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In this article, we propose a Flexure-FET (flexure sensitive field

effect transistor) ultrasensitive biosensor that utilizes the nonlinear

electromechanical coupling to overcome the fundamental sensitiv-

ity limits of classical electrical or mechanical nanoscale biosensors.

The stiffness of the suspended gate of Flexure-FET changes with

the capture of the target biomolecules, and the corresponding

change in the gate shape or deflection is reflected in the drain

current of FET. The Flexure-FET is configured to operate such that

the gate is biased near pull-in instability, and the FET-channel

is biased in the subthreshold regime. In this coupled nonlinear

operating mode, the sensitivity (S) of Flexure-FET with respect to

the captured molecule density (Ns) is shown to be exponentially

higher than that of any other electrical or mechanical biosensor.

In other words, while SFlexure ∼ eðγ1
ffiffiffiffi

Ns

p
−γ2NsÞ, classical electrical or

mechanical biosensors are limited to Sclassical ∼ γ3NS or γ4 lnðNSÞ,
where γi are sensor-specific constants. In addition, the proposed

sensor can detect both charged and charge-neutral biomolecules,

without requiring a reference electrode or any sophisticated instru-

mentation, making it a potential candidate for various low-cost,

point-of-care applications.

label-free detection ∣ genome sequencing ∣ cantilever ∣ spring-softening ∣

critical-point sensors

Nanoscale biosensors are widely regarded as a potential can-
didate for ultrasensitive, label-free detection of biochemical

molecules. Among the various technologies, significant research
have focused on developing ultrasensitive nanoscale electrical (1)
and mechanical (2) biosensors. Despite remarkable progress over
the last decade, these technologies have fundamental challenges
that limit opportunities for further improvement in their sensitiv-
ity (Fig. 1A) (3–6). For example, the sensitivity of electrical
nanobiosensors such as Si-Nanowire (NW) FET (field effect
transistor) (Fig. 1B) is severely suppressed by the electrostatic
screening due to the presence of other ions/charged biomolecules
in the solution (7), which limits its sensitivity to vary linearly (in
subthreshold regime) (3, 7) or logarithmically (in accumulation
regime) (4, 7, 8, 9) with respect to the captured molecule density
Ns. Moreover, the miniaturization and stability of the reference
electrode have been a persistent problem, especially for lab-on-
chip applications (1). Finally, it is difficult to detect charge-neu-
tral biological entities such as viruses or proteins using charge-
based electrical nanobiosensor schemes.

In contrast, nanomechanical biosensors like nanocantilevers
(10, 11) (Fig. 1C) do not require biomolecules to be charged for
detection. Here, the capture of target molecules on the cantilever
surface modulates its mass, stiffness, and/or surface stress (5, 11,
12). This change in the mechanical properties of the cantilever
can then be observed as a change in its resonance frequency (dy-
namic mode), mechanical deflection, or change in the resistance
of a piezoresistive material (static mode) attached to the canti-
lever (6, 13). Unfortunately, typical optical detection schemes
(10) require complex instrumentation which may preclude them
from many low-cost point-of-care applications. Further, the re-

sponse of nanomechanical biosensors varies only linearly (5)
or logarithmically (6, 14, 15) with the change in the mass or sur-
face stress of the cantilever, and therefore these sensors may not
be sufficiently sensitive to detect target molecules at very low ana-
lyte concentrations, unless sophisticated, low-noise setup is used.

