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Abstract: In this study, vibration characteristics of a piezoelectric nanobeam embedded in 

viscoelastic medium are investigated based on nonlocal Euler-Bernoulli beam theory. In 

doing this, the governing equations of motion and boundary conditions for vibration analysis 

are first derived by using Hamilton's principle, where nonlocal effect, piezoelectric effect, 

flexoelectric effect and viscoelastic medium are considered simultaneously. Subsequently, the 

transfer function method is employed to obtain the natural frequencies and corresponding 

mode shapes in closed form for the embedded piezoelectric nanobeam with arbitrary 

boundary conditions. The proposed mechanics model is validated by comparing the obtained 

results with those available in the literature, where good agreement is achieved. The effects of 

nonlocal parameter, boundary conditions, slenderness ratio, flexoelectric coefficient and 

viscoelastic medium on vibration responses are also examined carefully for the embedded 

nanobeam. The results demonstrate the efficiency and robustness of the developed model for 

vibration analysis of a complicated multi-physics system comprising piezoelectric nanobeam 

with flexoelectric effect, viscoelastic medium and electrical loadings.  

Keywords: piezoelectric nanobeam; flexoelectric effect; nonlocal Euler-Bernoulli beam 

theory; viscoelastic medium  

 Introduction 

Piezoelectric nanobeams have various practical applications in smart devices and 
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systems due to their exceptional electromechanical coupling effect [1,2], such as 

nanotransducers, nanoresonators, nanosensors and nanogenerators [3-6]. It is thus essential to 

quantify and understand the vibration behaviors of piezoelectric nanobeams. As a universal 

electromechanical mechanism in all piezoelectric materials, flexoelectricity has been reported 

to have strong influence on the vibration responses of piezoelectric nanobeams [7-9]. As a 

result, the study of flexoelectric effect on vibration responses of embedded piezoelectric 

nanobeams may provide valuable information for the above mentioned potential applications 

of piezoelectric nanobeams.  

Numerous studies have been performed so far by researchers to examine the mechanical 

properties of piezoelectric nanobeams with flexoelectric effect. Based on the flexoelectricity 

theory and strain gradient theory, a size-dependent bending model was developed by Qi et al. 

[10] to investigate the static bending of an electro-elastic bilayer nanobeam. The influence of 

flexoelectric effect on the static bending and free vibration was examined by Yan and Jiang 

[11] for a simply supported piezoelectric nanobeam. In this study, the governing equations of 

motion were derived by using Hamilton's principle and the explicit expressions of deflection 

and natural frequencies were also obtained. A modified couple stress theory and 

Euler-Bernoulli beam theory were proposed by Li and Luo [6] to study the effects of couple 

stress, flexoelectricity and piezoelectricity on vibration characteristics of piezoelectric 

microbeams. In this study, the results showed that the effective bending rigidity of the 

piezoelectric microbeam was hardened due to enhanced flexoelectric effect. Liang et al. [9] 

examined the effects of surface and flexoelectricity on static bending of piezoelectric 

nanobeams based on Euler-Bernoulli beam theory and variational principle. The study 

pointed out that the flexoelectric effect had a momentous influence on the bending rigidity of 

the piezoelectric nanobeam. A micro scale Timoshenko beam model was developed by Yue et 

al. [12] to investigate the static bending and free vibration problems for a piezoelectric 

nanobeam with simply supported boundary conditions. Here, the governing equations of 

motion and related boundary conditions were derived by using the variational principle and 

Hamilton's principle. It is noted that in the above studies the size effect was taken into account 

by considering the flexoelectric effect of piezoelectric nanobeams based on strain gradient 

theory.  
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However, some researchers point out that nonlocal elasticity theory should be 

incorporated to the strain gradient theory for more accurate prediction of mechanical behavior 

of nanostructures [13-15]. On this basis, to include the nonlocal effect in vibration analysis of 

piezoelectric nanobeams, Ebrahimi and Barati [8] investigated the vibration characteristics of 

a flexoelectric nanobeam resting on Winkler-Pasternak elastic foundation based on nonlocal 

elasticity theory. In this study, Hamilton's principle was used to derive the governing 

equations of motion and a Galerkin-based method was applied to obtain the natural 

frequencies. Based on nonlocal Timoshenko beam theory, Ke and Wang [16] derived the 

governing equations and boundary conditions for vibration analysis of piezoelectric 

nanobeams by utilizing Hamilton's principle and computed the natural frequencies for various 

boundary conditions by using differential quadrature method. Nonlocal Timoshenko beam 

theory was also used by Ke et al. [17] to investigated the nonlinear vibration of piezoelectric 

nanobeams, which were subjected to an applied voltage and a uniform temperature change. 

