satisfies
the orbit separation property on a G-orbit O. Then for each point p ∈ O, associating
to an automorphism g ∈ GN ,p its tangent map dg(p) yields a representation

τ : GN ,p −→ GL(TpO) with τ(GN ,p) = SL(TpO) .

Proof. The assertion is trivially true if dimO = 1. Let us assume for the rest of the
proof that dimO ≥ 2. For any one-parameter unipotent subgroup H in GN ,p the
image τ(H) is a subgroup of SL(TpO). Hence also τ(GN ,p) ⊆ SL(TpO). Let us show
the converse inclusion.

According to Proposition 1.7 there are locally nilpotent vector fields ∂1, . . . , ∂s ∈ N
spanning TxO at every point x ∈ O. Let Hj = exp(k∂j) be the one-parameter subgroup
associated with ∂j. Using Remark 2.7(1) one can see that there are Hj-invariant open
subsets U(Hj) ⊆ O such that the geometric quotient U(Hj)/Hj exists. Applying
the orbit separation property, a suitable set of Hj-invariants from OX(X) yields a
generically injective map ϱj : U(Hj)/Hj → AN (see Remark 2.7). For a generic point
x ∈

∩s
j=1 U(Hj) its image in U(Hj)/Hj is a smooth point in which ϱj has maximal

rank.
We may assume that ∂1(x), . . . , ∂m(x), where m = dimO ≤ s, form a basis of TxO.

Hence for j, µ ∈ {1, . . . ,m} with µ ̸= j there exist ∂j-invariant functions fµj on X
such that fµj(x) = 0 and dxfµj(∂i(x)) = δµi. Consider the automorphism Φt

µj =
exp(t · fµj∂j) ∈ GN ,x for t ∈ k. According to Lemma 4.1 its tangent map at x is

dxΦ
t
µj(∂i(x)) = ∂i(x) + t · dxfµj(∂i(x)) · ∂j(x) = ∂i(x) + tδµi∂j(x) .

Thus representing the elements in GL(TxO) by matrices with respect to the basis
∂1(x), . . . , ∂m(x), the elements dxΦ

t
µj ∈ GL(TxO), t ∈ k, form just the one-parameter

unipotent subgroup generated by the elementary matrix Ejµ. Since such one-parameter
subgroups generate SL(TxO), the image of GN ,x in GL(TxO) contains SL(TxO) for a
general point x ∈ X. Now the transitivity of G on O implies that the same is true for
every point p ∈ O. �
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The following corollary is immediate.

Corollary 4.3. Under the assumptions of Theorem 4.2 for each point p ∈ O we have

N (p) := {∂(p) ∈ TpX : ∂ ∈ N} = TpO .

In particular, the nilpotent cone LNDp(G) coincides with the tangent space TpO for
each p ∈ O.

Proof. Indeed, the group GN ,p stabilizes N (p) and for m = dimO ≥ 2 the group
SL(TpO) acts transitively on TpO\{0}. �
Remark 4.4. The last assertion in Corollary 4.3 does not hold any more for a general
special subgroup G ⊆ SAut(X) which is not generated by a saturated set of locally
nilpotent vector fields. For instance, if a semisimple algebraic group G acts on itself via
left multiplications (i.e., X = G), then the cone LNDe(G) is just the usual nilpotent
cone in the Lie algebra Lie(G) = TeX, which is a proper subcone.

To be more concrete, in the case G = SL2 the nilcone LNDe(G) is just the quadratic
cone in sl2 ∼= A3 consisting of matrices with determinant 0.

We also have the following result on tangential flexibility.

Corollary 4.5. Let X be a flexible affine variety and G = SAut(X). If π : E → X is
an irreducible and reduced G-homogeneous linear space17, which is over Xreg a vector
bundle, then the total space E is also flexible. In particular, the tangent bundle TX
and all its tensor bundles E = (TX)⊗a ⊗ (T ∗X)⊗b are flexible.

Proof. It suffices to check that the special automorphism group G′ = SAut(E) acts
transitively on Ereg = π−1(Xreg). Since E is G-homogeneous there is a natural inclusion
G ⊆ G′. AsX is flexible, G ⊆ G′ acts transitively on the zero section of Ereg. Moreover,
X being affine for any point e ∈ Ereg there is a section V : X → E with V (π(e)) = e.
This section generates a Ga-action w 7→ w + tV (π(w)). With this action we can move
e to the zero section of E, and the result follows. �
Corollary 4.6. Let X be a flexible affine variety of dimension ≥ 2. Consider the special
automorphism group G = SAut(TX) of the tangent bundle TX, and let Z ⊆ TX be
the zero section. Then the group GZ acts infinitely transitively on TXreg\Z.

Proof. The special automorphism group SAut(X) induces a special subgroup G̃ ⊆ G
acting on TXreg. Since X is flexible this action is transitive on the zero section, hence
also on the set of fibers of TX → X over Xreg. On the other hand, by Theorem 4.2

the stationary subgroup G̃p of a given point p ∈ Xreg acts on TpX as SL(TpX). Since

dimTpX > 1, it acts transitively off the origin. Finally the action of G̃ on TXreg is
transitive off the zero section. Hence by Theorem 2.2 the group GZ , being special and
generated by a saturated set of locally nilpotent derivations, acts infinitely transitively
on TXreg\Z. �
4.7. For later use let us mention the following slightly more general version of Theorem
4.2. For a finite subset Z ⊆ X and p ∈ O we let NM

p,Z ⊆ N denote the set of all locally
nilpotent vector fields ∂ ∈ N such that ∂ has a zero at p and a zero of order ≥M+1 at

17in the sense of [17] Chap. II, 1.7.
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all points of Z\{p}. Let further GM
p,Z be the subgroup of G generated by all exponentials

of elements in NM
p,Z . Replacing in Theorem 4.2 GN ,p by G

M
p,Z the following result holds.

Proposition 4.8. If dimO ≥ 2 then the image of the group GM
p,Z in GL(TpO) coincides

with SL(TpO).

