
FlexPS: Flexible Parallelism Control in Parameter Server

Architecture

Yuzhen Huang, Tatiana Jin, Yidi Wu, Zhenkun Cai, Xiao Yan, Fan Yang, Jinfeng Li,
Yuying Guo, James Cheng

Department of Computer Science and Engineering
The Chinese University of Hong Kong

{yzhuang, tjin, ydwu, zkcai, xyan, fyang, jfli, yyguo, jcheng}@cse.cuhk.edu.hk

ABSTRACT

As a general abstraction for coordinating the distributed
storage and access of model parameters, the parameter
server (PS) architecture enables distributed machine learn-
ing to handle large datasets and high dimensional models.
Many systems, such as Parameter Server and Petuum, have
been developed based on the PS architecture and widely
used in practice. However, none of these systems supports
changing parallelism during runtime, which is crucial for the
efficient execution of machine learning tasks with dynamic
workloads. We propose a new system, called FlexPS, which
introduces a novel multi-stage abstraction to support flexi-
ble parallelism control. With the multi-stage abstraction, a
machine learning task can be mapped to a series of stages
and the parallelism for a stage can be set according to its
workload. Optimizations such as stage scheduler, stage-
aware consistency controller, and direct model transfer are
proposed for the efficiency of multi-stage machine learning
in FlexPS. As a general and complete PS systems, FlexPS
also incorporates many optimizations that are not limited to
multi-stage machine learning. We conduct extensive experi-
ments using a variety of machine learning workloads, show-
ing that FlexPS achieves significant speedups and resource
saving compared with the state-of-the-art PS systems such
as Petuum and Multiverso.

PVLDB Reference Format:

Yuzhen Huang, Tatiana Jin, Yidi Wu, Zhenkun Cai, Xiao Yan,
Fan Yang, Jinfeng Li, Yuying Guo, James Cheng. FlexPS:
Flexible Parallelism Control in Parameter Server Architecture.
PVLDB, 11(5): �5���-�57�, 2018.
DOI: https://doi.org/10.1145/3177732.3177734

1. INTRODUCTION
Machine learning nowadays often needs to handle large

datasets and high dimensional models that exceed the stor-
age and processing capability of a single machine. Dis-
tributed machine learning offers a solution by utilizing the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 5
Copyright 2018 VLDB Endowment 2150-8097/18/01.
DOI: https://doi.org/10.1145/3177732.3177734

aggregate capability of a cluster of machines to finish large-
scale tasks under a reasonable time budget.

Our work focuses on a class of widely-used machine learn-
ing models that adopt an iterative-convergent solution, that
is, the model is defined by a set of model parameters which is
refined iteratively until convergence in the training process.
Representatives of these machine learning models include
logistic regression, SVM, matrix factorization, latent Dirich-
let allocation, k-means, and neural networks. Algorithms
such as stochastic gradient descent (SGD), stochastic coor-
dinate descent (SCD), alternating least squares (ALS) [24],
Gibbs sampling [15], and recently proposed variance-reduced
stochastic gradient descent methods [21, 4, 3] are widely
used to train these models.

Among the distributed machine learning frameworks pro-
posed in recent years, the parameter server (PS) abstrac-
tion [38, 12, 10, 26, 30, 43, 45] is a natural fit for iterative
tasks and has been regarded as the de facto solution for dis-
tributed machine learning. PS separates the working units
into workers and servers. The servers serve as a distributed
storage of the model parameters, and the workers update the
model in parallel with their partition of the training data.
A simple key-value-store (KV-store) interface is provided
for users, while details about the underlying system such
as synchronization, and consistency control are abstracted
away from users.

Significant efforts have been made to improve the effi-
ciency and usability of the PS architecture from various
aspects such as consistency control [17, 26], network com-
munication [43], fault tolerance [26], and straggler prob-
lem [16]. Many PS-based systems, including Petuum [43,
45], Parameter Server [26], Multiverso [30], etc., have been
developed and widely used in industry and academia. We
provide a brief introduction to some representative PS sys-
tems and their key design concerns and ideas in Section 2.
However, all these systems overlooked an important feature,
namely flexible parallelism control, which is crucial for the
efficient execution of iterative machine learning algorithms
with dynamic workloads.

Many important machine learning algorithms, including
stochastic gradient descent (with increasing batch size) [7,
8, 14] and the more efficient variance-reduced stochastic
gradient descent methods (e.g., SVRG [21], SVRG++ [4],
Katyusha [3], etc.) have varying workloads during the pro-
cess of their execution. For distributed machine learning
with the PS architecture, it is crucial to set the right paral-
lelism degree that balances between the computation time
and the communication overhead for efficiency. As the work-

566

566 - 679

load is an important factor in determining the parallelism
degree, the varying workloads of these algorithms suggest
that we need to change the parallelism degree dynamically
in the execution process. However, existing PS systems only
adopt a constant parallelism degree (for a task) and do not
support changing the parallelism degree during runtime. As
we will show in Section 3, the lack of flexible parallelism can
hinder the performance of distributed machine learning sig-
nificantly, resulting in not only long running time but also
waste of resources.

To enable flexible parallelism control, we propose a novel
multi-stage abstraction for iterative machine learning
and design a new PS system named FlexPS based on it.
In the multi-stage abstraction, a machine learning task is
viewed as the composition of a series of stages and the stages
can have distinct parallelism degrees. A machine learning
task with dynamic workloads can be mapped to multiple
stages, and each stage adopts its individual parallelism
degree according to its workload. For the efficient execution
of multi-stage machine learning tasks, we introduce system
designs including stage scheduler, stage-aware consistency
controller and data store. We find that small parallelism
degree offers good performance for the types of algorithms
like SGD and SVRG when the batch size is small and the
worker threads can be placed on the same machine. For such
small parallelism cases, we provide optimizations including
local consistency controller, flexible model preparation, and
direct model transfer for efficiency. To eliminate the burden
of setting the parallelism degree of each stage explicitly, we
provide a module in FlexPS that can adjust the parallelism
degree automatically during runtime.

In addition to supporting flexible parallelism, FlexPS is a
general and complete PS system that also supports machine
learning tasks with static workloads as existing PS systems
were designed for. Therefore, optimizations that are not
limited to the support of flexible parallelism, such as cus-
tomizable parameter partition, customizable KV-server, and
repetitive get avoidance, are also incorporated into the sys-
tem design.

We summarize our main contributions as follows.

• We identify the need for flexible parallelism control of
algorithms with dynamic workloads (Section 3). These
algorithms include SGD (which is one of the most com-
monly used algorithms in machine learning) and the
more efficient variance-reduced algorithms.

• We propose a novelmulti-stage abstraction (Section 4),
which not only provides inherent support for flexible
parallelism control but also brings benefits including
data locality and fine-grained scheduling.

• We develop a new PS system (Sections 5), FlexPS, and
devise tailored system designs, such as stage scheduler,
data store and direct model transfer, for the efficient
execution of the multi-stage abstraction. As a com-
plete system, FlexPS also incorporates many optimiza-
tions (Sections 6) for general machine learning.

• We conduct extensive experiments (Section 7) to eval-
uate the performance of FlexPS and compare it with
the state-of-the-art PS systems such as Petuum and
Multiverso on various machine learning tasks. The
results show that FlexPS yields significant perfor-
mance improvement.

2. BACKGROUND
In this section, we give a brief introduction to the PS

architecture and some representative PS systems.

2.1 Parameter Server Architecture
In the PS architecture, there are two types of entities, i.e.,

workers and servers. The model parameters are stored dis-
tributedly in servers, while the training data are partitioned
among workers. Servers provide a KV-store interface for
workers to access the model parameters. Workers use this
interface to read (part of) the model from servers, perform
computation such as calculating stochastic gradient using
(local) training data, and then write the updates back to
servers. Servers aggregate the local updates from workers
to update the global model, for example, servers can aver-
age the stochastic gradients from workers to conduct full
gradient descent.

A key issue in the PS architecture is how to manage the
synchronization of the model replicas in workers. There are
three typical consistency protocols: Bulk Synchronous Par-
allel (BSP) [41], Stale Synchronous Parallel (SSP) [17, 26],
and Asynchronous Parallel (ASP). BSP enforces a global
barrier after each iteration, and thus guarantees that all
updates from the previous iteration can be seen by all work-
ers in the current iteration. Under BSP, distributed machine
learning follows the same execution logic as sequential algo-
rithms on a single machine, making the proof of algorithm
correctness simple. As BSP is prone to the straggler prob-
lem, SSP was proposed by relaxing BSP to allow the fastest
workers to be s iterations ahead of the slowest workers. ASP
completely removes the synchronization requirement and
can be adopted for algorithms such as SGD [32], SCD [28],
and Gibbs sampling [34]. BSP and ASP can be viewed as
special cases of SSP with s = 0 and s = 1, respectively.

2.2 Parameter Server Systems
As a natural abstraction for distributed machine learn-

ing, the PS architecture is the basis of many systems. We
call these systems PS systems and briefly introduce some
representative ones.

