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Abstract In this paper, we reconsider the clustering

problem for image over-segmentation from a new per-

spective. We propose a novel search algorithm called

“active search” which explicitly considers neighbor

continuity. Based on this search method, we design a

back-and-forth traversal strategy and a joint assignment

and update step to speed up the algorithm. Compared

to earlier methods, such as simple linear iterative

clustering (SLIC) and its variants, which use fixed

search regions and perform the assignment and the

update steps separately, our novel scheme reduces

the number of iterations required for convergence,

and also provides better boundaries in the over-

segmentation results. Extensive evaluation using the

Berkeley segmentation benchmark verifies that our

method outperforms competing methods under various

evaluation metrics. In particular, our method is fastest,

achieving approximately 30 fps for a 481 × 321 image

on a single CPU core. To facilitate further research, our

code is made publicly available.

Keywords image over-segmentation; SLIC; neighbor

continuity; back-and-forth traversal

1 Introduction

Superpixels, generated by image over-segmentation,

can take the place of pixels as the fundamental

units in various computer vision tasks, including

image segmentation [1], image classification [2], 3D

reconstruction [3], object tracking [4], etc. Such a

technique can greatly reduce computational costs,
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avoid under-segmentation, and reduce the influence

of noise. Clearly, efficiently generating superpixels

plays an important role in many vision and image

processing applications.

Many classical methods have been developed

for superpixel generation, including FH [5], Mean

Shift [6], and Watershed [7] methods. The lack of

compactness and the irregularity of the resulting

superpixels restrict their application, especially when

contrast is poor or shadows are present. To solve

the above-mentioned problems, Shi and Malik

proposed the normalized cuts (NC) method [8] which

generates compact superpixels. However, this method

does not follow image boundaries very well, and

the computational cost is high. The GraphCut

method [9, 10] regards the segmentation problem

as an energy optimization process. It solves the

compactness problem by using min-cut/max-flow

algorithms [11, 12], but their parameters are hard

to control. The Turbopixel method [13] provides

another approach to solving the compactness problem.

However, the inefficiency of the underlying level-

set method [14] restricts its application. Van den

Bergh et al. [15] proposed an energy-driven algorithm,

SEEDS, whose results follow image boundaries

well, but unfortunately it suffers from irregularity

and the number of superpixels output is hard to

determine. The ERS method [16] performs well on

the Berkeley segmentation benchmark, but has a high

computational cost that limits its practical use.

Achanta et al. [17] proposed a linear clustering

based algorithm called SLIC; it generates superpixels

based on Lloyd’s algorithm [18] (also known as

Voronoi iteration or the k-means method). For

speed, in the assignment step of SLIC, each pixel

p is associated with those cluster seeds whose search

regions overlap its location. This strategy is also

adopted by most subsequent works based on SLIC.
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SLIC is widely used in various applications [4] because

of its high efficiency and good performance. Inspired

by SLIC, Wang et al. [19] implemented an algorithm

called SSS that considers the structural information

within images. It uses geodesic distance [20] com-

puted by geometric flows instead of the simple

Euclidean distance. However, its efficiency is poor

because of the high computational cost of measuring

geodesic distances. Very recently, Liu et al. [21]

proposed the Manifold SLIC method that generates

content-sensitive superpixels by computing a

centroidal Voronoi tessellation (CVT) [22] in a

special feature space. This advanced technique is

much faster than SSS but still slower than SLIC

due to the cost of its mapping, splitting, and

merging processes. In summary, the above-mentioned

methods improve the results by either using more

complicated distance measurements or by providing

more suitable transformations of the feature space.

However, the assignment and update steps within

these methods are performed separately, leading to a

low convergence rate.

2 Proposed approach

In this paper, we consider the over-segmentation

problem from a new perspective. Each pixel in

our algorithm is allowed to actively search for the

superpixel to which it belongs, according to its

neighboring pixels—see Fig. 1. During this process,

the seeds of the superpixels can be adaptively changed,

which allows our assignment and update steps to

be performed jointly. This property enables our

approach to converge rapidly. To sum up, the main

Fig. 1 (a) Search method used in SLIC. Each seed only searches

over a limited region to reduce computational cost. (b) Our active

search method. Each pixel decides its own label by searching its

surroundings.

advantages of our new approach are:

• Good awareness of neighboring-pixel continuity,

leading to results with good boundary sensitivity

regardless of image complexity and contrast.

