
FlexiChaP: A Reconfigurable ASIP for

Convolutional, Turbo, and LDPC Code Decoding

Matthias Alles, Timo Vogt, Norbert Wehn

University of Kaiserslautern

Erwin-Schroedinger-Str.

67663 Kaiserslautern, Germany

Email: {alles, vogt, wehn}@eit.uni-kl.de

Abstract—Future mobile and wireless communication net-
works require flexible modem architectures to provide seamless
services between different network standards. In this paper
we focus on the outer modem which has to support various
advanced channel coding techniques like convolutional codes,
turbo codes, and low-density parity-check (LDPC) codes. We
present an application-specific instruction-set processor (ASIP)
which supports convolutional codes, binary/duo-binary turbo
codes, and LDPC codes. Special emphasis is put on the support
of LDPC codes. The ASIP consists of a special pipeline which
is completely optimized for channel decoding. Logic synthesis
yields an overall area of 0.62 mm2 for this ASIP in a 65 nm low
power technology. Payload throughputs of, e.g., up to 257 Mbps
are possible at 400 MHz for the WiMAX and WiFi LDPC codes,
outperforming existing ASIP solutions for LDPC decoding by an
order of magnitude.

I. INTRODUCTION

Next generation mobile communication networks have to

support various standards to provide seamless services and

heterogeneous interoperability. Thus, flexibility in modem ar-

chitectures becomes a dominant aspect. A promising approach

in this direction is software defined radio (SDR).

Recently, various platforms for SDR were published, e.g.,

[1][2][3]. Most of these platforms target the signal process-

ing tasks in the inner modem, i.e., filtering, modulation,

and channel estimation. These algorithms have to perform a

huge amount of operations per sample with a high degree

of data parallelism. Thus, these SDR platforms are multi-

processor systems with SIMD (single-instruction multiple-

data) vector processing engines. In this paper we focus on

channel decoding which is the central processing part in

the outer modem. Table I gives an overview of the channel

codes used in current standards. As can be see, convolutional

codes (CC), binary turbo codes (bTC), duo-binary turbo codes

(dbTC), and low-density parity-check codes (LDPC) are es-

tablished channel coding schemes. Especially the decoding

algorithms of turbo codes and LDPC codes have a very high

computational complexity. [1] reports that channel decoding

contributes approximately 40 % to the total computational

complexity of the physical layer of a UMTS or a WiFi 802.11a

system, depending on the implementation platform. Similar

results have been obtained in [4][5]. The aforementioned SDR

platforms are not well suited for channel decoding algorithms

since they substantially differ from the algorithms in the inner

modem. They are non-standard signal processing algorithms

with non-standard arithmetics and word widths. Hence, other

architectural approaches become mandatory to provide high

performance, low energy, and high flexibility at the same time.

We favour an approach which is based on application-

specific instruction-set processors (ASIP). These processors

are fully optimized for channel decoding by completely cus-

tomizing instruction set, pipeline, and memory structure to

this task. Such an ASIP can be considered as a weakly

programmable processor, since it is intended to perform only

channel decoding algorithms. A “just enough” policy domi-

nates the processor design. Flexibility is only added where it

is required by the channel decoding tasks. In [6], we presented

the FlexiTreP ASIP family which is based on this design

methodology. This processor family supports trellis based

channel codes, i.e., convolutional, binary and duo-binary turbo

codes for various standards. However, recent standards like

IEEE802.11n (WiFi, [7]) or IEEE802.16e (WiMAX, [8]) use

also LDPC codes. LDPC decoding substantially differs from

trellis-based decoding algorithms.

In this paper we extend the FlexiTreP ASIP family:

• A new ASIP for decoding of structured LDPC codes

(FlexiProESL: Flexible Processor Especially for Struc-

tures LDPC codes) is presented. This processor targets

standardized LDPC codes for, e.g., WiMAX and WiFi.

