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Flexural mode of graphene on a substrate
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Out of plane vibrations are suppressed in graphene layers placed on a substrate. These vibrations, in suspended

samples, are relevant for the understanding of properties such as the electrical resistivity, the thermal expansion

coefficient, and others. We use a general framework to study the properties of the out of plane mode in graphene

on different substrates, taking into account the dynamics of the substrate. We discuss broadening of this mode

and how it hybridizes with the substrate Rayleigh mode, comparing our model with experimental observations.

We use the model to estimate the substrate induced changes in the thermal expansion coefficient and in the

temperature dependence of the electrical resistivity.
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I. INTRODUCTION

Since its isolation in 2004,1 graphene, a monolayer of

carbon atoms arranged in a honeycomb lattice, has received

great attention due to both its unique electrical and mechanical

properties.2 In graphene, the carbon atoms display an sp2

hybridization, with the out of plane pz orbitals forming a π

band which is responsible for its electrical properties, while

the sp2 orbitals form strong σ in plane bonds that govern its

mechanical properties. It has been verified both experimentally

and theoretically3–5 that graphene is the known material with

the largest in plane elastic constants.

In freely suspended graphene samples the vibrations of

the lattice can be classified into in plane and out of plane

(flexural) modes, with the flexural mode lying at lower energies

and showing a quadratic dispersion. Anharmonic effects

at long wavelengths strongly couple in plane and flexural

modes.6 The flexural mode is responsible for the significant

temperature dependence of the electronic resistivity at low

temperatures.7–11 Anharmonic effects in suspended graphene

explain its negative thermal expansion coefficient12 and they

play a significant role in the thermal conductivity.13

The interaction between a graphene layer and a substrate

underneath changes significantly the properties of the out

of plane vibrations of the entire system.13–16 Coupling to

a substrate also leads to heat transfer between the two

systems.17–19

The deformations of the hybrid system made up of the

graphene layer and the substrate at small amplitudes and

long wavelengths are rigorously described by the theory

of elasticity. This theory fixes the number of independent

couplings required, which is determined by the dimensionality

and symmetries of the two systems, graphene and substrate,

to be studied. A model fully consistent with the theory of

elasticity is described in the next section. Being general, this

model should also describe other two-dimensional materials

supported by a substrate. We studied how this coupling gives

origin to a finite lifetime for the flexural mode and to a

hybridization of this with the substrate surface Rayleigh mode,

comparing our model with experimental data from Ref. 15. We

also studied the thermal expansion of graphene on a substrate

and also the effect of the flexural mode, modified by the

coupling to the substrate, on the electrical resistivity of doped

graphene, focusing on two of the most common substrates:

silicon dioxide, SiO2, and hexagonal boron nitride, hBN.

II. THE MODEL

In our model, a flat graphene membrane is supported by

a semi-infinite flat substrate20 that occupies the half space

z < 0. In a long wavelength description, we will use the

elastic theory of a crystalline membrane to model graphene and

linear elasticity theory to describe the substrate. Therefore, the

action describing the membrane-substrate coupled system will

be given by S = Sout + Sin + Ssubs + Scoup + S ′
coup. Sout is the

quadratic action for the flexural mode, Sin is the action for the in

plane modes of the membrane including anharmonic coupling

between in plane and flexural modes, Ssubs is the linear elas-

ticity action for the substrate, and Scoup and S ′
coup describe the

membrane-substrate coupling. Assuming that the fluctuations

around the equilibrium positions are small, we keep Scoup and

S ′
coup only to quadratic order in the displacement fields.21

Finally, assuming in plane isotropy, the most general

description of the membrane-substrate model consistent with

the theory of elasticity is

Sout = 1

2

∫

dtd2x[ρ2Dḣ2 − κ(∂2h)2],

Sin = 1

2

∫

dtd2x
(

ρ2D �̇u2 − λε2
αα − 2μεαβεαβ

)

,

Ssubs = 1

2

∫

z<0

dtd3x
[

ρ3D( �̇u(s))2 − cijkl∂iu
(s)
j ∂ku

(s)
l

]

,

Scoup = −g

2

∫

z=0

dtd2x
(

h − u(s)
z

)2
,

S ′
coup = −g′

2

∫

z=0

dtd2x

(

h − u(s)
z

d

)

(

∂αuα + ∂αu(s)
α

)

− g′′

2

∫

z=0

dtd2x
∑

α

(

uα − u(s)
α

d
+ ∂αh + ∂αu(s)

z

2

)2

.