To overcome the respective limitations of classical electrical
and mechanical nanoscale biosensors, we propose the concept
of a Flexure-FET biosensor that integrates the key advantages
of both technologies but does not suffer from the limitations
of either approach. The Flexure-FET consists of a nanoplate
channel biased through a thin-film suspended gate (Fig. 1D).
Although the structure is similar to that of a suspended-gate
FET (16), nano-electromechanical (NEM) FET (17), or resonant
gate transistor (18), we call the device Flexure-FET to emphasize
its distinctive nonlinear operation specifically optimized for ultra-
sensitive detection of biomolecules. As shown in Fig. 1E, the ultra
high sensitivity arises from the coupling of two electromechanical
nonlinear responses, namely (i) spring-softening (19) in which
stiffness decreases nonlinearly with the applied gate bias VG and
vanishes at the pull-in point (for detailed discussions on pull-in
instability, see refs. 20, 21), and (ii) subthreshold electrical
conduction (22) in which current depends exponentially on the
surface potential (Fig. S1). Such nonlinear electromechanical
coupling enables exponentially high sensitivity for Flexure-FET
sensors (Fig. 1A), which is fundamentally unachievable by exclu-
sive use of existing nanoscale electrical or mechanical biosensors.
Moreover, the reliance of change in stiffness (23, 24) ensures
screening-free detection of charged/neutral molecules, with no
need for a reference electrode, and the measurement of drain
current for detection requires no complex instrumentation. It
should be noted that from a mechanical perspective, the Flexure-
FET operates close to pull-in instability, a critical point. Similar
critical point sensing has also been reported for vapor sensors
(25) that operate close to bucking-instability (25) and for mass
sensors that operate close to saddle-node bifurcation (26), and
their higher sensitivity has been confirmed experimentally. How-
ever, beyond the critical point sensing, the integrated transistor-
action in the subthreshold regime provides the Flexure-FET an
additional exponential sensitivity (and simpler direct current
readout) that could not be achieved by the classical nonlinear sen-
sor schemes.

Theory of Flexure-FET

Sensor Configuration Before Target Capture.The operating principle
of Flexure-FET can be understood using the well established
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spring-mass model (Fig. 2) (17, 18). With the application of gate
bias VG, the gate moves downward toward the dielectric (y vs.
VG curve in Fig. 1E), and the corresponding increase in gate ca-
pacitance is reflected in the increased drain current IDS, as shown
in Fig. 1E. The static behavior of the device is dictated by the
balance of spring and electrostatic forces; i.e.,

kðy0 − yÞ ¼ 1

2
ϵ0E

2

airA; [1]

where k ¼ αEWH 3

12L3 is the stiffness, α is a geometrical factor,E is the
Young’s modulus, W is the width, H is the thickness, L is the
length of the gate electrode, y0 is the air-gap, y is the position
of the gate electrode, ϵ0 is the permittivity of free space, Eair

is the electric field in the air, and A ¼ WL is the area of the gate

electrode. The electric field below the membrane Eair is equal to
ϵsEsðψsÞ, where ϵs is the dielectric constant of the substrate, and

EsðψsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2qNA

ϵ0ϵs

s

�

ψs þ
�

e
−

qψs
kBT − 1

�

kBT

q

−

�

ni
NA

�

2
�

ψs −

�

e
qψs
kBT − 1

�

kBT

q

��

1

2

; [2a]

where EsðψsÞ is the electric field at the substrate-dielectric inter-
face (22, page 64, for a detailed derivation of Eq. 2a), ψs is the
surface potential, q is the charge of an electron, NA is the sub-
strate doping, kB is the Boltzmann constant, T is the absolute
temperature, and ni is the intrinsic carrier concentration in the
substrate. The voltage drop in air (yϵsEsðψsÞ), dielectric
(yd
ϵd
ϵsEsðψsÞ), and substrate (ψs) can be related to the applied gate

bias VG as follows-

VG ¼
�

yþ yd
ϵd

�

ϵsEsðψsÞ þ ψs; [2b]

where, yd is the dielectric thickness and ϵd is the dielectric con-
stant. Eqs. 1 and 2 are solved self-consistently for y and ψs at each
VG. The corresponding inversion charge density (Qi) in the chan-
nel and drain current (IDS) are given by

Qi ¼
qn2

i

NA

Z

ψs

0

e
qψ
kBT − 1

EsðψÞ
dψ; [3]

IDS ¼ μnLQi

VDS

W
; [4]

where μn is the channel mobility for electrons, VDS is the applied
drain to source voltage. Fig. 1E shows the steady-state response
of Flexure-FET as a function of biasing voltage VG, obtained
from the numerical simulations of Eqs. 1–4.

