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by symmetry in a restricted class of materials—is at the heart of many devices that permeate

our daily life. Since its discovery in the 1880’s by Pierre and Jacques Curie, the piezoelectric

effect has found use in everything from submarine sonars to cigarette lighters. By contrast,

flexoelectricity—the coupling between polarization and strain gradients, allowed by symmetry

in all materials—was largely overlooked for decades since its first proposal in the late 1950’s,

due to the seemingly small magnitude of the effect in bulk. The development of nanoscale

technologies, however, has renewed the interest in flexoelectricity, as the large strain gradients

often present at the nanoscale can lead to dramatic flexoelectric phenomena. Here we review

the fundamentals of the flexoelectric effect, discuss its presence in many nanoscale systems, and

look at potential applications of this fascinating phenomenon. The review will also emphasize

the many open questions and unresolved issues in this developing field.
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1 Introduction

Flexoelectricity is a property of all insulators whereby they polarize when subject

to an inhomogeneous deformation. The flexoelectric coupling is between polar-

ization and strain gradient, rather than homogeneous strain, and this difference is

crucial to understand both the advantages and the limitations of flexoelectricity

as compared to its close relative, piezoelectricity.

Strain, like stress, does not by itself break centrosymmetry: if a material is

centrosymmetric to start with, it will continue to be centrosymmetric under

a homogeneous deformation. This is intuitively clear: when a plate of a cen-

trosymmetric material is subjected to a homogenous deformation (Figure 1a)

we cannot rationalize the appearance of polarization since there is no preferred

sense of direction for the polarization vector. By contrast, a strain gradient does

break centrosymmetry. Under a strain gradient (e.g., resulting from bending, as

in Figure 1b), the top and bottom surfaces of the plate are no longer equiva-

lent and therefore define a sense of direction for the induced polarization vector.

Mathematically, the flexoelectric effect is controlled by a fourth rank tensor and

is therefore allowed in materials of any symmetry, whereas piezoelectricity is

controlled by a third rank tensor, which is allowed only in materials that are

non-centrosymmetric; their polarization occurs due to the low symmetry of the

material rather than the symmetry-breaking effect of the perturbation.

Flexoelectricity as a strain-gradient-driven breaking of the local centrosymme-

try can also be visualized at the microscopic level. For a simple ionic lattice,

such as that sketched in Figure 1b, a vertical gradient of in-plane strain (in-

duced, for instance, by bending) may cause the central cation to shift up like a

pea inside a pea-pod, breaking the local centrosymmetry and inducing polarity.
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Though this analogy, based purely on steric considerations, is quite crude, it is

actually close to the idea of Bursian and Zaikovskii [1] that the central Ti ion

in the ferroelectric perovskite BaTiO3 must shift up on bending, or, vice-versa,

that bending must appear due to the presence of a Ti ion in the upper side of

the unit cell, which causes it to expand while the “emptier” lower half contracts.

An alternative picture is provided by Harris [2], who noticed that the strain gra-

dient in a shock-wave makes unequal the distances between the atomic planes of

a centrosymmetric material, resulting in a local breaking of centrosymmetry.

The above are all simple ionic pictures, with rigid ions shifting and causing

polarization. The flexoelectric effect is nevertheless a subtle physical phenomenon

and its intuitive vision is often deceptive. For example, the conclusion about the

sign of the flexoelectric response that one might draw for the cartoon shown in

Figure 1b may readily be wrong [3, 4].

Of course, strain gradients affect not only ionic positions — an asymmetric

redistribution of electron density will take place as well, contributing to the total

polarization. The flexoelectricity in graphene [5] is controlled by this mechanism.

The ionic and electronic components of flexoelectricity are complementary, but

in this article we will keep an ionic picture for simplicity. We also exclude from

this article the flexoelectricity of liquid crystals [6] (which is actually the field

where the term “flexoelectricity” was first coined) and biological materials [7–9],

as they originate from different physics and have very different applications.

So why should we care about flexoelectricity? Electromechanical properties

play an essential role in the physics of solids and their practical application. Un-

til recently, when referring to electromechanical properties, one generally meant

piezoelectricity and electrostricition, whereas flexoelectricity was hardly men-
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tioned on account of its relative weakness. However, it is becoming clear that

this neglect is not justified, for several reasons. First, flexoelectricity, in contrast

to piezoelectricity, is a universal property allowed by symmetry in any structure,

and this broadens the choice of materials that can be used for electromechani-

cal sensors and actuators. Second, reduced dimensions imply larger gradients: a

strain difference over a small distance gives a large strain gradient. The small

length scales involved in nanotechnology thus lead to a growing impact of flexo-

electricity, which at the nanoscale may even be competitive with piezoelectricity.

In addition, a number of experiments have reported giant flexoelectric coupling

constants, exceeding theoretical estimates by several orders of magnitude. Fi-

nally, the polar nature of the flexoelectric effect means that strain gradients can

effectively play the role of an equivalent electric field and can be used, for ex-

ample, to switch the spontaneous polarization of a ferroelectric material. By

contrast, switching of polarization by homogeneous strain is generally forbidden

by symmetry and is only possible in special cases, such as when the paraelec-

tric phase is also piezoelectric. What this means is that flexoelectricity is not

just a substitute of piezoelectricity at the nanoscale, but it enables additional

electromechanical functionalities not available otherwise.

Several excellent reviews, focusing primarily on flexoelectricity in bulk mate-

rials, have alredy been published and the reader is referred to Refs. 3, 4, 10–12.

The subject is, however, evolving very rapidly, with many new developments

happening in the last few years, particularly in the area of nanoscale materials

such as thin films. We will therefore focus more attention on recent develop-

ments, both in experiment and theory, as well as on controversial or unresolved

issues. We will begin with a brief introduction to the phenomenological theory
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of bulk flexoelectricity in section 2, where many of the characteristic features of

flexoelectricity will be derived. The concepts discussed here will be referred to

throughout the rest of the review. In section 4, we then turn our attention to

the magnitude of the flexoelectric response and discuss the progress made and

challenges faced in the development of a microscopic theory of flexoelectricity.

Section 5 is devoted to experimental studies of flexoelectricity in both bulk and

nanoscale materials, and section 6 addresses possible applications based on the

flexoelectric effect. Finally, we conclude this review with a brief summary of open

questions and proposed future research in section 7.

2 Basic phenomenological description of the bulk effect

Theoretical work on flexoelectricity dates back to the seminal papers by Mashke-

vich and Tolpygo, who first proposed the effect [13, 14], and Kogan, who formu-

lated the first phenomenological theory [15]. For a historical overview of the early

developments in the theory of flexoelectricity the reader is referred to the com-

prehensive review by Tagantsev [4] as well as the more recent, concise summary

by Maranganti et al. [11]. Here we will briefly summarize the basic phenomeno-

logical description of the direct and converse flexoelectric effects, emphasizing the

differences from piezoelectricity and the analogies between strain gradients and

electric fields.

2.1 Static response

2.1.1 Constitutive Equations In contrast to the piezoelectric response,

the treatment of the flexoelectric effect in the static (e.g. in a bent plate) and

dynamic (in a sound wave) situations generally requires separate treatments [4,
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16]. Let us start with the static case.

We introduce this effect as a linear response of polarization Pi to a strain

gradient ∂ukl/∂xj in the absence of electric field. It is governed by a fourth rank

flexoelectric tensor, µijkl:

µklij =

(

∂Pi

∂ (∂ukl/∂xj)

)

E=0

(1)

where E stands for the electric field. This effect can readily be incorporated into

the Landau phenomenological framework. Despite the need for tensors for the

description of the flexoelectricity, an insight into this phenomenon can be gained

by considering a one-dimensional model involving one component of polarization

and one of strain, where the tensor suffixes can be omitted.

In such a model, the macroscopic description of the static bulk flexoelectric

response can be obtained by generalizing the thermodynamic potential, used for

the description of the piezoelectric response, by introducing a linear coupling

between the polarization and strain gradient and visa versa into the system. In

the most general form, a thermodynamic potential density suitable for such a

description reads

ΦG =
1

2χ
P 2 +

c

2
u2 − ϑPu− f1P

∂u

∂x
− f2u

∂P

∂x
− PE − uσ, (2)

where σ is the relevant stress component. This expansion does not contain anhar-

monic terms (i.e. the electrostriction term is omitted). When non-linear effects

are of interest, these can readily be incorporated into the framework, as done

for example in refs. [17–19]. We note in particular that electrostrictive coupling

terms always allowed by symmetry, and are in fact essential for the description of

perovskite ferroelectrics; for these, the linear piezoelectric term θPu in Equation 2

has to be substituted by the electrostrictive coupling term quP 2 [20].
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If we set to zero the coefficients for the gradient-containing terms, the bulk

equations of state of the material can be found by a simple minimization of po-

tential density (2) with respect to the polarization and strain. Such minimization

leads to the standard linear electromechanical equations of a piezoelectric:

P = χE + eu (3)

σ = eE + cu (4)

where e = χϑ is the so-called strain-charge piezoelectric coefficient. From this we

see that the term ϑPu of expansion (2) controls the bulk piezoelectric response.