Proof. With the notation as in the proof of loc.cit., by infinite transitivity (see Theorem
3.2) it suffices to show the assertion for the case that x = p is general and Z consists
of general points. Under this assumption we can find ∂j-invariant functions hj with
hj(x) = 1 which vanish in all points of Z\{p}. Replacing in the proof of 4.2 fµj by
hM+1
j fµj, the automorphisms Φt

µj are the identity up to orderM at the points of Z and
remain unchanged at x. Now the same arguments as before give the conclusion. �

Let further GM
Z have the same meaning as GM

p,Z above, but without any constraint

imposed at p. That is, GM
Z is the subgroup of G generated by the saturated set NM

Z

of locally nilpotent vector fields vanishing to order M +1 ≥ 1 in all points of Z. Then
the same argument as before shows the following proposition.

Proposition 4.9. Every point p ∈ O\Z is GM
Z -flexible, hence GM

Z .p = O\Z.

4.2. Prescribed jets of automorphisms. Let us start with the following standard
fact (see Proposition 6.4. in [20], cf. also Theorem 4.2). Recall that a volume form ω
on a smooth algebraic variety X is a nowhere vanishing top-dimensional regular form
on X; it does exist if and only if KX = 0 in Pic(X).

Lemma 4.10. If X is an affine algebraic variety and ω ∈ Ωn
X a volume form on Xreg,

then ω is preserved under every automorphism g ∈ SAut(X).

Proof. It suffices to show that for every locally nilpotent vector field ∂ the form ω is
invariant under an automorphism of H = exp(k∂). If ht = exp(t∂) then for every
x ∈ Xreg the pullback h

∗
t (ω)(x) is a multiple of ω(x), i.e. h∗t (ω)(x) = f(x, t)ω(x), where

f(x, t) ̸= 0 for all x, t. For a fixed x the function f(x, t) is thus a polynomial in one
variable without zero. Hence f is independent of t equal to f(x, 1) = 1. �

4.11. We adopt the following notations and assumptions. If φ : X → X is a morphism
then its m-jet jmp φ at p ∈ X can be regarded as a map of k-algebras

jmp φ : OX,φ(p)/m
m+1
φ(p) −→ OX,p/m

m+1
p ,

where OX,x denotes the local ring at a point x ∈ X and mx its maximal ideal.
We assume in the sequel that p ∈ Xreg is a regular point and φ(p) = p. Letting

Am = OX,p/m
m+1
p the m-jet of φ yields a map of k-algebras

jmφ = jmp φ : Am −→ Am ,

which stabilizes the maximal ideal m of Am and all of its powers mk.
For m ≥ 1 we let Autm−1(Am) denote the set of k-algebra isomorphisms f : Am →

Am with f ≡ id mod mm. For every f ∈ Autm−1(Am) the map f − id sends Am into
mm and vanishes on the constants k. As it vanishes as well on m2 it induces a k-linear
map

ψf : m/m
2 −→ mm = mm

p /m
m+1
p .
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Consider the k-vector space V = m/m2 so that mm is the mth symmetric power SmV .
For every m ≥ 1 our construction yields a map

(11) ψ : Autm−1(Am) −→ Homk(m/m
2,mm) ∼= V ∨ ⊗ SmV ,

where V ∨ stands for the dual module of V . For m = 1 this map associates to f = j1φ
just the cotangent map dφ(0)∨.

In terms of local coordinates this construction can be interpreted as follows. The
k-algebra Am is isomorphic to the quotient A/mm+1

A of the formal power series ring
A = k[[x1, . . . , xn]]. Any map f ∈ Autm−1(Am) is represented by an m-jet of an n-
tuple of power series F = (F1, . . . , Fn) ∈ An with Fi ≡ xi mod mm

A . Clearly for any
m ≥ 1 the m-form ψf corresponds to the mth order term of F .

With this notation we have the following lemma.

Lemma 4.12. (a) For every m ≥ 1 the map ψ in (11) is bijective.
(b) If m = 1 then ψf◦g = ψf ◦ ψg while for m ≥ 2 we have ψf◦g = ψf + ψg.
(c) If ∂ is a locally nilpotent vector field on X with a zero of order m ≥ 2 at p then

ψexp(t∂) = tψexp(∂).

Proof. (a) is immediate using the coordinate description above.
(b) is easy and can be left to the reader. To deduce (c) we note that exp(t∂) ∈

SAut(X) induces the map id + t∂̂ ∈ Autm−1(Am), where ∂̂ denotes the derivation on

Am induced by ∂. Hence ψexp(t∂) = t∂̂, proving (c). �
An n-tuple F = (F1, . . . , Fn) ∈ An as in 4.11 representing an m-jet f = jmF ∈

Autm−1(Am) preserves a volume form ω onXreg (or on (X, p)) if and only if the Jacobian
determinant JF of F is equal to 1. Modulo mm this determinant depends only on f
and not on the representative F of f . Hence we can set Jf := JF mod mm.18 We say
in the sequel that an m-jet f ∈ Autm−1(Am) with m ≥ 1 preserves a volume form if
Jf ≡ 1 mod mm. The latter condition can be detected in terms of ψf as follows.

Lemma 4.13. (a) If m = 1 then f ∈ Aut(A1) preserves a volume form if and only if
ψf ∈ SL(V ).
In case m ≥ 2 the map f ∈ Autm−1(Am) preserves a volume form if and only if

ψf is in the kernel of the natural contraction map

κm : Homk(V, S
mV ) ∼= V ∨ ⊗ SmV −→ Sm−1V ,

λ⊗ v1 · . . . · vm 7−→
m∑
µ=1

λ(vµ) · v1 · . . . · v̂µ · . . . · vm.

(b) kerκm is an irreducible SLn(V )-module for all m ≥ 1.

Proof. In case m = 1 (a) is immediate. Suppose that m ≥ 2. If f = id+fm mod mm+1

with an n-tuple of m-forms fm = (fm1, . . . , fmn), then Jf is easily seen to be equal to

1 + div fm = 1 +
∂fm1

∂x1
+ . . .+

∂fmn
∂xn

mod mm ,

18However Jf is not an element in Am since it is not well defined modulo mm+1.
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where div fm is the divergence of fm. Thus Jf ≡ 1 mod mm if and only if div fm =
0. Writing fm ∈ V ∨ ⊗ SmV as fm =

∑n
i=1

∂
∂xi

⊗ fmi the element div fm in Sm−1V

corresponds just to the contraction κm(fm), proving (a).
(b) is a standard fact in representation theory, see e.g. [34, §IX.10.2]. �
Now we can state our main result in this subsection.

