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Abstract

We consider the repeated group sequential testing of a survival endpoint with a time-varying 

treatment effect using a weighted logrank statistic. The emphasis of this paper is on the monitoring 

of this statistic where information growth is non-linear. We propose using a constrained 

boundaries approach to maintain the planned operating characteristics of a group sequential 

design. A simulation study is presented to demonstrate the operating characteristics of the method 

together with a case study to illustrate the procedure. We show that when monitoring a weighted 

logrank statistic, the entry and survival distribution needs to be estimated at interim analyses.

Keywords

Constrained boundaries; Group sequential; Information; Monitoring; Nonparametric; 
Nonproportional hazards; Survival; Weighted logrank

Subject Classifications:

62L05; 62L10; 62N03

1. INTRODUCTION

During the conduct of clinical trials independent Data and Safety Monitoring Committees 

(DSMCs) may periodically monitor accumulating data to assess the safety, and sometimes, 

efficacy of the experimental treatment. Interim testing can be formalized using a group 

sequential framework to attain desired frequentist operating characteristics (Emerson et al. 

(2007)). To control the type I error rate under repeated tests of significance multiple authors 

have proposed discrete sequential stopping rules (Armitage et al. (1969); Pocock (1977); 

O’Brien and Fleming (1979)) and error spending approaches (Demets and Lan (1984); 

Pampallona (1995)). Most commonly used group sequential stopping rules consider 

continuation sets of the form Cj = (aj, bj] ⋃ [cj, dj) such that −∞ ≤ aj ≤ bj ≤ cj ≤ dj ≤ ∞for j = 

1, … , J analyses. Quite often, these boundaries are interpreted as the critical values for a 
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decision rule. For instance, in a clinical trial comparing two active treatments A and B, test 

statistics less than aj might correspond to decisions for the superiority of treatment A, test 

statistics exceeding dj might correspond to decisions for the inferiority of treatment A, and 

test statistics between bj and cj might correspond to decisions for approximate equivalence 

between the two treatments.

Particular families of group sequential designs correspond to parameterized boundary 

functions which relate the stopping boundaries at successive analyses according to the 

proportion of statistical information accrued. For instance, if we calculate a normalized score 

statistic Z j = U j/ Var U j  at analysis J the proportion of information at analysis J can be 

calculated as Π j ≡ Var U j /Var UJ  where Uj is the score statistic computed at the final 

analysis of the trial. That is, ∏j represents the fraction of total statistical information 

available from all patients at the time of interim analysis j. It then follows that for some 

specified parametric functions f*(·), the critical values for a decision rule at analysis j can be 

given by aj = fa(∏j), bj = fb(∏j), cj = fc(∏j), and dj = fd(∏j). The functions f*(·) are generally 

chosen to maintain the overall type I error rate of the trial as well as other design operating 

characteristics including power and expected sample size. For critical values on the 

normalized Z-statistic scale, popular examples of f*(·) include the two-sided Pocock (Pocock 

(1977)) stopping rule that takes fa(∏j) = −G, fb(∏j) = fc(∏j), and fd(∏j) = G and the two-

sided O’Brien-Fleming (O’Brien and Fleming (1979)) stopping rule that takes f a Π j = − G, 

f b Π j = f c Π j , f a Π j = − GΠ j
−1/2, f b Π j = f c Π j  and f d Π j = GΠ j

−1/2, where in both 

cases the value of G is chosen to maintain a pre-specified type I error rate. In the case where 

Uj is approximately normally distributed and where an independent increments covariance 

structure holds so that Cov[Uj+1, Uj] = V ar[Uj], j = 1, …, J −1, the value of G can be 

computed using the sequential density derived by Armitage, McPherson, and Rowe 

(Armitage et al. (1969)). As an alternative, the error spending approach of Lan and DeMets 

(1983) is defined on the cumulative type 1 error scale where the parametric error spending 

function f(∏j) is a monotonically increasing function such that f(0) = 0 and f(1) = α, the 

desired overall type I error rate for the trial.

During the design phase of a study it is common to choose the number of analyses and 

corresponding stopping boundaries, Cj, j = 1, … , J, to satisfy desired operating 

characteristics such as family-wise type I error, unconditional or conditional power at 

specified alternatives, average sample number (ASN), and maximal sample size (Emerson et 

al. (2007)). The computation of such statistics requires one to condition upon the total 

number of analyses to be performed and the proportion of information attained at each 

analysis. Ideally, the number and timing of analyses actually performed in the trial would not 

deviate from those assumed at the design stage. However, due to logistical constraints, 

potential protocol changes, and unforeseen changes in statistical information accrual, the 

actual timing of interim analyses is likely to vary as the trial proceeds. While stopping rules 

can be implemented to maintain type I error despite changes to the number and timing of 

analyses, these changes will likely effect all other operating characteristics of the originally 

chosen design including power and expected sample size. As such, it can be desirable to 

implement interim analyses at information fractions as close as possible to those originally 
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envisioned in order to approximately maintain the operating characteristics that had been 

expected when planning the study. This requires clinical trialists to accurately estimate the 

variance of the test statistic at each interim analysis relative to the variance of the test 

statistic observed at the final analysis of the trial. In some cases the information fraction is 

completely dictated by the number of observations attained at each analysis. This is true 

when testing population means with uncensored data. However in the case of censored 

survival data, predicting the information fraction at each interim analysis can be more 

complex, particularly when time-weighted statistics are used for testing survival differences 

(Gillen (2009)).