We will drop this term in the further discussion so as to see the electromechan-

ical consequences of pure flexoelectricity without piezoelectricity. However, this

discussion can be readily generalized to piezoelectrics by taking this term into

account.

Thus, we address flexoelectricity using the thermodynamic potential density (2)

with ϑ = 0 . Here it is convenient to present ΦG as the sum of two contributions:

ΦG = Φ−
f1 + f2

2

∂(uP )

∂x
(5)

Φ =
1

2χ
P 2 +

c

2
u2 −

f

2
(P

∂u

∂x
− u

∂P

∂x
)− PE − uσ. (6)

where f = f1 − f2 is the flexocoupling coefficient (a tensor in the general case).

Now that the potential density contains gradient terms, to get the equation

of state, one should minimize the thermodynamic potential of the sample as a

whole
∫

ΦGdV (integrating over the volume of the sample), i.e. to apply the

Euler equations ∂ΦG/∂A − d
dx(∂ΦG/∂(∂A/∂x)) = 0, where A stands for the

variables of the problem (in this case P and u). Such minimization yields the

bulk constitutive electromechanical equations in the form:

P = χE + µ
∂u

∂x
(7)
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σ = cu+
µ

χ

∂P

∂x
. (8)

µ = χf. (9)

In Equation 7, the first rhs term describes the dielectric response with the clamped

dielectric susceptibility χ and the second — the flexoelectric response with the

flexoelectric coefficient µ. In Equation 8, the first rhs term describes Hook’s law

with the elastic constant at fixed polarization c and the second — the converse

flexoelectric response. The latter has the physical meaning of a linear response

of stress (or strain) to a polarization gradient in a mechanically free sample and

was studied by Mindlin [21] and others within the mechanics of materials com-

munity, where the theory of (converse) flexoelectricity appears to have developed

independently from that of the condensed matter physics community outlined

here (for details see Ref. 11).

As is clear from Equation 7, the vector f ∂u
∂x (or fijkl

∂uij

∂xl
in full tensor notation)

has the same effect on polarization as the external electric field E. It is sometimes

called the “flexoelectric field” and is a convenient concept when considering the

strength of flexoelectric poling effects. For example, when discussing polarization

switching or poling caused by strain gradients [22–25], it is this quantity that

should be compared with the coercive or built-in electric fields.

It is worth mentioning that the last term in Equation 5 does not contribute

to the bulk constitutive electromechanical equations. This can be concluded

directly from the fact that its contribution to the thermodynamic potential of

the sample can be transformed to an integral over the surface of the sample:

−1
2(f1 + f2)

∫

uPdS. Thus, the thermodynamic potential density (6) provides a

full phenomenological description of the static bulk flexoelectric effect.

The bulk flexoelectric effect describes a strain-gradient-induced polarization
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analogous to the strain-induced polarization of the piezoelectric effect. The con-

stitutive Equations 7–9 also highlight an important feature of the bulk flexo-

electric effect: Equation 9 explicitly shows that the bulk flexoelectric coefficient

µ is proportional to the dielectric permittivity of the material, suggesting that

the flexoelectric response should be enhanced in materials with high dielectric

constants (high-K materials) such as ferroelectrics.

2.1.2 Direct and Converse Flexoelectricity It is instructive to rewrite

the constitutive equations by taking into account that the flexoelectric effect is

relatively weak so that P in Equation 8 can be replaced with χE. This gives a

set of constitutive equations,

P = χE + µ∂u
∂x

σ = µ∂E
∂x + cu

, (10)

suitable for comparison with the those for the piezoelectric response, which for

our one-component 1D model are given by Equations 3 and 4. It is seen that,

although for both effects the direct and converse responses are controlled by

exactly the same coefficient, there exists a strong asymmetry between the converse

and direct flexoelectric effects. Specifically, for the direct effect, in the absence of

an electric field, a strain gradient induces a homogeneous polarization. However,

for the converse effect, in a mechanically free sample, a homogeneous electric

field does not cause a linear deformation (of course, non-linear deformations such

as electrostriction still exist). This is in strong contrast to the “symmetric”

piezoelectric effect, where strain induces polarization and electric field induces

stress as is clear from Equations 3 and 4.

As pointed out in the introduction, however, flexoelectricity is a subtle phe-

nomenon and the aforementioned asymmetry of the bulk flexoelectric effect does
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not lead to an asymmetry of the linear electro-mechanical response of a sam-

ple as a whole. As a matter of fact, an homogeneous electric field does cause

an inhomogeneous deformation for finite size samples, as shall be discussed in

section 3.2).

2.2 Dynamic response

The dynamic bulk flexoelectric response can be described by minimizing the

action
∫ ∫

(T − Φ)dV dt (the integral being taken over the volume of the sample

and time). Here Φ comes from Equation 6 and the kinetic energy density is

defined as [16]

T =
ρ

2
U̇2 +MU̇Ṗ (11)

where ρ and U stand for the density and the acoustic displacement (in the one-

dimensional model u = ∂U/∂x); the dot refers to the time derivative. Such

minimization with respect to polarization and strain leads to equations of motion

for these variables:

P = χE + µ
∂u

∂x
− χM Ü (12)

ρ Ü = c
∂u

∂x
−MP̈ +

µ

χ

∂2P

∂x2
. (13)

In Equation 13, the last two terms play an essential role in the lattice dynamics,

controlling, for example, the specific shape of the dispersion curve for acoustic

phonons in perovskite ferroelectrics [26]. However, for “macroscopic” situations,

where the typical spatial scales are much larger than the lattice constant these

terms can be neglected. Then, eliminating Ü from the set of Equations 12 and

13 we get the following equation for the polarization accompanying the strain

gradient in a moving medium (e.g. in the case of an acoustic wave)

P = χE + (µ+ µd)
∂u

∂x
(14)
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where

µd = −χcM/ρ (15)

is the coefficient describing the dynamic flexoelectric response. The physical

meaning of the dynamic flexoelectric effect is clear from Equation 12: it is the

polarization induced by the acceleration of the medium. It can be shown that

on the microscopic level it can be related to the mass difference of the ions

constituting the material [2, 16].

The M coefficient can be calculated in terms of the dynamic lattice theory [16].

Figure 2 illustrates the static and dynamic contributions to the polarization in

an acoustic wave. As is clear form Equation 15, the dynamic contribution scales

as the bulk dielectric constant of the material, just like the static one. Of key

importance is that these contributions are expected to be of the same order

of magnitude, according to estimates [16]. The dynamic contribution to the

flexoelectric effect makes it qualitatively different from the piezoelectric effect.

For the latter, the polarization and strain in a moving medium are linked by the

same relations as in the static case, i.e. P = χE + eu.

One should mention that the treatment of the dynamic flexoelectric effect in

terms of our 1D model is oversimplified. It gives a qualitatively correct picture of

the flexoelectric effect in a sound wave where the amplitude of the polarization in

the wave is controlled by the sum of static and dynamic contributions. (Remark-

ably, the relation between these contributions is independent of the frequency of

the wave!) However, the typical situation where the time-dependent strain gradi-

ent is created by an external mechanical perturbation, is at least two dimensional.

In this case, the set of tensor equations corresponding to Equations 12 and 13

does not, in general, yield a relationship like (14). Here, an additional treatment
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is needed to evaluate the contribution of the dynamic flexoelectricity to the to-

tal polarization response. It can then be shown that it can be neglected in the

quasi-static regime, i.e. where the smallest dimension of the sample is less than

the acoustic wavelength corresponding to the frequency of the external perturba-

tion. The treatment of this effect is formally similar to that of the piezoelectric

resonance in a finite sample.

The framework formulated above for the one-dimensional model can be readily

generalized to the real three-dimensional situation. Now the coefficients f , µ,

and µd become 4th rank tensors symmetric with respect to the permutation of

the first pair of suffixes. As being of even rank, these tensors can be non-zero

in materials of any symmetry, including amorphous substances. The number

of their independent components is controlled by the symmetry of the material

(see, e.g., Refs. 27–29). For example, this number is 2 for isotropic materials and

3 for non-piezoelectric cubic materials. Since these tensors do not exhibit any

permutation symmetry with respect to the second pair of suffixes, the two-suffix

Voigt notations cannot be consistently introduced. Nevertheless, such two-suffix

representation (e.g., µ11 ≡ µ1111) will be used in this article, as is customarily

done in papers on flexoelectricity.