Theorem 4.14. Let X be an affine algebraic variety of dimension n ≥ 2 equipped
with an algebraic volume form ω defined on Xreg, and let G ⊆ SAut(X) be a subgroup
generated by a saturated set N of locally nilpotent derivations. If G acts on X with
an open orbit O, then for every m ≥ 0 and every finite subset Z ⊆ O there exists an
automorphism g ∈ G with prescribed m-jets jmp at the points p ∈ Z, provided these jets
preserve ω and inject Z into O.

The proof will be reduced to the following lemma.

Lemma 4.15. With the notation and assumptions of Theorem 4.2, suppose that jmp is
an m-jet of an automorphism at a given point p ∈ Z, which is the identity up to order
m− 1 ≥ 0. Then for every M > 0 there is an automorphism g ∈ G such that its m-jet
at p is jmp while its M-jet at each other point q ̸= p of Z is the identity.

Before proving Lemma 4.15 let us show how Theorem 4.5 follows.

Proof of Theorem 4.14. We proceed by induction on m. If m = 0 the assertion follows
from the fact that G acts infinitely transitively on O. For the induction step suppose
that we have an automorphism g ∈ G with the prescribed jets up to order m− 1 ≥ 0.
Thus the m-jets j′mp = jmp ◦g−1 are up to order m−1 the identity at every point p ∈ Z.
If we find an automorphism h ∈ G with m-jet equal to j′mp for all p ∈ Z, then obviously
the automorphism h ◦ g has the desired properties.

Thus replacing jmp by j′mp we are reduced to show the assertion in the case that for
all p ∈ Z the m-jets jmp are the identity up to order m− 1, where m ≥ 1.

Applying Lemma 4.15, for every point p ∈ Z there is an automorphism gp ∈ G
whose m-jet at p is the given one while its m-jets at all other points q ∈ Z\{p} are the
identity. Obviously then the composition (in arbitrary order) g =

∏
p∈Z gp will have

the required properties. �
Proof of Lemma 4.15. In the case m = 1 the assertion follows from Theorem 4.2 and
Proposition 4.8. So we may assume for the rest of the proof that m ≥ 2.

Consider the set NM
mp,Z of all locally nilpotent derivations in N with a zero of order

m at p and of order M + 1 at all other points q ∈ Z\{p}. Let GM
mp,Z be the subgroup

of G generated by the exponentials of elements in NM
mp,Z so that an automorphism in

GM
mp,Z is the identity up to order (m − 1) at p and up to order M at all other points

q ∈ Z\{p}. With the notation as introduced in 4.11 let us consider the composed map

Ψ : GM
mp,Z −→ Autm−1(Am)

ψ−→ Homk(V, S
mV ) ,

where ψ is as in (11) and the first arrow assigns to an automorphism its m-jet at
p. Using Lemma 4.13(a) it suffices to show that Ψ maps GM

mp,Z surjectively onto the
subspace kerκm.
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The group GM
mp,Z is generated by exponentials of vector fields in NM

mp,Z . Thus using
Lemma 4.12(b), (c) the image im(Ψ) of Ψ is a linear subspace of Homk(V, S

mV ). We
claim that this subspace is nonzero.

Indeed, consider a vector field ∂ ∈ N with ∂(p) ̸= 0 and the one-parameter subgroup
H = exp(k∂). By the Rosenlicht theorem (see Remark 2.7(1)) on an open dense H-
invariant subset U(H) ⊆ O the group H admits a geometric quotient U(H)/H defined
by a finite collection of H-invariant regular functions on X. By infinite transitivity of
the action of G on O we may assume that Z ⊆ U(H) is such that the image of Z in the
quotient U(H)/H is contained in the regular part of U(H)/H, has the same cardinality
as Z, and the projection U(H) → U(H)/H is smooth in the points of Z. Thus we can
find a regular H-invariant function f on X with a simple zero at p, and another such
function h with h(p) = 1 and h(q) = 0 for all q ∈ Z\{p}. Replacing f by hM+1f we
may assume that f has a zero of order ≥ M + 1 at all points of Z\{p} and a simple

zero at p. Then g = exp(fm∂) is an automorphism in GM
mp,Z with Ψ(g) = fm∂̂ ̸= 0,

where ∂̂ is the derivation of Am induced by ∂ (cf. Lemma 4.12(c) and its proof). This
proves the claim.

The group GM
p,Z acts on GM

mp,Z by conjugation g.h = g ◦ h ◦ g−1, where g ∈ GM
p,Z and

h ∈ GM
mp,Z . If we write h = id + hm mod mm+1 with a map hm ∈ Homk(V, S

mV ) then

g.h = id + g ◦ hm ◦ g−1 mod mm+1. The map g induces the cotangent map (dpg)
∨

on V = (TpX)∨ and its mth symmetric power Sm((dpg)
∨) on SmV . Hence there is a

commutative diagram

GM
p,Z ×GM

mp,Z
- GM

mp,Z

SL(V )× Homk(V, S
mV )

d∨p−×Ψ

?
- Homk(V, S

mV ) ,

Ψ

?

where the lower horizontal map is induced by the standard representation of SL(V ) on
SmV . Since the mapGM

p,Z → SL(V ) is surjective (see Theorem 4.2 and Remark 4.7), the
image im(Ψ) of Ψ is a non-trivial SL(V )-module. By Lemma 4.12 this representation is
contained in the kernel of the contraction map κm. Since the latter kernel is irreducible
(see Lemma 4.13(b)), it follows that im(Ψ) = kerκm, as required. �

Remark 4.16. If in the situation of Theorem 4.14 each of the jets jmp , p ∈ Z, fixes the

point p and preserves a volume form,19 then the conclusion of Theorem 4.14 remains
valid without the requirement that there is a global volume form on Xreg.

