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Abstract

This paper presents a flexural-torsional analysis of I-shaped laminated composite beams.
A general analytical model applicable to thin-walled I-section composite beams subjected to
vertical and torsional load is developed. This model is based on the classical lamination
theory, and accounts for the coupling of flexural and torsional responses for arbitrary lami-
nate stacking sequence configuration, i.e. unsymmetric as well as symmetric. Governing
equations are derived from the principle of the stationary value of total potential energy.
Numerical results are obtained for thin-walled composites under vertical and torsional load-
ing, addressing the effects of fiber angle, and laminate stacking sequence.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Fiber-reinforced plastics (FRP) have been increasingly used over the past few
decades in a variety of structures that require high ratio of stiffness and strength to
weight. In the construction industry, recent applications have shown the structural
and cost efficiency of FRP structural shapes, such as thin-walled open sections
through pultrusion manufacturing process. Thin-walled open section members
made of isotropic materials have been studied by many researchers [1,2]. Bauld and
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Tzeng [3] extended Vlasov’s thin-walled bar theory [l] to symmetric fiber-rein-
forced laminates to develop the linear and nonlinear theories for the bending and
twisting of thin-walled composite beams. Davalos et al. [4] studied the bending
response of various I and box sections experimentally and analytically. Ascione
et al. [5] presented the statical behavior of fiber-reinforced polymer thin-walled
beams taking into account the effects of shear deformation. Shin et al. [6,7] pre-
sented analytical results for bending and torsional response of symmetrically lami-
nated composite open section beams.

In this paper, a general analytical model applicable to the flexural, torsional and
flexural-torsional behavior of an I-section composite beams subjected to vertical
and torsional load is developed. This model is based on the classical lamination
theory, and accounts for the coupling of flexural and torsional responses for arbi-
trary laminate stacking sequence configuration, i.e. unsymmetric as well as sym-
metric. Governing equations are derived from the principle of the stationary value
of total potential energy. Numerical results are obtained for thin-walled composites
under vertical and torsional loading, addressing the effects of fiber angle, and lami-
nate stacking sequence.

2. Kinematics

This paper requires three sets of coordinate systems: an orthogonal Cartesian
coordinate system (x, y, z), an orthogonal coordinate system (n, s, z), and a con-
tour coordinate s along the profile of the section with its origin at any point O on
the profile section. Three sets of coordinate systems are mutually interrelated and
shown in Fig. 1. The n axis as shown in Fig. 1 is normal to the middle surface of a
plate element, the s axis is tangent to the middle surface and is directed along the
contour line of the cross-section. The basic assumptions regarding the kinematics
of thin-walled composites are stated as follows:

.V

W x,U

Fig. 1. Definition of coordinates in thin-walled.
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1. The contour of the thin wall does not deform in its own plane.

2. The shear strain y,, of the middle surface is zero in each element.

3. The Kirchhoff-Love assumption in classical plate theory remains valid for lami-
nated composite thin-walled beams.

4. The time-dependent behavior is neglected.

The midsurface displacement components %, v, w in the contour coordinate sys-
tem, respectively, mean perpendicular, lateral and axial displacements. Such plane
elements as these #, v, w can be expressed in terms of beam elements as these U, V,
W and ©.

u(s,z) = U(z)sind(s) — V(z)cosO(s) — ®(z)q(s) (la)
v(s,z) = U(z)cosO(s) + V(z)sin0(s) + @(z)r(s) (1b)
W(s,2) = W(2) — U'E)x(s) — V' (E)ls) — @ (2)aols) (1c)

where ® means the rotation angle about the pole axis of the pole P; the prime (') is
used to indicate differentiation with respect to z; and w is the so-called sectorial
coordinate or warping function given by

ols) = [r(s)ds @

The displacement components u, v, w representing the deformation of any gen-
eric point on the profile section are given with respect to the midsurface displace-
ments #, v, w by assumption 3.

u(s,z,n) = u(s,z) (3a)
v(s,z,n) = V(s,z) — n% (3b)
w(s,z,n) = w(s,z) —n auész’ 2) (3¢)

3. Strains

The strains associated with the small-displacement theory of elasticity are given by

& = & + nicg (4a)
&, = & + nK, (4b)
Vsz = NKs; (40)
where
_ Oy _ ow
& = a5 g = Fe (5a)
2 2= 2=
- o-u % = o°u 7o, = o°u (5b)