Censored outcomes are commonly investigated in clinical trials. In such settings the hazard 

function, λ(t), is often chosen as a metric for comparison. When the hazards for comparison 

groups are proportional over time, the logrank statistic is well-known to be locally efficient 

in a neighborhood about the null hypothesis (Fleming and Harrington (1991)). However, for 

those cases where trial designers a priori hypothesize a time-varying treatment effect on the 

hazard, the Gρ,γ class of weighted logrank statistics (Harrington and Fleming (1982)) might 

be considered. These weighted statistics seek to increase power by up-weighting differences 

in hazards at times where treatment effects are hypothesized to be greatest. Adding to the 

utility of these statistics, it follows directly from Tsiatis (1982) that members of the Gρ,γ 

class of statistic are asymptotically normally distributed and maintain an independent 

increments covariance structure for a univariate survival outcome. This implies that the 

recursive sequential density given by Armitage et al. (1969) may be used for monitoring 

these statistics in a group sequential fashion. A recent example where a member of the Gρ,γ 

family was used to test the efficacy of a new experimental intervention can be found in the 

Abbott XINLAY trial that was presented before the FDA’s Oncologic Drugs Advisory 

Committee (ODAC) in 2005. Briefly, this pivotal study considered the efficacy of atrasentan 

in men with metastatic hormone-refractory prostate cancer (Abbott (2005)). In this case, 

data from a phase II study suggested a delayed treatment effect on the hazard for time to 

disease progression defined as the first occurrence of a radiographic (new bone lesions) or 

clinical outcome (metastatic pain with the need for additional therapies). Based on these 

available data, the pivotal trial was conducted using a group sequential stopping rule with 

testing based upon an a priori specified G1,1 statistic for comparing the time to disease 

progression by treatment arm. The Abbot trial points to a need for considering the behavior 

of weighted logrank survival statistics under a group sequential testing framework.

Despite the resulting independent increments structure of the Gρ,γ class of statistics, Lan 

(1995) and Gillen and Emerson (2005) point out that for time-weighted statistics such as the 

Gρ,γ family, information growth is not only dependent upon the number of events observed 

in the trial but also the timing of the events as dictated by the underlying survival and 

censoring distribution in each treatment arm. This implies that in order to maintain operating 

characteristics originally specified at the design stage, trial monitors must reliably predict 

the accrual of future events. This is the focus of the current manuscript.

Information growth for the log-rank test in a maximal information and maximal duration 

trial is described in Lan and Lachin (1990). In Lan and Lachin (1990) they define the 

proportion of information at a given analysis as the ratio of the number of observed events to 
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the number of maximal events. In this paper we provide an algorithm to maintain pre-

specified operating characteristics when there is a non-linear relationship between events 

and information. Metha (2001) consider monitoring a group sequential trial on the 

information scale where information is taken to be the squared inverse of the standard error 

of the test statistic. In their paper, once maximal information is set for a particular power 

level it is maintained through the duration of the trial. However, the maximal information 

required for a pre-specified power is conditional on the planned timing of information at 

interim analyses. Hence if the fraction of information accrued at each analysis is not 

correctly assumed at the design stage or is estimated incorrectly at previous interim analyses, 

power will differ from the originally planned design. In this manuscript we consider the 

projection of information accrual, conditional upon observed estimates of overall survival 

and accrual patterns in order to guide the timing of future analyses. By correctly predicting 

information accrual, and planning future analyses accordingly, it is possible to maintain 

most of those operating characteristics planned for at the design stage of the trial.

As an applied example, we consider data from Trial 002 of the Community Programs for 

Clinical Research on AIDS (CPCRA) study, a comparative trial of Didanosine (DDI) or 

Zalcitabine (DDC) after treatment with Zidovudine in patients with human 

immunodeficiency virus (HIV) infection. The CPCRA study was a multicenter, randomized 

open-label trial designed to test whether DDC was non-inferior to DDI with respect to the 

primary endpoint of progression-free survival (PFS). Planned under a proportional hazards 

framework, the study protocol specified that DDC would be judged non-inferior to DDI if 

one could rule out that the DDC/DDI hazard ratio was less than 1.25 (Fleming et al. (1995)). 

Statistical evidence for non-inferiority was based upon the upper limit of a 95% confidence 

interval for the DDC/DDI hazard ratio for progression events (or death). The statistical 

analysis plan originally called for five equally spaced (in information time) interim analyses 

of the accruing data, where information accrual was determined by the number of observed 

events. A Lan-DeMets error spending implementation of the O’Brien-Fleming guideline was 

employed by the data and safety monitoring committee (DSMC) to formulate repeated 

confidence intervals, allowing the DSMC to consider recommendations for early termination 

of the trial. Figure 1 displays Kaplan-Meier estimates of PFS observed at the second (a) and 

final (b) analyses of the data. At the second interim analysis (taking place with a maximum 

of 9 months of follow-up and 116 total events, or 45% of the planned maximal information 

to be collected on PFS) study results favored DDI with an estimated hazard ratio of 1.24 

(95% CI: 0.85, 1.78). However, with extended follow-up to 22 months, a later emerging 

benefit of DDC was observed resulting in a final estimated hazard ratio of 0.96 (95% CI: 

0.76, 1.23). The delay in the beneficial effect of DDC that was observed in the CPCRA trial 

is not rare in clinical practice. Such delays could be attributed to a minimum time required 

for the treatment to show an effect in all patients or because there may exist a subset of the 

sickest patients for which the occurrence of an event is inevitable regardless of treatment 

assignment. In these cases, many trial designers may naturally turn to a form of the logrank 

statistic that upweights later hazard differences, potentially complicating the strategy for 

monitoring the statistic in a group sequential framework.

For the remainder of the manuscript we consider methods for monitoring the Gρ,γ class of 

weighted logrank statistics in order to maintain desired operating characteristics. 
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Specifically, we consider forecasting future event accrual rates by estimating the survival 

and censoring distribution in the trial and using a constrained boundaries approach 

Burington and Emerson (2003) to account for remaining deviations from the planned timing 

of analyses. In section 2, we illustrate the effect of incorrectly specified information growth 

patterns on design operating characteristics when members of the Gρ,γ class are sequentially 

monitored. In section 3, we introduce a constrained boundaries algorithm for implementing 

a group sequential stopping rule when focus is on a weighted survival statistic. Section 4 

presents a simulation study to illustrate the utility of the proposed approach and section 5 

applies the proposed methods to data from trial 002 of the CPCRA. Section 6 concludes 

with a summary of the results and discusses potential extensions of the methodology.

2. INFORMATION GROWTH IN THE Gρ,γ FAMILY

For many commonly used statistics, statistical information grows proportional to the number 

of observations accrued in the study. This makes the translation between relative statistical 

information growth and sample size a trivial task. In the case of the usual logrank statistic, 

this relationship is simply determined by the expected number of events. However, for time-

weighted survival statistics information growth is not only dependent upon the number of 

events but also the timing of the events and the risk set size at the event times. This argues 

for the special consideration of non-linear information growth of weighted log-rank statistics 

when trying to maintain pre-specified operating characteristics. In this section we describe 

the Gρ,γ family of weighted logrank statistics, briefly review information growth for this 

family, and illustrate the effect of incorrectly specified information growth patterns on 

design operating characteristics when members of the Gρ,γ family are sequentially 

monitored.