Application-specific systems. Initially, the PS archi-
tecture is used for scaling specific machine learning applica-
tions. YahooLDA [38] stores the latent factors distributedly
and enables workers to update them in an ad hoc manner.
DistBelief [12] and Project Adam [10] partition the neu-
ral network weights among the machines and each worker
can read and send updates to a specific part of the weights.
These systems do not target general machine learning tasks
and are often optimized for specific applications.

Parameter Server. Parameter Server [26] is a PS based
general distributed machine learning system that introduces
a number of optimizations for efficiency and scalability. In
Parameter Server, the tasks are conducted in an asyn-
chronous manner to hide communication delay by overlap-
ping communication with computation. A scheduler tracks
the progresses of workers to support various consistency
protocols. It also enables elastic scalability and continuous
fault tolerance with range-based vector clock, two-phase
worker/server management and model replication.

Multiverso. Multiverso [30] is a PS system which serves
as a core module of the Distributed Machine Learning
Toolkit (DMTK) [11] from Microsoft. Multiverso adopts the

567

actor model and separates workers and servers in different
processes for clear programming logic. It enables automatic
pipelining to overlap data loading and training. As a PS
framework, it also provides support for distributed deep
learning systems such as Torch [40] and Theano [2]. Appli-
cations built on top of Multiverso include LightLDA [50] and
Distribtued Word Embedding (DWE). However, Multiverso
does not support the SSP protocol.

Bösen. Bösen [43] is a data-parallel PS system and a
module in Petuum [45]. It adopts the SSP protocol and pro-
vides a table-like client API. A row in the table is the small-
est unit for parameter access. In Bösen, an ML program
is linked with the client library to read/update the model
concurrently. The client library contains a group of back-
ground threads to synchronize the local models/updates
with servers, while the user threads execute the application
logic. For communication, Bösen conducts synchronization
aggressively under the bandwidth budget following the leaky
bucket algorithm [39].

Other PS systems. Besides the aforementioned sys-
tems, there are many other PS systems with diverse char-
acteristics. STRADS [23] extends the PS architecture
to support model-parallel ML by scheduling the param-
eter updates via dependency checking and prioritization.
Poseidon [52] is designed for data-parallel deep learning
on distributed GPUs. FlexRR [16] addresses the strag-
gler problem using a dynamic peer-to-peer reassignment
strategy which enables the fast workers to help the slow
workers. Petuum [45] is a versatile system that contains
Bösen, STRADS and Poseidon as its modules. Angel [5],
developed by Tencent, employs hybrid parallelism which
combines data parallelism with model parallelism. There
are also attempts to improve the convergence rate of the
SSP protocol by assigning weights to the model updates
(generated by different machines) according to their lags
with respect to the current model [20].

The PS architecture is also used in deep learning systems
including MXNet [9] and TensorFlow [1] as the underly-
ing distributed parameter management module. However,
the focuses of PS systems and deep learning systems are
different. PS systems focus on low-level worker-server com-
munication, while deep learning systems provide a high-level
abstraction for users to construct a dataflow graph and focus
on optimizing the graph execution.

In conclusion, existing PS systems have attempted to
improve the usability and efficiency of the PS architecture
from various perspectives including scalability, fault toler-
ance, support of various consistency protocols, addressing
the straggler problem, and good programming interface.
However, in the next section, we will show that an impor-
tant feature, flexible parallelism control, which has not been
studied in existing work, can be exploited to achieve signif-
icant performance improvement in terms of both efficiency
and resource utilization.

3. FLEXIBLE PARALLELISM CONTROL
A fundamental trade-off in PS systems is the computa-

tion time and the communication time. Intuitively, for a
fixed workload, increasing the parallelism degree, i.e., using
a larger number of workers, will reduce the computation
time. However, larger parallelism degree also means more

Algorithm 1 SVRG

Input: Number of epochs S, learning rate ⌘, batch size b.
Initialize: ex0.
1: for s = 1, 2, . . . , S do
2: eµ = 1

n

Pn

i=1
rfi(exs−1);

3: for k = 1, 2, . . . ,m do
4: Pick b samples uniformly at random;

5: erf(xs
k−1) =

1

b

Pb

i=1

⇥
rfi(x

s
k−1)�rfi(exs−1) + eµ

⇤
;

6: xs
k= xs

k−1 � ⌘ erf(xs
k−1);

7: end for
8: xs+1

0 = xs
m;

9: end for

workers need to pull/push the model from/to servers, result-
ing in more network communication and longer communi-
cation time. As the per-iteration delay of iterative machine
learning is the sum of computation time Tp and commu-
nication time Tc

1, most PS systems allow users to set a
parallelism degree that balances between the computation
time and the communication time in order to minimize the
per-iteration delay. However, existing PS systems maintain
a constant parallelism degree in the entire execution process
of a task and do not support changing the parallelism degree
at runtime. This limitation should be addressed because
a large class of machine learning algorithms have dynamic
workloads, and changing the parallelism degree correspond-
ingly is crucial for their efficient execution.

One important algorithm with dynamic workloads is SGD
with growing batch size. SGD is widely used in training a
variety of machine learning models including logistic regres-
sion, support vector machine, neural networks, etc., but it
suffers from oscillation around the optimum. A widely used
fix is to increase the batch size in the learning process [7,
8, 14] and a larger batch size means higher workload. As a
result, the workload varies during the learning process.

Another example is the variance-reduced stochastic gra-
dient descent (VR-SGD) algorithms such as SVRG [21],
SVRG++ [4], and Katyusha [3]. These algorithms came
as a major breakthrough in machine learning as they need
only log 1/✏ iterations to obtain an ✏-accurate solution2 for
smooth and strongly convex problems, while SGD needs 1/✏
iterations. Due to their fast convergence, they are widely
used in machine learning applications [13, 27, 44, 37, 33,
36]. One common characteristic of these algorithms is that
their workloads vary significantly in the process of execu-
tion. We illustrate this fact by SVRG in Algorithm 1. The
algorithm needs to compute the full gradient at the start
of each epoch (i.e., Line 2) by scanning the entire training
dataset. In contrast, only a small number of samples are
used for the following stochastic update steps (i.e., Lines
3-7).

Figure 1 plots the per-iteration delay (i.e., Total), com-
putation time and communication time of the training of
a logistic regression model with SGD against parallelism

1Strictly speaking, this statement is not accurate in a design
that can overlap communication with computation. As a
fix, we consider the time that workers stand idle waiting for
pull/push from/to servers as the communication time.
2Denote the cost function as F (x) and the minimum of F (x)
as F (x?), an ✏-accurate solution x satisfies F (x)�F (x?) ✏.

568

20 40 60 80 100

0

10

20

Parallelism degree k

P
er

-i
te

ra
ti

o
n

d
el

ay
(m

s)

(a) Batch size b = 100

Total Communication Computation

20 40 60 80 100

0

200

400

Parallelism degree k

P
er

-i
te

ra
ti

o
n

d
el

ay
(m

s)

(b) Batch size b = 10000

Figure 1: Per-iteration delay versus parallelism degree (best
viewed in color). The solid lines and dotted lines represent
the actual value and fitted value, respectively.

degrees for batch sizes of 100 and 100003. The results ver-
ify our analysis, that is, the computation time decreases
with the parallelism degree k, while the communication time
increases with k. Moreover, the optimal parallelism degrees
for different workloads (batch size) vary greatly. In our case,
the optimal parallelism degrees for batch sizes of 100 and
10000 are 15 and 45, respectively. The per-iteration delay
curves in Figure 1 are more flat at high parallelism degree,
suggesting that setting a high parallelism degree will not
degrade the per-iteration delay significantly. However, a
considerable amount of resource will be wasted using more
workers. For example, if we set the parallelism degree as 90
for a batch size of 10000, we will end up with a per-iteration
delay 30% longer than the optimum and 2.6x resource con-
sumption.

Limitations of existing PS systems. Existing PS sys-
tems are inefficient in supporting flexible parallelism con-
trol. For these systems, a straightforward way to change
the parallelism degree is to dump the model parameters
to disk, then start a new job with the desired parallelism
degree and reload the model parameters. However, the cost
of disk I/O and task initialization may outweigh the bene-
fits of flexible parallelism control. We tested the parallelism
degree adjustment delay of Multiverso and Bösen by model
dumping, and found that the delay is typically more than
60 seconds 4. Changing the parallelism degree at runtime
can avoid expensive I/O but requires substantial engineer-
ing effort. For Bösen, the consistency controller needs to be
revised to allow the worker threads to register and log out
dynamically. Moreover, many components including com-
munication bus, background worker, and client/server table
need to be notified about the changes in parallelism degree.
For process-based systems such as Multiverso and Parame-
ter Server, adjusting the parallelism degree will involve the
dynamic starting/killing of process, and the context initial-
ization (e.g., data loading, parameter pulling, consistency
controller notification, etc.) for processes can be expensive.

4. MULTI-STAGE ABSTRACTION & API
In this section, we first introduce our multi-stage abstrac-

tion, and then present the programming model of FlexPS
with an example.