• Joint performance of the assignment and update

steps, providing rapid convergence (in just two

iterations). Our method has the highest speed

of any superpixel segmentation approach, with

better performance according to a variety of

metrics evaluated on the Berkeley segmentation

benchmark.

3 Preliminaries

Before introducing our approach that allows adaptive

search regions and joint assignment and update steps,

we first briefly recap the standard SLIC algorithm

with fixed search regions and separate steps. This

approach improves upon Lloyd’s algorithm, reducing

the time complexity from O(KN) to O(N), where K

is the number of superpixels and N is the number of

pixels.

Let {Ii}
N
i=1

be a color image, where Ii represents

some pixel. Given a set of evenly distributed seeds

{Sk}K
k=1

, SLIC simplifies Lloyd’s algorithm to get

the centroidal Voronoi tessellation (CVT) [22] that

will be discussed in Section 3.4. In the assignment

step, each pixel Ii is associated with those cluster

seeds whose search regions overlap the pixel’s location:

see Fig. 1(a). The area of a search region is given

by 2T × 2T , where T =
√

N/K. In detail, SLIC

considers Ii to lie in a five dimensional space that

includes a three dimensional CIELAB color space

(li, ai, bi) and a two dimensional spatial space (xi, yi).

SLIC measures the distance between two points using

a weighted Euclidean distance, computed by

D(Ii, Ij) =

√

d2
c

+

(

dsm

Ns

)2

(1)

where m is a variable that controls the weight of the

spatial term, and Ns = T . Variables ds and dc are

respectively the spatial and color distances, given by

ds =
√

(xi − xj)2 + (yi − yj)2 (2)

and

dc =
√

(li − lj)2 + (ai − aj)2 + (bi − bj)2 (3)

In the update step, SLIC recomputes the center of

each superpixel and moves the seeds to these new
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centers. Overall, it obtains the over-segmentation

results by iteratively performing the assignment and

update steps.

Variants of SLIC use a similar approach.

They improve upon the performance of SLIC by

using better distance measures or more suitable

transformation functions between color space and

spatial space. However, in these algorithms, each

search region is fixed during the assignment step

within each loop, and the relationships between

neighboring pixels are largely ignored when allocating

pixels to superpixels. Separately performing the

assignment step and the update step causes delayed

incorporation of pixel label changes.

Since superpixel computation is typically used as

the first step of other vision applications, the rapid

generation of superpixels with good boundaries is a

crucial problem. Here, unlike previous algorithms

[17, 21], we consider this problem from a new

point of view, in which only surrounding pixels are

considered for determining the label of the current

pixel. Each pixel actively selects which superpixel it

should belong to in a back-and-forth order to provide

better determination of over-segmentation regions.

Moreover, the assignment step and the update step

are performed jointly. Very few iterations are required

for our approach to converge. An overview of our

algorithm is provided in Algorithm 1.

3.1 Problem setup

Given the desired number of superpixels K and an

input image I = {Ii}
N
i=1

, where N is the number of

pixels, our goal is to produce a series of disjoint

small regions (or superpixels). Following most

previous works [17], the original RGB color space is

transformed to the more useful CIELAB color space.

Thus, each pixel Ii in an image I can be represented

in a five dimensional space:

Ii = (li, ai, bi, xi, yi) (4)

We first divide the original image into a regular grid

containing K elements {Gk}K
k=1

with step length υ =
√

N/K as in Ref. [17], and the initial label for each

pixel Ii is assigned as

Li = k, when Ii ∈ Gk (5)

We initialize the seed Sk in Gk at its centroid.

Therefore, Sk can also be defined as being in the

same five dimensional space:

Sk = {lk, ak, bk, xk, yk} (6)

Algorithm 1 FLIC

Input: Image I with N pixels, the desired number of

superpixels K, the maximum number of iterations itrmax

and the spatial distance weight m.

Output: K superpixels

Divide the image into regular grid cells {Gk}K
k=1

with grid spacing υ =
√

N/K.

Initialize labels {Lk}K
k=1 for pixels according to their

locations.

Move each seed to the lowest gradient position in its 3×3

neighborhood.

Initialize seeds {Sk}K
k=1.

Regard pixels sharing the same label as a superpixel ζ.