2.1. The Gρ,γ Family of Weighted Logrank Statistics

Let Tik, Eik, and Cik denote the survival, entry and censoring time of individual i, i = 1, …, 

mk, belonging to group k, k = 0, 1, where Tik, Eik, and Cik are assumed to be independent. 

At analysis time τ define Xik = min(Tik, τ – Eik, Cik) to be the observed time for individual i 
in group k, and let δik = I(Xik = Tik) denote the indicator that the actual survival time is 

observed on the ith individual in group k. Finally, let Nk(t) = ∑i
mk I Xik ≤ t, δik = 1  denote the 

number of events observed in group k occurring prior to time t and Yk(t) = ∑i
mk I Xik ≥ t

denote the number of patients at risk in group k at time t. The Gρ,γ statistic (Fleming and 

Harrington (1991)) is given by,

Gρ, γ =
M1 + M0

M1M0

1/2
∫0

∞
w(t)

Y1(t)Y0(t)
Y1(t) + Y0(t)

dN1(t)
Y1(t) −

dN0(t)
Y0(t) ,

where Mi denotes the number of patients initially at risk in group i, i = 0, 1, and 

w(t) = [S(t − )]ρ[1 − S(t − )]γ, with S(t − ) denoting the Kaplan-Meier estimate of the pooled 

survival distribution of groups 0 and 1 just prior to time t. Under the strong null hypothesis 
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H0 : S0(t) = S1(t) ∀ t > 0, the variance of the Gρ,γ statistic computed at follow-up time τ 
reduces to

σ2 ∝ ∫
0

τ
w2(t)FE(τ − t) 1 − FC(t) dS(t), (2.1)

and a consistent estimate of the variance of can be computed as

σ2 =
M1 + M0

M1M0
∫0

τ
w2(t)

Y1(t)Y0(t)
Y1(t) + Y0(t) 1 −

ΔN1(t) + ΔN0(t) − 1
Y1(t) + Y0(t) − 1

Δ N1(t) + N0(t)
Y1(t) + Y0(t) .

Harrington and Fleming (1982) explore asymptotic efficiencies of members of the Gρ,0 class 

of statistics (taking γ = 0) under various hazard ratio configurations and present a class of 

distributions such that members of the Gρ,0 family exhibit optimal properties for detecting 

location alternatives. In particular, Fleming and Harrington (1991) demonstrate that the Gρ,0 

statistic is efficient against time-transformed shift alternatives corresponding to

λ1(t) = λ0(t)eΔ S0(t) ρ + 1 − S1(t) ρ eΔ −1
,

where λi(·) denotes the hazard function for group i, i = 0, 1. That is, a Gρ,0 statistic (ρ > 0) is 

efficient against alternatives in which the hazard ratio decreases monotonically from eΔ (t=0) 

to unity (t → ∞). Thus Δ indicates the initial strength of treatment effect while the 

parameter ρ is related to the rate at which the effect diminishes. For instance when ρ = 0 the 

logrank statistic is efficient against proportional hazards alternatives. In contrast, the G1,0 

(commonly referred to as the generalized Wilcoxon statistic) applies increased weight to 

early failure times and is efficient against the alternative given in (2.2) with ρ = 1, indicating 

heavy early treatment effects which wane relatively quickly over time. This type of effect is 

often due to treatments that are able to postpone the event of interest in individuals for a 

period of time but are unable to sustain increased survival indefinitely.

The addition of the γ parameter in the Gρ,γ family yields a more flexible weighting scheme 

to address delayed treatment effects. For example, taking ρ = γ = 1, induces a quadratic 

weighting scheme, placing increased weight on failures occurring near the pooled median 

survival time, and less weight on failures occurring early and late during follow-up. This 

weighting scheme would yield increased efficiency to detect survival differences like that 

observed in the CPCRA trial (see Figure 1). Taking ρ = 0 and γ = 1 applies increased weight 

to late failure times, resulting in increased efficiency when little difference in survival is 

observed early on during follow-up but a large hazard difference is observed late during 

follow-up. In practice, this delay in the separation of hazards might be considered if it is 

hypothesized that a minimum time is required for the treatment to show an effect in all 

patients or that that there may exist a subset of the sickest patients for which the occurrence 

of an event is inevitable regardless of treatment assignment.
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2.2. Information Growth

Let σ j
2 equal the variance of the Gρ,γ statistic applied at interim analysis j. Then the 

proportion of information attained at analysis j, relative to that attained at final analysis J, is 

given by

∏ j ≡
M1, j + M0, j

M1, jM0, j

−1
σ j

2 M1, J + M0, J
M1, JM0, J

−1
σJ

2,

where Mk,j is the number of patients accrued in group k at the time of analysis j, k = 0, 1, j = 

1, …, J. From equation (2.1), it is clear that the information the information fraction, ∏j, will 

depend upon underlying accrual, censoring, and survival distributions observed during the 

course of a trial.

To illustrate the effects of inappropriately accounting for differential patient accrual patterns 

in a group sequential design when a weighted logrank statistic is used for testing, consider a 

cumulative entry distribution given by

FE(t) = t
θ

r
, θ > 0, r > 0, 0 ≤ t ≤ θ,

so that r = 1 implies Eik ~ Unif(0, θ), r < 1 yields entry times that tend to be concentrated 

near time zero (heavy early enrollment), and r > 1 yields entry times that tend to be 

concentrated toward the end of total enrollment time θ (heavy late enrollment). Figure 2 

contains an example that highlights the relationship between the information growth curve 

of a G1,1 statistic, the decision boundaries and the operating characteristics of a group 

sequential trial. For this example, survival is taken to be distributed Exponential(1) in both 

arms and the group sequential design is taken to be a one-sided test of a lesser alternative 

with an O’Brien-Fleming (lower) efficacy boundary (O’Brien and Fleming (1979)) and a 

Pocock (upper) futility boundary (Pocock (1977)). Suppose that the intended group 

sequential design calls for four analyses equally spaced in information time with a power of 

0.90 to detect an alternative hazard ratio of 0.75 and type I error rate of 0.05. The above 

design requirements would then require 507 maximal events (total) under a proportional 

hazards framework. For illustrative purposes, we assume that a total of 500 patients are to be 

enrolled into each arm (1,000 total) and that the duration of the study would be determined 

by the occurrence of the 507th event.