3For details of the experiment that produces Figure 1, please
refer to Appendix A in our technical report [18].
4For details of the experiment of measuring the parallelism
degree adjustment delay, please refer to Appendix C in [18].

w1 w2 w3 w4

(a) Traditional

w1 w2 w3 w4

Stage1

Stage2

Stage3

(b) Multi-stage

Figure 2: Single-stage vs. multi-stage

4.1 Multi-Stage Abstraction
In the multi-stage abstraction, a machine learning task

is the composition of a series of stages. A stage runs a
user-defined function (UDF) on a specific set of computing
resources characterized by the number of workers and the
location of these workers (e.g., 10 workers on Node 1 and
5 workers on Node 2). Stage is the basic unit for schedul-
ing, and users can specify the resource allocation (including
the parallelism degree) for each stage. In fact, the tradi-
tional PS architecture can be viewed as a special case of the
multi-stage abstraction in which a task has only one stage.
The execution of a typical task in existing PS systems and
in FlexPS is depicted in Figure 2, which shows that the
multi-stage design offers inherent support for changing the
parallelism degree between stages.

To show how the multi-stage abstraction supports flexi-
ble parallelism control, we illustrate by a machine learning
task that trains a logistic regression model using SVRG in
Algorithm 1. SVRG is a representative of algorithms with
dynamic workloads as its full-gradient step has much higher
workload than the stochastic steps. We can naturally map
this task into two kinds of stages, i.e., the full-gradient stage
and the stochastic stage. The full-gradient stage calculates
the full gradient by scanning the entire training dataset, and
a large number of workers can be assigned to handle the
heavy workload. The stochastic stage updates the model
parameters using gradient estimated on a small batch of
data samples, and thus only a small number of workers are
needed. The logic in Algorithm 1 can be realized by execut-
ing the full-gradient stage and (multiple) stochastic stages
alternatively.

The multi-stage abstraction provides inherent support for
flexible parallelism control. As shown in Section 3, many
machine learning algorithms have varying workloads and
call for dynamic parallelism degree. With the multi-stage
abstraction, we can decompose these algorithms into stages
according to the workloads and set each stage with the
proper parallelism degree.

Apart from flexible parallelism, the multi-stage abstrac-
tion also brings two additional benefits. First, it enables us
to better utilize data locality. If different stages are manip-
ulating different parts of the dataset, they can be assigned
to the machines where the required data reside to avoid
transferring the training data across the network. This is
especially useful for algorithms such as SGD and SVRG, as
their stochastic update steps should be conducted on dif-
ferent partitions of the training dataset to ensure conver-
gence5. Second, it facilitates fine-grained scheduling of mul-

5Although the stochastic update steps are homogeneous in
workload, we can map them to different stages and assign
the stages to different machines to enjoy data locality.

569

tiple tasks, as a stage of a task is much lighter than the task
and the stages of different machine learning tasks can run
simultaneously on a cluster.

Challenges of multi-stage implementation. Although
the multi-stage abstraction has many benefits, implement-
ing it on top of existing PS systems is either difficult or
inefficient. One option is to map each stage to a task, but
handling the transition between the tasks (e.g., ensuring
consecutive tasks can see the same model parameters, reset-
ting the consistency controller, reusing the loaded data, and
so on) can be difficult. Another option is killing/starting
worker threads/processes dynamically. However, it requires
revising many system components and may not be efficient
as explained in Section 3.

More importantly, existing systems lack tailored optimiza-
tions for the multi-stage abstraction. Many important ques-
tions in system design need to be addressed in order to
make multi-stage machine learning efficient. These ques-
tions include (1) how to schedule the stages in an efficient
way, (2) how to facilitate the efficient transition between
stages, and (3) how to reduce the communication overhead.
We present the corresponding optimizations in FlexPS to
solve these questions in Section 5.

4.2 Programming Model
FlexPS adopts a KV-store API similar to existing PS sys-

tems. Two functions, Get(keys) and Put(keys, vals), are
provided for workers to read and update the model param-
eters stored in servers. System details such as consistency
control, communication between workers and servers, and
scheduling are hidden from users. We use SVRG to illus-
trate how to use FlexPS to implement a multi-stage task.

Typically, defining a multi-stage task consists of three
steps as shown in the code snippet below. In Step 1, we
need to define the stages, i.e., what the workers need to do
in each stage. For SVRG, we define two UDFs, fgd lambda
and sgd lambda, for the full-gradient stage and stochastic-
gradient stage, respectively. In fgd lambda, each worker
reads the model parameters and calculates the gradient
using part of the training data, and then updates the full
gradient stored in the servers. In sgd lambda, each worker
reads the model parameters and full gradient, and con-
ducts the variance-reduced update according to Line 5 in
Algorithm 1. In Step 2, we specify the execution order of
the stages and set the parallelism degree. In this example,
the parallelism degrees of the fgd lambda and sgd lambda
stages are set to be 100 and 10, respectively. Finally, Step 3
submits the task to the FlexPS engine for execution.

/* Step 1: define the stages */
auto fgd_lambda = [](Info info) {
// Get model parameter w from the KV-store
// Calculate gradient
// Update full gradient u in the KV-store

};
auto sgd_lambda = [](Info info) {
// Get w and u from the KV-store
// Calculate gradient
// Perform variance-reduced update
// Update w to the KV-store

};

/* Step 2: set the parallelism degree */
MultiStageTask task;
task.SetStages({{fgd_lambda, 100},

DataStore

Stage

Consistency
Controller

KVWorker

Model

KVServer

Stage Stage

Scheduler

DataStore

Stage

Consistency
Controller

KVWorker

Model

KVServer

Stage Stage

...

Figure 3: System Architecture

{sgd_lambda, 10},
});

/* Step 3: submit the task */
engine.SubmitAndWait(task);

Inside each stage, users can use the KV-store API to
access the model parameters in a way similar to other PS
systems. An example is shown below, which uses Get() to
read the required model parameters, performs local com-
putations, and then updates the model parameters using
Put().

auto stage_lambda = [](Info info) {
auto& worker = info.GetWorker();
auto w = worker.Get(/* key vector */);
// Conduct local computation
...
worker.Put(/* key vector */, /* delta vector */);

};

For the efficient execution of multi-stage machine learning
tasks on FlexPS, users should set a good parallelism degree
for each stage. There is no closed-form formula for the opti-
mal parallelism degree as it depends on a number of factors
such as the dataset, the learning task and the setting of the
cluster. However, setting the parallelism degree is not a dif-
ficult task as most existing PS systems also require users
to set the parallelism degree and our experience shows that
one can choose a fairly good parallelism degree with some
experience. To remove the burden of users in setting the
parallelism degree, we provide a method in FlexPS that can
adjust the parallelism degree automatically during runtime,
which will be presented in Section 5.4.

5. ARCHITECTURE AND OPTIMIZATION
In this section, we introduce the system architecture of

FlexPS and present the optimizations that lead to an effi-
cient implementation of the multi-stage abstraction.

5.1 System Architecture
FlexPS adopts a master-slave architecture, as shown in

Figure 3. A scheduler lies at the core of the master, which
is in charge of assigning the stages (of tasks) to slaves by con-
sidering various factors including stage specifications, slave
availability, parallelism degree, and data locality. The sched-
uler also tracks the progresses of the stages and the avail-
able resources on the slaves. Scheduling is conducted either
when the number of available worker threads has exceeded a

570

threshold, or when a certain period of time has passed since
the last scheduling. To utilize the resources in the cluster
efficiently, the scheduler also supports multiple tasks to run
simultaneously.

Each slave machine runs an event loop to poll events
from the master. When new stages are assigned, it spawns
new threads to run the stages according to the specifica-
tions given by the master. It also tracks the progresses of
its stages, and notifies the master when a stage is finished.
A data store module is in each slave to serve the data for
all stages. The slave machines also serve as the parame-
ter servers. Each slave has a KV-store module containing
KV-worker threads and KV-server threads, which are imple-
mented in actor model to allow asynchronous operations.
The functions defined by users link with the KV-worker
threads to issue non-blocking get() and put(). The KV-
server threads are in charge of the parameter management
including consistency control, answering the pull requests
and aggregating the updates.

We implemented the workers as threads rather than pro-
cesses (as in Multiverso) for two reasons. One is that multi-
ple worker threads on the same machine can share the loaded
data and avoid the repetitive push/pull of model param-
eters. We use a process cache and a simple version con-
trol strategy to avoid the repetitive pull of the same model
parameters. The other reason is that the dynamic start-
ing/killing of threads is cheaper than that of processes. To
ensure that a stage can see the model parameters from its
preceding stage, we enable the KV-store to support multiple
tables, and index each table by a unique id. Different stages
of a task can access the same table using table id.

5.2 Optimizations for Multi-stage
Stage scheduler. Different from existing PS systems,

the basic scheduling unit in FlexPS is stage rather than
task. The scheduler decides which stages to run and where
the stages are to be run according to the stage specifica-
tions, scheduling history, and data locality. A stage spec-
ification contains the number of workers in this stage and
(optionally) the placement of these workers. The schedul-
ing history records where each stage was placed, and is kept
by the task scheduler to guide scheduling. If users provide
a complete stage specification, the scheduler will follow the
specification strictly. In case that users do not specify the
location of a stage, the scheduler will decide where to place
it mainly according to two rules. First, the worker threads
of a stage will be allocated on the same slave machine if pos-
sible to reduce the communication overhead, since workers
on the same machine can avoid issuing repetitive push/pull
requests to servers. Second, a stage will be assigned to
the slave that holds (part of) the training data but has the
longest interval since the last scheduling of the task. This is
because the type of algorithms like SGD require a uniform
sampling of the training data, and this rule ensures that
different parts of the training dataset have approximately
the same probability of being processed while enjoying data
locality. If user does not provide the parallelism degree in
the stage specification, FlexPS uses an automatic parallelism
degree setting functionality that will be introduced in Sec-
tion 5.4 to adjust the parallelism during runtime.