Remark 4.17. If Xreg does not admit a global volume form i.e., KXreg ̸= 0, one can
still formulate a necessary condition for interpolation of jets by an automorphism from
a special group G, namely in terms of the ‘volume form monodromy’ of G. To define
it we fix a volume form ωx on the tangent space TxX at some point x ∈ Xreg, and
consider the stabilizer subgroup Gx ⊆ G. Every element g ∈ Gx transforms ωx into
χx(g) · ωx, where χx(g) ∈ Gm = Gm(k). The map

χx : Gx −→ Gm

19Note that this a purely local condition, see the discussion before Lemma 4.13.
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is then a character on Gx which equals 1 on GN ,x, see Theorem 4.2. If y ∈ X is a
second point and h ∈ G is an automorphism with h.x = y then hGxh

−1 = Gy and
χy(hgh

−1) = χx(g) for all g ∈ Gx. In particular the image of χx forms a subgroup Γ of
Gm independent of x ∈ O, which is called the volume form monodromy of G.

The volume form monodromy can be a nontrivial discrete group as in the case of
X = SL2 /N(T) and G = SAut(X), where N(T) ⊆ SL2 is the normalizer of the
maximal torus T ⊆ SL2. Thus N(T) is an extension of Gm by Z/2Z and X = P2\C,
where C ⊆ P2 is a smooth conic; cf. [29, II]. Using technique from [20] one can show
that here Γ = {±1}.

4.3. A1-richness. We remind the reader that an affine variety X is called A1-rich if
for every finite subset Z and every algebraic subset Y of codimension ≥ 2 there is a
polynomial curve in X passing through Z and not meeting Y [23].

The following corollary is immediate from the Transversality Theorem 1.15. In the
special case where X = An

C this corollary yields the Gromov-Winkelmann theorem, see
[40].

Corollary 4.18. Let as before X be an affine variety and let G ⊆ SAut(X) be a
subgroup generated by a saturated set N of locally nilpotent derivations, which acts
with an open orbit O ⊆ X. Then for any finite subset Z ⊆ O and any closed subset
Y ⊆ X of codimension ≥ 2 with Z ∩ Y = ∅ there is an orbit C ∼= A1 of a Ga-action
on X which does not meet Y and passes through each point of Z having prescribed jets
at these points.

Proof. In the case dimX = 1 this is trivially true. So assume that dimX ≥ 2. Let
C be an orbit of a Ga-action on O. Since G acts infinitely transitively on O we may
assume that Z ⊆ C. By Theorem 4.14 and Remark 4.16, applying an appropriate
automorphism g′ ∈ G we may suppose as well that C has prescribed m-jets at the
points of Z. Indeed, the m-jets of automorphisms stabilizing a given point p ∈ O and
having at this point the jacobian determinant equal to 1 modulo mm act transitively
on the set of all m-jets of smooth curves at p.

By Proposition 4.9, using the notation as in 4.7, the special group Gm
Z acts transi-

tively in O\Z. Applying now the Transversality Theorem 1.15(b) to Gm
Z , C ∩ (O\Z),

and Y ∩ (O\Z) we can find an element g ∈ Gm
Z with g.C ∩ Y = ∅. Thus the Ga-orbit

g.C contains Z, has the prescribed jets at the points of Z, and does not meet Y . �
We can deduce also the following fact.

Proposition 4.19. Let G ⊆ SAut(X) be a subgroup generated by a saturated set N
of locally nilpotent derivations, which acts with an open orbit O ⊆ X. Then for any
closed subset Y ⊆ O of codimension ≥ 2 the group GN ,Y acts with an open orbit.

Proof. According to Proposition 1.7 there are locally nilpotent vector fields ∂1, . . . , ∂s
generating TpX for all p ∈ O. Let Hσ ⊆ G be the one-parameter subgroup associated
to ∂σ. By Rosenlicht’s Theorem, for an open dense Hσ-invariant subsets U(Hσ) in O
there is a geometric quotient U(Hσ)/Hσ. Using the same reasoning as in the proof
of Theorem 2.15 there is an Hσ-invariant function fσ vanishing on Hσ.Y and equal to
1 at a given general point p ∈ U(Hσ)\Hσ.Y . Consequently exp(kfσ∂σ) stabilizes Y
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and moves p in direction ∂σ(p). In other words, p is a GN ,Y -flexible point. Applying
Corollary 1.10(a) the result follows. �

In contrast we have the following result.

Proposition 4.20. Let G be a special subgroup of SAut(X) acting on X with an open
orbit O ⊆ X. If the complement X\O contains a divisor D then [D] ̸= 0 in Cl(X)Q.

Proof. Assume to the contrary that [D] = 0 in Cl(X)Q. Then there is a function f
on X with D = V(f) set theoretically. For every one dimensional unipotent subgroup
H and x ∈ O the function f |H.x is a polynomial on H.x ∼= k. As H.x ⊆ O and so
D∩H = ∅, this polynomial has no zero and so is constant. Hence H.x is contained in
a level set of f . Since G is generated by such subgroups, the orbit O of G is contained
in a level set of f and so it cannot be open, a contradiction. �

Corollary 4.21. Let G be a special subgroup of SAut(X). If X is Q-factorial and a
closed subset Y ⊆ X contains a divisor, then the group GN ,Y has no open orbit.

Problems 4.22. 1. Assume as before that a group G = ⟨N⟩ ⊆ SAut(X), where
N ⊆ LND(G) is saturated, acts on a normal (or even smooth) affine variety X with
an open orbit O. Is it true that the complement Y = X\O has codimension ≥ 2 in X?
This is true if dimX = 2 by Gizatullin’s Theorem [15]. For non-normal varieties there
are counterexamples (see Example 5.10 below).

2. We do not know whether in the situation of Proposition 4.19 the group GN ,Y acts
transitively on O\Y .

Remark 4.23. Every algebraic variety X contains a divisor Y such that the logarith-
mic Kodaira dimension κ̄(X\Y ) is ≥ 0. In this case X\Y cannot carry a Ga-action and
so GY = {id} although X might be flexible. The simplest example of such a situation
is given by the hypersurface Y = {X1 · . . . ·Xn = 0} in X = An, see also [18].

5. Some applications

5.1. Unirationality, flexibility, and triviality of the Makar-Limanov invari-
ant. Recall [12] that the Makar-Limanov invariant ML(X) of an affine variety X
is the intersection of the kernels of all locally nilpotent derivations on X. In other
words ML(X) is the subalgebra of the algebra O(X) consisting of all regular SAut(X)-
invariants. Similarly [28] the field Makar-Limanov invariant FML(X) is defined as the
subfield of k(X) of all rational SAut(X)-invariants. If it is trivial i.e., if FML(X) = k
then so is ML(X), while the converse is not true in general, see Example 5.3(1) below.
The next proposition confirms, in particular, Conjecture 5.3 in [27].