Flexure-FET Response to Target Capture. For transduction, the pro-
posed Flexure-FET biosensor utilizes the change in suspended
gate stiffness from k to kþ Δk, (12, 24, 27–29) due to the capture
of biomolecules. The change in stiffness due to the capture of
biomolecules has been demonstrated by several recent experi-
ments of mass sensing using nanocantilever-based resonators
(12, 27, 28) (Fig. S2). This well known observation of stiffness
change has been attributed to the change in the membrane thick-
ness, Young’s modulus, and/or surface stress of the beam (12, 23,

Fig. 1. (A) Sensitivity S of different types of biosensors; e.g., (B) electrical

(Si-NW FET) in which transduction is achieved by modulation of channel con-

ductivity (G) when charged biomolecules are captured by the gate. (C) Trans-

duction in cantilever-based nanomechanical biosensors is achieved by change

in its mass, stiffness, or surface stress. Nanocantilever can be operated in

dynamic mode (mass change-based detection using shift in resonance fre-

quency) or in static mode (surface stress change based detection using piezo-

resistive material). (D) Proposed Flexure-FET biosensor in which transduction

is achieved due to change in the stiffness of the suspended gate. (E) Opera-

tion of Flexure-FET below pull-in. Displacement of the suspended gate (y)

and drain current ðIDSÞ as a function of applied gate bias VG. The y changes

rapidly near pull-in ðVG ≈ VPIÞ and IDS increases exponentially with VG in the

subthreshold regime ðVG < VT Þ.

Fig. 2. (A) and (B). Equivalent spring-mass model of Flexure-FET. Stiffness

changes from k to k þ Δk after the capture of biomolecules, and therefore

position of the gate changes from y to y þ Δy, which results in the modula-

tion of drain current from IDS1 to IDS2.
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24, 30). Indeed, Craighead (27) suggests its use as a basis of a new
class of mechanical biosensor.

In the following analysis, we model change in k by change in
the effective thickness H of the gate (ΔH), although it should
be stressed that the conclusions do not depend on the particular
hypothesis regarding Δk. For now, we ignore the details of the
spatial distribution of molecules associated with random sequen-
tial adsorption (31) and assume a uniform distribution of
adsorbed molecules on the sensor surface. Therefore, the conser-
vation of volume suggests ΔH ¼ NsAtHt, where Ns is the area
density, At is the effective cross-sectional area, and Ht is the
effective thickness of the target molecule. Using the fact that

k ¼ αEWH 3

12L3 , the change in stiffness Δk due to ΔHð≪ HÞ can

be related to adsorbed molecule density Ns as follows:

Δk

k
≈
3NsAtHt

H
: [5]

For simplicity, we have taken the Young’s modulus of captured
molecules to be the same as that of the membrane, but this is ob-
viously not necessary, and the theory can be generalized by the
methods developed in Tamayo, Ramos, Mertens, and Calleja (23).

Combining Eqs. 1 and 2b, we get kðy0 − yÞy2 ≈ ϵ0AðVG−
ψsÞ2∕2. Now, the change in gate position Δy for small change
in stiffness Δk due to capture of biomolecules is given as

ð3y − y0ÞΔy2 þ yð3y − 2y0ÞΔy ≈
ϵ0AðVG − ψsÞ2

2

Δk

k2
: [6]

If Flexure-FET is biased close to pull-in (VG ≈ V PI; y ≈
2

3
y0), the

nonlinear Δy2 term dominates the linear Δy term in Eq. 6. It is
essential to bias the Flexure-FET in this nonlinear, close-to-pull-
in regime for maximum sensitivity. Using Eqs. 5 and 6, we find

Δy ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ0AðVG − ψsÞ2
2ð3y − y0Þ

Δk

k2

s

≈ β
ffiffiffiffiffiffi

Ns

p

; [7]

where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ϵ0AðVG−ψsÞ 2
2ð3y−y0Þ

AtHt

Hk

q

is a bias and device dependent
constant.