To demonstrate the impact of a misspecified information growth curve we consider the case 

where the clinical trialist naively assumes that information for the G1,1 statistic will accrue 

proportional to the number of events (the solid line displayed in Figure 2(a)), and hence 

performs analyses upon observing 127, 254, 380, and 507 events. However, if one accounts 

for the accrual of subjects over time, the true information growth can differ substantially. 

The dashed and dotted lines depicted in Figure 2(a) represent the information accrued as a 

function of the proportion of maximal events when patients enter the study uniformly over 3 

years and over 1 year, then are followed until 507 maximal events, respectively. This plot 

shows that at 50% of the maximal events the actual proportion of maximal information that 
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would be attained is only 40% if accrual were uniform over 3 years, and only 25% if accrual 

were uniform over 1 year. Generally speaking, we see that information growth is attenuated 

under a shorter entry distribution. As patients are enrolled more slowly, information growth 

becomes proportional to the number of events observed.

Figure 2(b) displays the originally intended stopping boundaries on the standardized Z-scale 

(solid line, with analyses taking place at equal information spacing) and the stopping 

boundaries that would actually result if analyses were performed at 127, 254, 380, and 507 

events when accrual is uniformly distributed over 1 and 3 years. Comparing the three 

boundaries, we see that when information is assumed to be proportional to the number of 

events, the proportion of attained information is overestimated at each analysis, leading to 

boundaries that are shifted forward in true information time.

Naturally, the resulting shift in the timing of analyses leads to changes in the frequentist 

operating characteristics of the original design. Figure 2(c) and Figure 2(d) show the sample 

size distributions and power curves for the shifted boundaries resulting from incorrectly 

specifying the attained statistical information at each analysis. The actual operating 

characteristics vary depending upon the accrual pattern. Specifically, if patient accrual were 

uniform over 1 year and the clinical trialist incorrectly assumed that information grew 

proportional to the number of expected events for the G1,1 statistic they would mistakenly 

believe the ASN and power of the design (ASN = 312 and Power = 0.90 at an alternative HR 
= 0.75) to be much higher than the true ASN and power resulting from the design with 

shifted boundaries depicted by the dotted line in 2(b) (ASN = 222 and Power = 0.73 at an 

alternative HR = 0.75). In addition, the type I error rate would be believed to be correct 

(Type One Error Rate = 0.05; ASN = 242 at an alternative HR = 1.0) while in truth the 

resulting stopping rule is conservative (Type One Error Rate = 0.041; ASN = 137 at an 

alternative HR = 1.0).

3. MONITORING VIA CONSTRAINED BOUNDARIES

3.1. Review of the Constrained Boundaries Algorithm

In Section 2, the impact of incorrectly specifying the proportion of information at each 

analysis was illustrated. However, during the conduct of a trial deviations from the originally 

planned timing of analyses may occur for a variety of reasons. One approach to account for 

deviations from a pre-planned schedule of analyses is the constrained boundaries algorithm 

(Burington and Emerson (2003)). The constrained boundary algorithm is a generalization of 

the error spending approach of Demets and Lan (1984). Specifically, the use of error 

spending functions constrained the proportion of type I error spent at previous analyses 

using a pre-defined function of the proportion of maximal information accrued at those 

preceding analyses. This approach was later extended by Pampallona (1995) to flexibly 

implement stopping rules that maintain both type I error and power through the use of type I 

and type II error spending functions. The constrained boundaries method of Burington and 

Emerson (2003) generalized these previous monitoring procedures by constraining on 

additional treatment effect scales including boundary shape functions defined on the 

estimated of treatment effect scale or the normalized z-statistic scale.
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Generally speaking, the constrained boundaries algorithm is implemented as follows: Using 

the notation from section 1, boundary shape functions for up to four types of decisions are 

specified as fa(∏j), fb(∏j), fc(∏j), and fd(∏j), where ∏j denotes the proportion of maximal 

statistical information attained at interim analysis j. At the first analysis,∏1 is computed, and 

stopping boundaries a1, b1, c1, and d1 are computed. If the power of the trial test to detect a 

specified design alternative is to be maintained, a schedule of future analyses is assumed and 

a stopping rule using the design parametric family (constraining the first boundaries to be a1, 

b1, c1, and d1) is found which has the desired power. This consists of searching for the 

maximal sample size which has the correct type I error and power to detect the alternative 

for the parametric design family for the assumed schedule of interim analyses. At later 

analyses, the exact stopping boundaries used at previously conducted interim analyses are 

used as exact constraints at those analysis times, and the stopping boundaries at the current 

and all future analyses as well as the new maximal sample size needed to maintain statistical 

power are computed using the parametric family of designs specified at the design stage and 

an assumed schedule of future analysis times. When fa(∏j), fb(∏j), fc(∏j), and fd(∏j) are 

defined on the type I and II error spending scales, this procedure is equivalent to the error 

spending approach of Pampallona (1995).

As a simple example to illustrate the constrained boundaries approach, consider testing a 

one sided hypothesis H0 : μ ≤ 0 vs. H1 : μ > 0, based upon independent and identically 

distributed observations Xi ~ (μ, σ2), i = 1, …, Nmax. Further suppose that we wish to test H0 

using a Pocock stopping rule with 4 interim analyses initially specified to take place after 

data on Nmax/4, Nmax/2, 3Nmax/4, and Nmax subjects have been observed. Finally, suppose 

that at the design stage it is assumed that σ2 = 1 and we desire to attain 90% power to detect 

an alternative of μ = 0.25 while maintaining a one-sided type I error rate of 0.025. These 

design specifications require Nmax = 199 and the resulting stopping boundaries on the 

normalized statistic scale (Z-scale) would be fd(0.25) = fd(0.50) = fd(0.75) = fd(1.0) = 2.3613 

and f* (Π) = −∞, ∗ ∈ {a, b, c}, Π = {0:25, 0:50, 0:75, 1:0}. The top portion of Table 1 

yields the stopping rule described above. Now, suppose that after ⌈199/4⌉ = 50 subjects are 

observed, the data are analyzed and σ2 is estimated to be σ1
2 = 1.5. With this current best 

estimate of σ2, in order to maintain 90% power the maximal sample size for the study would 

need to increase from 199 subjects to 302 subjects. With this change in the maximal sample 

size, the proportion of information at the first analysis is no longer 0.25, but is now 50/302 = 