3 Flexoelectricity in finite samples

Real samples are always finite and thus a complete phenomenological description

must include the effects of surfaces or interfaces. In this section we briefly discuss

two effects associated with the finite size of a real sample. Although our discus-

sion will explicitly focus on the model system of a cylindrically bent capacitor,

the results derived here have profound implications for all finite flexoelectric sys-
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tems including thin films and nanodevices that will be discussed in the following

sections.

3.1 Contribution of surface piezoelectricity

In a finite sample there will always be surface contributions to any effect. Typi-

cally, these are small, being controlled by the surface/volume ratio, but in some

cases they can compete with the bulk contribution of another, weaker effect. For

example, in centrosymmetric materials, due to the symmetry-breaking impact

of the surface, a thin surface layer of thickness λ becomes piezoelectric and can

mimic the bulk flexoelectric response. Let us discuss this effect by considering

the cylindrical bending of the thin parallel-plate capacitor sketched in Figure 3.

The piezoelectric coefficients of the surface layers e on the opposite sides of the

plate should be of opposite signs (as controlled by the opposite orientation of the

surface normal); the same is valid for the bending-induced strains in these layers

and, therefore, the induced polarizations in these layers are of the same sign.

The normal component of the electric displacement D = ǫ0E + P across any

dielectric interface must be preserved, i.e. Dz = Pλ+ǫ0Eλ = Pf+ǫfEf . Thus the

presence of a polarization Pλ within the piezoelectric surface layers must give rise

to internal electric fields in the sample, thus polarising it. For a short-circuited

capacitor, the potential difference ∆φ = 2λEλ + hEf across the capacitor must

vanish. The electric displacement induced by the strain gradient can then be

calculated as [30]

D = eλ
hεf

2λεf + hελ

∂u11
∂x3

, (16)

where ελ = ε0 + χλ is the dielectric constant of the surface layer and ǫf is that

of the bulk. For thin enough surface layers (λ/h << ελ/εf ), Equation 16 yields
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the effective flexoelectric coefficient associated with the surface piezoelectricity:

µeff
1133 = eλ

εf
ελ

. (17)

Thus the polarization of the system arising from surface piezoelectricity is

sensitive to the bulk value of the dielectric constant and, for thin enough surfaces

layers, is independent of the surface/volume ratio.

Finally, to evaluate the size of this surface effect, let us get an estimate for

the effective flexocoupling coefficient f eff ≡ µeff/χf ≈ eλ/ελ. For a conservative

lower-bound estimate, we consider the surface layer to be atomically thin (λ =

0.4 nm). Then using e = 1 C/m2 and ελ/ε0 = 10, we find f eff ≃ 4 V. This

value is about the typical value of the components of the flexocoupling tensor

fijkl ∼1–10 V (see section 4). Thus, we see that the surface piezoelectricity can

readily compete with bulk flexoelectricity.

3.2 Polarization-induced bending

As was mentioned in section 2, the electromechanical constitutive equations (10),

describing the bulk flexoelectric effect suggest an asymmetry between the direct

and converse flexoelectric responses. Specifically, in the absence of electric field, a

strain gradient induces a homogeneous polarization while a homogeneous electric

field does not induce a strain gradient. It was thus argued that, in contrast to

devices based on piezoelectricity, a sensor based on the flexoelectric effect will not

behave as an actuator [10]. Meanwhile, a thermodynamic analysis by Bursian and

Trunov [31] shows that this is not the case and that a plate of centrosymmetric

material should bend under the action of the field due to the flexoelectric coupling,

as experimentally observed in barium titanate platelets in both paraelectric and

ferroelectric phases [1].
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The reason for this discrepancy is that the polarization-induced bending pre-

dicted by Bursian and Trunov is a non-local effect that can only be obtained by

considering the thermodynamics of the finite-size sample as a whole, and thus

is not captured by the “local” theory developed in section 2.1. The finite size

of the sample plays a critical role because the strain energy of a bent plate in-

creases with the cube of its thickness and thus the bending can only be observed

in sufficiently thin samples.

The origin of the polarization-induced bending moment can actually be under-

stood by considering what happens at the sample surface. If the polarization at

the surface of the plate changes continuously from its bulk value P to zero out-

side the plate, then, according to Equation 8, the polarization gradients at plate

surfaces must create some stress via the converse flexoelectric effect, resulting

in forces applied to the opposite surfaces of the plate [30, 32]. The mechanical

moment of these forces causes the bending predicted by the Bursian-Trunov ap-

proach. It can thus be shown that a bending-mode flexoelectric sensor working

as an actuator will, in fact, be characterized by the same effective piezoelectric

constant [30].

For more general boundary conditions the situation is more complex and re-

quires the use of modified mechanical boundary conditions [30,33]. Failure to take

into account these flexoelectricity-induced modification of mechanical boundary

conditions can lead to explicit conflicts with thermodynamics (see, e.g., Ref. 32).

4 Microscopic calculations of bulk flexoelectricity

So far, we have not actually addressed the magnitude of the flexoelectric effect. A

rough, order of magnitude, theoretical estimates of the flexocoupling coefficient
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was first given by Kogan [15]. Subsequently, other approaches were shown to lead

to essentially the same result [2, 34] The most straightforward way to arrive at

Kogan’s estimate is to consider a simple lattice of point charges q with interatomic

spacing a. Let this lattice be distorted by an “atomic scale” strain gradient of

order 1/a and with an “atomic scale” polarization of the order of (ea)/a3. Such

a strong perturbation is expected to modify the energy density in the material,

which is of the order of ∼ q2

4πǫ0a
1
a3
, by a comparable amount. Assigning this

energy change to the flexoelectric term fP ∂u
∂x , yields Kogan’s estimate of the

flexocoupling coefficient

f ≈ q/(4πǫ0a) ∼ 10 V, (18)

using the electronic charge for q and a of the order of an Ångstrom.

Since Kogan’s seminal work of 1964, there have been a number of attempts to

properly quantify the flexoelectric response in solids. On the microscopic level,

static bulk flexoelectricity can be viewed as strain-gradient-driven charge redistri-

bution in the material. Roughly speaking, one can distinguish two contributions

to this redistribution: ionic and electronic. The first attempts to quantify the

ionic contribution were undertaken by Askar et al. who used a shell model for

the lattice dynamics of ionic crystals to calculate a full set of flexocoupling co-

efficients for a number of bi-atomic cubic crystals [35]. A microscopic theory of

ionic flexoelectricity based on a rigid-ion model was then developed by Tagant-

sev in the late 1980’s [4, 16]. The first steps towards a microscopic description

of the electronic contribution to flexoelectricity [36, 37] were recently made by

generalizing the Martin’s approach [38] to piezoelectricity.

To gain some microscopic understanding of the ionic contribution to flexo-

electricity, let us begin by briefly discussing the theory developed by Tagantsev.



Flexoelectric Effect in Solids 19

When a crystalline lattice is deformed, the displacement along i of the nth atom,

wn,i, can be expressed as a sum of two terms:

wn,i =

∫ Rn
j

x0

j

∂Ui

∂xj
dyj + wint

n,i (19)

where x0j and Rn
j are the coordinates of an immobile reference point and that of

the nth atom before the deformation, and summation over the three Cartesian

coordinates is assumed for all repeating suffixes. The first rhs term in Equa-

tion 19 represents the contribution of the unsymmetrized strain ∂Ui/∂xj taken

in the elastic medium approximation, also known as external strain. It the case

of homogenous strain it has a simple meaning: the displacement of each atom is

proportional to the distance to it from a certain immobile point. For a material

where all atoms are centers of inversion, the external strain is sufficient to describe

all atomic displacements caused by a homogeneous deformation. Consider, for

instance, the simple centrosymmetric atomic lattice sketched in Figure 4a with

c = 2a. Under the homogeneous deformation shown in Figure 4b, centrosymme-

try is preserved (δc = 2δa) and the displacements of the white and black atoms

follow the external strain field, which is represented by the deformation of the

blue lattice.

However, if the material is noncentrosymmetric or if the deformation is inho-

mogeneous, the white and black atoms are no longer constrained by symmetry

and may undergo additional internal displacements within the deformed unit cell.

These internal displacements—the difference between the real displacement of an

atom and that calculated from the local external strain—are known as internal

strains [39] and are described by the second rhs term in Equation 19. Figure 4c

shows the same centrosymmetric atomic lattice stretched inhomogeneously along

x1. The longitudinal strain gradient breaks the centrosymmetry and thus the
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displacements of (in this case) black atoms no longer have to follow the external

strain field (the blue lattice).