• The FlexiTreP and FlexiProESL cores are merged into

a single ASIP, named FlexiChaP, a Flexible Channel

coding Processor, which is capable to support convolu-

tional codes, binary/duo-binary turbo codes, and struc-

tured LDPC codes. To the best of our knowledge this is

the first ASIP supporting all important channel decoding

techniques.

We can find some processor approaches for LDPC decoding in

the literature. However, they lack of high throughputs. E.g., the

ASIP presented in [9] yields a throughput of only 15 Mbps

at 400 MHz for a single iteration. In [10] the SDR SODA

architecture [1] was enhanced for LDPC decoding resulting in

a throughput of 30.4 Mbps for WiMAX LDPC decoding at

400 MHz. An ASIP architecture proposal [11] uses a SIMD

approach with 96 data processing units. But despite the high

parallelism throughputs of only about 50 Mbps are reported

for a WiFi code at 20 iterations and a clock frequency of

Standard Codes States Rates Infobits Throughput

GSM CC 16,64 1/4...1/2 ...876 ...12 kbit/s

EDGE CC 64 1/4...1/2 ...870 ...384 kbit/s

UMTS CC 256 1/4...1/2 ...504 ...32 kbit/s
bTC 8 1/3 ...5114 ...2 Mbit/s

CDMA2000 CC 256 1/6...1/2 ...744 ...28 kbit/s
bTC 8 1/5...1/2 ...20730 ...2 Mbit/s

HSDPA bTC 8 1/2...3/4 ...5114 ...14.4 Mbit/s

LTE bTC 8 1/3 ...6144 ...150 Mbit/s

DAB CC 64 1/4 none ...1.1 Mbit/s

DVB-H CC 64 1/2...7/8 1624 ...32 Mbit/s

DVB-T CC 64 1/2...7/8 1624 ...32 Mbit/s

DVB-RCT dbTC 8 1/2, 3/4 ...648 ...31 Mbit/s

IEEE802.11a/g CC 64 1/2...3/4 ...4095 ...54 Mbit/s

IEEE802.11n CC 64 1/2...3/4 ...4095 ...300 Mbit/s
LDPC – 1/2...5/6 ...1620 ...300 Mbit/s

IEEE802.16e CC 64 1/2...5/6 ...864 ...75 Mbit/s
dbTC 8 1/2...3/4 ...4800 ...75 Mbit/s
LDPC – 1/2...5/6 ...1920 ...75 Mbit/s

TABLE I
SELECTION OF STANDARDS AND CHANNEL CODES

about 400 MHz. Our ASIP fully exploits the inherent paral-

lelism of the LDPC decoding algorithm, yielding a very high

throughput. A custom SIMD LDPC processor pipeline with

27 data processing units is presented. The pipeline employs an

elaborated memory configuration that is especially suited for

LDPC decoding. The resulting ASIP offers all the flexibility

that is required to support current and future standards. Low

latency and high throughputs of up to 257 Mbps at 400 MHz

are achievable.

The rest of the paper is structured as follows: Section II

introduces LDPC codes and their decoding algorithm. In Sec-

tion III the instruction set and pipeline of the new LDPC ASIP

are presented. Section IV shows synthesis results of different

instances of the ASIP. Finally, Section V will conclude the

paper.

II. LDPC CODES

LDPC codes [12] were already introduced in 1962 by

Gallager. Like turbo codes they allow for a near optimum error

correction performance. LDPC codes are linear block codes

defined by a sparse parity check matrix H of size M × N ,

see Figure 1a). For binary LDPC codes a valid codeword ~x
has to satisfy Equation 1 in a modulo-2 arithmetic:

H~xT = ~0 ∀~x ∈ C, (1)

with C the set of valid codewords. A column in H is associated

to a codeword bit, a row corresponds to a parity check. A

non-zero element in a row means that the corresponding bit

contributes to this parity check. Typically, 2% or less of the

elements of H are non-zero.