To improve resource utilization and overlap communica-
tion with computation, we enable the scheduler to support
the concurrent execution of multiple tasks. The concept of

task dependency is introduced, with which users can specify
the precedent tasks of a task. One example of using task
dependency is that a testing task which depends on a set of
training tasks can perform ensemble learning on the trained
models. Stages from tasks with no dependency can be run
simultaneously.

The “fat” stages, which require a lot of resources such as
the full-gradient stage in SVRG, may suffer from starvation
due to insufficient resources, resulting in long completion
time of a task. To tackle this problem, we introduce the
concept of priority. Each stage is associated with a priority
which increases with its waiting time to be executed. Once
the priority exceeds a threshold, the stage will be put into
a starvation list. The scheduler considers the stages in the
starvation list first and may lock the required resources to
prevent starvation. Users can also specify the priority of
stages. For a delay-sensitive task, users can give all its stages
a high priority to minimize the waiting time.

Stage-aware consistency controller. The consis-
tency controller (in each KV-server) uses an array to record
the progress of the worker threads for consistency control.
Specifically, when the server receives a request, it will check
the array to determine if the request should be blocked
according to the consistency protocol. For example, under
SSP, the consistency controller will block the Get request of
a worker if its progress is too fast. The blocked requests are
buffered and will be replied with the required data when the
slowest worker catches up. In the multi-stage design, during
the transition between stages, the consistency controller
needs to be reset to clear worker progresses in the previous
stage and notified about the worker threads that participate
in the current stage. For this purpose, we make the consis-
tency controller stage-aware. At the beginning of a stage,
each worker thread will send the InitConsistencyController
signal with the stage specification (indicating the number of
workers) to all consistency controllers (each KV-server has
a consistency controller). The consistency controllers will
store the stage specification and reset the worker progress
when receiving this signal. We do not assign the scheduler
to send the InitConsistencyController signal as the cost of
repetitive message sending is low due to the small message
size and it is more natural to let workers communicate with
servers in the PS architecture.

Data store. Each slave machine has an in-memory data
store to hold the training data across stages. The data
store is simply implemented as a two-dimensional static vec-
tor. When loading the training data, each local worker only
writes to a specific row and every worker can access the
whole local data store for training. A typical workload will
first submit a loading task to the scheduler before the train-
ing tasks. The loading task normally uses a large parallelism
degree to speed up the loading process. Multiple tasks can
share the same loaded data and the data are only removed
from the data store when all tasks depending on the data
are finished.

5.3 Optimizations for Small Parallelism
With the multi-stage abstraction, machine learning tasks

are divided into stages with varying workloads and optimal
parallelism degrees. The full-gradient step in SVRG and
large batch size steps (stages) in SGD requires a large paral-
lelism degree. On the contrary, the initial steps of SGD and

571

the stochastic step of SVRG-type algorithms typically use a
small batch size and need a small parallelism degree. Exist-
ing PS systems have proposed optimizations techniques such
as local process cache and asynchronous communication for
large parallelism. We not only incorporate these techniques
in FlexPS, but also optimize for the small parallelism case.

When the optimal parallelism degree is small, we found
that placing all the worker threads on the machine where
the data reside and transferring the model parameters to
the worker threads can reduce the communication overhead
compared with remote parameter push/pull from servers.
Moreover, we can map the stochastic steps of SGD and
SVRG-type algorithms to multiple stages, and allocate the
stages to different machines to ensure a uniform sampling
of the training data and enjoy data locality. We call this
learning/scheduling pattern single-machine mode and pro-
pose optimizations for it as follows.

Local model store and consistency controller. For
single-machine mode, we provide a local model store and
a local consistency controller. Our design is different from
the process-level cache in other PS systems in that we also
move the consistency controller from the server side to the
local process. As all worker threads are within the same pro-
cess, the local consistency controller has enough knowledge
about the progress of the task for consistency management.
With the local model store and consistency controller, all
the updates and consistency controls are performed within
the local process, and thus expensive network communica-
tion with the global KV-store is avoided.

Chunk-based race control. Since multiple threads
may be approved by the local consistency controller and race
for the shared local model, a chunk-based race control strat-
egy is adopted. We organize the local model in chunks and
each chunk is associated with a mutex. The chunk-based
mutex is a balanced granularity between having a mutex for
every single parameter (best concurrency for model access
but high overhead) and having a lock for the whole local
model. The parameters in the chunk-based organization are
indexed so that reading/writing a parameter requires con-
stant time.

Flexible model preparation. We provide two options
for preparing the local model, integral model and on-demand
model. For integral model preparation, all the model param-
eters are pulled from servers at the beginning of a stage.
Although it consumes more space and takes some time to
prepare, the advantage of integral model is that there will
be no communication between the worker threads and the
KV-store during training. If the model is very large or the
available memory is limited, users may choose to use the
on-demand model, which loads only relevant chunks of the
model when needed. In cases many chunks need to be loaded
but memory is limited, we provide different chunk replace-
ment policies to swap some chunks to disks, which are sim-
ilar to the standard cache replacement policies.

Direct model transfer (DMT). To avoid the overhead
of loading/dumping the model from/to the global KV-store
in the transition from one small parallelism stage to another
(shown as Steps 2 and 3 in Figure 4a), FlexPS provides the
DMT option. With DMT, the system directly sends the
model to the machine that will be scheduled for the next
stage, and thus bypasses the global KV-store (i.e., Step 2 in

1

2

KV-store

Slave1 Slave2

3

(a) Without DMT

1

Slave1 Slave2

2

KV-store

DMT

(b) With DMT

Figure 4: Illustration of direct model transfer

Figure 4b). Since a task may not know where it will be run
at the next stage (before the scheduler makes the decision),
the model will be temporarily kept in the current slave until
the next stage of this task is scheduled. When the next stage
is scheduled, the DMT module will be notified and send the
model to the target machine.

Unified programming model. With the optimizations
for single-machine mode, FlexPS also supports the efficient
execution of single-machine programming models, thus pro-
viding a unified programming model for both single-machine
learning and distributed learning. Representative single-
machine learning programming models include sequential,
single process multiple threads (SPMT), and Hogwild! [32].
Sequential uses a single thread to update the model param-
eters and many theoretical researches focus on sequential
algorithms for the ease of analysis. SPMT and Hogwild!
use multiple threads to update the model parameters and
may not follow the same logic as sequential algorithms due
to outdated model parameters and lost updates. However,
algorithms such as SGD and SVRG perform quite well on
SPMT and Hogwild! in practice.

These single-machine programming models can be easily
realized in FlexPS by constraining the worker threads on
one machine and adopting the right consistency protocol
(e.g., ASP for Hogwild!) on the local consistency controller.
Although distributed learning is commonly used to handle
big datasets and large models, single-machine learning is still
important for correctness verification and algorithm calibra-
tion. With a unified programming model for single-machine
learning and distributed learning, FlexPS can significantly
reduce the effort of transforming the single machine valida-
tion implementation of an algorithm into distributed pro-
duction deployment.

5.4 Automatic Parallelism Adjustment
For the efficient execution of a multi-stage machine learn-

ing task in FlexPS, users should set a good parallelism
degree for each stage according to the workload. To remove
the burden of manual parallelism degree setting, we provide
an automatic parallelism adjustment method.

To achieve automatic parallelism adjustment, a stage is
further divided into smaller sub-stages by the scheduler. A
smaller sub-stage here is defined in terms of the number
of iterations; for example, a stage that conducts SGD with
a certain batch size for 100 iterations can be divided into
sub-stages with the same batch size but with only 5 itera-
tions. The scheduler schedules the sub-stages with different
parallelism degrees and monitors the per-iteration delay to
search for the optimal parallelism degree. Once the optimal
parallelism degree is identified, the remaining iterations in
the stage are executed with the optimal degree. Note that
the searching sub-stages also conduct parts of the work from

572

its corresponding stage and thus no computation is wasted.
We set the number of iterations, m, in each sub-stage to
10 to balance between an accurate estimation of the per-
iteration delay (more accurate with larger m) and the cost
of executing the sub-stages with poor parallelism degrees
(higher cost with largerm). We run the searching sub-stages
with increasing parallelism degrees and terminate the search
when a sub-stage has a longer per-iteration delay than its
preceding sub-stage (note that the per-iteration delay curve
is unimodal, as shown in Figure 1).

Our experiments in Section 7 show that the automatic
parallelism adjustment method achieves satisfactory per-
formance. In addition to supporting flexible parallelism,
automatic parallelism adjustment can also be used to set
the parallelism degree for single-stage tasks, which makes
FlexPS easier to use than existing PS systems as they often
require the user to specify the parallelism degree explicitly.
Note that the automatic parallelism adjustment method is
enabled by both the multi-stage abstraction and the opti-
mizations for flexible parallelism. First, the multi-stage
abstraction allows us to divide a stage into sub-stages to con-
duct the searches. Then, the optimizations for flexible par-
allelism give low stage transition delay (in the order of 10ms
as reported in Section 7.4), which helps reduce the overhead
of automatic parallelism adjustment. We also remark that
the method may not be effective for stages with a small num-
ber of iterations; however, typically machine learning tasks
require a large number of iterations.