Since the electrostatic force in subthreshold regime is given by
1

2
ϵ0E

2

airA ¼ qϵsψsNAA (Eq. 2a), the corresponding change in the
surface potential Δψs is obtained by perturbation of Eq. 1; i.e.,

Δψs ≈
−kΔyþ Δkðy0 − yÞ

qϵsNAA
: [8]

Using Eqs. 2a, 3, and 4, we can calculate the drain current IDS in
the subthreshold regime as follows,

IDS ≈

μnL

�

VDS

W

��

qn2

i

NA

��

kBT
q

�

ffiffiffiffiffiffiffiffiffi

2qNA

ϵ0ϵs

q

e
qψs
kBT

ffiffiffiffiffi

ψs
p : [9]

Now, the ratio of the drain current before (IDS1) and after (IDS2)
capture of biomolecules (in terms of the change in surface poten-
tial Δψs) is given by

IDS1

IDS2

≈ exp

�

−
qΔψs

kBT

�

: [10]

Using Eqs. 8 and 10, the ratio IDS1∕IDS2 is given by

IDS1

IDS2

≈ exp

�

kΔy − Δkðy0 − yÞ
kBTϵsNAA

�

: [11]

Therefore, if Flexure-FET is operated close to pull-in and in sub-
threshold regime, sensitivity S (using Eqs. 5, 7, and 11) is given by

SFlexure ≡
IDS1

IDS2

≈ expðγ1
ffiffiffiffiffiffi

Ns

p

− γ2NsÞ; [12]

where γ1 ¼ kβ
kBTϵsNAA

and γ2 ¼ 3ðy0−yÞkAtHt

kBTϵsNAAH
. The sensitivity S is de-

fined as IDS1∕IDS2, because IDS decreases after capture (see next
text section).

Eq. 12 is the key result of the paper and shows how nonlinear
interaction between mechanical (spring-softening) and electrical
(subthreshold) aspects of sensing leads to an exponential sensi-
tivity to capture of biomolecules. Such gain in sensitivity is impos-
sible to achieve exclusively by electrical or mechanical sensing
mechanisms.

Numerical Confirmation of Flexure-FET Response. The compact ana-
lytical expression of sensitivity of the Flexure-FET sensor can be
validated by the self-consistent numerical solution of Eqs. 1–4.
The results for the change in sensor characteristics due to the
capture of biomolecules are summarized in Fig. 3. For example,
Fig. 3A shows y vs. VG before and after capture of target mole-
cules. After the capture, the gate moves up (for a fixed VG) due
to increased restoring spring force (because of increase in the
k; Fig. 3A). Interestingly, change in gate position Δy is maximum
close to pull-in due to spring-softening effect, as shown in Fig. 3B
(see Figs. S3, S4 and S5 in SI Text for experimental validation).
The change in gate position Δy is directly reflected in change in
IDS. Fig. 3C shows IDS vs. VG before and after capture of bio-
molecules. Interestingly, IDS decreases after capture due to in-
creased separation between the gate and the dielectric (hence
decreased capacitance). The corresponding ratio of the currents

Fig. 3. Change in the sensor characteristics due to capture of target mole-

cules on the surface of the gate, (A)y vs. VG before and after capture, and

(B) corresponding change in the position of gate electrode Δy vs. VG. The Δy

increases rapidly near pull-in due to spring-softening effect. The capture of

target molecules is directly mirrored in the change in IDS. (C) IDS vs. VG before

and after capture, and (D) corresponding ratio of the two currents IDS1
(before capture) and IDS2 (after capture) as a function of Δy. Symbols denote

the numerical simulation and solid line analytical formula (Eq. 11). The device

considered has the following typical parameters: L ¼ 4 μm, W ¼ 1 μm,

H ¼ 40 nm, E ¼ 200 GPa, y0 ¼ 100 nm, yd ¼ 5 nm, ϵs ¼ 11.7, ϵd ¼ 3.9,

NA ¼ 6e16 cm−3.
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IDS1 (before capture) and IDS2 (after capture) increases exponen-
tially withΔy (Fig. 3D), and becomes maximum near pull-in. Note
that the results from detailed numerical simulations are accu-
rately anticipated by Eq. 11, thus validating the analytical model
described in the previous section. Therefore, by operating the
Flexure-FET close to mechanical pull-in and in electrical sub-
threshold regime, orders of magnitude change in IDS can be easily
achieved for typical surface density of Ns ¼ 5 × 1012 cm−2, pro-
jected area of the biomolecule, At ¼ πR2

t with Rt ¼ 1 nm, and
Ht ¼ 5.1 nm. These parameters translate to just an equivalent
Δk ∼ 6%. Note that to achieve the maximum sensitivity, it is im-
portant to bias the Flexure-FET in subthreshold regime below
pull-in (i.e., VT ≈ V PI).