The complete code can be best visualized by a Tanner graph,

a graphical representation of the associations between code

bits and parity checks. Each column of H corresponds to a

variable node (VN) and represents one code bit, each row

of H corresponds to a check node (CN) and represents one

parity check, respectively. Edges connect variable and check

nodes according to the non-zero elements of the parity check

Fig. 1. Tanner graph of an irregular LDPC code

matrix. Figure 1b) shows the corresponding Tanner graph to

the parity check matrix in Figure 1a) of an LDPC code with

N = 7 variable nodes and M = 3 check nodes. The resulting

code rate is R = (N − M)/N =4/7.

A. LDPC Decoding

LDPC codes can be decoded using the Sum-Product algo-

rithm (SPA) [12]. Soft information is exchanged iteratively

between variable and check nodes. To reduce the implementa-

tion complexity the SPA was transformed into the logarithmic

domain.

In detail the SPA in the logarithmic domain looks as follows:

Two sets are defined that represent the connections in the

Tanner graph between the two types of nodes. The set of check

nodes connected to the variable node n, n ∈ {0, ..., N − 1} is

given by:

M(n) = {m|m ∈ {0, ..., M − 1} ∧ Hmn 6= 0}. (2)

Respectively, the set of variable nodes connected to the check

node m, m ∈ {0, ..., M − 1} is given by:

N (m) = {n|n ∈ {0, ..., N − 1} ∧ Hmn 6= 0}. (3)

With these sets we describe the iterative decoding algorithm:

The variable node n is initialized with the corresponding log-

likelihood ratio (LLR) of the received bit λch
n . Next, messages

are propagated from the variable nodes to the check nodes

via the edges of the Tanner graph. For the first iteration the

messages sent by the variable node n via its edges to the

check node m with m ∈ M(n) is the corresponding LLR:

λn→m = λch
n . The check node m computes new messages for

the variable nodes. Due to the high implementation complexity

of the optimal belief propagation algorithm, suboptimal algo-

rithms are used for the check node implementation. We use

the normalized Min-Sum algorithm [13] where only the two

smallest magnitudes are used:

λm→n = α ×

∏

n′∈N (m)\n

sgn (λn′→m)

 (4)

× min
n′∈N (m)\n

(|λn′→m|) .

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456 480 504 528 552 576

0

24

48

72

96

120

144

168

192

216

240

264

288

Variable Nodes

C
h

e
c
k
 N

o
d

e
s

Fig. 2. A parity check matrix of the WiMAX code with P = 24.

When using the extrinsic scaling factor α, a communications

performance close to the optimal algorithm is possible for high

code rates R ≥2/3. Typically, α is chosen as 0.75 or 0.875,

since these values are easy to implement.

Then, the variable nodes compute an overall estimation of

the decoded bit:

Λn = λch

n
+

∑

m′∈M(n)

λm′→n. (5)

The sign of Λn can be understood as the hard decision on

the decoded bit. New messages λn→m are then computed

following the extrinsic principle:

λn→m = λch

n +
∑

m′∈M(n)\m

λm′→n = Λn − λm→n. (6)

The decoding process is stopped after a maximum number of

iterations or earlier if the parity check is satisfied.

B. Structured LDPC Codes

Fully parallel decoder implementations instantiate all nodes

of the Tanner graph. This approach lacks flexibility and is

furthermore infeasible for high block lengths. LDPC decoders

are therefore implemented in a partly parallel fashion, where

only a subset of nodes in the Tanner graph is implemented as

hardware units. Low latency and high throughput are obtained

by exchanging a huge amount of messages between variable

and check nodes per clock cycle. A random connectivity

between variable and check nodes poses big challenges for

an efficient hardware implementation. Complex connectivity

networks become mandatory to allow for a flexible and

parallel message exchange, resolving occuring memory access

conflicts. Thus, LDPC codes defined by standards are based on

so called structured LDPC codes [14]. The matrices of these

codes are composed of cyclically shifted identity matrices

of size P × P . Figure 2 shows the structured binary parity

check matrix of the WiMAX code with N = 576 variable

nodes, M = 288 check nodes, and P = 24. These codes

allow for an efficient implementation of the connectivity

between up to P variable and P check nodes. Memory access

conflicts are avoided and a low complexity logarithmic barrel

shifter is sufficient as connectivity network for a given P .