Thermo-electro-mechanical vibration was examined by Ansari et al. [18] for a postbuckled 

piezoelectric Timoshenko nanobeam based on nonlocal elasticity theory. In the study, the 

governing equations of motion were derived using Hamilton's principle and then solved via 

generalized differential quadrature (GDQ) method.  

It is noted that piezoelectric nanobeams are often embedded in a medium in many of 

their nanotechnology applications, such as nanosensors and nanogenerators [5,8,19]. In 

particular, some media employed in the nanotechnology applications normally exhibit 

viscoelastic behavior. To the best of the present authors' knowledge, the vibration responses 

of piezoelectric nanobeams with both flexoelectric effect and nonlocal effect have not been 

reported in the literature when the surrounding viscoelastic medium is taken into account. The 

information, however, is essential for the engineering applications of piezoelectric nanobeams 

in nanotechnology. Hence, the objective of the present work is to study the vibration 

responses of a piezoelectric nanobeam with flexoelectric and nonlocal effects, which is 

embedded in viscoelastic medium and subjected to electrical loadings. Here, the nonlocal 

Euler-Bernoulli beam model is employed to derive the governing equations and a numerical 

approach named the transfer function method (TFM) is proposed to calculate the natural 

frequencies of nanobeams with arbitrary boundary conditions. Subsequently, a detailed 
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parametric study is conducted to investigate the effects of nonlocal parameter, boundary 

conditions, slenderness ratio, flexoelectric coefficient and viscoelastic medium on the 

vibration responses of piezoelectric nanobeams.  

 Mathematical modeling 

Here let us consider a piezoelectric nanobeam with flexoelectric and nonlocal effects, 

which is embedded in viscoelastic medium and subjected to electrical loadings, as shown in 

Fig. 1. The piezoelectric nanobeam is modeled as nonlocal Euler-Bernoulli beam with length 

L, thickness h and width b. The viscoelastic medium is described by a visco-Pasternak 

foundation model, whose Winkler's modulus parameter is kw, Pasternak's modulus parameter 

is kG and damping parameter is ct. A Cartesian coordinate system oxyz is also defined, in 

which the x-, y- and z-axes are taken along the length, width and thickness directions of the 

nanobeam, respectively. To account for the flexoelectric effect, the electric Gibbs free energy 

density Gb can be written as [6]  

   (1) 

where , , ,  and  are dielectric constant tensor, nonlocal electrical 

coupling coefficient tensor, elastic stiffness tensor, piezoelectric coefficient tensor and 

flexoelectric coefficient tensor, respectively. In addition,  and  are electric field 

vectors,  and  are strain tensors,  and  are the gradients of strain and 

electric field.  

 

 

Fig. 1 Schematic of a piezoelectric nanobeam embedded in viscoelastic medium under 
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electrical field.  

 

For an Euler-Bernoulli beam, the displacement field can be expressed as  

   (2) 

where u, v and w are the displacement components along the x-, y- and z-directions on the 

cross section. Accordingly, the components of strains and strain gradients are given as 

   (3) 

Based on nonlocal Euler-Bernoulli beam theory [20,21], the constitutive equations for 

piezoelectric nanobeams with flexoelectric effect can be derived in terms of the electric Gibbs 

free energy density as  

   (4) 

   (5) 

   (6) 

   (7) 

where , ,  and  denote the nonlocal stress, higher-order stress, electric 

displacement and electric quadrupole, respectively. Moreover,  is the nonlocal parameter 

and  denotes the Hamilton arithmetic operator. In addition, the poling direction of the 

piezoelectric material is assumed to coincide with the z-direction and only the electric field in 

the z-direction is considered [12] , i.e.,  

   (8) 

where  is the electric potential. In the absence of free electric charges, Gauss's law 

requires  

   (9) 
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   (10) 

In addition, the boundary conditions of electric potential  are given by 

   (11) 

From Eqs. (3), (10) and (11), the expression of electric potential  can be determined 

as  

   (12) 

where . For simplification of analysis, the high-order nonlocal electrical 

coupling effect in Eq. (12) is neglected by taking , and we have [6]  