0.166. Projecting that future analyses will take place at 50%, 75%, and 100% of the newly 

computed maximal sample size, the stopping rule is adjusted to fd(0.166) = fd(0.50) = 

fd(0.75) = fd(1.0) = 2.3774. Now suppose that the trial proceeds to the second analysis and 

data are analyzed after 302/2 = 151 subjects are observed. Further suppose that based upon 

these data, the variance of a single sampling unit is now estimated to be σ2
2 = 1.7. This would 

imply that in order to maintain 90% power and a one-sided type I error rate of 0.025, the 

maximal sample size would need to be increased from 302 subjects to 345 subjects. Because 

the first decision boundary was already implemented after 50 subjects, we must constrain 

fd(50/345 = 0.145) = 2.3774 and the current and future stopping boundaries are computed to 

be fd(0.438) = fd(0.75) = fd(1.0) = 2.3918. It is important to note that the current and future 

boundaries remain constant on the normalized statistic scale (as dictated by the Pocock 
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design), and that the schedule of future analyses must be assumed in order to calculate the 

new maximal sample size in order to maintain 90% power. Provided that the observed 

statistic at the second analysis did not cross the stopping boundary, the trial would proceed 

in an analogous fashion with the variance updated using available data, the preceding 

boundaries constrained to the actual value used, and the maximal sample size readjusted in 

order to maintain 90% power and a one-sided type I error rate of 0.025. The lower portion of 

Table 1 yields the resulting stopping rule if the trial proceeded to the final analysis and 

σ3
2 = 1.60 and σ4

2 = 1.65 were observed. Boxed values in the table highlight those values that 

are constrained at current and future analyses.

3.2. Implementation of Constrained Boundaries when Testing is Based Upon a Weighted 
Logrank Statistic

Implementation of a stopping rule via the constrained boundaries approach described above 

requires one to know, or be able to estimate, ∏j at each analysis. When information is 

directly proportional to sample size, ∏j = Nj/N where Nj is the sample size at interim 

analysis j and N denotes the maximal planned sample size. However, when monitoring a 

weighted log rank statistic such as a member of the Gρ,γ, family ∏j is dependent upon the 

unknown censoring and survival distributions and hence must be estimated. To address this, 

we propose the following algorithm:

Step 1: Specify original design using a parametric design family to satisfy desired 

operating characteristics with at the desired fraction of information ∏j for j = 1, …, J.

Step 2: To anticipate the timing of the first analysis, map ∏j, for j = 1, …, J, to the 

proportion of events using a parametric survival model, S(t; ϕ ), and entry distribution, 

FE(t; γ ), with assumed values for θ  and ϕ

Step 3: At the jth analysis when j < J do steps 3.1–3.5 while maintaining the 

parametric design family.

Step 3.1: Estimate the parameters ϕ  and γ  in S(t; ϕ ) and FE(t; γ ) using pooled 

data and a parametric model then substituting the parametric estimates for the 

parameters we obtain S j(t; ϕ ) and FE(t; γ ).

Step 3.2: Conditional on S j(t; ϕ ) and FE(t; γ ), estimate the information growth 

curve using equation (2.1) and compute Π j for j = 1, …, j , and set Π j for j = j 

+ 1, …, J to desired timing.

Step 3.3: If j = 1, using Π j compute J boundaries on the z-scale; If j > 1, using Π j

constrain the previously used j−1 z-scale boundaries and compute the remaining 

J −j+1 z-scale boundaries.

Step 3.4: Test data using a Gρ,γ z-statistic and the jth boundary, if the test statistic 

is in the rejection region go to step 5.
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Step 3.5: Map information increments to the proportion of events for timing of 

future analyses.

Step 4: At the Jth analysis use the observed variance of the Gρ,γ to compute Π j

constrain previous J − 1 z-scale boundaries, and test data using final boundary.

Step 5: Discontinue trial and compute final inference.

The above algorithm could be trivially modified when the original design is specified via 

type I and II error spending functions. In this case, one would constrain the exact amount of 

type I and II error spent at previous interim analyses instead of the exact z-statistics used.

Statistical information of the Gρ,γ statistic can be calculated using equation (2.1). However, 

in order to evaluate equation (2.1) it is necessary to estimate the entry, survival and 

censoring distributions. Due to unobserved support in these distributions at early analyses, 

the prediction of information growth will require some form of parametric assumption 

regarding the entry, survival and censoring distributions. In the current manuscript we 

consider a Weibull distribution for the survival distribution and estimate S(t) via maximum 

likelihood, though many other parametric modeling choices are possible. In addition, we 

consider modeling the entry distribution using the relatively flexibly parametric model given 

in equation (2.3). At the jth analysis, the maximum likelihood estimate for r is given by 

r = M j/∑i = 1
M j log θ /ei , where Mj is the number of patients accrued at the time of the analysis 

and ei is the entry time of patient i centered at study time zero. At a given analysis time, the 

full support for the entry distribution, θ, will not be observed, so the above estimator can be 

computed by conditioning on the observed maximal support. This results in an MLE of 

r = M j/∑i = 1
M j log τ j/ei , where τj represents the maximum observed support at the jth 

analysis. When calculating the proportion of maximal information, the parameter θ (end of 

enrollment time) for the proposed entry distribution will cancel out, however θ must be 

assumed since the integration limit in equation (2.1), τj, will depend on the time of final 

enrollment.

Since the proportion of information is estimated from a parametric model, the model or 

candidate models and model checking procedures should be prespecified. This will keep the 

choice of the modeling procedure independent of boundaries used at interim analyses. In 

addition, it is important to note that the observed variance of the Gρ,γ statistic is used at the 

final analysis so that the family-wise type one error rate is robust to model misspecification.

Finally, it should be noted that the above algorithm can be implemented in two different 

ways depending upon whether the estimated variance of the test statistic is updated at all 

analyses using the current best estimate at each interim test, or only updating the variance 

estimate at the current and future analyses. The former approach is analogous to the 

constrained boundaries example given in the previous section, where the current best 

estimate of the variance is used at all analyses and the proportion of maximal information 

for each analysis is updated accordingly. Burington and Emerson (2003) recommend this 

approach. However, it is shown in the first author’s PhD unpublished dissertation (Brummel 

(2010)) that if the variance estimate changes significantly from one analysis to the next it 
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may be impossible to maintain type I error rates in some cases. This is because updating the 

variance estimate at previous analyses may lead to poor estimates of the variability of the 

test statistic used at previous interim analyses, particularly if the patient population is 

changing from analysis to analysis. In light of this, we recommend that the variance estimate 

used at previous analyses be held fixed but that the present and future variance estimates be 

updated with all currently available data, particularly if the patient population will be 

recruited from diverse backgrounds and the activation of clinical sites is expected to be 

staggered over time.