Furthermore, storing the parity check matrix is simplified.

Only the positions of the cyclically shifted identity matrices

and the corresponding shift value have to be stored.

WiMAX WiFi
Parameter # min max # min max

Block lengths 19 576 2304 3 648 1944

Submatrix sizes 19 24 96 3 27 81

Code rates 4 1/2 5/6 4 1/2 5/6
CN degrees 7 6 20 9 7 22

VN degrees 4 2 6 8 2 12

Edges 90 1824 8448 8 2376 7128

Codes 114 12

TABLE II
PARAMETERS OF WIMAX AND WIFI LDPC CODES

C. Layered Decoding

Updating the variable and check nodes can be done with a

two-phase scheduling: In the first phase all variable nodes are

updated, in the second phase all check nodes, respectively. To

improve the communications performance for a given number

of iterations turbo decoding message passing (TDMP) [15],

which is also known as layered decoding, shuffled decoding

or Gauss-Seidel iterations, is used. The idea is to take in-

termediate results of the calculations into account still in the

same iteration. This technique can be applied in partly parallel

architectures in which not all nodes are processed at the

same time. Consider we are processing one check node. After

computing new LLRs, they are sent back to the connected

variable nodes immediately. These variable nodes update their

outgoing edges, such that the other check nodes connected to

these variable nodes will receive already updated results. With

this technique it is possible to reduce the number of iterations

by up to 50 % at a fixed communications performance. The

achieved gain in convergence speed can thus be used to reduce

the latency or to increase the throughput of the decoding

process.

III. LDPC ASIP

A. Decoder Requirements

As mentioned in the introduction, the FlexiTreP ASIP

family [6] supports decoding of binary turbo codes, duo-binary

turbo codes, and convolutional codes but lacks LDPC support.

Thus, it is necessary to extend the FlexiTreP pipeline by LDPC

decoding capabilities, in order to support all channel coding

schemes defined by e.g. WiMAX and WiFi.

Standardized LDPC codes like WiMAX, WiFi, and DVB-S2

are structured ones. Table II gives an overview of the WiMAX

and WiFi LDPC code parameters. Many block lengths, code

rates, and sub-matrix sizes need to be supported. Thus, flexible

architectures are mandatory.To obtain high throughput and low

latency the inherent parallelism of structured LDPC codes

has to be exploited and needs to be combined with layered

decoding.Therefore, a SIMD processor pipeline with a special

memory organization is the architecture of choice.

Due to the fundamental differences between turbo/convo-

lutional and LDPC decoding, logic reuse is barely possible

between the existing FlexiTreP functionality and the new

LDPC functionality. RAM sharing is key for an efficient ASIP

implementation. About 75% of the FlexiTreP area are utilized

by the RAMs in a 65 nm technology (0.11 mm2 logic vs.

0.31 mm2 memory). The goal is thus to share as much RAM as

possible between the new LDPC functionality and the existing

FlexiTreP functionality.

B. Instruction Set

As mentioned in the previous section, a highly parallel

SIMD processor with an elaborated memory architecture is

key for high throughput and low latency decoding of LDPC

codes. Therefore, we process a whole sub-matrix of the parity

check matrix with a single instruction. P messages of the

Tanner graph are processed by one instruction, as shown in

the following.