1296 J. Lee, S.-h. Lee | Thin-Walled Structures 42 (2004) 1293-1305

All the other strains are identically zero. In Eq. (5a,b), & and «, are assumed to
be zero, and &., k. and K, are midsurface axial strain and biaxial curvatures of the
shell, respectively. The above shell strains can be converted to beam strain compo-
nents by substituting Egs. (1a—c) and (3a—c) into Eq. (5a,b)

& = &l + XK, + YKy + 0K, (6a)
K. = Kysinf — Kcost — K,q (6b)
Ks: = K- (6¢c)

where &2 k,, k,, k., and K. are axial strain, biaxial curvatures in the x and y direc-
tion, warping curvature with respect to the shear center, and twisting curvature in
the beam, respectively defined as

& =Ww (7a)
Ky =—V" (7b)
Ky =-U" (7¢)
Ky = —@" (7d)
Ks, = 2@/ (7e)
The resulting strains can be obtained from Egs. (4a—c) and (6a—c) as
& = &2 + (x + nsinl)xy, + (y — ncos0)xy + (0 — nq)xe (8a)
Vsz = NKsz (8b)

4. Variational formulation

Total potential energy of the system is calculated by sum of strain energy and
potential energy,

where u is the strain energy
1
u= EJ (0:6; + 0257) dv, (10)
v

The strain energy is calculated by substituting Eq. (6a—c) into Eq. (10)

u= J {o-[¢2 + (x + nsin0)x, + (y — ncosO)xy + (0 — ng)xe)
+ og.nKs } dv (11)

The variation of strain energy, Eq. (11), can be stated as
/
ou = J {N.0¢ + M, 01, + M, S, + M,0K, + MoK} dz (12)
0

where N., M., M,, M, and M, are axial force, bending moments in the x and y
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directions, warping moment (bimoment), and tortional moment with respect to the
centroid, respectively, defined by integrating over the cross-sectional area A4 as

N, = J o, dsdn (13a)
M, = JA X + nsinf) dsdn (13b)
M, = JAO' — ncost)) dsdn (13c¢)
M, = JA — nq) dsdn (13d)
M, = JAaan dsdn (13e)

The variation of the work done by external force can be stated as
!
ov = —J (qoV + to®) dz (14a)
0

where ¢ is transverse load and ¢ is applied torque. Using the principle that the vari-
ation of the total potential energy is zero, the following weak statement is
obtained:

[
_ J (NOW' — MySU" — MySV" — MyS®' + 2M5D + oV + 150} dz
0

(14b)

5. Constitutive equations of plate elements

The constitutive equation in an arbitrary z—s coordinate system is then written

k

k — — —
0: Ou Qn Qi &
o 0= |01 On 0O & (15)
Os: Oi6 Ox Qes Vsz
where Qj; are transformed reduced stifnesses [8] and are made up of material pro-
perty with respect to each layer. The above constitutive equation can be simplified

by using free stress in contour direction (o3 = 0) or free strain in contour direction
(es = 0) assumption as

()18 &)
Osz 16 Qoo Vsz
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for free stress assumption,

N2

Qi =0 — =2 17a
01 =0n Om (17a)
Qi = Q16 — Q1202 (17b)
(05)

N* s Q%6

_ _ 226 17c
Qo6 = Qs On (17¢)

and for free strain assumption,

Q1) = Qu (18a)
Q15 = Qe (18b)
06 = Oss (18¢)

In Eq. (13a), N., M\, M,, M, M, and M, can now be expressed with respect to
the generalized strains (&2, k,, Ky, K, Ks:) by combining Egs. (13a), (16) and (8).
Consequently, the constitutive equations for a thin-walled laminated composite are
obtained as

N En  En Es Eu Eis &

M, Eyn Ex Ex Exs| |k

M, » = Ey; E3 Ejs Ky (19)
M(u E44 E45 Ko

M, sym. Ess Ksz

In Eq. (19), E; are stiffness of the thin-walled composite. It appears that the lami-
nate stiffnesses E; depend on the cross-section of the composites, and the explicit
expressions for I-section (Fig. 2) are given in [9].

6. Governing equations

The governing equations of the present approach can be derived by integrating
the derivatives of the varied quantities by parts and collecting the coefficients of
oU, 6V, SW and 6®:

N =0 (20a)
M =0 (20b)
M!+q=0 (20c)
M!+2M] +1t=0 (20d)
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Fig. 2. Geometry of a thin-walled composite open section.