(1)

Here h and uα are, respectively, the out of plane and in plane

displacement fields of the membrane with mass density per unit

area ρ2D, bending rigidity κ , and Lamé coefficients λ and μ.

εαβ = (∂αuβ + ∂βuα + ∂αh∂βh)/2 is the strain tensor to lowest
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TABLE I. Material parameters for different substrates and computed values for ω0, γ0, and cR. The transition metal carbides were

approximated by isotropic materials, with the data for TaC and HfC taken from polycrystalline samples (Ref. 33), while for TiC only the

constants c11 and c44 were used.

ρ3D(g cm−3) c11 (GPa) c12 c13 c33 c44 g (1020 N m−3) ω0 (meV) γ0 cR (m s−1)

SiO2 2.20 78 31 1.82a 10 9 3392

hBN 2.28 811b 169b 0b 27b 7.7b 1.2–2.7c 10 15 1835

TaC 14.65 634d 216d 20.23e 34 14 3525

HfC 12.27 500d 195d 21.72e 35 18 3681

TiC 4.94 500f 113f 175f 23.82e 37 32 5453

aReference 17.
bReference 32.
cReference 29.
dReference 33.
eReference 15.
fReference 34.

order in h and uα . u
(s)
i is the displacement field of the substrate

with mass density per volume ρ3D and elastic constants cijkl

(see Table I) (greek indices run from 1 to 2 and latin indices

from 1 to 3). For graphene, ρ2D = 7.6 × 10−8 g/cm2 and κ ≈
1.1 eV.5

The graphene-substrate coupling g in Scoup is determined

by the van der Waals interaction between the two systems.

The couplings in S ′
coup depend on short range interatomic

interactions, and are significantly weaker than the van der

Waals interaction for graphite (graphene on graphene).22 Out

of plane phonons of graphene are also the most affected by the

presence of a substrate.14,15,23–27 Keeping this in mind, in the

following we will ignore S ′
coup.

We expect that intrinsic anharmonic effects of the mem-

brane, important in a free standing membrane,6 will be

unimportant in the presence of a substrate and we will therefore

ignore them unless when discussing thermal expansion. In

this approximation, in plane and out of plane modes decouple

and we can ignore the term Sin, leaving us with a harmonic

theory.28 For a free standing membrane, Sout gives a quadratic

dispersion relation ωf(q) = αq2, α =√
κ/ρ2D. Coupling to a

static substrate will gap this dispersion relation and one would

obtain ωfG(q) =
√

α2q4 + ω2
0, with ω0 = √

g/ρ2D.

The value of the constant g greatly varies from substrate to

substrate (see Table I). It was estimated in Ref. 17 to have a

value of 1.82 × 1020 J/m4 for graphene on SiO2. For graphene

on hBN its value can be estimated from density functional the-

ory (DFT) calculations29 to be around 1.2–2.7 × 1020 J/m4,

depending on the orientation of graphene on hBN. For the

(111) surface of transition metal carbides it is of the order of

2 × 1021 J/m4, while for the (001) face it is approximately

zero,15 as it is for graphene on platinum (111).24,27

The main object of interest from which all physically

relevant quantities can be obtained is the height-height retarded

Green’s function,

D(q,ω) = − i

h̄

∫

dtd2(t)xei(ωt−�q·�x)〈[h(x,t),h(0,0)]〉, (2)

where 〈 〉 means the thermal and quantum average. Ignoring

Sin it is possible to solve the theory exactly. As a matter of

fact, the problem reduces to that of two coupled harmonic

oscillators. Therefore one obtains

D(q,ω) = [ρ2Dω2 − κq4 − �(q,ω)]−1, (3)

where �(q,ω) = g[1 − g�0(q,ω)]−1 is the correction to the

free propagator due to coupling to the substrate, with �0(q,ω)

the surface-to-surface substrate propagator similarly defined

as in Eq. (2), with both fields u(s)
z evaluated at the surface

of the substrate, z = 0, and the index 0 meaning g = 0.