.text

l.subm 24 ; reconfigure networks and

; set submatrix size to 24

l.diag 0, s=1, a=1 ; process submatrix

l.diag 0, s=6, a=2 ; s determines shift offset

l.diag 0, s=11, a=8 ; a determines address

l.diag 0, s=4, a=9

l.diag 0, s=23, a=12

l.diag 1, s=0, a=13 ; last edge of check node

l.diag 0, s=18, a=1 ; new check node begins

l.diag 0, s=19, a=5

l.diag 0, s=5, a=6

l.diag 0, s=22, a=7

l.diag 0, s=21, a=11

l.diag 0, s=0, a=13

l.diag 1, s=0, a=14 ; last edge of check node

...

l.diag 0, s=23, a=12

l.diag 1, s=0, a=23 ; last edge of check node

l.pchk it=10 ; perform parity check

nop

PD ; power down

Listing 1. WiMAX assembler program

Listing 1 gives the assembler program for decoding the

WiMAX LDPC code as given by the parity check matrix

in Figure 2. The instruction l.subm is used to reconfigure

the ASIP to the corresponding sub-matrix size P . According

to this instruction the shifting networks are adjusted. With

l.diag a complete sub-matrix is processed. The s (shift) and

a (address) values determine the connection between variable

nodes and check nodes: a=1 means that we process the variable

nodes 24 to 47, s=1 means that these 24 values have to be

cyclically shifted by one to establish the correct connection

to the check nodes. Setting the first parameter of l.diag

to 1 indicates that this is the last sub-matrix belonging to the

check nodes that are being processed. After this instruction the

check nodes start to output newly calculated messages. These

messages are shifted into the original order and stored at the

same address where they were read from.

After processing all sub-matrices of the parity check matrix,

the instruction l.pchk tests, whether all parity checks were

satisfied. In this case, i.e., decoding was successful, the ASIP

powers down till a new block is available for decoding. If the

parity check fails and less than the given number of iterations

were performed, a new iteration is started. Therefore, the

program counter is set to the second instruction.

FlexiTreP RAMs # depth width Usage in FlexiProESL

Program Memory 1 512 24 Program memory

Interleaver Table 1 6144 13

Channel Values 2 4096 12 Message memory

Apriori Values 4 2048 8

State Metrics (dp) 2 128 96 Channel values

Hard Decisions 1 196 32 A/S bypass

TABLE III
TYPICAL RAM CONFIGURATION USED IN FLEXITREP

Different block lengths, variable node and check node

degrees can be easily realized with this instruction set. Fur-

thermore, different sub-matrix sizes are supported due to a

reconfigurable shifting network. So the ASIP provides a high

flexibility and can decode the LDPC codes of WiMAX and

WiFi standards.

C. LDPC ASIP Pipeline

As mentioned before, the primary goal is to maximize the

memory reuse between FlexiTreP and the LDPC functional-

ity. We therefore derive the constraints for the LDPC ASIP

pipeline from the given memory organization in FlexiTreP.

Table III gives an overview of the memories used in a typical

FlexiTreP configuration. The state metric memories are the

only dual-ported (dp) ones. Furthermore, they offer the highest

memory bandwidth. For LDPC decoding they are suitable

for the channel memories, storing the APP values of the

variable nodes as given by Equation 5. When using both

instances of the memory in parallel (192 bits bandwidth) and

a 7 bit quantization, up to P = 192/7 = 27 APP values

can be read per clock cycle. Because of the depth of the

memories, block lengths of up to N = 27 ∗ 128 = 3456 are

supported, which is sufficient for the WiMAX and WiFi LDPC

codes. Using a quantization of 5 bits for the messages that

are exchanged between variable nodes and check nodes, the

message memories need to offer a bandwidth of 5*27 = 135

bits. Since there is no other RAM in FlexiTreP that offers such

a high bandwidth, memory partitioning becomes mandatory.

We reorganized the channel RAMs such that the bandwidth

requirements could be fulfilled.