   (13) 

Substituting Eq. (13) into Eqs. (4)-(8) leads to  

   (14) 

   (15) 

   (16) 

   (17) 

   (18) 

The governing equations and boundary conditions for vibration analysis of piezoelectric 

nanobeams can be obtained by using Hamilton's principle, i.e.,  

   (19) 
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by the following equations  

   (20) 

   (21) 

   (22) 

here  is the internal bending moment,  is the higher-order axial couple,  is 

the internal stress resultant and  is the reaction of the viscoelastic medium, which can be 

expressed as  

   (23) 

   (24) 

Substituting Eqs. (20)-(22) into Hamilton's principle (19), the governing equation of 

embedded piezoelectric nanobeams with flexoelectric effect can be derived by integrating it 

by parts and setting the coefficients in front of  to zero  

   (25) 

The corresponding boundary conditions also can be obtained as follows  
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From Eqs. (3), (16) and (17), we have  
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   (31) 

in which the dimensionless terms are defined for the sake of convenience and generality as 

follows  

   (32) 

Using these dimensionless terms, the boundary conditions can be rewritten as  

   (33) 

   (34) 

The governing Eq. (31) satisfying the boundary conditions in Eqs. (33) and (34) can be 

solved by assuming the solutions in the form  

   (35) 
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Also, the dimensionless angular frequency  can be given by 
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It should be noted the proposed mechanics model above is a simplified model, which is only 

available for vibration analysis of piezoelectric nanobeams as the electric field and strain 

gradient are homogeneous in the direction of width b. In addition, the governing Eq. (37) is a 

fourth-order ordinary differential equation for , and the coefficients in front of  and its 

derivatives are the functions of . In the next section, the natural frequencies and 

corresponding mode shapes in closed form are calculated for the embedded piezoelectric 

nanobeam with arbitrary boundary conditions by using the TFM.  

 Transfer function method 

To achieve the eigenvalues and frequency response functions, the state vector  

is defined as  

   (40) 

where the superscript "T" denotes matrix transpose. Then the governing Eq. (37) can be 

rewritten in a matrix form as  
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(1) For clamped-clamped (C-C) boundary conditions, we have 

   (45) 

(2) For simply supported-simply supported (S-S) boundary conditions, one has  

   (46) 

where  

   (47) 

(3) For clamped-free (C-F) boundary conditions,  is given by Eq. (45), and 

 can be expressed as  

   (48) 

The solution of Eq. (41) can be calculated as  

   (49) 

Substituting Eq. (49) into Eq. (44), one has  
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According to Eq. (36), the natural frequencies  of the embedded piezoelectric 

nanobeam with flexoelectric effect can be calculated from  

   (53) 

 Numerical results and discussion 

In this section, the formulation achieved above is first validated by comparing the 

obtained results with those available in the literature. This is followed by a detailed 

parametric study of the effects of nonlocal parameter, boundary conditions, slenderness ratio, 

flexoelectric coefficient and viscoelastic medium on the vibration responses of nanobeams. In 

doing this, the material of the piezoelectric nanobeam with flexoelectric effect is assumed to 

be BaTiO3. Unless otherwise stated, the values of some parameters used for numerical 

calculations are given as follows: the length of the nanobeam L=40nm, thickness h=2nm, 

width b=h, mass density ρ=7500kg/m3, elastic stiffness c11=131GPa, flexoelectric coefficient 

µ31=1×10-6C/m, dielectric constant κ33=12.56×10-9C/V·m and piezoelectric coefficient 

e31=-4.35C/m2. These geometrical and material properties of the piezoelectric nanobeam are 

adopted from the papers [6,11,12].  

The dimensionless fundamental frequencies of piezoelectric nanobeams with various 

boundary conditions and slenderness ratios L/h in comparison with those of Ref. [17] are 

listed in Table 1. In this calculation, the values of basic parameters are the same as those in 

the paper [17], and the effects of flexoelectricity and viscoelastic medium are omitted by 

taking µ31=0, kw=0, kG=0 and ct=0. It can be seen from Table 1 that the results of this study are 

in good agreement with those in the literature, which verifies the accuracy and efficiency of 

the proposed method for vibration analysis of piezoelectric nanobeams.  