6. SYSTEM IMPLEMENTATION
In this section, we present some important implementa-

tion aspects of FlexPS including fault tolerance, load bal-
ancing, data preparation, and the KV-store.

6.1 Fault Tolerance and Load Balancing
Fault tolerance. In FlexPS, a simple checkpointing

technique is used for fault tolerance. Users can specify the
checkpoint interval in terms of the number of stages or iter-
ations. At each checkpoint, the KV-store dumps the model
parameters to persistent storage such as network file system
(NFS) or distributed file system (DFS). The scheduler also
saves the current progresses of tasks to disk. When tasks or
machines fail, FlexPS stops the current tasks and restarts
them by loading the model parameters (for the KV-store)
and task progresses (for the scheduler) from the last check-
point. This checkpointing technique is similar to the one
used in Bösen. We did not adopt the replication-based
method in Parameter Server due to its high overhead.

Load balancing. FlexPS supports user-customized
model parameter partition for load balancing. A range
manager keeps track of the model partitioning information
and provides an interface for users to register the customized
partitioning. The KV-workers issue requests according to
the information stored in the range manager. This could
be useful when knowledge about the distribution of model
access pattern is available (e.g., from logs) so that frequently
accessed parameters can be distributed to different servers to
balance the workload. Following certain model partitioning
strategy [35], the convergence for problems such as matrix
factorization can be accelerated. FlexPS also supports parti-
tioning the model to only a subset of the KV-servers, which
can reduce the latency for low-dimensional models (note
that for low-dimensional models, often the whole model is

loaded in each iteration, and thus the latency is high if the
model is loaded from many servers). We will show in the
experiments that user-customized model partition can also
be utilized to enjoy data locality. Compared with FlexPS,
existing systems such as Parameter Server, Bösen and Mul-
tiverso do not support user-customized partitioning for load
balancing.

6.2 The Data Preparation Module
FlexPS supports reading training data from DFS. In a

common DFS, e.g., HDFS, a file is partitioned into blocks
and each block may have a few replicas distributed to mul-
tiple machines. FlexPS has a global file assigner to keep
the block information of all files. The loading threads ask
the file assigner for data blocks, and the file assigner assigns
blocks to the threads according to data locality. In con-
trast, other PS systems like Bösen and Parameter Server do
not have a file assigner and the data could be loaded from
remote machines.

FlexPS provides two ways for preparing the data for train-
ing. The first way is to run a loading task and store the data
in the data store before all the training tasks. When the
dataset is large, loading the entire training dataset can be
time consuming. Thus, the second way is to load the data
on-the-fly while training the model, which is done by an
async reader module with the classical producer-consumer
paradigm. Specifically, the reader threads load the data
from DFS and store the data to a pre-allocated buffer as
long as the buffer is not full. The worker threads consume
the data in the buffer and use the data to train the model.
This design overlaps computation (training) and I/O (load-
ing) to reduce the task completion time.

6.3 The KV-Store Module
The KV-store module of FlexPS adopts several novel

implementation techniques for efficiency.
Local zero-copy communication. In FlexPS, the

local KV-workers and KV-servers are organized in the same
process, so that we can optimize the Get/Put requests
issued to the local KV-servers using the zero-copy func-
tionality, i.e., passing the pointer instead of the data, such
that the pushed or pulled data need not be serialized and
de-serialized. Our experiments show that the zero-copy
communication boosts the local Get/Put performance by 3
times on various workloads.

Repetitive Get avoidance. In the PS architecture,
multiple worker threads in one process may require the same
parameter chunks from the KV-servers. A process cache
is usually used to save the cost of repetitive remote Get.
However, SSP makes the management of the process cache
tricky because different worker threads may have different
progresses (in different iterations) and require different ver-
sions of chunks. In FlexPS, we design a simple linked-list
based strategy for process cache management. In the pro-
cess cache, each chunk (of parameters) is associated with
a linked-list maintaining the pending Get requests for this
chunk, ordered by the requested versions. If a worker needs
a chunk, it first checks the version of this chunk in the pro-
cess cache. If the version is new enough (i.e., satisfying the
staleness requirement), it directly uses the chunk. Other-
wise, it inserts the request into the linked-list. Whenever
a reply for a chunk is received, its linked-list is updated by
erasing all requests that require no newer version than the

573

Table 1: Datasets

Dataset # of samples # of features Sparsity
webspam 350,000 16,609,143 2.24⇥ 10−4

kdd 149,639,105 54,686,452 2.01⇥ 10−7

received version (these requests are also unblocked). A new
remote Get request for a chunk will be issued if its linked-list
is not empty. This simple strategy works well in practice,
while Bösen manages the process cache with a sophisticated
client library using a bunch of background threads.

Customizable KV-server. The KV-store supports
consistency protocols including BSP, SSP, and ASP. The
KV-servers control the consistency and block the fast work-
ers by not responding to their requests until the consistency
requirement is satisfied. Users can customize the data struc-
ture used in the KV-servers to store the model parameters,
and FlexPS has built-in support for data structures includ-
ing dense array, tree map, and hash map. The behavior
of the KV-servers on the updates/model parameters can
also be customized. For example, a user can instruct the
KV-servers to apply addition (to the global model) for each
update to calculate the full gradient or conduct scaling on
the model parameters for regularization.

7. EVALUATION
We evaluated FlexPS on a cluster with 20 machines con-

nected via 1 Gbps Ethernet. Each machine is equipped with
two 2.0GHz E5-2620 Intel(R) Xeon(R) CPU (12 physical
cores in total), 48GB RAM, a 450GB SATA disk (6Gb/s,
10k rpm, 64MB cache), and running on 64-bit CentOS
release 7.2. We mainly used two datasets: webspam6 and
kdd7 which were also used in [22] and [42]. Some statistics
of the two datasets are listed in Table 1, where sparsity is
the average potion of non-zero features in a sample.

We compared FlexPS with two state-of-the-art PS sys-
tems, Multiverso and Petuum (or Bösen, as Bösen is the
module for data-parallel distributed machine learning in
Petuum). As we are mainly interested in the performance
from the system perspective, we adopt the same execution
plan for all the systems to be compared; that is, the num-
ber of phases, the batch size and number of iterations in
each phase, and the learning rate are the same for all the
systems. The primary performance indicator we use is task
completion time, which is the time taken to finish a task
(not including data loading time). We also measure the
total worker time (the sum of the working time of all the
worker threads) of the systems as an indicator of resource
consumption. Although FlexPS can support the concurrent
execution of multiple ML tasks, in our experiments we used
the cluster exclusively for running only one task for each
system to exclude the influence of concurrent tasks.

7.1 Automatic Parallelism Adjustment
To verify the effectiveness of the automatic parallelism

adjustment method in Section 5.4, we trained SVM using
SGD with constant batch size on FlexPS. The batch sizes
were set as 0.1% and 1% of the dataset size for kdd and
webspam, respectively, while the number of iterations were
obtained by dividing the dataset size by batch size. As

6www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
7www.kddcup2012.org/c/kddcup2012-track2/data

0

10

20

30

40

Optimal Auto Random

C
o

m
p

le
ti

o
n

 t
im

e
 (

s)

(a) webspam

0

50

100

150

200

250

Optimal Auto Random

C
o

m
p

le
ti

o
n

 t
im

e
 (

s)

(b) kdd

Figure 5: Validation of automatic parallelism adjustment

Table 2: Total worker time (sec) of SVM with SGD

Optimal Auto Random
webspam 912 999 7,609
kdd 9,448 10,384 36,903

the workload was static, we mapped it to a single stage
in FlexPS. We report the task completion time of Optimal,
Auto and Random in Figure 5. For Optimal, the parallelism
degree was obtained by an offline search over multiples of 20
to minimize the per-iteration delay (the search time is not
included in the task completion time). Auto corresponds to
automatic parallelism adjustment method. Random is the
average task completion time of 20 randomly selected par-
allelism degrees in the range of [20, 400], where 20 is the
number of machines in the cluster and 400 is the number
of cores used. Random simulates the choice of an inexperi-
enced user.

The results show that automatic parallelism adjustment
significantly outperforms Random and the loss compared
with Optimal is marginal. To be more specific, the task com-
pletion time of Auto is only 12% and 11% longer than that
of Optimal for kdd and webspam, respectively. Compared
with Random, Auto achieves a reduction of over 45% in
task completion time. We also report the total worker time
of the three parallelism degree setting schemes in Table 2.
The results show that Auto and Optimal consume similar
amounts of total worker time, while the total worker time of
Random is significantly longer. The results can be explained
as follows. As shown in Figure 1, the task completion time
curve is relatively flat for large parallelism degrees; thus,
using an excessively large parallelism degree will not degrade
task completion time severely, but this will result in much
longer total worker time and waste a lot of resources.