According to the RAM organization, the ASIP can decode

sub-matrix sizes of up to 27× 27. For decoding LDPC codes

with sub-matrix sizes higher than 27, the parity check matrix

can be rearranged according to [16].

Figure 3 shows the proposed data path of FlexiProESL

with twelve pipeline stages. Fetch (FE) and decode (DC) are

the first two pipeline stages. In case an l.diag instruction

is decoded, shift and address values are stored in pipeline

registers. An l.subm instruction sets the parallelism register.

Furthermore, control flags are set according to the instructions.

In the address stage (AD) the APP values of the variable

nodes in the channel memory (CV MEM) are addressed. At

the same time the shift value for shifting back and the read

address are stored in a RAM (A/S Bypass). The shifter stage

(SH) is responsible for shifting the APP values according to

the cyclically shift value defined by the l.diag operation.

A reconfigurable barrel shifter with 27 inputs and outputs

performs this task. The extrinsic messages for the check nodes

are calculated in the EXT stage. Therefore, the message of the

previous iteration has to be subtracted from the APP value,

see Equation 6. In the first iteration the extrinsic information

equals the channel value.The extrinsic information is saturated

to 5 bits and also stored in a bypass FIFO. In the check node

input stage (CNI) the minimum search and a parity check are

performed as required for the Min-Sum algorithm. The check

node output stage (CNO) computes the outgoing messages of

the check nodes. Calculation of new APP values is done in the

following stage by taking into account the bypassed extrinsic

information and the messages of the check node. These APP

values are saturated to 7 bits (SAT) and shifted inverse (SHI)

to the original order. Finally, in the write back stage (WB) the

new APP values are written back to the channel memory.

Two cases exist, in which stalling becomes mandatory:

1) In case of varying check node degrees.

2) In some cases when accessing the same address in the

CV MEM.

In case 1) it is possible that a check node with lower degree

follows a check node with higher degree. Then, the stage CNO

is still busy with generating new messages, but the stage CNI

is already finished. In this case overwriting the determined

values (MIN0 O, IND0 0, MIN1 O, and PAR O) has to be

prevented until the stage CNO has finished the processing of

the previous check node. In case 2) it has to be assured that

reading from an address in the CV MEM is only performed,

when this address is not currently being processed, i.e., it was

not read before without writing new results back. The number

of stall cycles strongly depends on the code and can be reduced

remarkably by rescheduling the check node processing and

the processing sequence of edges inside one check node. We

employed simulated annealing to reschedule the instructions.

IV. RESULTS

The ASIP was modelled in the LISA language using

CoWare’s Processor Designer [17]. The design was verified

with the generated VHDL and C++ simulation models. Syn-

thesis was done with a 65 nm low power low leakage standard

cell library and for Xilinx FPGAs. Table IV shows the results.

Two ASIP instances with LDPC functionality were generated:

• The first one (FlexiProESL) provides only the LDPC

functionality.

• The second one (FlexiChaP) provides full functionality,

i.e., convolutional codes with the Viterbi algorithm (VA),

binary/duo-binary turbo codes (bTC/dbTC), and LDPC

codes.

For comparison reasons different instances of the FlexiTreP

are listed as well.

The logic of FlexiProESL occupies an area of 0.11 mm2,

which is about the same as the FlexiTreP with full function-

ality. 425 MHz are possible for this processor. FlexiChaP

requires an overall area of 0.23 mm2. Due to the limited

resource sharing, the logic area of FlexiChaP is approximately

given by the sum of the area of FlexiProESL and FlexiTreP.

Fig. 3. Pipeline of the proposed LDPC ASIP (FlexiProESL)

The clock frequency is limited to 400 MHz because of the

critical paths in turbo decoding. On an FPGA FlexiProESL

allows for a clock frequency of 132 MHz, while FlexiChaP

is limited to 109 MHz. In FlexiTreP 286 kbits or 0.31 mm2

are typically needed for the memories. Because of the efficient

RAM sharing as proposed in Section III-C the overall memory

area increases only slightly. 0.39 mm2 are required for the

memories when adding LDPC support. The overall area thus

increases from 0.42 mm2 for FlexiTreP to 0.62 mm2 for

FlexiChaP.