Since Ssubs is quadratic, to obtain �0(q,ω) it suffices to

study the classical response of the substrate to an external

pressure at the boundary z = 0. This was done for an isotropic

substrate in Ref. 30 and we generalized the result for the

case of an uniaxial substrate (see the Appendix for details).

There are two specially relevant cases for the behavior of

�0(q,ω): q = 0, for which �0(0,ω) = −i/(ωcLρ3D) (replace

cL → √
c33/ρ3D for the uniaxial case), and ω = 0, for which

�0(q,0) = −1/(K1q), with K1 = 2ρ3Dc2
T(c2

L − c2
T)/c2

L for an

isotropic medium (where cT/L is the transverse/longitudinal

sound velocity of the substrate). Therefore, at small q,

coupling to the substrate will lead to a contribution to

D(q,0)−1 proportional to q, while the first-order contribution

to D(q,0)−1 arising from intrinsic anharmonic effects in a

free standing membrane is proportional to q2.6 Therefore,

anharmonic effects will be irrelevant when comparing to the

effect of the substrate. This justifies our approximation of

neglecting Sin.

A semi-infinite elastic medium supports a continuum of

bulk modes for ω > cTq (replace cT → √
c44/ρ3D for the

uniaxial case). For ω < cTq, the substrate supports a two-

dimensional (2D) surface Rayleigh mode with dispersion

given by ω = cRq, with cR the Rayleigh velocity. Therefore

the effect of coupling to the substrate on the flexural mode will

be twofold: Coupling to the substrate will gap the dispersion

relation of flexural mode ωfG(q), which we will refer to as

the flexural-gapped (fG) mode, so that it will in general lie

within the continuum of substrate bulk modes, which act as

a dissipative bath, leading to a broadening of this branch; the

flexural mode will also hybridize with the Rayleigh mode

(already pointed out in Ref. 13) giving origin to another,

unbroadened, branch, ωfR(q), which we will refer to as the

flexural-Rayleigh (fR) mode. This information is encoded in
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FIG. 1. (Color online) (a) Representation of the model used

for the graphene membrane-substrate coupling. (b) Density plot

of the spectral function A(q,ω) for graphene on SiO2 [in units

of πω2
0/(2γ0)]. For ω < cTq, it is zero everywhere, except at the

dispersion relation of the fR mode ωfR(q), where it is a Dirac delta

function with weight ZfR(q) shown in the inset. For ω > cTq, A(q,ω)

is finite, with a peak close to ωfG(q) =
√

α2q4 + ω2
0 , which becomes

very broad for small q, indicating that the flexural phonon becomes

poorly defined. Vertical lines are q = cR/(
√

2α) and q = cR/α. We

used g = 1.82 × 1020 J/m4.

the spectral/dissipation function, defined as31

A(q,ω) = −2ρ2Dω

π
Im D(q,ω). (4)

The fR mode appears in A(q,ω) as a Dirac delta func-

tion divergence at ω = ωfR(q), with ωfR(q) the solution of

D(q,ωfR(q))−1 = 0 for ω < cTq, with a weight ZfR(q) given

by

ZfR(q)−1 = 1 − 1

2ρ2Dω

∂

∂ω
Re �(q,ω)

∣

∣

∣

∣

ω=ωfR(q)

. (5)

This situation is illustrated in Fig. 1(b), where we show a

density plot of the spectral function along with the dispersion

of the fR mode. The gap of the fG mode is controlled

by ω0 = √
g/ρ2D, while the broadening is controlled by

γ0 = g/(cLρ3D) (replace cL → √
c33/ρ3D for the uniaxial

case). For g = 1.82 × 1020 J/m4 one obtains ω0 ≈ 10 meV

and γ0 ≈ 13 THz for graphene on SiO2. This value is an

overestimation comparing with the inverse relaxation times

obtained from molecular dynamics simulations for acoustic

flexural phonons on a SiO2 substrate, 1/τ ∼ 0.1–1 THz.16 The

hybridization between flexural and Rayleigh modes is more

relevant for values of the spring constant g such that ω0 ∼
c2

R/(2α), being maximum in this situation for q ∼ cR/(
√

2α)

and being suppressed for q � cR/α.