Proposition 5.1. An affine variety X possesses a flexible point if and only if the
group SAut(X) acts on X with an open orbit, if and only if the field Makar-Limanov
invariant FML(X) is trivial. In the latter case X is unirational.

Proof. The first equivalence follows from Corollary 1.10(a) and the second one from
Corollary 1.13. As for the last assertion, see Remark 5.2 below. �

Remark 5.2. As follows from Proposition 1.2(b) for every G-orbit O of a special
group G ⊆ SAut(X) there is a surjective map As → O. Hence any two points in O are
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contained in the image of a morphism A1 → O. In particular O is A1-connected in the
sense of [21, §6.2].

Let us mention some known counterexamples related to the problem of rationality
of flexible varieties.

Examples 5.3. 1. Due to A. Liendo [27, §4.2] there are examples of non-unirational
affine threefolds X such that ML(X) = k. In these examples the variety X is bira-
tionally equivalent to C × A2, where C is a curve of genus g ≥ 1, and the general
G-orbits are of dimension two. In particular, the invariant FML(X) is non-trivial and
there is no flexible point in X.

2. In turn, flexibility implies neither rationality nor stable rationality. Indeed, there
exists a finite subgroup F ⊆ SL(n,C), where n ≥ 4, such that the smooth unirational
affine variety X = SL(n,C)/F is not stably rational, see [32, Example 1.22]. However,
by Proposition 5.4 belowX is flexible and the group SAut(X) acts infinitely transitively
on X.

5.2. Flexible quasihomogeneous varieties. An important class of flexible algebraic
varieties consists of homogeneous spaces of semisimple algebraic groups. More gener-
ally, the following hold.

Proposition 5.4. Let G be a connected affine algebraic group over k without non-
trivial characters20, and let H be a closed subgroup of G. Then the homogeneous space
G/H is flexible. In particular, if G/H is affine of dimension n ≥ 2 then the group
SAut(G/H) acts infinitely transitively on G/H.

Proof. The image of G is contained in SAut(G/H). Thus the group SAut(G/H) acts
on the quotient G/H transitively and G/H is flexible; see Proposition 1.1 in [1]. The
second assertion follows from the first one in view of Theorem 0.1 and Corollary 1.21.

�
The following problem arises.

Problem 5.5. Characterize flexible varieties among affine varieties admitting an ac-
tion of a semisimple algebraic group with an open orbit.

For instance, if such a quasihomogeneous variety is smooth then in fact it is flexible.
In the particular case G = SL2 this was actually established in [29, III], where we
borrowed the idea of the proof of the following theorem.

Theorem 5.6. Suppose that a semisimple algebraic group G acts on a smooth affine
variety X = SpecA with an open orbit. Then X is homogeneous with respect to a
connected affine algebraic group G̃ ⊇ G without non-trivial characters. In particular,
X is flexible.

Proof. Since by our assumption AG = k, due to Matsushima’s Criterion and Luna’s
Étale Slice Theorem (see Theorems 4.17 and 6.7 in [33]), there is a unique closed
G-orbit O ⊆ X, the stabilizer H = StabG(x) of any point x ∈ O is reductive, and

20E.g., a semisimple algebraic group.
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there is a linear representation W of H and a G-equivariant isomorphism with a (left)
G-homogeneous fiber bundle

X ∼= (G×W )/H ,

where H acts on G×W via

(12) h.(g, w) = (gh−1, h.w) .

Comparing normal bundles we have necessarily W = TxX/TxO. According to [3] there
exists a finite dimensional G-module V such that V = W ⊕W ′, where W ′ ⊆ V is a
complementary H-submodule. Letting

G̃ = Go V with (g1, v1).(g2, v2) = (g1g2, g
−1
2 v1 + v2) ,

H̃ = H oW ′, and H̃0 = {e} oW ′, we can identify G̃/H̃0 and G ×W as H-varieties,
where H acts on G ×W via (12). Since the subgroup H ⊆ G normalizes H̃0 in G̃ it
acts G̃-equivariantly on the right on G̃/H̃0. The latter fact can be used to deduce the
isomorphisms of abstract varieties

G̃/H̃ ∼= (G̃/H̃0)/H ∼= (G×W )/H ∼= X .

By Proposition 5.4 X is flexible being a homogeneous variety of a connected affine
algebraic group G̃ without non-trivial characters (indeed, G̃ = (G, 0) · (e, V ), where
both groups do not admit non-trivial characters). Now the proof is completed. �

In the next theorem we provide a complete solution of Problem 5.5 for G = SL2 :=
SL2(k) and X normal.

Theorem 5.7. Every normal affine variety E admitting an SL2-action with an open
orbit is flexible.

For a homogeneous affine variety E = SL2 /H the result follows from Proposition
5.4. The proof in the general case given below is based on a description of normal
SL2-varieties due to Popov [29, I] (see also [26, Chapter III, §4]) and a Cox ring SL2-
construction due to Batyrev and Haddad [2]. Recall [29, I] that every non-homogeneous
affine SL2-threefold with an open orbit is uniquely determined by a pair (h,m), where
m is the order of the generic isotropy group21 and h = p/q ∈ (0, 1]∩Q is the height22 of
the algebra of U -invariants, where U ⊆ SL2 is a maximal unipotent subgroup. Such an
SL2-threefold with an invariant (h,m) is denoted by Eh,m. Notice that Eh,m is smooth
for h = 1 and singular for h < 1.

Assuming in the sequel that p and q are coprime positive integers we let

(13) a = m/k and b = (q − p)/k, where k = gcd(q − p,m) .

Let µa = ⟨ξa⟩ denote the cyclic group generated by a primitive root of unity ξa ∈ Gm =
Gm(k) of degree a. The SL2-variety Eh,m is isomorphic to the categorical quotient of
the hypersurface Db ⊆ A5 with equation

(14) Y b = X1X4 −X2X3

21Which is a cyclic group.
22Or rather a slope.
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modulo the diagonal action of the group Gm × µa on A5 = Spec k[X1, X2, X3, X4, Y ]
via

diag(t−p, t−p, tq, tq, tk)× diag(ξ−1, ξ−1, ξ, ξ, 1) , t ∈ Gm, ξ ∈ µa .