With this RAM configuration it is possible to decode binary

turbo codes with up to 6144 information bits, duo-binary turbo

and convolutional codes with up to 8192 information bits (R =
1/2 for convolutional codes).

Name Functionality ASIC (65 nm, 1.10V, 120
◦C) FPGA (Xilinx xc4vlx80-12)

bTC dbTC VA LDPC Size [µm2] Frequency [MHz] Size [Slices] Frequency [MHz]

FlexiTreP X 74.391 450 (max) 4.207 135 (max)

FlexiTreP X X 88.966 415 (max) 5.494 117 (max)

FlexiTreP X X X 109.320 400 (max) 7.012 109 (max)

FlexiProESL X 113.099 425 (max) 8.076 132 (max)

FlexiChaP X X X X 232.346 400 (max) 14.495 109 (max)

TABLE IV
ASIC AND FPGA SYNTHESIS RESULTS FOR VARIOUS INSTANCES OF THE ASIP

Throughput/Mbps Conditions
Algorithm @ 400 MHz

Viterbi 12 - 196 16 - 256 states

binary MAP 1.6 - 186 4 - 256 states

binary TC 18.6 4 - 16 states, 5 iterations

duo-binary TC 18.6 - 37.2 8 or 16 states, 5 iterations

LDPC WiMAX 27.7 - 237.8 10 - 20 iterations

LDPC WiFi 34-5 - 257.0 10 - 20 iterations

TABLE V
CORE PAYLOAD THROUGHPUT OF FLEXICHAP FOR CONVOLUTIONAL,

TURBO AND LDPC CODES.

LDPC codes with a block length of up to N = 3456, a check
node degree of up to 28 and up to 13824 edges are decodable.

Thus, all LDPC codes in the WiMAX and WiFi standards are

supported by the ASIP. Therefore, this RAM configuration of

FlexiChaP allows for decoding of all codes in Table I except

the long block lengths of the binary turbo code in CDMA2000.

Note that the RAM configuration of FlexiChaP can be adapted

to the current requirements.

Table V shows the obtained throughput results. For more

information on the Viterbi, binary MAP, and binary/duo-binary

turbo code throughputs please refer to [6]. As mentioned

before, the number of stall cycles of FlexiChaP for LDPC

decoding strongly depends on the order of the instructions. We

could achieve payload throughputs of up to 237.8 Mbps for the

WiMAX codes and up to 257.0 Mbps for the WiFi codes by

rescheduling the instructions with simulated annealing. These

numbers are obtained when using the largest codeword sizes, a

code rate of 5/6 and 10 iterations. Lowest throughputs are given
for N = 672 for WiMAX and N = 648 for WiFi with R = 1/2
and 20 iterations. Note that more iterations are required

for lower code rates to obtain reasonable communications

performance results.

V. CONCLUSION

In this paper we presented two new ASIPs, namely Flexi-

ProESL and FlexiChaP. FlexiProESL is an ASIP optimized for

layered decoding of structured LDPC codes. FlexiChaP sup-

ports convolutional codes, binary/duo-binary turbo codes, and

LDPC codes. Due to its reconfigurability and flexibility, it sup-

ports a vast number of communications standards. FlexiChaP

requires an overall area of 0.62 mm2 in a 65 nm low power

technology. When running at 400 MHz we obtain throughputs

for the LDPC part of up to 257 Mbps, outperforming other

LDPC ASIPs by an order of magnitude.

ACKNOWLEDGMENT

This work has been supported by the Deutsche Forschungs-

gemeinschaft (DFG) within the Schwerpunktprogramm

“Rekonfigurierbare Rechnersysteme”.