Comparison with Classical Sensors
Next we compare the sensitivity of the proposed Flexure-FET
sensor with the current nanoscale electrical/mechanical biosen-
sors. Fig. 4A indicates that the Flexure-FETsensors are exponen-
tially sensitive to change in stiffness or captured molecule density
Ns (symbols: numerical simulation, solid line: analytical result;
Eq. 12). In the following, we explain the origin of linear (or loga-
rithmic) sensitivity for electrical and mechanical nanoscale bio-
sensors.

Electrical Nanobiosensors. For Si-NW FET biosensors, which also
have the optimal sensitivity in subthreshold regime (3), sensitivity
S is defined to be the ratio of conductance G (after) and G0

(before) capture of target molecules (assuming conductance
increases after the capture). Therefore, using Eq. 9, S can be
approximated as

SSiNW ≡
G

G0

≈ exp

�

qΔψs

kBT

�

: [13]

Unfortunately, the detection of biomolecules in a fluidic environ-
ment involves electrostatic screening by other ions in the solution.

Consequently, the surface potential scales logarithmically with
biomolecule density; i.e., (q∕kBT)Δψs ∝ lnðδNsÞ (7) , where δ

is a constant that depends on ionic strength and properties of
dielectric/fluid interface. Therefore, optimal sensitivity of Si-NW
biosensors is given by

SSiNW ∝ δNs: [14]

In Fig. 4B, S is plotted against volume concentration ρ, as the
captured molecule density Ns ∝ ρ [linear regime of Langmuir
isotherm (7)]. Therefore, all the conclusions regarding the depen-
dence of sensitivity on Ns also hold for ρ. It should be noted that
the reported sensitivity in the subthreshold regime (3) is actually
sublinear (Fig. 4B), below the maximum sensitivity limit defined
by Eq. 14 that can be achieved in this sensing regime. In the
accumulation or the inversion regimes, SSiNW ∝ Δψs (7), and
therefore, SSiNW ∝ lnðNsÞ, as shown in Fig. 4B (4, 7). Similar
logarithmic dependence of sensitivity was reported in other refer-
ences (8, 9) as well.

Mechanical Nanobiosensors. For nanomechanical biosensors such
as resonance mode nanocantilever, the sensitivity S is defined
as ω0∕ω, where ω is the resonance frequency after the capture
of target biomolecules, and ω0 is the resonance frequency before

capture. Using the well known fact that ω ¼
ffiffiffi

k
m

q

, where k is the

stiffness and m is the initial mass of the cantilever, S is given by

SRes ≡
ω0

ω
≈ 1þ 1

2

Δm

m
¼ 1þ 1

2

NsWLm�

m
; [15]

where m� is the mass of individual biomolecule and
Δm ¼ NsWLm� is the added mass of the biomolecules. There-
fore, the sensitivity of mechanical biosensor can only vary linearly
withNs. This theoretical prediction is confirmed by experimental
data (5) in Fig. 4C. We emphasize that the nanomechanical bio-
sensors—with careful design and appropriate instrumentation—
can be extraordinarily sensitive; indeed, zeptogram mass detec-
tion (32) has been reported. Eq. 15 simply suggests that the sen-
sitivity of such sensor still varies linearly with respect to Ns.

It is also important to realize that the linear sensitivity with Ns

is achieved only if the change in stiffness due to capture of
molecules is negligible. In general, however, capture of target
molecules increases stiffness of the membrane. If this increase
in stiffness compensates the corresponding increase in the mass,
there might be no change in resonance frequency at all (12, 28),
and the sensitivity could be vanishingly small. One must indepen-
dently measure the change in the stiffness (29, 30) to decouple
the mass effect from stiffness effect so that the mass of the
adsorbed molecule can be correctly estimated. In contrast, the
Flexure-FET relies only on the change in the stiffness and works
in the static mode, and therefore requires no more than a simple
measurement of the drain current.