7.2 Comparison on Dynamic Workloads
In this experiment, we compared FlexPS with Petuum

and Multiverso on tasks with dynamic workloads. For the
machine learning models, we tested logistic regression and
support vector machine (SVM). For the learning algorithms,
SGD with growing batch size and SVRG were used. We
included a variant of FlexPS by disabling flexible parallelism
control, denoted by FlexPS-, in the comparison. Similar to
Petuum and Multiverso, FlexPS- only adopts a single stage
and a constant parallelism degree for a task. We optimized
the parallelism degree to minimize task completion time for
Petuum, Multiverso and FlexPS- with an offline search over
multiples of 10.

To demonstrate the benefit of flexible parallelism, we also
included FlexPS-Opt and FlexPS-Auto, which support mul-
tiple stages but adopt different parallelism degree setting
schemes as follows. The parallelism degree of FlexPS-Opt

574

0

300

600

900

1200
C

o
m

p
le

ti
o

n
 t

im
e

 (
s)

(a) webspam

0

400

800

1200

1600

2000

C
o

m
p

le
ti

o
n

 t
im

e
 (

s)

(b) kdd

Figure 6: Completion time of logistic regression with SVRG

Table 3: Total worker time (sec) of logistic regression with
SVRG

FlexPS-Opt FlexPS-Auto FlexPS- Petuum Multiverso
webspam 8855 8862 43020 61840 38680
kdd 25761 25838 111000 - -

was obtained by an offline search over multiples of 10 for
each stage, while the parallelism degrees of FlexPS-Auto
were adjusted during runtime by the automatic parallelism
adjustment method. FlexPS-Opt represents the maximum
performance benefit one can obtain with flexible parallelism,
while FlexPS-Auto demonstrates the performance benefit
users can enjoy without tuning the parallelism degree.

Due to space limitation, we give the detailed parallelism
degrees of each system in Appendix B in [18]. Note that dif-
ferent systems may have varying optimal parallelism degrees
because of the differences in their system designs. Overall,
Multiverso favors small parallelism degree as it uses pro-
cesses as workers and the communication cost grows rapidly
with parallelism degree due to the lack of optimizations
such as repetitive get avoidance. Petuum and FlexPS- usu-
ally adopt larger optimal parallelism degree, which can be
explained by their process cache design.

Logistic regression with SVRG. For SVRG, we set the
batch size b of the stochastic update step in Algorithm 1 as
0.1% and 0.001% of the dataset size for webspam and kdd,
respectively. As the SVRG paper [21] recommends to scan
the dataset twice in one epoch, the number of stochastic
steps in an epoch is set as 2000 and 200000 for the two
datasets, respectively. One epoch was mapped to a full gra-
dient stage and a stochastic update stage in both FlexPS-
Opt and FlexPS-Auto.

We ran SVRG for 10 epochs, and report the average com-
pletion time of an epoch in Figure 6. Petuum and Multiverso
cannot finish in 10,000 seconds for kdd and they are reported
as fractured bars. Compared with Petuum and Multiverso,
FlexPS- achieves a minimum speedup of 2 times in task com-
pletion time, which proves that FlexPS is a more efficient
PS system even without flexible parallelism. Multiverso is
inefficient because it uses individual processes as workers,
and thus multiple workers cannot share the same communi-
cation module and have high overhead when increasing the
parallelism. Petuum’s poor performance is due to its process
cache design, which uses a row as the minimum communi-
cation unit, making sparse access to the model inefficient.
We also note that the process cache is a fundamental design
in Petuum and cannot be disabled. FlexPS, on the other
hand, can also support sparse access to model efficiently.

Compared with FlexPS-, FlexPS-Opt reduces the task
completion time by 44% and 41% for kdd and webspam,
respectively, because of its support of flexible parallelism.

0

100

200

300

400

500

C
o

m
p

le
ti

o
n

 t
im

e
 (

s)

(a) webspam

0

400

800

1200

1600

2000

C
o

m
p

le
ti

o
n

 t
im

e
 (

s)

(b) kdd

Figure 7: Completion time of SVM with SGD

Impressively, FlexPS-Auto achieves a task completion time
similar to FlexPS-Opt without any manual tuning of paral-
lelism degree. To better demonstrate the benefits of flexible
parallelism, we report the total worker time of the systems
in Table 3. The results show that FlexPS- spends more than
4 times of total worker time compared with FlexPS-Opt and
FlexPS-Auto, which shows that flexible parallelism can sig-
nificantly reduce resource consumption.

SVM with SGD. We trained SVM using the SGD algo-
rithm in [32], which exploits the update pattern of sparse
datasets for speedup. We partitioned the SGD algorithm
into three phases. For webspam (kdd), the batch sizes are
0.1%, 1%, 10% (0.01%, 0.1%, 1%) of the dataset size. In
each phase, we scanned the dataset once, and thus the num-
ber of iterations in each stage was obtained by dividing the
dataset size by the batch size.

The task completion time of the systems is reported in
Figure 7. Due to the row design mentioned earlier, Petuum
performs the worst among the systems. For kdd, its task
completion time exceeds 10,000 seconds. Compared with
Multiverso and Petuum, FlexPS- achieves more than 47% of
reduction in task completion time for webspam due to the
optimizations in Section 6. Thanks to flexible parallelism,
FlexPS-Opt provides another 57% and 34% of reduction in
task completion time over FlexPS- for the two datasets,
respectively. Similar to the case with SVRG, FlexPS-Opt
and FlexPS-Auto have almost the same task completion
time. We also report the total worker time of the systems
in Table 4, which shows that FlexPS-Opt and FlexPS-Auto
only spend less than 50% of the total worker time compared
with FlexPS-, and only 10% in the best case.

An interesting phenomenon is that FlexPS-Auto spends
less total worker time than FlexPS-Opt, which is because
we searched the parallelism degree to minimize per-iteration
delay rather than the total worker time for FlexPS-Opt.
Moreover, Multiverso spends considerably less total worker
time than FlexPS- as it uses much smaller parallelism as
shown in Table 6 of Appendix B in [18]8. Note that FlexPS-
Opt and FlexPS-Auto outperforms Multiverso in both task
completion time and total worker time.

The experimental results demonstrate that flexible par-
allelism achieves significant performance improvements in
terms of both task completion time and total worker time.
In addition, the results also show that FlexPS is a more effi-

8Using smaller parallelism degree helps in reducing total
worker time as the amount of communication is reduced.
Intuitively, the optimal total worker time is achieved at a
parallelism degree of 1 which spends no time on communi-
cation, but may result in significantly longer task completion
time.

575

Table 4: Total worker time (sec) of SVM with SGD

FlexPS-Opt FlexPS-Auto FlexPS- Petuum Multiverso
webspam 3877 3449 33376 94540 14676
kdd 31852 31275 70770 - 36540

-1.70

-1.50

-1.30

-1.10

-0.90

0 250 500 750 1000

Lo
g

-l
ik

e
li

b
o

o
d

 (
E

+
0

9
)

Time (s)

Petuum

FlexPS

(a) NYTimes

-13

-11

-9

-7

-5

0 2500 5000 7500 10000

Lo
g

-l
ik

e
li

b
o

o
d

 (
E

+
0

9
)

Time (s)

Petuum

FlexPS

(b) Pubmed

Figure 8: Convergence speed comparison on LDA

cient PS system than Petuum and Multiverso even without
flexible parallelism.

7.3 Comparison on Other ML Tasks
Apart from the tasks with dynamic workloads, there are

also many machine learning tasks with almost constant
workloads. In this experiment, we compared the perfor-
mance of FlexPS with Petuum on two representatives of
such tasks, in order to show that FlexPS is also a very
efficient PS system for other types of machine learning
workloads. For these tasks, FlexPS used only one stage and
did not adopt flexible parallelism control and automatic
parallelism adjustment. Multiverso was not compared as
it does not adopt process cache, which is crucial for the
performance of the dense row access in these applications.

Latent Dirichlet allocation. LDA is an unsupervised
topic modeling method, which discovers hidden topics for
words in the vocabulary and identifies the topic distribu-
tion for each document in the corpus. We used the Gibbs
sampler and stored the word-topic table, doc-topic table,
and the topic summary table in the KV-store. For both
Petunm and FlexPS, we set the storage data structure of the
model to be dense row. Two datasets were used: NYTimes
contains 300,000 documents and approximately 100,000,000
tokens; while Pubmed is relatively larger with 8,200,000 doc-
uments and about 730,000,000 tokens. The dirichlet prior
parameters ↵ and � were both set as 0.1, and the number
of topics and the staleness parameters were set as 1000 and
1, respectively.

We plotted the log-likelihood (the larger the better) versus
training time for both systems in Figure 8. The results show
that FlexPS can achieve the same log-likelihood as Petuum
using approximately 1/3 of the time. This performance gain
is mainly due to the low overhead process cache management
strategy and efficient KV-store communication in FlexPS.