REFERENCES

[1] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner, “SODA: A Low-power Architecture For Software Ra-
dio,” in Proc. 33rd International Symposium on Computer Architecture

(ISCA’06), 2006, pp. 89–101.
[2] IMEC, “Scientific Report 2006: Software Defined Radio Flex-

ible Air Interface,” www.microelektronica.be/ wwwinter/mediacen-
ter/en/SR2006/681340.html, 2006.

[3] J. Glossner, D. Iancu, M. Moudgill, G. Nacer, S. Jinturkar, and
M. Schulte, “The Sandbridge SB3011 SDR Platform,” in Joint IST

Workshop on Mobile Future and the Symposium on Trends in Com-

munications (SympoTIC ’06), 24-27 June 2006, pp. ii–v.
[4] C. Pan, N. Bagherzadeh, A. Kamalizad, and A. Koohi, “Design and

Analysis of a Programmable Single-Chip Architecture for DVB-T Base-
Band Receiver,” in Design, Automation and Test in Europe Conference

and Exhibition, 2003, 2003, pp. 468–473.
[5] M. Hosemann, R. Habendorf, and G. P. Fettweis, “Hardware-Software

Codesign of a 14.4Mbit - 64 State - Viterbi Decoder for an Application-
Specific Digital Signal Processor,” in Proc. IEEE Workshop on Signal

Processing Systems 2003 (SIPS’03), Seoul, Korea, Aug. 2003.
[6] T. Vogt and N. Wehn, “A Reconfigurable Application Specific Instruc-

tion Set Processor for Convolutional and Turbo Decoding in a SDR
Environment,” in Proc. Design, Automation and Test in Europe (DATE

’08), Munich, Germany, Mar. 2008.
[7] IEEE 802.11n, “Wireless LAN Medium Access Control and Physical

Layer specifications: Enhancements for Higher Throughput,” IEEE
P802.11n/D3.0, Sep. 2007.

[8] IEEE 802.16e, “Air Interface for Fixed and Mobile Broadband Wireless
Access Systems,” IEEE P802.16e/D12 Draft, Oct 2005.

[9] L. D. Noi, R. Martini, G. Masera, F. Quaglio, and F. Vacca, “ASIP design
for partially structured LDPC codes,” Electronics Letters, vol. 42, no. 18,
pp. 1048–1049, 2006.

[10] S. Seo, T. Mudge, Y. Zhu, and C. Chakrabarti, “Design Analyis of LDPC
Decoders for Software Define Radio,” in Proc. IEEE Workshop on Signal
Processing (SIPS’07), Shanghai, China, October 2007, pp. 210–215.

[11] B. Bougard, R. Priewasser, L. V. der Perre, and M. Huemer, “Algorithm-
Architecture Co-Design of a Multi-Standard FEC Decoder ASIP,” in
ICT-MobileSummit 2008 Conference Proceedings, Stockholm, Sweden,
Jun. 2008.

[12] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Transactions

on Information Theory, vol. 8, no. 1, pp. 21–28, January 1962.
[13] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,

“Reduced-Complexity Decoding of LDPC Codes,” IEEE Transactions

on Communications, vol. 53, no. 8, pp. 1288–1299, Aug. 2005.
[14] E. Boutillon, J. Castura, and F. Kschischang, “Decoder-first code de-

sign,” in Proc. 2nd International Symposium on Turbo Codes & Related

Topics, Brest, France, Sep. 2000, pp. 459–462.
[15] M. M. Mansour and N. R. Shanbhag, “VLSI architectures for SISO-APP

decoders,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 11, no. 4, pp. 627–650, Aug. 2003.

[16] J. Dielissen, A. Hekstra, and V. Berg, “Low cost LDPC decoder for
DVB-S2,” in Proc. 2006 Design, Automation and Test in Europe (DATE
’06), Munich, Germany, Mar. 2006.

[17] “CoWare,” http://www.coware.com.