4. Simulation study

4.1. Simulation Setup

A simulation study was conducted to investigate the performance of the proposed 

monitoring procedure when the G1,1 statistic is used to periodically test accruing non-

proportional hazards data in a group sequential fashion. The simulation study considered 

two survival scenarios. In the first scenario, data were sampled under the null hypothesis of 

equal survival in both arms. In this case, the survival experience of the treatment and control 

groups were assumed to be exponentially distributed with a mean time to event of two years. 

In the second scenario, the survival experience in the control group was assumed to be 

exponential with mean 2.0, while the survival distribution of the treatment group was taken 

to be piecewise exponential with a hazard ratio that changed linearly from 0.95 at time 0 to 

0.2 at 2.5 years. Figure 3 yields representative samples from the distributions defining the 

two simulation scenario. In each case the total number of sampled patients in each arm was 

taken to be N = 1, 000 for a total sample size of 2,000.

To examine the proposed methods under multiple accrual patterns, various parameters for 

the entry distribution were assumed in the simulation study. Using the entry distribution 

specified in equation (2.3) we set θ = 3 and r = {0.50, 0.75, 1.0, 3.0, 5.0}. θ represents the 

year in which the enrollment of 2,000 patients ends. As in Section 2, testing was based upon 

a group sequential design with four total analyses using O’Brien-Fleming efficacy bound 

and a Pocock futility bound with the design goal of testing at equally spaced information 

times, ∏={0.25, 0.50, 0.75, 1.0}.

4.2. Simulation Monitoring Strategies

We present four different monitoring strategies: timing analyses based on the actual 

information growth curve (unknown in practice but used here as a gold standard), the 

proposed constrained boundaries algorithm with full estimation of equation (2.1) using a 

Weibull MLE, using a Weibull for the survival distribution to estimate formula (2.1) but 

always assuming entry is Unif(0,3) (θ = 3, r = 1), and a naive strategy that assumes 

information growth is proportional to the number of events. When the Weibull model is used 

with the assumed Unif(0,3) entry distribution, the portion of information is misspecified 

except for the case where the r parameter in the entry distribution is set to one. When the 

information is assumed to be proportional to the number of events, the portion of 

information is misspecified for all considered simulations.
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4.3. Simulation Results

Table 2 contains simulated operating characteristics (type I error, power, and ASN) for the 4 

monitoring strategies. From these results, one can see that the type I error deviates from the 

nominal 0.05 level unless the information and entry distribution is correctly estimated. For 

example, the estimated type I error under null sampling with r = 5 is 0.048 for the proposed 

constrained boundaries approach, 0.043 when accrual is assumed to be uniform over 3 years 

(r=1), and 0.045 when the information is assumed to be proportional to the number of 

events. The power of the design is also affected. Under the alternative, when r = 5, the power 

is maintained at 0.898 for the constrained boundaries strategy, but drops to 0.624 when 

accrual is assumed to uniform over 3 years, and 0.745 when the information is assumed to 

be proportional to the number of events. We note that for this example, early information 

growth was overestimated in the scenario where information was assumed to be proportional 

to the number of events, leading to earlier analysis times, and hence lower than nominal type 

I error due to the Pocock futility boundary. However, misspecification of the information 

growth pattern could also lead to an inflated type one error rate, depending upon the early 

conservatism of the stopping boundaries, had information been underestimated at early 

analyses.

ASN also deviates from the original design plan under misspecification of the information 

growth curve, as one would expect given the above mentioned differences in power. 

Differences in the ASN occur from over- or underestimation of the information growth 

curve. When information is overestimated (as is always the case for the scenario when 

information is assumed to be proportional to the number of events in our simulation study), 

stopping boundaries are shifted forward in time resulting in a lower ASN but also lower 

power. When one assumes that accrual of subjects is uniformly distributed, information is 

underestimated for early accrual patterns (r < 1) and overestimated for late accrual patterns 

(r > 1) resulting in higher and lower than planned ASN values, respectively. What is most 

important is that when using the proposed constrained boundaries algorithm and re-

estimating the full information growth curve at each analysis, the observed ASN closely 

mimics the planned ASN under a known information growth curve. In this case, the biggest 

observed deviation from the planned ASN is twelve events and occurred under the null 

hypothesis with a slightly early accrual pattern (r = 0.75).

5. APPLICATION TO TRIAL 002 OF THE COMMUNITY PROGRAMS FOR 

CLINICAL RESEARCH

To illustrate the proposed methods, we return to trial 002 from the CPCRA (Abrams et al. 

(1994)), a comparative trial of Dianosine (DDI) against Zalcitabine (DDC) after treatment 

with Zidovudine in patients with human immunodeficiency virus (HIV). The study was 

originally planned under a proportional hazards framework with DDC being judged non-

inferior to DDI if the upper limit of a confidence interval for the hazard ratio comparing 

DDC to DDI (DDC/DDI) for progression free survival was less than 1.25. In the actual trial 

the sequential design was using a Lan-DeMets error spending implementation of the 

O’Brien-Fleming design. As noted in the introduction, the study was originally planned to 

have 3 interim analyses with one final analysis. At the design stage, the planned number of 
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events for the final analysis was 243; however, the study ultimately progressed to 260 

observed events before the DSMB recommended that the trial be stopped. One month later, 

the total number of reported events was 309 due to overrunning data. For this investigation, 

we will only focus on the observed 260 events. While the timing of interim analyses was 

originally scheduled to be equally spaced in information time, during the actual monitoring 

of the trial the number of events at each interim analysis was, 55, 116, 164 and 260 events. 

We use this same for schedule of analyses to demonstrate the proposed monitoring approach.