For future comparisons with other researchers, Table 2 presents the first three 

dimensionless frequencies of piezoelectric nanobeams in the absence of medium (i.e., kw=0, 

kG=0 and ct=0) and in the presence of viscoelastic medium (kw=1GPa/nm, kG=0.25GPa·nm 

and ct=10-4GPa·ns/nm) under typical boundary conditions, including C-F, S-S and C-C. From 

Table 2 we can observe that the imaginary parts related to damping ratios appear in the 

natural frequencies of nanobeams when the viscoelastic medium is considered. The reason for 

w
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this is that the damping effect of the viscoelastic medium is introduced into the system. It also 

can be seen that boundary conditions have strong influence on the real parts of natural 

frequencies but have no effect on the imaginary parts. Furthermore, nonlocal parameter α has 

no effect on the imaginary parts of natural frequencies. This is because that the imaginary 

parts of natural frequencies are only related to the damping of the viscoelastic medium, in 

which nonlocal effect is not taken into account.  

 

Table 1 Dimensionless fundamental frequencies of piezoelectric nanobeams with various 

boundary conditions and slenderness ratios L/h in comparison with those of Ref. [17].  

BCs  
L/h 

6 8 10 16 20 30 

S-S 
Present 0.4571 0.3428 0.2743 0.1714 0.1371 0.0914 

Ke et al. [17] 0.4570 0.3428 0.2742 0.1714 0.1371 0.0914 

C-S 
Present 0.7079 0.5309 0.4248 0.2655 0.2124 0.1416 

Ke et al. [17] 0.7077 0.5310 0.4250 0.2658 0.2127 0.1420 

 

Table 2 First three dimensionless frequencies of piezoelectric nanobeams with different 

boundary conditions and nonlocal parameter α.  

BCs 

In the absence of medium In the presence of viscoelastic medium 

α=0.0 α=0.1 α=0.2 α=0.0 α=0.1 α=0.2 

C-F 

1.5331 1.5399 1.5607 2.9086+0.0319i 2.9121+0.0319i 2.9232+0.0319i 

9.6082 8.6976 7.0049 9.9219+0.0319i 9.0429+0.0319i 7.4294+0.0319i 

26.9033 21.1570 14.4468 27.0176+0.0319i 21.3022+0.0319i 14.6586+0.0319i 

S-S 

4.3036 4.1058 3.6440 4.9835+0.0319i 4.7930+0.0319i 4.4039+0.0319i 

17.2145 14.5761 10.7191 17.3921+0.0319i 14.7853+0.0319i 11.0019+0.0319i 

38.7327 28.1868 18.1521 38.8125+0.0319i 28.2964+0.0319i 18.3218+0.0319i 

C-C 

9.7557 8.8189 7.0870 10.0648+0.0319i 9.1597+0.0319i 7.5069+0.0319i 

26.8912 21.1150 14.4430 27.0067+0.0319i 21.2952+0.0319i 14.6549+0.0319i 

52.7197 35.4709 21.8228 52.7787+0.0319i 35.5585+0.0319i 21.9649+0.0319i 
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Since nonlocal parameter α has no effect on the imaginary parts of natural frequencies 

for embedded piezoelectric nanobeams, only the effect of nonlocal parameter α on the real 

parts of the first three natural frequencies are presented in Fig. 2 to Fig. 4. Here the frequency 

ratios Re(ωNL/ωL) in the vertical axis are used to denote the real part of the ratios ωNL/ωL 

between the two frequencies ωNL and ωL, which are the damped frequencies obtained based 

on the nonlocal and local (classical) mechanics theories, respectively. It can be seen from Fig. 

2 that the real parts of the first frequency ratios ωNL/ωL decrease significantly with rising 

nonlocal parameter α for both S-S and C-C nanobeams but increase slightly for C-F 

nanobeams. This suggests that the rigidity of the embedded nanobeam is reduced due to 

enhanced nonlocal effect for S-S and C-C boundary conditions but hardened for C-F 

boundary conditions. A similar phenomenon was also described by Lei et al. [20] and Lu et al. 

[22]. Furthermore, such an effect of nonlocal parameter α turns out to be less pronounced 

when the viscoelastic medium is considered. For example, as α increases from 0 to 0.2 the 

real parts of the first frequency ratios ωNL/ωL for S-S nanobeams decrease about 15.33% in 

the absence of viscoelastic medium but about 10.99% in the presence of viscoelastic medium. 