Matrix factorization. Matrix factorization (MF) is
widely used for recommendation. Given a user-item rat-
ing matrix R 2 R

M×N , it attempts to find a user latent
matrix U 2 R

M×K and item latent matrix I 2 R
M×K

that satisfies R ⇡ UIT . Alternating least squares (ALS)
algorithm is usually used for MF, which fixes one latent
matrix to train another in an alternating manner. We
used the Netflix dataset [6], which contains 480,189 users,
17,770 items and 100,480,507 ratings, and the Yahoo! Music

0

2

4

6

0 10 20 30 40 50

R
M

S
E

Time (s)

Petuum

FlexPS

(a) Netflix

0.5

1.5

2.5

3.5

0 30 60 90 120 150

R
M

S
E

Time (s)

Petuum

FlexPS

(b) Yahoo! Music

Figure 9: RMSE vs. training time on matrix factorization

0

5

10

15

20

25

0 20 40 60 80 100

T
im

e
 (

s)

Iters

LCC-integral

LCC-on-demand

PS

(a) webspam

0

2

4

6

8

10

12

0 20 40 60 80 100

T
im

e
 (

s)

Iters (x100)

LCC-integral

LCC-on-demand

PS

(b) kdd

Figure 10: Performance gain of local consistency control and
flexible model preparation

dataset [46], which contains 1,823,179 users, 136,736 items
and 699,640,226 ratings.

The training root-mean-square-error (RMSE) was plot-
ted against training time in Figure 9. For both datasets,
FlexPS shows faster convergence than Petuum. This is
because FlexPS supports customized model partitioning and
we use this functionality to partition both the U and I evenly
among the servers following the method in [35].

7.4 Performance of Optimization Techniques
In this experiment, we examined the effects of the opti-

mizations techniques presented in Section 5 on the perfor-
mance of FlexPS.

Local consistency controller and flexible model
preparation. FlexPS moves the consistency controller to
the workers in single machine mode and provides two meth-
ods to prepare the local model, on-demand model (the
default) and integral model, for user to choose from. To
test the benefits of these designs under small parallelism,
we used 20 worker threads on the same machine to train
logistic regression with SGD. We plotted the time consump-
tion against the number of iterations in Figure 10, where
LCC-integral stands for local consistency controller plus
integral model preparation while LCC-on-demand is local
consistency controller with on-demand model preparation.
PS is used as baseline and stands for the case that both the
consistency controller and model are on the server side.

The results show that local consistency controller and
flexible model preparation considerably reduces the running
time for small parallelism. The performance gap widens
with iteration number as PS has to pay constant communi-
cation cost in each iteration, while the local consistency con-
troller does not need to communicate with the servers once
the local model is ready. Moreover, on-demand model prepa-
ration should be used if the stage only has a small number
of iterations as integral model preparation has higher cost of
model initialization as illustrated in Figure 10b. The perfor-

576

0

50

100

150

200

250

300

BSP SSP (s=1) ASP

C
o

m
p

le
ti

o
n

 t
im

e
 (

s)
 one-stage

multi-stage

Figure 11: The overhead of stage transition

mance of integral model preparation for webspam is similar
to that of on-demand mainly because its model is small and
the initialization cost of integral model is marginal.

Stage transition. As FlexPS maps a machine learn-
ing task to multiple stages, the efficient transition between
stages is crucial for high efficiency. To examine the stage
transition cost, we trained a logistic regression model on
the kdd dataset using SGD with a uniform batch size of
149639 (0.1% of the dataset size) for 100 iterations. One-
stage scheme and multi-stage scheme were compared, and
both of them used 200 worker threads in the entire training
process. The one-stage scheme did not have stage transi-
tion; but in order to test the stage transition efficiency for
the multi-stage scheme, we split the 100 iterations into 10
stages, each with 10 iterations for the multi-stage scheme.
In each stage, the worker threads were uniformly assigned
to the machines in the cluster.

We report the task completion time of the one-stage
scheme and multi-stage scheme in Figure 11 under differ-
ent consistency protocols. As the task completion time of
the multi-stage scheme is similar to that of the one-stage
scheme, we can conclude that the stage transition cost is
marginal considering the multi-stage scheme takes 9 stage
transitions. Intuitively, the stage transition cost is higher
for ASP and SSP than for BSP, since in BSP a barrier is
enforced at the end of a stage. However, the results show
that the difference in the stage transition cost for the three
consistency protocols is not significant. We also tested the
cost of stage transition by measuring the time between
the slowest worker thread finishing its work in the previ-
ous stage and all threads completing the initialization of
the consistency controllers in the current stage (denoted as
stage transition delay). The average stage transition delay
is around 0.02 seconds for 200 workers and 0.01 seconds
for 100 workers, which again shows that stage transition in
FlexPS is efficient.

8. RELATED WORK
We have introduced existing PS systems in Sections 2. In

this section, we discuss other related work.

Tailored ML solutions. There are many parallel solutions
tailored for specific machine learning problems. GraphLab [29]
uses a graph abstraction to manage the communication
asynchronously and is optimized for iterative algorithms
with sparse computational dependencies; however, its gen-
erality is limited by its structural constraints. Husky [48,
47, 25] introduces the notion of object interaction pat-
tern that allows users to construct a PS framework and it
also supports the efficient implementation of asynchronous
ML algorithms [49], which provides an efficient alternative

solution for distributed ML. NOMAD [51] is a distributed
lock-free framework for matrix factorization; however, its
application is limited to doubly-separable models. Hog-
wild! [32] is a single machine lock-free SPMT framework
for sparse dataset, but it cannot scale to the distributed
setting. Hogwild! is also extended to handle large model
that cannot fit in the memory with an intelligent disk access
scheme [31].

Deep learning systems. Deep learning systems such
as TensorFlow [1], MXNet [9], Caffe [19], Theano [2],
Torch [40], CNTK [11] became popular due to the recent
popularity of deep neural networks and the availability of
GPUs. As mentioned in Section 2, deep learning systems
provide a high-level abstraction, while PS systems focus
on the low-level worker-server communication. When it
comes to distributed execution, deep learning systems (e.g.,
MXNet, TensorFlow) still adopt the PS architecture as the
underlying parameter management module. As SGD is
widely used to train neural networks and existing PS sys-
tems is inefficient in handling SGD with growing batch size,
the design ideas in FlexPS can also benefit deep learning
systems.

Theoretical ML research. On the more theoretical
side, many machine learning researches focus on sequential
algorithms with convergence guarantee. Recently, a major
breakthrough has been made by employing the variance
reduction techniques, and algorithms including SVRG [21],
SVRG++ [4], and Katyusha [3] are proposed. These algo-
rithms are proven to be faster than SGD and achieve a linear
convergence rate for smooth and strongly convex problems.
The dynamic workloads of these algorithms make the tradi-
tional PS systems inefficient, but they can be implemented
efficiently on FlexPS with our multi-stage design. As FlexPS
provides a unified programming model for single machine
learning and distributed learning, machine learning theory
researchers can also experiment their sequential algorithms
in the distributed setting with marginal effort.

9. CONCLUSIONS
We proposed FlexPS, a PS system that provides flexible

parallelism control. We demonstrated that flexible paral-
lelism control is crucial for the efficient execution of machine
learning tasks with dynamic workloads. FlexPS supports
flexible parallelism control with a novel multi-stage abstrac-
tion. To support the efficient execution of the multi-stage
abstraction, system designs such as stage scheduler, stage-
aware consistency controller, flexible model preparation, and
direct model transfer are introduced. Optimizations such as
customizable parameter partition, customizable KV-server,
and repetitive get avoidance, are also incorporated to make
FlexPS a general and complete PS system. Extensive exper-
iments on a variety of machine learning tasks show that
FlexPS achieves significant speedups and resource saving
compared with existing PS systems.

Acknowledgments. We thank the reviewers for their valu-
able comments. This work was supported in part by Grants
(CUHK 14206715 & 14222816) from the Hong Kong RGC.

577

10. REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. A. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: A system for large-scale machine learning.
In OSDI, pages 265–283, 2016.

[2] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermüller,
D. Bahdanau, N. Ballas, F. Bastien, J. Bayer,
A. Belikov, A. Belopolsky, Y. Bengio, A. Bergeron,
J. Bergstra, V. Bisson, J. B. Snyder, N. Bouchard,
N. Boulanger-Lewandowski, X. Bouthillier,
A. de Brébisson, O. Breuleux, P. L. Carrier, K. Cho,
J. Chorowski, P. Christiano, T. Cooijmans, M. Côté,
M. Côté, A. C. Courville, Y. N. Dauphin,
O. Delalleau, J. Demouth, G. Desjardins, S. Dieleman,
L. Dinh, M. Ducoffe, V. Dumoulin, S. E. Kahou,
D. Erhan, Z. Fan, O. Firat, M. Germain, X. Glorot,
I. J. Goodfellow, M. Graham, Ç. Gülçehre, P. Hamel,
I. Harlouchet, J. Heng, B. Hidasi, S. Honari, A. Jain,
S. Jean, K. Jia, M. Korobov, V. Kulkarni, A. Lamb,
P. Lamblin, E. Larsen, C. Laurent, S. Lee,
S. Lefrançois, S. Lemieux, N. Léonard, Z. Lin, J. A.
Livezey, C. Lorenz, J. Lowin, Q. Ma, P. Manzagol,
O. Mastropietro, R. McGibbon, R. Memisevic, B. van
Merriënboer, V. Michalski, M. Mirza, A. Orlandi,
C. J. Pal, R. Pascanu, M. Pezeshki, C. Raffel,
D. Renshaw, M. Rocklin, A. Romero, M. Roth,
P. Sadowski, J. Salvatier, F. Savard, J. Schlüter,
J. Schulman, G. Schwartz, I. V. Serban, D. Serdyuk,
S. Shabanian, É. Simon, S. Spieckermann, S. R.
Subramanyam, J. Sygnowski, J. Tanguay, G. van
Tulder, J. P. Turian, S. Urban, P. Vincent, F. Visin,
H. de Vries, D. Warde-Farley, D. J. Webb, M. Willson,
K. Xu, L. Xue, L. Yao, S. Zhang, and Y. Zhang.
Theano: A python framework for fast computation of
mathematical expressions. CoRR, abs/1605.02688,
2016.