III. RESULTS

A. Comparison with experimental results

It is interesting to compare our model with experimental

data from Ref. 15 of phonon dispersion relations of graphene

on different substrates. This is shown in Fig. 2. Although our

continuous model fails at a large momentum, it semiquantita-

tively explains the lack of experimental data for the flexural

mode at a low momentum for graphene on light substrates,

since the phonons become ill defined as quasiparticles. Also

notice that experimentally there are indications of a Rayleigh

mode. Our model predicts that just by probing the carbon layer

it is possible to detect the hybrid fR mode. If this is the case

or if what is experimentally seen comes from the fact that the

first few layers of the substrate are also being probed is not

clear.

B. Height-height correlation function

The equal time height-height correlation function is given

by

〈h(x)h(0)〉 = −h̄

∫

d2qdω

(2π )3
ei �q·�x coth

(

h̄ω

2kBT

)

Im D(q,ω),

(6)

which at high temperature reduces to 〈h(x)h(0)〉 ≃
−kBT

∫

d2q

(2π)2 e
i �q·�xD(q,0). Interestingly, the dynamics of the

FIG. 2. (Color online) Comparison of computed A(q,ω) [density plot in units of πω2
0/(2γ0)] with experimental phonon dispersion relations

(solid squares) for graphene on three substrates, (a) TaC, (b) HfC, and (c) TiC, obtained via high resolution electron energy loss spectroscopy

(HREELS) in Ref. 15 (cyan squares: flexural mode; red squares: possible Rayleigh mode). Insets: Weight of fR mode on the graphene

membrane.
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FIG. 3. (Color online) (a) Plot of D(q,0) for graphene on a SiO2

substrate. Its behavior changes from the one of a free membrane at

large q, 1/q4, to the one of the substrate at low q, 1/q. (b) Plot of

〈h(0)h(0)〉 as a function of temperature for SiO2 and hBN substrates

(solid lines) and high temperature limits (dashed lines). g = 1.82 ×
1020 J/m4 was used for both substrates.

substrate now makes D(q,0) ∼ 1/q at low momenta [see

Fig. 3(a)], since �0(q,0) ∝ 1/q, while it would tend to

a constant for a static substrate. For large distances one

therefore obtains 〈h(x)h(0)〉 ≃ kBT/(2πK1x), a result that is

independent of g and coincides with the result obtained for the

surface out of plane displacement field of the bare substrate.

For the quadratic dispersion relation of flexural phonons, it

is known that 〈h(0)h(0)〉 diverges at any finite temperature,

indicating the absence of crystalline order. Coupling to a

substrate makes this result finite, as can be seen in Fig. 3(b).

At high temperature one can obtain the following approximate

expressions:

〈h(0)h(0)〉 ≃

⎧

⎨

⎩

kBT
8
√

κg
, for small g,

kBT

3
√

3(κK2
1 )

1/3 , for large g.
(7)

It is interesting to notice that, for small g, the previous result

coincides with the one that is obtained if one ignores the

dynamics of a substrate.35

C. Thermal expansion

Also of experimental interest is the areal thermal expansion

coefficient αA of graphene on a substrate. It can be written in

terms of the free energy F = −kBT log Z, with Z the partition

function, as

αA = − 1

B

∂2F

∂�A∂T
, (8)

where B = −A( ∂P
∂�A

)T = λ + μ is the bulk modulus. Under an

isotropic expansion of the membrane ∂αuβ → ūδαβ + ∂αuβ ,

with the relative change of area given by �A/A = 2ū, the

term Sin will generate a new quadratic term in the action S ⊃
−
∫

dtd2xū(λ + μ)(∂h)2. In a quasiharmonic treatment we

will keep this new term while still ignoring anharmonic terms

in the action. Writing the partition function as a path integral

in imaginary time, Z =
∫

D[h]e−SE with SE the Euclidean

action,36 we can obtain αA from

αA = 1

2

∂

∂T

⎛

⎝

kBT

A

∑

q,iωn

q2D(q,iωn)

⎞

⎠ , (9)

where D(q,iωn) is the Matsubara height-height Green’s func-

tion. Performing the Matsubara sum over bosonic frequencies

iωn one obtains a generalization of the result found in Ref. 12,

αA = h̄2

kBT 2

∫

d2qdω

(2π )3
q2ω

Im D(q,ω)

4 sinh2
(

h̄ω
2kBT

) . (10)

The obtained value is negative, since sgn[Im D(q,ω)] =
−sgn(ω), and tends to a constant at high temperature,

approximately given by

αA ≃

⎧

⎨

⎩

− kB

16πκ
log

(

1 + κq4
D

g

)

, for small g,

− kB

12πκ
log

(

1 + κq3
D

K1

)

, for large g,
(11)

where qD is the Debye momentum. Close to room temperature

one obtains a value in the order of −6 to −7 × 10−6 K−1, a

value that is smaller in absolute value than the one obtained

for a suspended membrane12 [see Fig. 5(a)].