Here the SL2-action on Db is induced by the trivial action on the coordinate Y , while
⟨X1, X2⟩ and ⟨X3, X4⟩ are simple SL2-modules. This SL2-action on Db commutes with
the (Gm×µa)-action and so descends to the quotient. This gives a simple and uniform
description of all non-homogeneous normal affine SL2-threefolds with an open orbit
Eh,m via the Cox realization as the quotient of the spectrum of the corresponding Cox
ring by the action of the Neron-Severi quasitorus, see [2].

Proof of Theorem 5.7. Let E be a non-homogeneous SL2-variety with an open orbit.
If dimE = 2 then E is a toric surface, in fact a Veronese cone, and the group SL2

is transitive off the vertex (see [29, II] or, alternatively, Theorem 0.2 in [1]). So the
assertion follows.

Let further E be a non-homogeneous normal affine SL2-threefold. According to
Popov’s classification E = Eh,m for some pair (h,m).

In the case where E = Eh,m is smooth that is, h = 1 the result follows from Theorem
5.6.

In the case where E = Eh,m is singular i.e., h = p/q < 1, there is a unique singular
point, say, Q ∈ E. The complement E\{Q} consists of two SL2-orbits O1 and O2,
where O1

∼= SL2 /µm while O2
∼= SL2 /Ua(p+q) has the isotropy subgroup

Ua(p+q) =

{(
ξ η
0 ξ−1

)
| η ∈ k, ξa(p+q) = 1

}
.

Consider the hypersurface Db ⊆ A5 as in (14). We can realize A5 as a matrix space:

A5 =

{
(X, Y ) |X =

(
X1 X3

X2 X4

)
, Xi, Y ∈ A1

}
.

Then according to [2] the 3-fold E = Eh,m admits a realization as the categorical
quotient of Db by the action of the group Gm × µa via

(t, ξ).(X, Y ) =

((
ξ−1t−pX1 ξtqX3

ξ−1t−pX2 ξtqX4

)
, tkY

)
.

This action commutes with the natural SL2-action on Db given by

A.(X, Y ) = (AX, Y ) .

Hence the SL2-action on Db descends to the quotient E = Eh,m. The hypersurface
Z = {Y = 0} in Db is the inverse image of the unique two dimensional SL2-orbit
closure in Eh,m. To show the transitivity (or the flexibility) of the group SAut(X)
in Ereg it suffices to find a locally nilpotent derivation ∂ of the algebra O(Hb) with
∂(Y ) ̸= 0 which preserves the (Z× Za)-bigrading on O(Hb) defined via

degX1 = degX2 = (−p,−1̄), degX3 = degX4 = (q, 1̄), and deg Y = (k, 0̄) .

Indeed, such a derivation induces a locally nilpotent derivation on O(E). Since ∂(Y ) ̸=
0 the restriction of the corresponding vector field to the image Z̄ of Z in E is nonzero
and so the points of Z̄ with ∂ ̸= 0 are flexible. By transitivity, every point of Z̄\{Q}
is.
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The variety Db can be regarded as a suspension23 over A3 = Spec k[X2, X3, Y ].
Namely,

Db = {X1X4 = f(X2, X3, Y )} where f = X2X3 + Y b .

According to [1] (see also Lemma 3.3 in [22, §5]) a desired bihomogeneous locally
nilpotent derivation ∂ can be produced starting with a locally nilpotent derivation
δ ∈ Derk[X2, X3, Y ]. For instance, let δ be given by

δ(X2) = δ(X3) = 0, δ(Y ) = Xc
2X

d
3 .

Then ∂ can be defined via
(15)

∂(X1) = ∂(X2) = ∂(X3) = 0, ∂(X4) = δ(f) = bXc
2X

d
3Y

b−1, ∂(Y ) = X1X
c
2X

d
3

with a, b as in (13) and with appropriate values of the natural parameters c, d. Such a
derivation ∂ preserves the (Z× Za)-bigrading24 if and only if

−p− cp+ dq = k

k(b− 1)− cp+ dq = q

−1− c+ d ≡ 0 mod a

−c+ d ≡ 1 mod a .

By virtue of (13) the second relation follows from the first one, while the last two are
equivalent. Letting c = s− 1 we can rewrite the remaining relations as

(16)
dq − sp = k

s ≡ d mod a .

Since gcd(p, q) = 1 the first equation admits a solution (d0, s0) in natural numbers.
For every r ∈ N, the pair (d0 + rp, s0 + rq) also represents such a solution. The second
relation in (16) becomes

(17) r(q − p) ≡ d0 − s0 mod a .

By (13) k = gcd(m, q − p), hence gcd(k, p) = 1. The first equation in (16) written as

d0(q − p)− p(s0 − d0) = k

implies that k |(s0 − d0).
Let l = gcd(a, q − p) = gcd(a, bk). Since gcd(a, b) = 1 then l |k and so (17) is

equivalent to the congruence

r · q − p

l
≡ d0 − s0

l
mod

a

l
.

Since q−p
l

and a
l
are coprime the latter congruence admits a solution, say, r0. Letting

finally
c = s0 + r0q − 1, d = d0 + r0p

the locally nilpotent derivation ∂ as in (15) becomes homogeneous of bidegree (0, 0̄),
as needed. Now the proof is completed. �

23See the definition of a suspension in the Introduction.
24I.e. deg ∂(Y ) = deg Y and deg ∂(X4) = degX4.
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The question arises whether the smooth loci of singular affine SL2-threefolds are
homogeneous as well, cf. Theorem 5.6. The answer is negative; the following proposition
gives a more precise information.

Proposition 5.8. Let E = Eh,m, where h = p/q < 1 with gcd(p, q) = 1. The following
conditions are equivalent:

(i) The SL2-action on E extends to an action of a bigger affine algebraic group G
on E which is transitive in Ereg;

(ii) The variety E is toric;
(iii) (q − p) |m or, equivalently, b = 1 in (13).

Proof. Implication (i)⇒(ii) follows from Theorem 1 in [29, III]. According to this the-
orem, a normal affine threefold X with a unique singular point Q which admits an
action of an affine algebraic group transitive on X\{Q}, is toric.