The strong influence of boundary conditions on vibration responses of nanobeams also can be 

observed in Fig. 2. The values of the first frequency ratios ωNL/ωL follow the order: 

C-C<S-S<C-F, which implies that the nonlocal effect on the natural frequencies is more 

substantial when the stronger constrains are imposed on the boundaries. The effect of 

nonlocal parameter α on the higher frequency ratios ωNL/ωL is also investigated in Fig. 3 and 

Fig. 4. It can be seen from the figures that the real parts of the higher frequency ratios ωNL/ωL 

decrease significantly with α no matter what boundary conditions are imposed on the 

boundaries. In addition, the nonlocal effect on the higher frequency ratios turns out to be 

much larger than its effect on the fundamental ones. For instance, as α changes from 0 to 0.2 

the real parts of the second frequency ratios ωNL/ωL for S-S nanobeams with and without 

viscoelastic medium decrease about 52.79% and 53.14%, respectively, in Fig. 3 much larger 

than the values shown above for the first frequency ratios. As expected, the effect of 

viscoelastic medium on the frequency ratios becomes less pronounced as the mode number 

increases.  
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Fig. 2 The effect of nonlocal parameter α on 

the real parts of the first frequency ratios 

ωNL/ωL for piezoelectric nanobeams with 

various boundary conditions. 

 

Fig. 3 The effect of nonlocal parameter α on 

the real parts of the second frequency ratios 

ωNL/ωL for piezoelectric nanobeams with 

various boundary conditions. 

 

 

Fig. 4 The effect of nonlocal parameter α on 

the real parts of the third frequency ratios 

ωNL/ωL for piezoelectric nanobeams with 

various boundary conditions.  

 

Fig. 5 The effect of slenderness ratio L/h on 

the imaginary parts of the first dimensionless 

frequencies for S-S piezoelectric nanobeams 

with various flexoelectric coefficient µ31.  

 

Fig. 5 depicts the effect of slenderness ratio L/h on the imaginary parts of the first 

dimensionless frequencies for embedded S-S piezoelectric nanobeams with various 

flexoelectric coefficient µ31. In this case, the thickness of the nanobeam is taken as h=2nm and 

the length L changes to satisfy different slenderness ratio L/h. It can be observed from Fig. 5 

that the imaginary parts of the first dimensionless frequencies increase almost linearly with an 
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increase in slenderness ratio L/h. The possible reason for this is that the damping effect of 

viscoelastic medium introduced into the system becomes more pronounced as the length L 

increases. Both flexoelectric coefficient µ31 and nonlocal parameter α have no effect on the 

imaginary parts of natural frequencies. Hence, the effect of slenderness ratio L/h on the real 

parts of the first three natural frequencies is mainly examined in Fig. 6 to Fig. 8. From the 

figures we can find that the real parts of the first three natural frequencies decrease 

significantly as slenderness ratio L/h increases for various flexoelectric coefficient µ31. This is 

because that the rigidity of the nanobeam is reduced with rising slenderness ratio L/h. In 

addition, the effect of slenderness ratio L/h turns out to be more substantial as flexoelectric 

coefficient µ31 and mode number increase. For example, as L/h increases from 5 to 25 the first 

and the second natural frequencies decrease about 12.73 and 54.93 at µ31=1µC/m but about 

40.91 and 165.17 at µ31=3µC/m. The significant effect of flexoelectric coefficient µ31 also can 

be observed in Fig. 6 to Fig. 8, where the real parts of the first three natural frequencies 

increase significantly with rising µ31. This effect of µ31 is found to be less pronounced as 

slenderness ratio L/h increases. For instance, as µ31 changes from 1µC/m to 3µC/m the real 

parts of the first natural frequencies increase about 34.43 at L/h=5 but only about 6.25 at 

L/h=25.  

 

 

Fig. 6 The effect of slenderness ratio L/h on 

the real parts of the first dimensionless 

frequencies for S-S piezoelectric nanobeams 

with various flexoelectric coefficient µ31. 

 

Fig. 7 The effect of slenderness ratio L/h on 

the real parts of the second dimensionless 

frequencies for S-S piezoelectric nanobeams 

with various flexoelectric coefficient µ31.  
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Fig. 8 The effect of slenderness ratio L/h on 

the real parts of the third dimensionless 

frequencies for S-S piezoelectric nanobeams 

with various flexoelectric coefficient µ31. 

 

Fig. 9 The effect of flexoelectric coefficient 

µ31 on the real parts of the first dimensionless 

frequencies for S-S piezoelectric nanobeams 

with various nonlocal parameter α and 

electric voltage V. 