By substituting Egs. (19) and (7a—¢) into Eq. (20a—d), the explicit form of the
governing equations yield:

E]]W”—EleW—E13VW—|—2E|5(DN =0 (213)
EpW" — ExU"” — Ey®" 4 2E»s®" =0 (21b)
E]3 W”/ — E33 Viv — E34(Div + 2E35(DW +q= 0 (210)

— EyqU" — Exy V'V — Egq®” + 2E\sW" — 2E,sU" — 25 V"
+ 4E35(I)” +1t=0 (21(1)

Eqgs. (21a—d) are most general form for flexural-torsional behavior of a thin-walled
laminated composite with an I-section, and the dependent variables, U, V, W and
® are fully coupled.

7. Finite element model

The present theory for thin-walled composite beams described in the previous
section was implemented via a displacement-based finite element method. The gen-
eralized displacements are expressed over each element as a linear combination of
the one-dimensional Lagrange interpolation function ¥; and Hermite-cubic interp-
olation function y; associated with node j and the nodal values;

W = ZW]'LP]', U= Zujlp]ﬁ V= Zvjl//j7 ¢ = Z(b/l//j (22)
j=1 J=1 Jj=1 J=1
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Substituting these expressions into the weak statement in Eq. (14b), the finite
element model of a typical element can be expressed as

[KI{A} = {/} (23)

where [K] is the element stiffness matrix, and {f} is the element force vector

Kll Klz Kl} Kl4
Ky Kz Ky
K| = 24
K] Ks3 Ky (24)

sym. Kys

The explicit form of [K] is given in [9] and {f} is given by

{f1={0 0 £ fa}" (25)
where
/
£ = | bz (26a)
/
= J t; dz (26b)
0

In Eq. (23), {A} is the unknown nodal displacements
Ay ={w v v o)t (27)

8. Numerical results and discussion

For the verification purpose, the results by present approach are compared with
the previous results [6,7] and ABAQUS [10]. In ABAQUS analysis, SORS shell ele-
ments are used. A simply supported I-section beam under uniformly distributed
load of 1 kN/m with dimension of (50 x 50 x 2.08 mm) is considered. The follow-
ing engineering constants are used.

Ey = 5378 GPa, E,=FE;=17.93 GPa (28a)
Gy =345 GPa, G, = G3=28.96 GPa (28b)
Vi3 = 034, V2 = V13 = 0.25 (28C)

The maximum vertical deflections based on two different assumptions (o5 =0
and ¢ = 0) are compared with the previous result [6] and ABAQUS [10] in Table 1
for several stacking sequences. All the results are in good agreement. Especially,
the results by oy =0 assumption show excellent agreement with ABAQUS sol-
ution.

The next example shows the angle of twist for various stacking sequences
with the same configuration as the previous example except the concentrated torque
T =100 N cm is applied at one end of the beam. The maximum angles of twist
are given in Table 2. For strong coupling stacking sequence [6];¢, the solution by
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Table 1
Deflections of a simply supported I-section beam under uniformly distributed load
Stacking sequence Ref. [5] ABAQUS Present

g =0 gs=0
[0]16 6.103 6.340 6.103 6.233
[15/—15]4s 6.611 6.989 6.610 6.899
[30/—30]4s 8.282 9.360 8.281 9.290
[45/—45)4s 11.343 13.479 11.340 13.421
[60/—60]4s 15.124 17.023 15.119 16.962
[75/=75)as 17.641 18.490 17.643 18.411
[0/90]4s 9.153 9.400 9.153 9.299
[0/—45/90/45]4s 10.130 10.851 10.130 10.777

& = 0 assumption remarkably underestimates the angle of twist while the solution
by 6, =0 assumption shows good agreements. From these two examples, it is
shown that the solution based on the assumption o3 =0 yield more accurate
results.

In order to investigate the flexural-torsional coupling effects, different stacking
sequences are given for the top and bottom flanges; and the web is assumed to be
unidirectional. Sectional dimension of I-beam is (100 x 200 mm) in 1 m length
made of 16 plies with each of them 0.05 mm in thickness. The material properties
considered in this investigation are:

E; /E2 =25 (293)
Gi2/E; =0.5 (29b)
Vi = 0.25 (290)
Table 2
Angle of twist of a simply supported I-section beam under concentered torque
Stacking sequence Ref. [6] ABAQUS Present
e =0 os =0
[0]16 0.2481 0.2490 0.2481 0.2481
[15/—15]4s 0.2073 0.2100 0.2073 0.2073
[30/—30]4s 0.1563 0.1600 0.1599 0.1563
[45/—45)4s 0.1396 0.1430 0.1388 0.1396
[60/—60]4s 0.1571 0.1590 0.1559 0.1571
[75/—75as 0.2080 0.2080 0.2072 0.2080
[0/9014s 0.2481 0.2480 0.2481 0.2481
[0/—45/90/45]4s 0.1891 0.1910 0.1879 0.1891
[45]16 0.1686 0.1710 0.1389 0.1687
[30]16 0.1686 0.1720 0.1561 0.1687

[60]16 0.1971 0.1972 0.1561 0.1972
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1.4E-03

——fiber angle change in the flanges
1.2E-03t  ----- fiber angle change in the web

1.0E-03

8.0E-04

6.0E-04

nondimensional angle of twist

4.0E-04

2.0E-04

0.0E+00
0 10 20 30 40 50 60 70 80 90

fiber angle
Fig. 3. Variation of the torsional displacements with respect to fiber angle change of a cantilever beam

under torque at free end.

For convenience, the following nondimensional values of vertical displacements
and angle of twist are used:

- ¢pl
¢ = G1obr? (303)
ol
=B (306)

The beam is assumed to be under torque at free end. The fiber angle is varied in
two ways; first case, the top and bottom flanges are considered as antisymmetric
angle-ply laminates [0/0/—0/—0], and the web laminate is assumed to be unidirec-
tional; second case, antisymmetric angle-ply laminates [6/6/—0/—0] in the web,
and unidirectional fiber orientation in the flanges. Four layers with equal thick-
nesses are considered. For all the analysis, the assumption oy = 0 is made. Vari-
ation of the torsional displacement of free end with respect to fiber angle change in
the flanges and web is shown in Fig. 3. It is found that the beam with fiber angle
change in the flanges is more sensitive to angle of twist than that of fiber angle
change in the web. For both cases, the minimum angle of twist occurs near
0 = 45°, that is, because the torsional rigidity Ess becomes maximum value at
0 =45

The last example presents a cantilever beam under point load instead of tor-
sional load at free edge (Fig. 4.). This case is that both the flanges are antisym-
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¥
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«— e=0.05b

Y

Fig. 4. I-section composite cantilever beam under eccentric load at free end.

metric angle-ply stacking sequence, and the other conditions are the same as the

previous example. Stacking sequence of top and bottom flanges are [0/6/—6/—0],
[0/—6/0/—0], respectively, and the web laminate is assumed to be unidirectional

1.0E-02

nondimensional vertical displacement

2.0E-03
1.0E-03 |

0.0E+00
0

9.0E-03 t

8.0E-03 }

7.0E-03 t

6.0E-03

5.0E-03

4.0E-03

3.0E-03

10 20 30 40 50 60 70 80 90
fiber angle

Fig. 5. Variation of the vertical displacements with respect to the fiber angle change of a cantilever beam
under eccentric load at free end.
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4.0E-04 |
2.08-04 |
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-8.0E-04
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-1.2E-03 S S S S S
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Fig. 6. Variation of the torsional displacement with respect to the fiber angle change of a cantilever
beam under eccentric at free end.

and thus exhibit flexural-torsional coupling. The vertical displacements at the free
end are shown in Fig. 5 with respect to fiber angle variation. It shows that the load
eccentricity does not affect the vertical displacements. On the other hand, the
maximum torsional displacements show substantial changes for eccentricity with
respect to fiber angle variation (Fig. 6). Even for no eccentricity (e/b = 0), the tor-
sional displacement becomes nonzero as fiber angle goes off-axis implying that the
coupling stiffnesses Ejs and E3s drive flexural-torsional coupling. Vice versa, for
e/b = 0.05, the torsional displacement can vanish for specific value of fiber angle
(near 18° and 63°), implying that the angle of twist can be suppressed with care-
fully tailored stacking sequence even for applied torque.

9. Concluding remarks

An analytical model was developed to study the flexural-torsional behavior of a
laminated composite beam with an I-section. The model is capable of predicting
accurate deflection as well as angle of twist shapes of various configuration includ-
ing boundary conditions, laminate orientation and ratio of elastic moduli. To for-
mulate the problem, a one-dimensional displacement-based finite element method
is employed. The assumption that normal stress in contour direction vanishes
(05 = 0) seems more appropriate than the free strain assumption in contour direc-
tion. The model presented is found to be appropriate and efficient in analyzing
flexural-torsional problem of a thin-walled laminated composite beam.
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