D. Contribution to electrical resistivity

Knowing D(q,ω) one can also study the contribution to

the electrical resistivity of the flexural phonons on doped sup-

ported graphene. We compute the resistivity from the known

formula ρ−1 = e2

2
N (ǫF )v2

F τ tr
F , where N (ǫF ) = 2kF /(πh̄vF )

is the graphene density of states at the Fermi level, with vF

and kF the Fermi velocity and momentum, respectively, and

τ tr
F the transport scattering time. In order to compute τ tr

F , one

must describe the electron-phonon interaction in graphene.

Assuming that graphene is electronically weakly coupled to

the substrate, the graphene electron-phonon interaction should

have the same form as the one in free standing graphene:2,37–39

He-ph = D0

∫

d2x�†(x)�(x)εαα(x)

− vF β

∫

d2x�†(x)�σ�(x) · �A(x), (12)

where � is the electron annihilation operator in the sublattice

basis, D0 ≈ 25 eV is the bare deformation potential, β ≈
2.5 eV describes the change in electron hopping with bond

stretching,2,37–39 �σ = (σx,σy) is the 2D Pauli vector, and �A(x)

is the vector potential induced by the distortion

�A(x) = h̄

2a
(εxx − εyy, 2εxy). (13)

Notice that since the deformation potential is a coupling to the

electronic density, it will be subject to screening.9,10 Focusing

on the electron-flexural phonon interaction, after doing a

Fourier transform, writing the electron operator in the chiral
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FIG. 4. Second-order sunset diagram contributing to the electron

self-energy. The solid lines represent electron propagators, while

wiggly lines represent height-height membrane propagators.

basis, and focusing only in scattering in the conduction band

( + ), we can write

He-f = 1

2A2

∑

k,q,p

w
+,+
k,q,pψ

†
+,k+q+pψ+,khqhp, (14)

with

w
+,+
k,q,p = −D0qp cos(θq,p)

1

2
(1 + eiθk,k+q+p )

+ h̄vF β

2a0

1

2
qp(ei(θq+θp−θk′ ) + e−i(θq+θp−θk )), (15)

where θk,k′ = θk − θk′ . To compute the transport scattering

time τ tr
k (ǫ), we first compute the electron lifetime τk(ǫ) in

second order in the electron-flexural phonon interaction. This

can be obtained from the imaginary part of the (retarded)

self-energy, computed from the diagram in Fig. 4. Considering

only scattering in the conduction band one obtains

1

τk(ǫ)
= π

h̄A2

∑

q,p

∫

dωdν

π2

×
h̄2|w+,+

k,q,p|2 cosh
(

ǫ−ǫF

2kBT

)

4 cosh
(

h̄ω+h̄ν+ǫ−ǫF

2kBT

)

sinh
(

h̄ω
2kBT

)

sinh
(

h̄ν
2kBT

)

× δ(ǫ + h̄ω + h̄ν − ǫk+q+p)Im D(q,ω)Im D(p,ν).

(16)

To compute the transport scattering time, the sum in the

momentum must be weighted by the factor (1 − cos θk,k+q+p)

that appears due to vertex corrections when computing the

conductivity.40 In the quasielastic approximation for acoustic

phonon scattering one ignores the phonon energy in the energy

conserving Delta function and sets ǫ = ǫF , the electron Fermi

energy. We finally obtain a generalization of the result from

Refs. 9 and 10,

1

τ tr
F

= π

h̄

∫

d2qd2p

(2π )4

∫

dωdν

π2
h̄2
∣

∣wkF ,q,p

∣

∣

2

×
(

1 − cos θkF ,kF +q+p

)

d(ω,ν)δ(ǫk+q+p − ǫF )

× Im D(p,ν)Im D(q,ω), (17)

where |wk,q,p|2 = q2p2D(|�q + �p|)2 is the squared electron-

flexural phonon coupling, with D(Q)2=D2
0[1 − Q2/(4k2

F )]2/

ǫ(Q)2 + h̄2v2
F β2/(8a2) the generalized deformation potential9

and ǫ(Q) is the static dielectric function of graphene.41 We

have defined d(ω,ν) = 1
4
sech( h̄(ω+ν)

2kBT
)csch( h̄ω

2kBT
)csch( h̄ν

2kBT
).