Another class of nanocantilever sensor involves operation in
the static mode, where the capture of the target molecules intro-
duces a surface stress, which in turn bends the cantilever. The
displacement Δy of the tip can in principle be measured using
sophisticated optical readout methods, but a simpler approach
can be used instead: One can measure the change in surface stress
by measuring the change in the resistance of a piezoresistor
attached to the cantilever. For these piezoresistive-based cantile-
ver biosensors, the sensitivity is defined as the ratio of resistance
before (R0) and after (R) the capture of biomolecules. Fig. 4D
shows a logarithmic dependence of S on ρ. Similar logarithmic
dependence for surface stress change has also been reported
(14, 15). We therefore conclude that these static mode sensors
do not exceed linear sensitivity limit of classical sensors.

Fig. 4. Comparison of the sensitivity of different biosensors. Sensitivity S (A)

Flexure-FET (symbols denote the numerical simulation). (B) Si-NW biosensors

in subthreshold and accumulation regime. (C) Resonance mode nanomecha-

nical biosensors. (D) Surface stress change-based piezoresistive nanomecha-

nical biosensors, as a function of Ns or ρ. In (B–D), symbols are the

experimental data and the line is the guide to the eye.

4 of 5 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1203749109 Jain et al.



We summarize the results discussed in this section in Fig. 1A,
where the sensitivity of various types of nanobiosensors has been
plotted against normalized Ns, defined as the ratio of the mea-
sured quantity (either ρ or Ns) to the minimum measured ρ or
Ns of the available data. Fig. 1A allows us to conclude that the
Flexure-FET biosensor will be exponentially more sensitive com-
pared to existing nanoscale electrical or mechanical biosensors.

Finally, we emphasize that each of the three sequential physi-
cal phenomena associated with the operation of Flexure-FET
(stiffness change due to capture of biomolecules, pull-in instabil-
ity, subthreshold conduction) (Fig. S1) has been individually con-
firmed by numerous experiments based on electromechanical
resonators (18, 33) and suspended-gate FET (34). We provide
a summary of these experiments in the SI Text (Figs. S2, S4, S5,
and S6). In the SI Text, we also suggest that a simple reconfigura-
tion of existing electromechanical resonators or suspended-gate
FET in Flexure-FET mode can give rise to exponential sensitivity
(Fig. S7).

Conclusion
In this paper, we have demonstrated how the Flexure-FET nano-
biosensor achieves exponentially high sensitivity by combining
two nonlinear characteristics of spring-softening and subthres-
hold conduction. This extreme high sensitivity of Flexure-FET,
therefore, breaks the fundamental limits of linear or logarithmic
sensitivity of classical nanoscale electrical or mechanical biosen-

sors. There are broad ranges of applications that can benefit from
this sensitivity gain. For example, the current genome sequencing
schemes require PCR (polymerase chain reaction) amplification
of DNA strands because of the lower sensitivity of existing
biosensors. The high sensitivity of Flexure-FETcan eliminate the
requirement of multiplication step and hence reduce the cost of
sequencing. In addition, we recall that the proposed sensing
scheme (i) can detect both charged and charge-neutral molecules,
(ii) does not rely on reference electrode (the fundamental road-
block of Si-NW type biosensors), and (iii) obviates the need for
any sophisticated and difficult-to-integrate instrumentation. The
sensitivity of Flexure-FET can be further enhanced by choosing a
softer membrane (having low stiffness) such as some polymer with
low Young’s modulus or an ultrathin membrane like graphene.
Finally, let us emphasize that the sensing scheme is very general,
which converts any change in the mechanical property of the gate
electrode or change in the air-gap to the change in the drain cur-
rent of the FETchannel. Therefore, the proposed idea is not ne-
cessarily restricted to biomolecules detection but should find
broader applications in gas/chemical/pressure sensing as well.
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SI Text
In this document we discuss the proof-of-concept of Flexure-FET
biosensor and justify the various claims made in the paper using
the experimental data available in the literature. Before we show
the proof-of-concept, we want to mention that the operation of
Flexure-FET consists of three main pieces: (i) stiffness change
due to capture of biomolecules, (ii) operating the gate near
pull-in instability for maximum change in the displacement,
and (iii) subthreshold conduction of the FET for exponential sen-
sitivity (Fig. S1). In the following sections we validate each of the
three pieces and their combined actions.