 

 

Fig. 10 The effect of flexoelectric coefficient 

µ31 on the real parts of the second 

dimensionless frequencies for S-S 

piezoelectric nanobeams with various 

nonlocal parameter α and electric voltage V. 

 

Fig. 11 The effect of flexoelectric coefficient 

µ31 on the real parts of the third 

dimensionless frequencies for S-S 

piezoelectric nanobeams with various 

nonlocal parameter α and electric voltage V. 

 

Fig. 9 to Fig. 11 present the effect of flexoelectric coefficient µ31 on the real parts of the 

first three dimensionless frequencies for embedded S-S piezoelectric nanobeams with various 

nonlocal parameter α and electric voltage V. From the figures it can be observed that 

flexoelectric coefficient µ31 has a strong influence on the natural frequencies of piezoelectric 
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nanobeams. The real parts of the first three dimensionless frequencies increase almost linearly 

as flexoelectric coefficient µ31 increases. This implies that the rigidity of the embedded 

nanobeam is hardened due to enhanced flexoelectric effect. In addition, the effect of 

flexoelectric coefficient µ31 turns out to be more substantial as nonlocal parameter α decreases 

or mode number increases. For example, as µ31 increases from 1µC/m to 2µC/m the first and 

the third natural frequencies with V=10V increase, respectively, about 3.35 and 18.01 at α=0.2 

but about 4.06 and 38.57 at α=0. Compared with nonlocal parameter α, the effect of electric 

voltage V on the sensibility of natural frequencies to flexoelectric coefficient µ31 is small.  

 

 

(a) The real parts of dimensionless 

frequencies. 

 

(b) The imaginary parts of dimensionless 

frequencies. 

Fig. 12 The variation of the first dimensionless frequencies for S-S piezoelectric nanobeams 

with damping parameter ct.  

 

As the final numerical example, the effect of viscoelastic medium on the vibration 

responses of embedded piezoelectric nanobeams is examined. To this end, Fig. 12 and Fig. 13 

show the variations of the first two complex natural frequencies versus damping parameter ct 

for S-S piezoelectric nanobeams. It can be seen from Fig. 12 and Fig. 13 that the real parts of 

the first two natural frequencies remain zero as damping parameter ct is larger than a certain 

value, which is denoted by (ct)crit to represent the critical value of ct for nonoscillatory 

eigenfrequencies. Accordingly, a sharp change also can be observed in the imaginary parts of 

the first two natural frequencies. In addition, the value of (ct)crit increases significantly with an 

increase in Winkler's modulus parameter kw, flexoelectric coefficient µ31 and mode number or 
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a decrease in nonlocal parameter α and electric voltage V. It also can be seen from the figures 

that as damping parameter ct is smaller than (ct)crit, the real parts of the first two natural 

frequencies decrease nonlinearly with rising damping parameter ct, but the imaginary parts 

increase almost linearly.  

 

 

(a) The real parts of dimensionless 

frequencies. 

 

(b) The imaginary parts of dimensionless 

frequencies. 

Fig. 13 The variation of the second dimensionless frequencies for S-S piezoelectric 

nanobeams with damping parameter ct.  
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include:  

� Novelty of this work includes simultaneous consideration of nonlocal effect, 

piezoelectric effect, flexoelectric effect, viscoelastic surrounding medium and electrical 

loadings for nanobeam dynamics.  

� The increase in nonlocal parameter α leads to a significant decrease in the fundamental 

frequencies of both C-C and S-S nanobeams but an increase in those of C-F nanobeams. 

Such effect of α becomes more substantial with rising frequency modes and boundary 

condition stiffness.  

� Flexoelectric coefficient µ31 has a strong influence on vibration responses of nanobeams. 

The natural frequencies of the embedded nanobeams increase significantly as µ31 

increases. This effect of µ31 turns out to be less pronounced as nonlocal parameter α and 

slenderness ratio L/h increase or mode number decreases.  

� Nonlocal parameter α, boundary conditions, flexoelectric coefficient µ31 and mode 

numbers have no effect on the imaginary parts of natural frequencies, which are only 

related to the damping of the viscoelastic surrounding medium.  

� The critical values of damping parameter ct to obtain nonoscillatory eigenfrequencies 

also can be determined by using the proposed method. Moreover, the value of (ct)crit 

increases significantly as kw, µ31 and mode number increase or α and V decrease.  
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