For a piezoelectric (noncentrosymmetric) material, the internal strains are re-

sponsible for the change in polarization under homogeneous strain and are, to

lowest order, proportional to the macroscopic strain uij = (∂Ui/∂xj+∂Uj/∂xi)/2.

For a centrosymmetric material, the internal strain of the n-th atom is, to lowest

order, proportional to the elastic gradient:

wint
n,j = wflex

n,j ≡ N ikl
n,j

∂uik
∂xl

. (20)

If the body is considered to be made up of point charges Qn (this includes all

charges, not only ions) with the coordinates Rn,i, the response of the polarization

to an inhomogeneous deformation can be found by calculating the variation of

the average dipole-moment density caused by this perturbation

δPi = V −1
fin

∑

n

Qn(Rn,i + wn,i)− V −1
∑

n

QnRn,i (21)

where V and Vfin are the sample volume before and after the deformation. Sub-

stituting Equation 19 into 21 one finds several contributions to the induced polar-

ization (for details of the full expansion the reader is referred to Refs. 16 and 4).

Among these is a term proportional to strain, which is non-zero only in the case

of noncentrosymmetric materials and describes the bulk piezoelectric response.

In addition, there are two terms proportional to the strain gradient. The first of

these describes the bulk flexoelectric effect with a flexoelectric coefficient given

by

µikjl = v−1
∑

n

QnN
ikl
n,j , (22)

where the summation is taken over the ions in a unit cell of volume v. The second

term is termination dependent and describes the surface flexoelectric effect. The
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existence of this effect was recently questioned by Resta [36]. 1 Its contribution,

however, is not expected to be enhanced in high-K materials and is therefore

of minor importance for applications; we will therefore exclude it from further

consideration.

The tensor N ikl
n,j above, which links the internal strains and strain gradients,

can be calculated from the dynamic matrix of the material [16], which in turn can

be obtained from ab initio lattice dynamics simulations. Using this tensor and

the transverse Born ionic charges (obtained, e.g., from Berry-phase calculations)

one can obtain the µ-tensor using Equation 22. This approach was implemented

by Pradeep Sharma and co-workers from the University of Texas to calculate the

flexoelectric coefficients for a number of materials (see Ref. 40 and Table 2).

An alternative way to obtain the µ-tensor consists of direct calculations of

the polarization response in an inhomogeneously deformed crystalline lattice.

In view of the periodic boundary conditions typically required for first principles

calculations, consideration of a periodic distribution of the strain gradient (as the

source of a “static” wave of internal strains) is a reasonable option. Then once

the transverse Born ionic charges are available, the amplitude of the polarization

wave can be found. This approach was directly implemented by Hong et al. [41] in

their calculations for some ferroelectric perovskites (see Table 2). These authors

introduce the static strain wave via fixing the positions of the A-site atoms as

sinusoidal function of the distance, the direction of the atomic displacements

and the modulation direction being parallel to a cubic crystallographic axis, so

that the flexoelectric response related to the µ11 component of the flexoelectric

1This paper also claims that the dynamic contribution to the flexoelectric effect (see sec-

tion 2.2) does not exist either.
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tensor was simulated. One drawback of this approach is that such a simulation

does not provide all the information needed to evaluate this component in view

of the depolarizing-field problem. Specifically, such conditions of the simulation

imply conservation of the longitudinal component of electrical displacement and

the effective coefficient µD extracted from such a simulation is related to the

true coefficient µ via µD = µ/(1 + χ/ε0). Thus, in the case of high-K materials

(like ferroelectric perovskites) with χ >> ε0, the calculated µD does not yield µ

whereas µD/ε0 appears to be close to the flexocoupling coefficient f = µ/χ. In

order to calculate the µ coefficient within this framework, additional simulations

of χ are required.

The depolarizing-field problem was circumvented in finite-temperature sim-

ulations of µ and f tensors by Ponomareva et al. [42]. Here the effect was

addressed by employing Monte Carlo simulations with an ab initio-calculated

effective Hamiltonian; the contribution of the depolarizing energy was deliber-

ately eliminated. A drawback of this work is that, in the ab initio calculations of

f tensors (used also in the Monte Carlo simulations of µ ), only the interaction

between the local dipole and strain inside one unit cell was taken into account,

and such approximation can readily entail some 50% inaccuracy.

A disadvantage of the three aforementioned methods is that the purely elec-

tronic contribution (or “frozen-in” contribution [37]) to bulk flexoelectricity is

missing from these. This is probably a minor drawback when it comes to high-K

materials where it is the ionic contribution that is enhanced and dominates the

total µ-tensor, but clearly a complete theory should incorporate the electronic

contributions also. The first principles calculations of the purely electronic con-

tribution to bulk flexoelectricity have been done by Hong and Vanderbilt [37].
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The concept behind these calculations, stemming form the classical work by Mar-

tin [38], was formulated by Resta [36]. Here the so-called frozen-in contribution

was evaluated by calculating the response of the polarization to lattice distor-

tions with strain gradients in the “elasticity-theory approximation” (no internal

strains).

One should mention that these calculations were also performed under condi-

tions of fixed electrical displacement so that the evaluated “electronic” flexoelec-

tric coefficient is underestimated by a factor of (1 + χel/ǫ0). First principles cal-

culations of the purely electronic contribution to the total flexoelectric response

(including possible surface conditioned contributions) were also performed by

Dumitrica et al [43] and Kalinin and Meunier [5] for carbon systems.

5 Experimental studies of flexoelectricity

5.1 Quantifying flexoelectricity in bulk

The static flexoelectric response is most commonly measured using some variation

of the two methods sketched in Figure 5. The first method consists of dynami-

cally bending the material in a cantilever beam geometry in order to generate a

transverse strain gradient, as shown in Figure 5a. The flexoelectric polarisation

can then be measured by recording the displacement current flowing between the

metallic plates with a lock-in amplifier. In this way the coefficient µ̃12 where

P3 = µ̃12
∂u11
∂x3

can be calculated; here the flexoelectric tensor is expressed using the two-suffix

notation. The cantilever bending method has been used extensively to investigate

flexoelectricity (also referred to as “bending piezoelectricity”) in polymers [44–46]
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and was recently used by Ma and Cross to systematically quantify the flexoelectric

response in a number of perovskite ceramics [47–51]. Variations of the method

involving three- or four-point bending geometries have also been successfully em-

ployed [10,52,53]. A point to remember is that the cross section of a bent beam

is modified due to anticlastic bending (as sketched in Figure 5a), giving rise to

non-zero u22 and u33 components and their corresponding gradients, related to

u11 through the Poisson ratio ν. Thus µ̃12 is actually an effective flexoelectric co-

efficient involving a combination of flexoelectric tensor components that depends

on the precise geometry of the system [53, 54]. In the case of an isotropic bent

beam, for example, µ̃12 = −νµ11 + (1− ν)µ12.

A second method for measuring direct flexoelectricity was developed by Ma and

Cross and involves uniaxial compression of a truncated-pyramid-shaped sample

[10], as illustrated in Figure 5b. The stress σ33 = F/A, generated by the

pair of forces F , is different at the top and bottom surfaces of the truncated

pyramid due to their different areas A, setting up a longitudinal strain gradient

and thus generating a flexoelectric polarisation P3 = µ̃11
∂u11

∂x3
. Again, µ̃11 is

an effective coefficient, which in the case of an isotropic material is related to

the flexoelectric tensor components through µ̃11 = µ11 − 2νµ12. In practice, the

pyramid-compression approach is complicated by the fact that the strain gradient

is strongly inhomogeneous [55] (concentrated mainly at the sample edges) making

it difficult to extract reliable values of µ̃.

Conversely, application of a bias across such a structure gives rise to a non-

uniform field distribution and hence polarization gradients that, in turn, generate

strain in the sample through the converse flexoelectric effect, which can be mea-

sured using interferometric techniques [10,56]. Such measurements always include
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contributions from electrostriction, which usually dominate the signal. However,

the field dependence is different for electrostriction (quadratic) and flexoelec-

tricity (linear) and therefore the two effects can, in principle, be separated. This

method was used by Fu and coworkers to measure the converse flexoelectric effect

and thus estimate the flexoelectric coefficient µ̃11 for BST, which was found to be

in excellent agreement with measurements of the direct flexoelectric effect [56].

A similar method was also used by Hana et al. to study converse flexoelectricity

in PMNPT [57,58].