The equivalence (ii)⇔(iii) follows from the results of [2] and [14]. Let us show the
remaining implication (iii)⇒(i). If b = 1 in (13) then Db

∼= A4 = Spec k[X1, . . . , X4].
Hence the toric variety Eh,m can be obtained as the quotient A4/(Gm×µa), where the
group Gm × µa with a = m/(q − p) as in (13) acts diagonally on A4 via
(18)

(X1, X2, X3, X4) 7−→ (ξ−1t−pX1, ξ
−1t−pX2, ξt

qX3, ξt
qX4), (t, ξ) ∈ Gm × µa .

Consider the action of the group SL2× SL2 on A4 via

(A1, A2).(X1, X2, X3, X4) =

(
A1

(
X1

X2

)
, A2

(
X3

X4

))
.

This action commutes with the (Gm× µa)-action (18) and so descends to the quotient
Eh,m. The induced (SL2× SL2)-action on the quotient Eh,m is transitive in the comple-
ment of the unique singular point Q. This yields (i). Now the proof is completed. �

Corollary 5.9. None of the non-toric affine threefolds E = Eh,m with h < 1 admits an
algebraic group action transitive in Ereg. However, the group SAut(E) acts infinitely
transitively in Ereg.

Let us finish this subsection with an example of a flexible non-normal affine variety
with singular locus of codimension one.

Example 5.10. Consider the standard irreducible representation of the group SL2 on
the space of binary forms of degree three

V =
⟨
X3, X2Y,XY 2, Y 3

⟩
.

Restriction to the subvariety

E = SL2 .X
2Y ∪ SL2 .X

3 ∪ {0} ⊆ V

of forms with zero discriminant yields a non-normal SL2-embedding, see [26]. Since for a
hypersurface in a smooth variety normality is equivalent to smoothness in codimension
one, the divisor D = SL2 .X

3 ∪ {0} ⊆ E coincides with the singular locus Esing. The
complement Ereg = SL2 .X

2Y is the open SL2-orbit consisting of all flexible points of
E. Hence E is flexible.
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Observe that the normalization of E is isomorphic to E 1
2
,1. Indeed m = 1 because

the stabilizer in SL2 of a general point in E is trivial. On the other hand, the order of
the stabilizer of the two dimensional orbit equals p+ q = 3, hence p = 1 and q = 2.

6. Appendix: Holomorphic flexibility

In this appendix we extend the notion of a flexible affine variety to the complex an-
alytic setting (cf. [10]). We survey relations between holomorphic flexibility, Gromov’s
spray and the Andersen-Lempert theory. In particular, we show that every flexible
variety admits a Gromov spray. This provides a new wide class of examples to which
the Oka-Grauert-Gromov Principle can be applied. We refer the reader to the survey
articles [11, §3] and [19] for a more thorough treatment and historical references.

6.1. Oka-Grauert-Gromov Principle for flexible varieties. The following no-
tions were introduced in [16, §1.1.B].

Definition 6.1. (i) Let X be a complex manifold. A dominating spray on X is a
holomorphic vector bundle ρ : E → X together with a holomorphic map s : E → X,
such that s restricts to the identity on the zero section Z while for each x ∈ Z ∼= X
the tangent map dxs sends the fiber Ex = ρ−1(x) (viewed as a linear subspace of TxE)
surjectively onto TxX.

(ii) Let h : X → B be a surjective submersion of complex manifolds. We say that
it admits a fiber dominating spray if there is a holomorphic vector bundle E on X
together with a holomorphic map s : E → X such that their restriction to each fiber
h−1(b), b ∈ B, yields a spray on this fiber.

In these terms, the Oka-Grauert-Gromov Principle can be stated as follows.

Theorem 6.2. ([16, §4.5]) Let h : X → B be a surjective submersion of Stein mani-
folds. If it admits a fiber dominating spray then the following hold.

(a) Any continuous section of h is homotopic to a holomorphic one; and
(b) any two holomorphic sections of h that are homotopic via continuous sections are

also homotopic via holomorphic ones.

Due to the following proposition, smooth affine algebraic G-fibrations with flexible
fibers are appropriate for applying this principle (cf. [11, 3.4], [16]).

Proposition 6.3. (a) Every flexible smooth affine algebraic variety X over C admits
a dominating spray.

(b) Let h : X → B be a surjective submersion of smooth affine algebraic varieties over
C such that for some algebraically generated subgroup G ⊆ Aut(X) the orbits of G
coincide with the fibers of h 25. Then X → B admits a fiber dominating spray.

Proof. It suffices to show (b). Indeed, due to Corollary 1.21, (a) is a particular case of
(b).

By Proposition 1.7 there is a sequence of algebraic subgroups H = (H1, . . . , Hs) of
G such that the tangent space to the orbit G.x at each point x ∈ X is spanned by the
tangent spaces at x to the orbits Hi.x, i = 1, . . . , s. Let exp : T1(Hi) → Hi be the

25We say in this case that X is G-flexible over B.
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exponential map. Letting E = X ×
∏s

i=1 T1(Hi) be the trivial vector bundle over X
we consider the morphism

s : E → X, (x, (h1, . . . , hs)) 7−→ ΦH,x(exph1, . . . , exphs) ,

where ΦH,x has the same meaning as in (1). This yields the desired dominating spray.
�

To extend Proposition 6.2 to the analytic setting we introduce below the notions of
holomorphic flexibility. Recall that a holomorphic vector field on a complex manifold
X is completely integrable if its phase flow defines a holomorphic action on X of the
additive group C+ = Ga(C).

Definitions 6.4. (i) We say that a Stein space X is holomorphically flexible if the
completely integrable holomorphic vector fields on X span the tangent space TxX at
every smooth point of X.

(ii) Given a holomorphic submersion h : X → B of Stein manifolds, we say that
X is holomorphically flexible over B if the completely integrable relative holomorphic
vector fields on X span the relative tangent bundle of X → B at any point of X. In
the latter case each fiber h−1(b), b ∈ B, is a holomorphically flexible Stein manifold.