For illustration, we consider application of the G1,1 statistic to the CPCRA data using an 

O’Brien-Fleming decision boundary implemented on the normalized Z-statistic scale 

(Emerson et al. (2007)). Table 3 contains the observed test statistics, the number of observed 

events, the projected and constrained decision boundaries, and the projected and proportion 

of information. The decision boundaries are displayed on the normalized statistic scale, and 

an observed Z-value less than the lower boundary aj would conclude with a decision for non-

inferiority while the upper dj boundary is a binding futility boundary. The primary 

comparison in Table 3 is that of the design decision boundaries in the top row to the finally 

implemented decision boundaries along the diagonal of the upper portion of the table. The 

boxed decision boundaries along the diagonal are constrained at previous analyses. To 

compute the future proportion of information, we projected the future information based on 

the planned number of events. The lower portion of Table 3 depicts the estimated proportion 

of information at each analysis using formula (2.1) with maximum likelihood parameter 

estimates for a parametric Weibull model to estimate survival, and the entry distribution is 

assumed to follow the parametric form as in equation (2.3). Figure 5 shows the design and 

final decision boundaries as a function of the proportion of maximal information.

In this example we have used the actual number of events that were observed in the CPCRA 

trial for implementing each analysis. As seen in Table 3, the future proportion of information 

deviates as much as 15% from the original design specification. However, as can be seen in 

figure 4, the projected and observed proportion of information are very close. This indicates 

that if the proposed methodology to project future information growth had been used in the 

trial, the timing of future analyses could have been corrected early on and the timing of later 

analyses would have more closely agreed to the originally planned design.

Figure 1 depicts the observed proportion of information attained in the CPCRA trial along 

with the estimated information growth curve at each of the analysis times. Information 

growth curves were estimated using the methods described in Section 3. As can be seen, 

even at the first analysis, the estimated information growth curve approximates the observed 

information accrual pattern well. As a by-product of using the G1,1 statistic, that weights 

later analysis times heavier than earlier times, the information growth curve is lower for the 

G1,1 than that of an unweighted logrank statistic that would yield information proportional to 

the number of observed events. The result of this slower information growth can be seen in 

Table 3 that yields the proportion of maximal information, induced stopping boundaries, and 

observed test statistics at each of the analysis times. Due to the down weighting of early 

events, the first and second interim analyses occur at much earlier information levels when 

monitoring with the G1,1 statistic as compared to the logrank statistic. The result is that the 

induced stopping criteria are more extreme at earlier analyses when monitoring with the G1,1 
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statistic. This slower information growth can be viewed as protection against late diverging 

hazards.

6. DISCUSSION

When a weighted logrank statistic is used in a group sequential clinical trial, a necessary 

component of the trial is to correctly estimate information growth. We have shown that using 

the incorrect information can greatly affect the resulting operating characteristics of the 

stopping rule, including possibly inflated type I error rates and/or reduced power. There are 

two components of information growth that we have investigated: estimation of the survival 

curve and estimation of the entry distribution. Putting both of these issues together shows, 

that when a weighted logrank statistic is used, a full estimation of formula (2.1) is necessary. 

We did not investigate the estimation of FC(t)(random censoring) because it tends to be 

negligible in many settings, but since it is a component of formula (2.1), it could be 

estimated in a trial that has random censoring.

In the case where treatment effects vary with time as in the CPCRA trial data, parameter 

estimates in the predictive survival distribution may be biased when data are analyzed at less 

than full support. To potentially reduce this bias it may be useful to incorporate early phase 

data into the estimation of S(t) when it is available. Bayesian methods provide a natural 

approach to incorporating early phase data into the estimation of the parameters for S(t), and 

may potentially be useful in helping to maintain the frequentist operating characteristics of 

the group sequential design through a prior distribution (obtained from pilot data) that 

incorporates longer support than the observed data at the time of an interim analysis. Of 

course, one possible disadvantage to using early phase data is that the sampled population of 

the earlier study may not be representative of the sampled population for the later trial, 

ultimately yielding poor predictive performance. However, since the true information levels 

will be used at the final analysis, some operating characteristics (such as type I error), 

though not all, can be maintained.

The methodology presented here focuses on group sequential procedures where interim 

analyses are made after a subset of events have been observed. Fully sequential 

implementations of the logrank statistic have previously been considered by Gombay 

(2008). In this case, sequential versions of a general family of stopping boundaries including 

the Pocock (1977) and O’Brien and Fleming (1979) stopping rules were implemented so that 

testing of survival differences using the logrank statistic could occur at each observed event 

time. In our experience, the cleaning of clinical trial data for a formal interim analysis can 

take between one and three months, making a fully sequential test logistically infeasible in 

many settings. Despite this, extensions of the methods proposed by Gombay (2008) to the 

Gρ,γ class of weighted logrank statistics are possible but would require estimating the 

variance of the weighted statistic. As demonstrated in the current manuscript, this variance 

will depend upon the timing of events and hence the survival, censoring, and accrual 

distributions observed in the trial.

Though not considered here, one could also use additional covariates to predict the survival 

and information growth curves. In the case where early information was collected on a 
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strong surrogate for the survival response, this approach could potentially improve the 

estimation of information growth patterns. In addition, we note that non-linearity of the 

information growth curve is not unique to weighted survival statistics but is also present in 

the case of longitudinal outcomes. For example, in cases where one wished to compare the 

slope of an outcome over time, information would depend upon the number and timing of 

repeated measurements as well as the number of accrued subjects. In this setting, projection 

of future information growth would be required for adequate analysis timing. This remains 

an area for future research.
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Figure 1. 
Kaplan-Meier estimates of survival at the second (a) and final (b) analyses of trial 002 of the 

CPRCA study. Hazard ratios and confidence intervals were estimated from a proportional 

hazards model. Statistics at the bottom of each figure represent the number of patients as risk 

(and number of observed events) at 3-month intervals.
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Figure 2. 
Relationship between the information growth curve of a G1,1 statistic, the decision 

boundaries and the operating characteristics of a group sequential trial under differing 

accrual patterns. Survival is assumed to be distributed Exponential(1) in both arms and the 

group sequential design is taken to be a one-sided test of a lesser alternative with an 

O’Brien-Fleming (lower) efficacy boundary (O’Brien and Fleming (1979)), a Pocock 

(upper) futility boundary (Pocock (1977)). In addition, the originally intended group 

sequential design has four analyses, equal spaced in information time, with a power of 0.90 

to detect an alternative of 0.75, type I error rate of 0.05, and 507 maximal events. 