Extracting the full flexoelectric tensor is nevertheless challenging even for the

simplest cubic dielectrics with only three independent coefficients. Zubko et al.

employed a dynamical mechanical analyser in the three-point bending config-

uration to generate flexoelectric polarisation in non-piezoelectric SrTiO3 single

crystals of different crystallographic orientations. However, pure bending exper-

iments yield only two independent equations for the three flexoelectric tensor

components and thus must be combined with a different method to obtain all

three tensor components [54].

One possibility would be to use the pyramid-compression method illustrated

in Figure 5b. Another, less direct, method involves accurate measurements of

transverse optical phonon frequencies, which are renormalized by the flexoelec-

tric terms and thus can be used quantify the flexoelectric coefficients [17]. This

method, however, will generally give the sum of the static and dynamic responses.

The flexoelectric coefficients for a number of perovskite ceramics are listed in

Table 1. Particularly high flexoelectric coefficients (tens of µC/m and more)

have been measured close to the ferroelectric-to-paraelectric phase transitions

of (Ba,Sr)TiO3, relaxor PMN and (Pb,Sr)TiO3 ceramics, where the dielectric
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constants reach values exceeding 10000–20000. Measurements of the flexoelectric

response as a function of temperature confirm the expected scaling of µ with χ,

as illustrated in Figure 6 for several perovskite compounds in their paraelectric

phases. The exact proportionality between µ and χ predicted by Equation 9,

however, does not always hold, as can be seen most clearly in Figure 6b. Due

to the large differences in dielectric permittivities of different compounds, it is

more instructive to compare the normalized (or flexocoupling) coefficients f =

µ/χ measured in Volts, which were predicted by Kogan to be of the order of

f ≈ q/(4πǫ0a) = 1–10 V (Equation 18) for simple ionic solids.

For all the materials listed in Table 1, the absolute magnitude of the re-

sponse greatly exceeds this simple theoretical estimate. BaTiO3-based ceramics,

in particular, show enormous flexoelectric and flexocoupling coefficients. Such

large flexoelectric coefficients are particularly puzzling as theoretical considera-

tions suggest that flexocoupling coefficients in excess of 10–15 V should make the

perovskite structure unstable to formation of incommensurate phases; this will

be discussed in more detail in section 5.2.5. For PMN-PT, the measured coeffi-

cients were found to vary by orders of magnitude depending on the measurement

method used [57,58].

Experimental data for single crystals are shown in Table 2 together with the-

oretical coefficients calculated using density functional theory. Although direct

comparison with ceramics is difficult due to the scarcity of single crystal data

and the different measurements techniques used in most cases, the flexocoupling

coefficients for single crystals are generally found to be considerably lower. For

SrTiO3—the only monocrystalline material whose full static flexoelectric ten-

sor has been quantified—the magnitude of the flexoelectric response is in good
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agreement with Kogan’s estimate [53,54] (although there is still some uncertainty

about their signs). Neutron and Brillouin scattering measurements on BaTiO3

and KTaO3 single crystals give values of the same order of magnitude. [26,59–61]

It should be noted, however, that all of the values given in Tables 1 and 2 should

be treated as order of magnitude estimates only. Challenges to properly quan-

tifying flexoelectricity arise from difficulties in separating the bulk flexoelectric

response from surface piezo- and flexoelectric contributions as well as dynamic

flexoelectricity. It has been generally assumed that in high-K dielectrics, the

contributions from surface piezoelectricity should not be significant, as they were

not expected to scale with the bulk dielectric constant of the material. This,

however, appears not to be the case, as was discussed in section 3.1 and thus

all the experimental bulk static flexoelectric coefficients may well be affected by

this contribution. Meanwhile, neutron and Brillouin scattering measurements are

affected by the dynamic flexoelectric effect.

We have deliberately excluded polymers and elastomers from Tables 1 and

2 as the nature of the effect is very different in these materials and is beyond

the scope of this review. Nevertheless, it is worth mentioning that the flexibility

of these materials makes them in principle attractive candidates for future flexo-

electric devices and has motivated many studies on flexoelectricity in polymers.

Recently, extremely large flexoelectric coefficients were reported for polyvinyli-

dene flouride (PVDF) thin films by Baskaran et al. [55,62,63], but there is still no

consensus on the best methods for quantifying flexoelectricity in these materials,

leading to very large variations between the values reported for different poly-

mers by different groups [44–46,64,65]. For PVDF alone, the reported coefficients

range from 13 nC/m [65] to 80 µC/m and higher [55, 62,63].
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Quantifying the flexoelectric tensor theoretically has proven to be equally chal-

lenging. Nevertheless, a number of different approaches have been developed to

calculate the flexoelectric coefficients, as reviewed in section 4. The results of

such calculations for a variety of materials are summarized in Table 2.

For SrTiO3, the theoretical and experimental values are of the same order of

magnitude though there is still significant disagreement (including in the signs)

between values obtained using different theoretical methods. For other materials,

notably barium titanate, the disagreement between theory and experiment is

much larger. In all cases, however, the calculations yield f -values comparable to

or smaller than Kogan’s estimate (Equation 18) and thus cannot account for the

large coefficients measured for ferroelectric ceramics.

In summary: despite significant experimental and theoretical effort, reliable

quantification of the flexoelectric response remains challenging. While there is

some convergence on the order of magnitude of the response for some monocrys-

talline oxides, there are still large, unexplained discrepancies between experimen-

tal data on ceramics and single crystals, and equally large differences between

theoretical values obtained using different techniques. The importance of build-

ing an accurate database of flexoelectric tensor components for a wide range of

materials should not be overlooked since, as we shall see next, flexoelectric ef-

fects are ubiquitous at the nanoscale, and must be properly included for accurate

modelling of nanoscale structures and devices.

5.2 Manifestations of the flexoelectric effect in solids

5.2.1 Strain gradients in thin films As we have seen from Tables 1

& 2, the largest flexoelectric coefficients have been measured in ferroelectric
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materials, which tend to have large dielectric constants. Bearing also in mind

that gradients are inversely proportional to size, ferroelectric thin films are thus

the obvious place to look for large flexoelectric effects, as they combine small size

and big permittivity. Indeed, it is in ferroelectric thin films where some of the

most dramatic manifestations of flexoelectricity have been reported.

All thin films are grown on rigid substrates, and stresses normally appear due

to the mismatches in lattice parameters and thermal expansion of the film and the

substrate. The substrate-induced strain state in the films may be homogeneous if

they are sufficiently thin. However, whenever the thickness exceeds some critical

value, it is possible for the films to relieve the stress by dislocating from the

substrate [66] or by twinning if the film is ferroelastic. Both these relaxation

mechanisms are highly inhomogeneous and generate flexoelectric effects.

The effect of strain gradients on the dielectric constant of thin films was stud-

ied by Catalan et al. [18, 67]. Their assumption, based on earlier work by Kim

et al. [68], and consistent with X-ray diffraction analysis [67] was that the mis-

match strain does not relax suddenly at the surface but exponentially through

the film. When the flexoelectricity caused by the exponential strain relaxation is

introduced into the free energy of the system, it causes an orders of magnitude

decrease in the dielectric constant and complete smearing of the dielectric peak at

the ferroelectric Curie temperature. This can be understood by recalling that the

effect of the flexoelectricity is analogous to that of applying an external electric

field (see section 2.1), and external fields decrease the permittivity by saturating

the polarization.

The adverse impact of flexoelectricity on the dielectric constant of thin films

has also been analyzed using atomistic calculations by the group of Sharma [69].
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These authors showed that the gradient arising from intrinsic surface tension

leads to a flexoelectrically-induced lowering of the permittivity that mimics the

well known “dead layer effect” [70]. Thus, even for perfectly coherent thin films

with well matched electrodes, surface flexoelectricity will still act to prevent the

permittivity of the films from being as large as that of bulk samples. Flexoelec-

tricity has also been predicted to increase the critical thickness (or decrease the

critical temperature) for ferroelectricity in thin films [71]. Experimentally, the

connection between surface gradients and polarization was also pointed out by

Scott [72] who showed that surface stresses induced by polishing can cause the

appearance of polar modes in otherwise centrosymmetric single crystals. Kholkin

et al. [73] has also shown that the grain boundaries of polycrystalline SrTiO3 (a

centrosymmetric material) have a piezoelectric response consistent with surface-

gradient-induced flexoelectricity.