The electron scattering due to flexural phonons is a two phonon

process. Therefore there are three contributions: (i) scattering

by two fG modes, (ii) scattering by two fR modes, and

(iii) a mixed process with scattering by one fR and one fG

mode. We see in Fig. 5(b) that the contribution from fR modes
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FIG. 5. (Color online) (a) Thermal expansion coefficient of

graphene on SiO2 and hBN substrates (solid lines) and high

temperature limits (dashed lines). Also shown is the estimated high

temperature thermal expansion coefficient for free standing graphene

(Ref. 12). (b) Electrical resistivity due to flexural phonons in graphene

on SiO2 and hBN for a electronic density n = 1012 cm−2. Dashed

lines show the individual contribution of scattering by two fR modes.

g = 1.82 × 1020 J/m4 was used for both substrates.

is smaller in hBN than in SiO2. This is explained by the smaller

hybridization with the Rayleigh mode in hBN due to a smaller

Rayleigh velocity when compared to SiO2. We see that at

room temperature the obtained resistivities are of order ∼1 �,

a value that is much smaller than the expected contribution

from the flexural mode in suspended samples (∼200 �)9 and

the contribution from in plane phonons (∼50 �).9,10,42

IV. CONCLUSIONS

We have modeled the dynamics of the flexural mode of a

membrane coupled to a dynamical substrate, with the aim

of understanding the role that the modified flexural mode

might have in the physics of graphene on a substrate. Since

a half-space elastic medium supports both three-dimensional

(3D) bulk modes and a 2D surface Rayleigh mode, coupling

of the membrane modes to the substrate leads to a splitting of

the spectral weight of the flexural mode in two parts: one that

will hybridize with the substrate Rayleigh mode, acquiring

an almost linear dispersion relation for q � cR/α, and a

second branch which resembles the original flexural mode,

which becomes gapped and is broadened by the continuum

of substrate bulk modes. This picture seems to be confirmed

by experimental data.15 As expected, coupling to the substrate

leads to a stabilization of the membrane and all correlation

functions become finite, while for a free membrane they are

known to have infrared divergences in the harmonic theory.

It is worthwhile noticing that at high temperature the low

momentum behavior of the height-height correlation function
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changes from the 1/q4 of a free membrane to 1/q of the

substrate. This implies that for large distances the height-height

function will go as 1/x. We also explored the behavior of the

areal thermal expansion coefficient of graphene on substrate.

At room temperature we obtained a value of the order of −6 to

−7 × 10−6 K−1. Finally we studied the contribution of flexural

modes on the electrical resistivity of doped graphene supported

by a substrate. We found that coupling of the membrane to the

substrate strongly suppresses the contribution of the flexural

phonons, even if one takes into account the contribution

coming from the hybridized flexural-Rayleigh mode. Note that

the model describes a flat graphene layer on a flat surface.

This is a good approximation for substrates such as hBN. In

the case of corrugated substrates, such as SiO2, our analysis is

expected to describe the regions where the graphene layer and

the substrate are flat and the two systems are in close contact.
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APPENDIX: ELASTIC RESPONSE

OF UNIAXIAL SUBSTRATE

In a quadratic theory, the quantum mechanical retarded

Green’s function coincides with the classical Green’s function.

Therefore, in order to determine the Green’s function of a

semi-infinite elastic medium,

�
ij

0 (x,t ; x
′,t ′) = − i

h̄
(t − t ′)

〈[

u
(s)
i (x,t), u

(s)
j (x

′,t ′)
]〉

(A1)

[where x = (�x,z)], we study the classical response of the

substrate to an external pressure, �σ (�x,t), at the boundary

z′ = 0:

u
(s)
i (�x,z,t) = −

∫

dt ′d2x ′�ij

0 (�x − �x ′,z,t − t ′)σj (�x ′,t ′),

(A2)

where �
ij

0 (�x − �x ′,z,t − t ′) = �
ij

0 (�x,z,t ; x ′,0,t ′), and we have

used the fact that there is translational invariance in the �x plane

and in time.