Remarks 6.5. 1. The vector field δ = z d
dz

on X = C∗ = C\{0} is completely
integrable. However, the derivation δ ∈ Der(O(X)) is not locally nilpotent. Hence
X = C∗ is not flexible in the sense used in this paper, while it is holomorphically
flexible.

2. In the terminology of [38], a complex manifold X admits an elliptic microspray
if the Oan(X)-module generated by all completely integrable holomorphic vector fields
on X is dense in the Oan(X)-module of all holomorphic vector fields on X with respect
to the compact-open topology.

We claim that a Stein manifold X admits an elliptic microspray if and only if X
is holomorphically flexible. Indeed, admitting an elliptic microspray implies the holo-
morphic flexibility, because the holomorphic vector fields on a Stein manifold X span
the tangent space at every point. As for the converse, we observe that on a holomor-
phically flexible manifold X the sheaf of germs of holomorphic vector fields is spanned
by the sheaf of germs of holomorphic vector fields generated by completely integrable
such fields. By Cartan’s Theorem B, on a Stein manifold X the corresponding Oan(X)-
modules coincide.

In the analytic setting, the following analog of Corollary 1.20 holds.

Lemma 6.6. If a Stein manifold X is holomorphically flexible over a Stein manifold B
then the relative tangent bundle of X over B is spanned a finite number of completely
integrable relative holomorphic vector fields on X.

Proof. In the absolute case i.e., B consists of a point , the assertion is just that of
Lemma 4.1 in [19]. The proof of this lemma in [19] works without changes in the
relative case as well. �

With the same arguments as in the proof of Proposition 6.3 this implies that a Stein
manifold X, which is holomorphically flexible over another Stein manifold B, admits
a fiber dominating spray. Thus we obtain the following result.
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Corollary 6.7. Every Stein manifold X holomorphically flexible over another Stein
manifold B admits a fiber dominating spray. Consequently, the Oka-Grauert-Gromov
Principle is valid for X → B.

In particular, the Oka-Grauert principle holds for any holomorphically flexible Stein
manifold X.

Comparing with the algebraic setting, in the analytic case we know little about in-
variants of completely integrable holomorphic vector fields. This leads to the following
question.

Problem 6.8. Does the group Autan(X) of holomorphic automorphisms of a flexible
connected Stein manifold X act infinitely transitively on X?

This group is transitive on X. Indeed, by the implicit function theorem every orbit
of the group Autan(X) is open. On the other hand, such an orbit is the complement
of the union of all other orbits, thus it is closed. Hence there is only one orbit.

However, the infinite transitivity holds under a stronger assumption. We need the
following notion from the Andersen-Lempert theory.

Definitions 6.9. (see [19], [39]) (i) We say that a complex manifold X has the density
property if the Lie algebra generated by all completely integrable holomorphic vector
fields on X is dense in the Lie algebra of all holomorphic vector fields on X in the
compact-open topology.

(ii) Similarly, we say that an affine algebraic manifold X has the algebraic density
property if the Lie algebra generated by all completely integrable algebraic vector fields
on X coincides with the Lie algebra of all algebraic vector fields on X.

An analytic version of Theorem 0.1 can be stated as follows (cf. Theorem 5.5 in [11]).

Theorem 6.10. ([19, 2.13], [39]) Let a Stein manifold X of dimension ≥ 2 possess the
density property. Then the group Autan(X) of holomorphic automorphisms of X acts
infinitely transitively26 on X. Moreover, for any discrete subset Z ⊆ X and for any
Stein space Y of positive dimension which admits a proper embedding into X, there is
another proper embedding φ : Y ↪→ X which interpolates Z i.e., Z ⊆ φ(Y ).

We refer the reader to [5] for a result on interpolation of a given discrete set of
jets of automorphisms by an analytic automorphism of an affine space, similar to our
Theorem 4.5.

6.2. Volume density property. As usual a holomorphic volume form ω on a complex
manifold X is a nowhere vanishing top-dimensional holomorphic form on X. We need
the following notions.

Definitions 6.11. (i) Given a submersion X → B of Stein manifolds and a vol-
ume form ω on X we say that X is holomorphically volume flexible over B, if Defi-
nition 6.4(ii) holds with all relative holomorphic vector fields considered there being
ω-divergence-free. The latter means that the corresponding phase flow preserves ω.

26By ’infinite transitivity‘ we mean, as before, m-transitivity for all m ∈ N. Note however that

transitivity for arbitrary discrete subsets does not hold already in X = An
C, as shows the famous

example of Rosay and Rudin, see e.g., [11].
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In the absolute case i.e., B is a point, we simply call the space X holomorphically
volume flexible.

(ii) We say that X has the volume density property if Definition 6.9 holds with all
fields in consideration being ω-divergence-free. The algebraic volume density property
is defined likewise.

The holomorphic volume flexibility of a Stein manifold X is equivalent to the ex-
istence on X of an elliptic volume microspray as introduced in [38]. Lemma 6.6 and
Corollary 6.7 admit analogs in this new context. However, the proofs become now
more delicate. We address the interested reader to [19, 20].

The algebraic volume density property implies the usual volume density property
[20]. However, we do not know whether a holomorphically volume flexible Stein mani-
fold has automatically the volume density property (cf. [38]).

Concerning infinite transitivity, the following theorem is proven in [19, 2.1-2.2].

Theorem 6.12. Let X be a Stein manifold of dimension ≥ 2 equipped with a holo-
morphic volume form. If X satisfies the holomorphic volume density property, then the
conclusions of Theorem 6.10 hold, with volume preserving automorphisms.

Given an algebraic volume form ω on a smooth affine algebraic variety X, every
locally nilpotent vector field on X is automatically ω-divergence-free. Thus the usual
flexibility implies the algebraic volume flexibility. Let us formulate the following related
problem.

Problem 6.13. Let X be a flexible smooth affine algebraic variety over C equipped
with an algebraic volume form. Does the algebraic volume density property hold for X?

We conclude with yet another problem.

Problem 6.14. Does there exist a flexible exotic algebraic structure on an affine space
that is, a flexible smooth affine variety over C diffeomorphic but not isomorphic to an
affine space An

C?

Notice that for all exotic structures on An
C known so far the Makar-Limanov invariant

is non-trivial, whereas for a flexible such structure, by Proposition 5.1 even the field
Makar-Limanov invariant must be trivial.
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