Experimental Validation of Stiffness Increase Due to Capture of Bio-

molecules. The operating principle of the proposed Flexure-FET
is based on the increase in the stiffness of a cantilever or fixed-
fixed beam due to the capture of biomolecules. This increase in
the stiffness due to capture of biomolecules has been reported by
several groups (1–4). Fig. S2 shows one such dataset for percen-
tage increase in the stiffness due to capture of proteins on differ-
ent cantilevers (2). It should be noted that percentage increase
could be as high as 50%. We have shown in the article that even
a 5–10% increase in the stiffness results in two to three orders of
magnitude change in the drain current.

Experimental Validation That Operation Close to Pull-In Instability Re-

sults in Maximum Change in the Displacement (Δy) Due to Change in

the Stiffness (Δk). The second part of the operation of Flexure-
FET; i.e., biasing the gate near pull-in maximizes Δy, has also
been demonstrated in large numbers of experiments on electro-
mechanical resonators (Figs. S3–S5) (5, 6). In the following, we
interpret the experiments from the perspective of its application
in Flexure-FET.

We recall that capture of biomolecules changes the stiffness

k ∝ EWH 3

L3 due to change in the thickness H of the gate. Since
Δk
k0

¼ 3
ΔH
H0

þ ΔW
W 0

þ ΔE
E0

− 3
ΔL
L0

, where the subscript 0 indicates initi-

al values, we note that the nonlinear sensitivity ofΔy onΔk can be
equivalently demonstrated by changing the beam length L (5) or
Young’s modulus E (6).

Fig. S4A shows the response of two electromechanical resona-
tors (5) having different lengths. Their differential nonlinear re-
sponse ΔyðVGÞ ≡ yðkðL1Þ; VGÞ − yðkðL2Þ; VGÞ for two different
lengths, L1 ¼ 310 μm and L2 ¼ 510 μm, is shown in Fig. S4B.
Similarly, Fig. S5A shows the response of an electromechanical
resonator (6) at two different temperatures. Nathanson, Newell,
Wickstrom, and Davis (6) assume that an increase in temperature
decreases the Young’s modulus. The corresponding differential
nonlinear response ΔyðVGÞ ≡ yðkðT1Þ; VGÞ − yðkðT2Þ; VGÞ for
two different temperatures (or different Young’s modulus), T1 ¼
30 °C and T2 ¼ 80 °C, is shown in Fig. S5B. These experiments
confirm that that any change in Δk is reflected in nonlinear re-
sponse in Δy, and Δy is maximum close to pull-in instability—a
key assertion of the Flexure-FET concept.

Experimental Validation That Drain Current in Flexure-FET Depends Ex-

ponentially on the Gate Position (y) in Subthreshold Regime. Fig. S6
shows the response of a suspended-gate FET (7). The structure of
suspended-gate FET is similar to the proposed Flexure-FET, and
therefore the experimental data is directly relevant. The symbols
in Fig. S6B show the measured drain current as a function of gate
voltage (7). Our numerical simulations (solid line in Fig. S6B)
based on Eqs. 1 and 2 in the main text reproduce the experimen-
tal data very well. The drain current has been obtained using the
following expression

IDS ¼
qn2

i

NA

μn

L

W
VDS

Z

ψS

0

e
qψ

mkBT − 1

EsðψÞ
dψ; [S1]

where the underlap factor m ∼ 5.5 accounts for the fact that the
membrane does not overlap the source/drain completely (8).
Fig. S6C shows the drain current as a function of the position
of the gate (y) confirming that drain current depends exponen-
tially on y in subthreshold region. Therefore, any change in gate
position will result in exponential change in the drain current.