5.2.2 Flexoelectric poling and imprint By analogy with electric fields,

strain gradients skew the thermodynamic potential, as illustrated in Figure 7

and may lead to preferential poling of the material. For example, the poling

of quasi-amorphous BaTiO3 upon cooling was reported to be assisted by flex-

oelectricity by the group of Lubomirsky [74]. In ferroelectrics, strain gradients

can lead to imprint—asymmetric polarization-field hysteresis loops. This effect

is expected to be particularly appreciable in ferroelectric thin films where the

misfit strain due to the underlying substrate is relaxed though formation of dis-

locations, giving rise to large strain gradients [75]. Experimentally, the effect of

strain gradients on polarity has been discussed by several authors [22,24,25,76],

and Lee et al. in particular directly showed the correlation between asymmetric

hysteresis loops (and domain population), and strain gradients, measured using
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grazing incidence x-ray diffraction in thin films of YMnO3 (see Figure 7 and

Ref. 24). An extreme manifestation of the effect of flexoelectricity on polarity is

the discovery that strain gradients can be used to actively switch the polarization

of a ferroelectric [22, 25]. This phenomenon is further discussed in section 6.3.

Note that, although flexoelectricity appears to play an important role in a

number of poling phenomena, in many cases [22, 74, 76] the magnitude of the

flexoelectric coefficients required to explain the experimental observations purely

by flexoelectricity exceeds physically reasonable values by several orders of mag-

nitude, suggesting that other contributions also play a role.

5.2.3 Elasticity and lattice dynamics As we have discussed, both the

static and dynamic flexoelectric effects will lead to a modification of the phonon

dispersion curves [26]. This effect has been investigated in single crystals of

SrTiO3 [77] and KTaO3 and was used to estimate the total (static + dynamic)

bulk flexocoupling coefficients for these materials (see Table 2).

Flexoelectricity may also affect the elastic properties of materials and thus

the measurements of the elastic constants. In particular, the electrostatic cost

of generating flexoelectric charge causes a depth-dependent stiffening in nanoin-

dentation experiments, owing to the very inhomogeneous nature of the stress

introduced by a nanoindenter. This effect was studied both experimentally and

theoretically for several materials by the Texas group [78–80].

5.2.4 Polarization-induced bending During the late 60’s and early 70’s,

Bursian and coworkers studied the phenomenon of polarization-induced bending

which we have already touched upon in section 3.2. Arguing that the development

of a polarization should lead to an inhomogeneous deformation of the perovskite

unit cell, the effect was demonstrated by observing the bending of a 2.5 µm-thick
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ferroelectric BaTiO3 plate as its polarization was switched by an applied electric

field (Figure 8a) [1].

By measuring the curvature ζ induced by the electric field E, one can also get

an estimate of the flexoelectric coefficient which is given by

µ̃12 =
ζ

E
·

Gd2

12(1− ν)
(23)

where G is the Young’s modulus, d the crystal thickness and ν the Poisson ratio.

From the data of Bursian and Zaikovskii, reproduced in Figure 8b, we estimate

µ̃12 to be of the order of 0.1–1 µC/m in the paraelectric phase of BaTiO3, close

to the phase transition. Taking the dielectric constant of BaTiO3 to be around

10000 at these temperatures, we obtain a flexocoupling coefficient f̃ ∼1–10 V.

Later, Bursian proposed another manifestation of the converse flexoelectric

effect. For regular 180➦ ferroelectric domain structures, domains of opposite po-

larization would distort in the opposite sense, leading to no net macroscopic

bending of the sample, as sketched in Figure 8c. Again, this effect is expected

to be most pronounced in thin ferroelectric layers. Superlattices composed of al-

ternating ultrathin ferroelectric and non-ferroelectric layers may thus be an ideal

system to observe this phenomenon. Indeed, such inhomogeneous strain distribu-

tions have been predicted via DFT calculations of PbTiO3/SrTiO3 superlattices

by Aguado-Puente and Junquera [81]. These considerations imply that, in thin

ferroelectrics, there may be a strong elastic component to the formation of 180➦

domains [82], usually assumed to be dictated only by the electrostatic boundary

conditions, and may help explain the large coherence lengths for the domains

observed in PbTiO3/SrTiO3 superlattices [81, 83].

5.2.5 Domain boundary flexoelectricity Interfaces, including sur-

faces and domain boundaries, can give rise to a multitude of fascinating physical
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phenomena that are absent from the bulk of the host materials [84–86]. Recent

discoveries of novel functionalities within ferroelectric and ferroelastic domain

walls have generated tremendous excitement within the nanoelectronics commu-

nity [86, 87]. Such domain walls are intrinsically very narrow, and their inter-

nal gradients are therefore intrinsically very large, which, in turn, should lead

to large flexoelectric and flexomagnetic effects (see special topic box on flexo-

magnetism). For example, even for SrTiO3, with its very modest tetragonality

(c/a ≈ 1.00056 below 105 K) [88], the strain gradients within the ferroelastic

domain walls can reach values of the order of 105–106 m−1 [89], which translates

into polarization values of 0.1–1 µC/cm2—larger than the spontaneous polariza-

tion of many multiferroic ferroelectrics. Detailed phenomenological calculations

by Morozovska et al., which take into account the various couplings between

polarization, rotations of the TiO6 octahedra, strain, strain gradients and depo-

larizing fields in a fully self-consistent manner, yield somewhat lower, but still

sizable estimates [19]. As the temperature is reduced below 105 K, the calculated

flexoelectric polarization increases to ∼0.01 µC/cm2 within 90➦ twin boundaries

and to ∼0.1 µC/cm2 in the anti-phase boundaries of SrTiO3. Moreover, at still

lower temperatures (∼50 K for anti-phase boundaries and ∼40 K for twin walls),

a switchable ferroelectric polarization of several µC/cm2 develops due to the bi-

quadratic coupling term ηijklPiPjΦkΦl, where Φ is the order parameter describing

oxygen rotations [17, 19]. The inhomogeneous flexoelectric polarization at such

domain walls may help explain the apparent suppression of the flexoelectric re-

sponse observed in SrTiO3 single crystals below 105 K and attributed to polar

or charged domain walls [53]. Polar domain walls were also recently invoked [90]

to explain the low temperature elastic anomalies of SrTiO3 [91]. Janovec has
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recently remarked that all ferroelastic domain walls must, by symmetry, be polar

(private communication).

The recent discovery of phase coexistence in highly strained BiFeO3 thin films

offers an exciting opportunity for engineering large strain gradients on the nanome-

ter scale. At the phase boundary between the “tetragonal-like” T-phase and

“rhombohedral-like” R-phase, the out-of-plane lattice parameter changes from

∼ 4.1 Å to ∼ 4.6 Å over a distance of ∼ 10 perovskite unit cells (∼ 40 Å) [92],

giving rise to a local strain gradient in excess of 107 m−1 [93]. Interestingly, in

addition to large flexoelectric effects, one may also expect significant flexomag-

netic effects (see special topic box on flexomagnetism and Ref. 94) in this system

as bulk BiFeO3 is both ferroelectric and antiferromagnetic at room temperature.

Zhang et al. have proposed that such flexomagnetic effects at phase boundaries

may be responsible for the enhanced magnetism observed in their mixed phase

BiFeO3 films [93].

Flexoelectricity can also have dramatic consequences for the conductivity of

domain walls—a topic which is currently generating an enormous amount of

interest within the ferroelectrics community [86, 95]. Even in the nominally un-

charged 180➦ ferroelectric domain walls, the flexoelectric effect can lead to the

development of inhomogeneous polarization perpendicular to the domain wall.

This gives rise to an internal depolarizing field that leads to a redistribution of

the free carriers within the semiconducting material and either accumulation or

depletion of carriers around domain walls [96, 97].

Within the Landau-Ginzburg-Devonshire formalism, the description of domain

walls involves the inclusion of the gradient term g
2

(

∂P
∂x

)2
in the free energy ex-

pansion (Equation 6), where g determines the domain wall energy. The effect of
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the flexoelectric coupling is to renormalize this gradient coefficient g → g − f2s,

where s is the elastic compliance [17, 18, 32]. Hence, if f is large enough, the

domain wall energy can become negative, making the material unstable with re-

spect to the development of modulated phases. Borisevich et al. argued that this

is precisely what happens at the ferroelectric-antiferroelectrics phase boundary

in Sm-substituted BiFeO3 thin films [98]. In terms of lattice dynamics theory,

the instability arises from the interaction (or “mode coupling”) between the op-

tical and acoustic phonons, as originally discussed by Axe et al. [26]. For large

enough flexoelectric couplings, the optical branch pushes the acoustic one to zero

frequency at a certain point with q 6= 0 in the Brillouin zone, leading to an

incommensurate phase.

Just like within ferroelastic domain walls, strain gradients are also very large

around dislocations and thus are expected to give rise to large local flexoelec-

tric polarizations. Nanoscale gradients were also proposed to play a role in the

appearance of polarization in relaxors [99].