Boundaries are computed when analyses are equally spaced in information time (as 
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originally intended), and when analyses are performed at equal numbers of accrued events 

but patients are accrued uniformly over 3 years and 1 year.
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Figure 3. 
Representative survival curves from the two scenarios considered in the simulation study. In 

the first scenario (a), data were sampled under the strong null hypothesis H0 : S0(t) = S1(t) ∀ 
t > 0 of equal survival in both arms at all followup times. In this case, the survival experience 

of the treatment and control groups were assumed to be exponentially distributed with a 

mean time to event of two years. In the second scenario (b), the survival experience in the 

control group was assumed to be exponential with mean 2, while the survival distribution of 

the treatment group was taken to be piecewise exponential with a hazard ratio that changed 

linearly from 0.95 at time 0 to 0.2 at 2.5 years.
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Figure 4. 
Information Growth in the CPCRA Data. At each analysis, formula (2.1) was computed with 

a fixed maximal entry date but estimated time of final analysis. The stars show the observed 

portion of information for the G1,1 statistic. The line y = x, the information growth for the 

logrank is shown for reference.
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Figure 5. 
Comparison of the original decision boundaries (Solid Line) against the final decision 

boundaries (Dashed Line) plotted on the z-scale as a function of the proportion of 

information. The crosses are the observed G1,1 z-value test statistic.
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Table 1.

Illustration of the constrained boundaries algorithm. In this example, the original design is a one-sided test of a 

greater alternative utilizing a Pocock (1979) stopping boundary for superiority and four equally spaced 

analyses. Based upon an initial assumption that the sampling variability for single observation is 1.0, the trial 

is initially designed to collect data on a maximum of 199 subjects to ensure 90% power to detect an alternative 

of 0.25 with one-sided type I error of 0.025. The implemented design constrains the boundaries on the 

normalized statistic (Z-scale) and updates the maximal sample size to maintain 90% power for the specified 

alternative. Boxed values represent implemented decision boundaries that are constrained at future analyses.

Analysis (j) 1 2 3 4

Planned Design (σ2=1.0):

Sample Size 49.75 99.50 149.25 199

Information Fraction (Πj) 0.25 0.50 0.75 1.00

Decision Boundary (Z-scale) 2.3613 2.3613 2.3613 2.3613

Implemented Design:

Analysis 1 σ1
2 = 1.5

 Sample Size 50 151.0 226.5 302

 Information Fraction (Πj) 0.166 0.50 0.75 1.00

 Decision Boundary (Z-scale) 2.3774 2.3774 2.3774 2.3774

Analysis 2 σ2
2 = 1.7

 Sample Size 50 151 258.75 345

 Information Fraction (Πj) 0.145 0.438 0.75 1.00

 Decision Boundary (Z-scale) 2.3774 2.3918 2.3918 2.3918

Analysis 3 σ3
2 = 1.6

 Sample Size 50 151 259 321

 Information Fraction (Πj) 0.156 0.470 0.807 1.00

 Decision Boundary (Z-scale) 2.3774 2.3918 2.3735 2.3735

Analysis 4 σ4
2 = 1.6

 Sample Size 50 151 259 321

 Information Fraction (Πj) 0.156 0.470 0.807 1.00

 Decision Boundary (Z-scale) 2.3774 2.3918 2.3735 2.3735
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Table 2.

Simulation results examining the effect of misspecifying information growth on type I error rates, power, and 

ASN. In all cases, subjects are assumed to accrue over three years with differential accrual patterns as dictated 

by the r parameter. Maximal events are held constant across the different monitoring strategies and chosen to 

maintain 90% power under the alternative when analyses are equally spaced in information time. 

Representative survival curves used for the simulation study are depicted in Figure 3. The results are based on 

50,000 simulations.

Portion Rejected ASN

Alternative/ Entry Parameter r Entry Parameter r

 Monitoring Strategy 0.5 0.75 1 3 5 0.5 0.75 1 3 5

Null

 Known information growth 0.048 0.049 0.051 0.050 0.048 603 543 514 617 728

 Constrained boundaries 0.049 0.049 0.051 0.049 0.048 608 531 519 611 736

 Assuming entry Unif(0,3) (r = 1) 0.052 0.050 0.051 0.044 0.043 691 566 519 492 610

 Information ∝ events 0.045 0.046 0.049 0.047 0.044 520 494 467 521 613

Alternative

 Known information growth 0.898 0.897 0.894 0.905 0.898 681 629 605 751 841

 Constrained boundaries 0.900 0.888 0.898 0.900 0.898 683 618 607 743 842

 Assuming entry Unif(0,3) (r = 1) 0.964 0.924 0.897 0.702 0.624 746 646 608 585 664

 Information ∝ events 0.776 0.825 0.831 0.804 0.745 606 586 564 661 732
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Table 3.

Results from monitoring progression free survival in trial 002 of the CPCRA study using constrained 

boundaries. Results are shown for monitoring based upon the G1,1 statistic. The upper dj boundaries are the 

futility boundaries and the lower aj boundaries are the non-inferiority decision boundaries. The boundaries in 

bold are the boundaries used to decide to stop or continue the trial. Proportion of information is displayed 

using equation (2.1) at each interim analysis, with a parametric Weibull survival distribution and a parametric 

entry distribution as given in equation (2.3), and parameters estimated using maximum likelihood.

Characteristic j = 1 j = 2 j = 3 j = 4

Decision Boundaries

Observed Z-statistic (a1, d1) (a2, d2) (a3, d3) (a4, d4)

Design (−4.01, 2.00) (−2.83, 1.11) (−2.31,−1.16) (−2.00,−2.00)

Analysis 1 3.27 (−6.23, 4.97) (−3.57, 1.37) (−2.56,−0.52) (−1.98,−1.98)

Analysis 2 1.52 (−6.23, 4.97) (−3.71, 1.58) (−2.55,−0.53) (−1.98,−1.98)

Analysis 3 −0.23 (−6.23, 4.97) (−3.71, 1.58) (−2.75,−0.092) (−1.97,−1.97)

Analysis 4 −1.22 (−6.23, 4.97) (−3.71, 1.58) (−2.75,−0.092) (−1.97,−1.97)

Proportion of Information

Observed Events Π1 Π2 Π3 Π4

Design .25 .50 .75 1.00

Analysis 1 55 0.101 0.309 0.601 1.00

Analysis 2 116 0.102 0.286 0.605 1.00

Analysis 3 164 0.096 0.273 0.517 1.00

Analysis 4 260 0.090 0.268 0.456 1.00
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