Hence, all the three pieces of the Flexure-FET operation
namely change in stiffness due to capture of biomolecules
(Fig. S2), maximum change in gate position occurs close to
pull-in due to change in stiffness (Figs. S4 and S5) and the expo-
nential dependence of transistor drain current on the gate posi-
tion in subthreshold (Fig. S6) are supported by experiments. In
the following we conclude this discussion by showing the sensitiv-
ity of the devices discussed above when reconfigured in the Flex-
ure-FET mode.

Response of Existing Devices When Reconfigured to Flexure-FET Mode.

If the devices discussed above were reconfigured in the Flexure-
FET mode, we anticipate the following response. If a transistor
was integrated with the electromechanical resonators discussed in
Figs. S4 and S5 and operated in the subthreshold regime, accord-
ing to the theory discussed in the article, the overall response will
be given by

IDS1

IDS2

¼ exp

�

ðk1∕A1Þðy0 − y1Þ − ðk2∕A2Þðy0 − y2Þ

kBTϵSNA

�

; [S2]

where IDS1, k1, y1, A1 are initial drain current, stiffness, position,
and area of the beam, whereas IDS2, k2, y2, A2 are drain current,
stiffness, position, and area due to stiffness change. In Eq. S2 all
the parameters are known experimentally except the doping of
the substrate NA. For a typical doping concentration (NA ¼

5e14 − 5e16 cm−3), the ratio of drain currents IDS1

IDS2
changes by

two to three orders of magnitude, confirming the exponential sen-
sitivity of this class of devices (Fig. S7 A and B). Similarly, if the
membrane stiffness of suspended-gate FET was changed by ap-
proximately 30–35% (keeping all other parameters to be the
same and underlap factorm ¼ 1 in Eq. S1), a similar two to three
order magnitude change in drain current is expected (Fig. S7C).
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Fig. S1. Flow chart showing three main pieces of Flexure-FET operation for achieving exponential sensitivity. The flow chart also shows the references which

are used to validate the various pieces.

Fig. S2. Experimental validation of the first part (Part 1 in Fig. S1); i.e., change in stiffness due to capture of biomolecules on different nanocantilever devices

(2).
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Fig. S3. Schematic of an electromechanical resonator.

Fig. S4. Demonstration of nonlinear sensitivity of Δy on Δk using the response of two electromechanical resonators with different lengths (5). (A) Equilibrium

position of beam as a function of applied bias. Symbols are the experimental data (5), and the dotted line is the numerical simulations based on Eqs. 1 and 2 in

the article. Different symbols correspond to L ¼ 510 μm (empty square) and L ¼ 310 μm (empty circle). (B) Difference in the equilibrium position Δy as a func-

tion of gate voltage suggests that maximum change in Δy occurs close to pull-in instability.

Fig. S5. Demonstration of nonlinear sensitivity of Δy on Δk using the response of an electromechanical resonator at two different temperatures (6). (A)

Equilibrium position of the beam as a function of applied bias for two different temperatures 80 °C (empty square) and 30 °C (empty circle). Symbols are

the experimental data, and the dotted line is the numerical simulations based on Eqs. 1 and 2 in the article. (B) Change in beam position Δy is due to change

in temperature (and hence stiffness).

Fig. S6. Response of a suspended-gate FET (7). (A) Micrograph of the suspended-gate FET. (B) Measured drain current as a function of gate voltage. Symbols

are the experimental data, and the solid line is the numerical simulation. (C) Corresponding drain current as a function of the position of gate (y) showing that

drain current depends exponentially on y.

Fig. S7. Response of existing devices reconfigured to operate in Flexure-FET mode. (A, B) If a transistor is integrated with the existing electromechanical

resonators (5, 6), drain current IDS1∕IDS2 changes by two to three orders of magnitude, as suggested in the article. (C) The response of suspended-gate FET (7)

(with underlap factor m ¼ 1) due to stiffness change (Δk ¼ 30–35%) also suggests similar improvement.
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