6 Toward applications of flexoelectricity

6.1 Piezoelectric meta-materials and nanodevices

The revival of flexoelectricity can in part be attributed to the realization of

Fousek, Cross and Litvin [100] that a nanocomposite with built-in shape gra-

dients can produce an effective piezoelectric response irrespective of whether its

constituents are piezoelectric or not. Flexoelectricity can thus be turned from a

nuisance to a useful functional property, opening the applications of piezoelectric-

ity to a whole new class of materials. In 2007, Cross and coworkers filed a patent

for a simple device illustrated in Figure 9a [10,100,101]. It consists of an array
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of truncated dielectric pyramids with a high flexoelectric coefficient, like those

discussed in section 5.1, embedded in another medium (which could simply be air)

and sandwiched between two metallic plates. When the plates are compressed,

a stress gradient is generated in each pyramid, inducing a flexoelectric polariza-

tion and thus an effective piezoelectric response. Devices with dimensions in the

10–100 µm range have been fabricated using BST as the dielectric, and effective

piezoelectric coefficients up to∼ 40 pC/N have been demonstrated, along with the

expected scaling with size [101,102]. A similar type of meta-material was studied

theoretically in the group of P. Sharma [103]. They considered a non-piezoelectric

elastic matrix with nanoscale inhomogeneities (nano-inclusions) which lead to lo-

cal strain gradients. To achieve an effective macroscopic piezoelectric effect, the

shape and distribution of such inhomogeneities must be non-centrosymmetric to

avoid cancellation of local flexoelectric moments. Recently, the group proposed

that even graphene could in principle be made piezoelectric by breaking the cen-

trosymmetry of the hexagonal lattice with nanoscale holes [104].

A piezoelectric composite based on the transverse, rather than longitudinal,

flexoelectric effect is sketched in Figure 9b [105]. The charge generated by

bending the flexoelectric material is collected by metallic strips located at posi-

tions where the strain gradient is maximum. Effective piezoelectric coefficients

of several thousand pC/N, were reported. Although care must be taken when

comparing the effective piezoelectric coefficients of such bending-mode compos-

ites with those of standard bulk piezoelectrics measured under compression, these

results are very promising for future applications of flexoelectric composites.

The expected enhancement of flexoelectricity at the nanoscale has also stim-

ulated theoretical work on piezoelectric nanodevices. The group of Sharma has
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led the field with atomistic calculations on various types of nanostructures, in-

cluding nano-cantilevers, nano-composites and superlattices. For example, they

have shown that flexoelectric effects could as much as double the energy harvest-

ing potential of piezoelectric PZT cantilevers if their thickness could be reduced

down to ∼ 20 nm [106].

The last decade has seen some tremendous advances in the fabrication and char-

acterization of oxide nanocomposites. The regular arrays of dielectric nanopy-

ramids envisaged by Cross et al. have, in effect, been realized by a number of

groups [107,108], as have nano-cantilevers [109], tri-color superlattices [110], buck-

led nano-ribbons [111], nano-tubes and other nano-shapes and nano-composites

where large flexoelectric effects could be observed. The effects of flexoelectricity,

however, have rarely been considered when characterizing such structures [112]

and thus the predicted flexoelectric effects discussed above remain to be tested

experimentally.

6.2 Strain gradient engineering

The use of epitaxial strain to modify the properties of thin films is a mature

area of research [113], and strain engineering has some impressive achievements

to show, from doubling the critical temperature of some superconductors [114]

to turning SrTiO3 into a room temperature ferroelectric [115]. There has been

much less work on strain gradient engineering, but the growing awareness of

flexoelectricity is starting to change this.

An idea proposed by Sharma et al. relies on strain gradients at surfaces or

interfaces between different non-piezoelectric materials [116]. Compositionally

graded superlattices are in fact an older concept [117], so it is surprising that the
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flexoelectric contribution to their performance had not been considered until now.

Strain gradients should give rise to an interfacial flexoelectric dipole, rendering

the material piezoelectric. In a superlattice configuration, such dipoles would

point in opposite directions at neighboring interfaces, leading to a cancellation of

the piezoelectric response. To achieve macroscopic piezoelectricity, the inversion

symmetry must be broken, for example by adding a third component layer to

form so-called tri-color superlattices [118], as illustrated in Figure 9c, or by

having a net compositional gradient between the top and bottom layer of the

film.

A different type of gradient can be engineered by growing films with ferroelastic

twins (domains with alternate directions of spontaneous deformation). Twinning

is a well known strain relaxation mechanism in thin films, where the orienta-

tion and size of the twins can be controlled with the substrate mismatch and

film thickness [119, 120]. Catalan et al. have noticed that the nanotwins that

appear in a clamped film generate strong lateral strain gradients with associ-

ated flexoelectric polarizations of the order of µC/cm2, comparable to the size of

spontaneous ferroelectric polarization in standard perovskite ferroelectrics (see

Figure 10). This lateral flexoelectricity combines with the vertical ferroelectric-

ity to yield a tilted polar vector [121]. The hope is now that, as in morphotropic

phase boundary piezoelectrics, the tilted polarization of twinned films will also

result in enhanced piezoelectricity.

6.3 Mechanical polarization switching

Properly harnessed, flexoelectricity enables a control of polarity its effect is equiv-

alent to that of an external electric field, as explained earlier. In 1969, Bursian
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and coworkers discussed the possibility of ferroelectric switching driven by a strain

gradient and showed that the bending of a few-micron-thick plate of BaTiO3 can

result in the reversal of the sign of its pyroelectric coefficient [76]. The active con-

trol of polarity by strain gradients in thin films was reported by Gruverman et

al., who demonstrated that the polarization state of a ferroelectric Pb(Zr,Ti)O3

capacitor can be reversed by strain gradients generated by bending of the underly-

ing Si substrate [22]. Recently, Lu et al. [25] used the inhomogenous deformation

caused by pushing with the tip of an atomic force microscope in order to switch

the polarization of an ultrathin BaTiO3 film (see Figure 11). As the authors

argue, the conversion of mechanical pressure into readable information is concep-

tually analogous to the functioning of a nanoscopic typewriter. The flexoelectric

switching of polarization has a useful advantage in that it removes the need for

large (coercive) electric fields and thus associated problems such as leakage or

breakdown.

Though most of our discussion has focused on ferroelectric materials, which

tend to display the largest flexoelectric coefficients, flexoelectricity is also highly

relevant to other systems such as ionic conductors. Morozovska et al. have

shown, for example, that flexoelectric effects should play an important role in the

electrotechnical properties of Li-battery materials [122].

7 Unresolved issues and future trends

As Niels Bohr famously said, “prediction is very difficult, especially about the

future”. Anticipating the future research in any field is a tricky and somewhat

futile exercise, but there are obvious gaps that need to be filled, and this is a

good indicator of where research may be or should be concentrating.
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At the time of writing, there is not yet a universal consensus regarding the

size, or even the sign, of the flexoelectric tensor components for any material.

For the best studied one, SrTiO3, there is some convergence regarding the or-

der of magnitude of the coefficients with experimental values being consistent

Kogan’s estimate and some theoretical models. The sign of the coefficients, how-

ever, has not yet been settled, and there is still a significant variation in the

values predicted by different models. For other systems, such as BaTiO3, the

situation is even worse: experimentally, only effective coefficients are available

and the calculations and the measurements disagree by several orders of magni-

tude [41]. Solving the reason for these discrepancies, and finding reliable methods

for measuring flexoelectricity, should be a priority both for experimentalists and

theoreticians alike. We need to build a robust catalogue of flexoelectric coeffi-

cients for all materials of technological interest, so that flexoelectricity can be

reliably incorporated into the calculations of performance at the nanoscale. The

best flexoelectrics may not have been discovered yet and, given the universality

of the effect, their search should not be restricted to oxides.

The many experimental observations discussed in this review clearly highlight

the important role of flexoelectricity in the electromechanical properties of ma-

terials. At the same time, their interpretation in terms of flexoelectricity is often

not straight forward. A number of findings, ranging from measurements of flex-

oelectricity in ceramics to some of the poling effects in ferroelectric and quasi-

amorphous films, suggest values of bulk flexoelectric coefficients that greatly ex-

ceed the criteria for stability of these materials. A clarification of this issue is

crucial to both our fundamental understanding and effective harvesting of flexo-

electricity.
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There have been predictions that flexoelectricity should enable record-breaking

piezoelectric performance at the nanoscale. Yet direct evidence for these is

still scarce; the truncated pyramid composites of Penn State [101] are probably

not small enough, while the twinning-induced flexoelectric rotation of polariza-

tion [121] has not yet been complemented by a direct measurement of the expected

concomitant piezoelectric enhancement due to the difficulties posed by the very

reduced thickness of the epitaxially clamped samples. Meanwhile, the theoretical

nanocantilevers with record piezoelectric performance proposed by the group of

Sharma et al. have not been experimentally realized, though recent developments

in the fabrication of nanotubes, nanorods and other nanoscale objects could make

this a reality in the near future. At present, the only devices that appear to be de-

livering impressive performances are the flexural composites made at Penn State

shown in Figure 9a [105]. We foresee that within the applied physics and mate-

rials engineering community there will continue to be strong drive to demonstrate

the role of flexoelectricity in improved electromechanical energy harvesting. It is

also likely that the recent discovery of flexoelectric switching of polarization [25]

will inspire further research on the mechanical control of polarity.