[3] Z. Allen Zhu. Katyusha: the first direct acceleration of
stochastic gradient methods. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 1200–1205, 2017.

[4] Z. Allen Zhu and Y. Yuan. Improved SVRG for
non-strongly-convex or sum-of-non-convex objectives.
In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, pages 1080–1089, 2016.

[5] Angel. https://github.com/tencent/angel.

[6] J. Bennett and S. Lanning. The netflix prize. In
Proceedings of KDD cup and workshop, volume 2007,
page 35, 2007.

[7] Bertsekas and D. P. A new class of incremental
gradient methods for least squares problems. SIAM
Journal on Optimization, 7(4):913–926, 1997.

[8] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu.
Sample size selection in optimization methods for
machine learning. Mathematical programming,
134(1):127–155, 2012.

[9] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet: A

flexible and efficient machine learning library for
heterogeneous distributed systems. CoRR,
abs/1512.01274, 2015.

[10] T. M. Chilimbi, Y. Suzue, J. Apacible, and
K. Kalyanaraman. Project adam: Building an efficient
and scalable deep learning training system. In OSDI,
pages 571–582, 2014.

[11] CNTK. https://github.com/microsoft/cntk.

[12] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A.
Tucker, K. Yang, and A. Y. Ng. Large scale
distributed deep networks. In NIPS, pages 1232–1240,
2012.

[13] A. Defazio, F. R. Bach, and S. Lacoste-Julien. SAGA:
A fast incremental gradient method with support for
non-strongly convex composite objectives. In NIPS,
pages 1646–1654, 2014.

[14] M. P. Friedlander and M. Schmidt. Hybrid
deterministic-stochastic methods for data fitting.
SIAM Journal on Scientific Computing,
34(3):A1380–A1405, 2012.

[15] S. Geman and D. Geman. Stochastic relaxation, Gibbs
distributions, and the bayesian restoration of images.
IEEE Trans. Pattern Anal. Mach. Intell.,
6(6):721–741, 1984.

[16] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger,
P. B. Gibbons, G. A. Gibson, and E. P. Xing.
Addressing the straggler problem for iterative
convergent parallel ML. In SoCC, pages 98–111, 2016.

[17] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B.
Gibbons, G. A. Gibson, G. R. Ganger, and E. P. Xing.
More effective distributed ML via a stale synchronous
parallel parameter server. In NIPS, pages 1223–1231,
2013.

[18] Y. Huang, T. Jin, Y. Wu, Y. Guo, Z. Cai, X. Yan,
F. Yang, J. Li, and J. Cheng. FlexPS: Flexible
parallelism control in parameter server architecture.
Technical Report. http: // www. cse. cuhk. edu. hk/
proj-h/ pub/ flexps. pdf , 2017.

[19] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. B. Girshick, S. Guadarrama, and
T. Darrell. Caffe: Convolutional architecture for fast
feature embedding. In MM, pages 675–678, 2014.

[20] J. Jiang, B. Cui, C. Zhang, and L. Yu.
Heterogeneity-aware distributed parameter servers. In
Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 463–478, 2017.

[21] R. Johnson and T. Zhang. Accelerating stochastic
gradient descent using predictive variance reduction.
In NIPS, pages 315–323, 2013.

[22] Y. Juan, Y. Zhuang, W. Chin, and C. Lin.
Field-aware factorization machines for CTR
prediction. In Proceedings of the 10th ACM
Conference on Recommender Systems, Boston, MA,
USA, September 15-19, 2016, pages 43–50, 2016.

[23] J. K. Kim, Q. Ho, S. Lee, X. Zheng, W. Dai, G. A.
Gibson, and E. P. Xing. STRADS: a distributed
framework for scheduled model parallel machine
learning. In EuroSys, pages 5:1–5:16, 2016.

[24] Y. Koren, R. M. Bell, and C. Volinsky. Matrix

578

factorization techniques for recommender systems.
IEEE Computer, 42(8):30–37, 2009.

[25] J. Li, J. Cheng, Y. Zhao, F. Yang, Y. Huang,
H. Chen, and R. Zhao. A comparison of
general-purpose distributed systems for data
processing. In IEEE International Conference on Big
Data, pages 378–383, 2016.

[26] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B. Su. Scaling distributed machine learning with the
parameter server. In OSDI, pages 583–598, 2014.

[27] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient
mini-batch training for stochastic optimization. In The
20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14,
New York, NY, USA - August 24 - 27, 2014, pages
661–670, 2014.

[28] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar.
An asynchronous parallel stochastic coordinate
descent algorithm. In Proceedings of the 31th
International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014, pages
469–477, 2014.

[29] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Distributed
GraphLab: A framework for machine learning in the
cloud. PVLDB, 5(8):716–727, 2012.

[30] Multiverso. https://github.com/microsoft/multiverso.

[31] C. Qin, M. Torres, and F. Rusu. Scalable
asynchronous gradient descent optimization for
out-of-core models. PVLDB, 10(10):986–997, 2017.

[32] B. Recht, C. Re, S. J. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In NIPS, pages 693–701, 2011.

[33] S. J. Reddi, A. Hefny, S. Sra, B. Póczos, and A. J.
Smola. Stochastic variance reduction for nonconvex
optimization. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, pages
314–323, 2016.

[34] C. D. Sa, C. Ré, and K. Olukotun. Ensuring rapid
mixing and low bias for asynchronous Gibbs sampling.
In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, pages 1567–1576, 2016.

[35] S. Schelter, V. Satuluri, and R. Zadeh. Factorbird - a
parameter server approach to distributed matrix
factorization. CoRR, abs/1411.0602, 2014.

[36] M. W. Schmidt, N. L. Roux, and F. R. Bach.
Minimizing finite sums with the stochastic average
gradient. Math. Program., 162(1-2):83–112, 2017.

[37] O. Shamir. A stochastic PCA and SVD algorithm
with an exponential convergence rate. In Proceedings
of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015,
pages 144–152, 2015.

[38] A. J. Smola and S. M. Narayanamurthy. An
architecture for parallel topic models. PVLDB,
3(1):703–710, 2010.

[39] A. S. Tanenbaum. Computer networks, 4th Edition.
Prentice Hall, 2002.

[40] Torch. https://github.com/torch/torch7.

[41] L. G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, 1990.

[42] S. Webb, J. Caverlee, and C. Pu. Introducing the
webb spam corpus: Using email spam to identify web
spam automatically. In CEAS 2006 - The Third
Conference on Email and Anti-Spam, July 27-28,
2006, Mountain View, California, USA, 2006.

[43] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R.
Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing.
Managed communication and consistency for fast
data-parallel iterative analytics. In SoCC, pages
381–394, 2015.

[44] L. Xiao and T. Zhang. A proximal stochastic gradient
method with progressive variance reduction. SIAM
Journal on Optimization, 24(4):2057–2075, 2014.

[45] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee,
X. Zheng, P. Xie, A. Kumar, and Y. Yu. Petuum: A
new platform for distributed machine learning on big
data. In SIGKDD, pages 1335–1344, 2015.

[46] Yahoo! Webscope.
http://webscope.sandbox.yahoo.com/.

[47] F. Yang, Y. Huang, Y. Zhao, J. Li, G. Jiang, and
J. Cheng. The best of both worlds: Big data
programming with both productivity and
performance. In SIGMOD, pages 1619–1622, 2017.

[48] F. Yang, J. Li, and J. Cheng. Husky: Towards a more
efficient and expressive distributed computing
framework. PVLDB, 9(5):420–431, 2016.

[49] F. Yang, F. Shang, Y. Huang, J. Cheng, J. Li,
Y. Zhao, and R. Zhao. LFTF: A framework for
efficient tensor analytics at scale. PVLDB,
10(7):745–756, 2017.

[50] J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng,
E. P. Xing, T. Liu, and W. Ma. Lightlda: Big topic
models on modest computer clusters. In WWW, pages
1351–1361, 2015.

[51] H. Yun, H. Yu, C. Hsieh, S. V. N. Vishwanathan, and
I. S. Dhillon. NOMAD: nonlocking, stochastic
multi-machine algorithm for asynchronous and
decentralized matrix completion. PVLDB,
7(11):975–986, 2014.

[52] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang,
Z. Hu, J. Wei, P. Xie, and E. P. Xing. Poseidon: An
efficient communication architecture for distributed
deep learning on GPU clusters. In 2017 USENIX
Annual Technical Conference, USENIX ATC 2017,
Santa Clara, CA, USA, July 12-14, 2017., pages
181–193, 2017.

579