The displacement field obeys the bulk equations of motion
(

−∂2
t δij + ciklj∂k∂l

)

u
(s)
j (�x,z,t) = 0, (A3)

and the boundary conditions

c3ijk∂ju
(s)
k (�x,0,t) = σi(�x,t). (A4)

Obtaining the solution for u
(s)
i in the presence of the external

pressure, we can read �
ij

0 . We look for solutions of the form

�u(s)(�x,z,t) =
∫

dtd2q

(2π)3 �u(s)(�q,ω,z)ei(�q·�x−ωt), with �u(s)(�q,ω,z) =
∑3

λ=1 aλ(�q,ω)�ξλ(�q,ω)eipλ(�q,ω)z, where pλ(�q,ω) and �ξλ(�q,ω)

are determined by the bulk equations of motion and the

coefficients aλ(�q,ω) are fixed by the boundary conditions. In

order to obtain a retarded response, we must pick the solutions

for pλ(�q,ω) such that the real part has an opposite sign from ω,

and to obtain a finite response we pick the solutions that have a

positive imaginary part. We are interested in the response of the

substrate at the boundary z = 0. This can be written in matrix

form as ui(s)(�q,ω,0) = −�
ij

0 (�q,ω)σj (�q,ω), from which one

can read the coefficient �zz
0 (�q,ω) which was simply written as

�0(q,ω) in Sec II.

A uniaxial material has a plane of isotropy, having five

independent elastic constants. In Voigt notation, the elastic

constants tensor is given by

cIJ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c11 c12 c13

c12 c11 c13

c13 c13 c33

c44

c44

(c11 − c12)/2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (A5)

We can set �q = (0,q) without loss of generality. The final result

from the calculation is given by

�xx
0 (q,ω) = i

c44p3

,

�xi
0 (q,ω) = �ix

0 (q,ω) = 0, i = y,z,

�
yy

0 (q,ω) = iM−1c33(f1p2 − f2p1),
(A6)

�
yz

0 (q,ω) = iM−1c44[f1f2(p1 − p2) − q(f1 − f2)],

�
zy

0 (q,ω) = iM−1[c33(p2 − p1) + c13q(f2 − f1)],

�zz
0 (q,ω) = iM−1c44(f1p1 − f2p2),

where we have defined

p3 = −sgn(ω)

√

ω2ρ3D

c44

− c11 − c12

2c44

q2 + sgn(ω)i0+,

p1/2 = −sgn(ω)

√

1

2
B ± 1

2

√

B2 − 4C + sgn(ω)i0+,

f1/2 = (c13 + c44)qp1/2

ω2 − c11q2 − c44p
2
1/2

,

M = c44(p1f1 + q)(c13qf2 + c33p2)

− c44(p2f2 + q)(c13qf1 + c33p1), (A7)

with

B = c11

c44

(

ω2ρ3D

c11

− q2

)

+ c44

c33

(

ω2ρ3D

c44

− q2

)

+ (c13 + c44)2

c33c44

q2,

C = c11

c33

(

ω2ρ3D

c11

− q2

)(

ω2ρ3D

c44

− q2

)

. (A8)
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The condition to have a surface Rayleigh mode is determined

by M = 0.

In the case of an isotropic substrate, c11 = c33 =
λ3D + 2μ3D = ρ3Dc2

L, c12 = c13 = λ3D = ρ3D(c2
L − 2c2

T),

c44 = μ3D = ρ3Dc2
T, one recovers the result from Ref. 30. In

particular, �0(q,ω) = �zz
0 (q,ω) reads

�0(q,ω) = −sgn(ω)
iω2

c4
TS(q,ω)

√

(

ω

cL

)2

− q2 + sgn(ω)i0+,

(A9)

with

S(q,ω) =
[(

ω

cT

)2

− 2q2

]2

+ 4q2

√

(

ω

cT

)2

− q2 + sgn(ω)i0+

×
√

(

ω

cL

)2

− q2 + sgn(ω)i0+. (A10)
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