There are also other, perhaps more peripheral but equally inspiring subjects

for the more adventurous scientists (see special topic box). Flexomagnetism has

been theoretically proposed, but there is no conclusive proof of its existence or

its magnitude, nor of its applications. Large strain gradients inside domain walls

or near dislocations should also lead to enormous flexoelectric effects that have

not received much attention.

The above are but a few suggestions, but this review does not aim to be pre-

scriptive. Rather, we would like to finish by reiterating the reasons why we think
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flexoelectricity is important and likely to grow. It is a universal property of all

materials irrespective of symmetry or composition, and this includes magnetic

and biological materials. It is moreover an effect that grows as device size di-

minishes, being large at the nanoscale and therefore important for understanding

and manipulating the properties of nanodevices. And last, but not least, it is, as

we hope to have shown, still a work in progress, and there are few things more

stimulating to a scientist than an unresolved problem.
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Definitions

Piezoelectricity— linear response of polarization to mechanical strain and vice

versa; possible only in noncentrosymmetric materials.

Electrostriction— contribution to the strain proportional to the square of the

polarization (or the square of an external electric field); possible in any material.

Ferroelectric—piezoelectric material whose piezoelectric tensor’s sign can be

reversed by an external electric field.

(To be placed in the introduction, where the terms are first mentioned.)

Sidebar

Flexomagnetism

Symmetry-wise, the same coupling between strain gradient and polarization is

also allowed between strain gradient and magnetization [32]. The direct flexomag-

netic effect has been theoretically postulated by Lukashev and Sabirianov [94]. An

indirect flexomagnetic effect must also be present in all magnetoelectrics: since in

these materials polarization and magnetization are coupled, any gradient-induced

polarization must indirectly induce some magnetization [123,124].

(To be placed close to section 5.2.5, where it is first mentioned)
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Ceramics

Compound Coefficient Method Value (µC/m) χ/ǫ0 f = µ/χ

BaTiO3 µ̃12(Tc + 3.4 K) CB 50 [51] ∼540

Ba0.67Sr0.33TiO3 µ̃11 PC (0.5 Hz) 150 [10] ∼20000 ∼850

µ̃11 CFE (400 Hz) 120 [56]

µ̃12 CB (1 Hz) 100 [49] ∼420

Ba0.65Sr0.35TiO3 µ̃12 CB ∼ 80 [125] 4100 234

PbMg0.33Nb0.67O3 µ̃12 CB 3–4 [47] ∼13000 ∼26–45

PMN-PT µ̃11 PC (0 Hz) 6–12 [58] 21000 ∼32–65

PC (4–10 Hz) 20–50 [58] ∼110–270

Pb0.3Sr0.7TiO3 µ̃11 PC (0.5 Hz) 20 [10] 13000 170

Pb(Zr,Ti)O3 µ̃12 4PB 0.5 [52] ∼ 2200 25

CB (1 Hz) 1.4 [50] 72

Table 1: Measured experimental coefficients for perovskite

ceramics in the paraelectric phase. Underlined values were

calculated from the measured flexoelectric coefficient and the

experimental dielectric susceptibilities. All values are room

temperature values unless stated otherwise. Measurment

techniques: CB = cantilever bending; PC = pyramid com-

pression; CFE = converse flexoelectric effect; 4PB = four-

point bending.
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Figure 1: Cartoon illustrating the microscopic mechanism of flexoelectricity.
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Figure 2: Illustration of the dynamic flexoelectric effect. An acoustic wave passing

through a medium generates a time-dependent strain gradient which generates

a polar displacement δ of the ions. For an acoustic wave, the acceleration of

the atoms is proportional to the strain gradient and thus, on top of the static

flexoelectric response δs ∝ ∂u
∂x , the acceleration of ions of different masses gives

rise to an additional polar displacement δd ∝ (m1 −m2)
∂u
∂x .
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Figure 3: Surface piezoelectricity. Upon bending, the tensile/compressive strains

in the top/bottom surface layers give rise to a polarization Pλ in a piezoelectric

surface layer of thickness λ. Since the normal component of the electric displace-

ment must remain constant, this surface polarization gives rise to electric fields

Eb and thus a polarization Pb within the non-piezoelectric bulk. The measured

average polarization of the whole structure therefore depends not only on the

dielectric properties of the piezoelectric surface layers but also those of the bulk.
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Figure 4: When uniformly strained along x1, the centrosymmetric lattice in (a)

will deform as shown in (b). All atomic displacements are restricted by symmetry

and will follow the elastic medium approximation (blue lattice). For example, if

the homogeneous strain is u = u11, then δc = uc and δa = ua. However, an

inhomogeneous deformation, lifts this symmetry restriction, and the atomic dis-

placements will not, in general, follow the elastic medium approximation (as

shown for the black atoms in (c)). The difference wint between the actual dis-

placement (δa) and that expected from the elastic medium approximation (ua)

gives rise to internal strain.



62 Zubko, Catalan, Tagantsev

P
f

A

3

11

12

~

x

u
Pf

∂

∂
= µ

x3

u11

(a) (b)

F

F

3

33

11

~

x

u
Pf

∂

∂
= µ

P
f

Figure 5: Methods most commonly used to quantify the flexoelectric response.
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Figure 6: Temperature evolution of the effective longitudinal flexoelectric coef-

ficient and the dielectric permittivity of (a) (Ba,Sr)TiO3 and (b) (Pb,Sr)TiO3

ceramics above the Curie temperature. Inset in (a) shows the linear relationship

between polarization and strain gradient. (c) Temperature evolution of the ratio

of flexoelectric current I and bending displacement z0 (with I/z0 ∝ µ̃12) and

dielectric constant of (100)-oriented crystal of SrTiO3. The anomaly at ∼100 K

is related to ferroelastic domain wall motion in SrTiO3. The inset shows the

linear relationship between polarization and strain gradients for three crystals of

different orientation. (d) A sketch of the perovskite ABO3 structure.



64 Zubko, Catalan, Tagantsev

E
n

e
rg

y

Polarization

0=
∂

∂

x

u

0≠
∂

∂

x

u

Figure 7: The effects of strain gradients in ferroelectric materials can mimic those

of an electric field. Just like an electric field, a strain gradient leads to the skewing

of the ferroelectric double-well potential, favoring one of the two polarization

states. This can lead to imprint—a shift of the ferroelectric hysteresis loop along

the field axis. In Ref. 24 progressively larger strain gradients were induced in

YMnO3 thin films by increasing the oxygen pressure during growth from 10 to

350 mTorr. The effective electric field due to these strain gradients interacts leads

to a reorientation of defect dipoles which in turn cause the observed imprint once

the samples are cooled to room temperature.
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Figure 8: (a) Polarization-induced bending of a 2.5 µm-thick BaTiO3 crystal in

the ferroelectric phase at room temperature [1]. The sample curvature σ exhibits

hysteresis due to the hysteretic response of the ferroelectric polarization. (b)

Field-induced curvature as a function of temperature across the ferroelectric-to-

paraelectric phase transition. (c) Local bending of a polydomain ferroelectric

envisaged by Bursian [82].
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Figure 9: (a) Piezoelectric composite based on longitudinal flexoelectric effect.

(b) Flexure-mode flexoelectric piezo-composite. (c) Piezoelectric composite based

on interface flexoelectricity in a tri-color superlattice.
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Figure 10: Epitaxial clamping of a ferroelastic film to a flat substrate, inhibits

the natural distortions (a) of the ferroelastic domain structure and gives rise to

a highly inhomogeneous strain distribution and therefore to flexoelectric polar-

ization. High resolution transmission electron microscopy allows the positions

of atoms to be determined with sub-Å resolution (b), and thus to map out the

strain (color map in (c)) and polarization distributions (arrows in (c)) within the

ferroelastic domains.
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Figure 11: The “nanotypewriter”. Highly concentrated stress fields under an

AFM tip pressing on the sample surface produce strain gradients that are equiv-

alent to an electric field sufficient to reverse the polarization of a ferroelectric thin

film. Nanometric domains can thus be written by simple mechanical pressure,

without any charge injection.
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