Initialize distance d(i) = ∞ for each pixel and itr = 0.

while itr < itrmax do

for each superpixel ζk do

Use back-and-forth scan to traverse superpixel ζk

to determine the pixel processing sequence (§ 3.3).

for each pixel Ii in the sequence do

Set d(i) = D(Ii, SLi
) using Eq. (1)

for Ij in the four-neighborhood of Ii do

if Lj �= Li then

Compute D = D(Ii, SLj
) using Eq. (1)

if D < d(i) then

d(i) = D; Li = Lj .

end if

end if

end for

if Li was changed to Lj then

Use Eq. (10) to update ζLi
;

Use Eq. (11) to update ζLj
;

Update the bounding box of ζLj
(§ 3.4).

end if

end for

end for

itr++;

end while

3.2 Label decision

In most natural images adjacent pixels tend to

share the same labels, i.e., neighboring pixels have

natural continuity. Thus, we propose an active

search method to leverage as much of this a priori

information as possible. In our method, unlike most

previous approaches [17, 21], the label of each pixel

is only determined by its neighbors. We compute

the distances between the current pixel and the

seeds of its four or eight adjacent pixels—see Fig. 1.

Specifically, for a pixel Ii, our assignment principle is

Li = argmin
Lj

D(Ii, SLj
), Ij ∈ Ai (7)

where Ai consists of Ii and its four neighboring pixels,

and SLj
is Ij ’s corresponding superpixel seed. We
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use Eq. (1) to measure the distance D(Ii, SLj
).

Since each pixel can only be assigned to a superpixel

containing at least one of its neighbors, local pixel

continuity has a stronger effect in our proposed

strategy, allowing each pixel to actively assign itself

to one of its surrounding closely connected superpixel

regions. The advantages of such a strategy are clear:

firstly, the nearby assignment principle can avoid the

occurrence of too many isolated regions, indirectly

preserving the desired number of superpixels. Secondly,

this assignment operation is not limited by a fixed

range in space, resulting in better superpixel boundary

compliance even when very complicated content leads

to irregular superpixel shapes. Furthermore, during

the assignment process, the superpixel centers are also

self-adaptively modified, leading to faster convergence.

Detailed demonstration and analysis are given in

Section 4.5. It is worth mentioning that the neighbors

of the internal pixels in a superpixel normally share

the same labels, so it is unnecessary to process

them further, allowing us to process each superpixel

extremely quickly.

3.3 Traversal order

The traversal order plays a very important role in

our approach: an appropriate scanning order may

lead to a visually better segmentation. As explained

in Section 3.2, the label of each pixel only depends

on the seeds of its surrounding pixels. Thus, in a

superpixel, the label of the current pixel is directly

or indirectly related to those pixels that have already

been processed. To better take advantage of this

avalanche effect, we adopt a back-and-forth traversal

order as in PatchMatch [23], in which the pixels

that are processed later will benefit from updates

to previously processed pixels. Figure 2 illustrates

this process. In the forward pass, the label decision

for each pixel considers the information from the top

surrounding pixels of the superpixel, and similarly,

the backward pass will provide the information from

the bottom surrounding pixels of the superpixel.

With such a scanning order, all the surrounding

information can be taken into consideration, yielding

better segments.

While an arbitrary superpixel may have an irregular

shape instead of a simple rectangle or square, we use

a simple strategy to traverse the whole superpixel.

We first find a minimum bounding box within which

all its pixels are enclosed, as shown in Fig. 2. We

then perform the scanning process for all pixels in

the corresponding minimum bounding box and only

deal with those pixels that are within the superpixel.

3.4 Joint assignment and update step

It is common in existing methods, such as SLIC [17],

that the assignment and update steps are performed

separately, leading to delayed feedback from pixel

label changes to superpixel seeds. An obvious problem

of such a strategy is that many (normally more than

five) iterations are required before convergence. In

our approach, based on the assignment principle in

Eq. (7), we use a joint assignment and update strategy

which performs these two steps at a finer granularity.

This approach is able to adjust the superpixel seed

center position on the fly, significantly reducing the

number of iterations needed for convergence. Since

most clustering-based superpixel methods use the

centroidal Voronoi tessellation (CVT), we first briefly

introduce the CVT and then describe our method.

Let S = {Sk}K
k=1

be the set of seeds in the image,

where K is the expected number of superpixels. The

Voronoi cell VSk
of a seed Sk is denoted by

VSk
= {Ii ∈ I | d(Ii, Sk) � d(Ii, Sj), ∀Sj ∈ S} (8)

where d(Ii, Sk) is an arbitrary distance measure from

pixel Ii to the seed Sk. The Voronoi diagram VD(S)

is defined by

VD(S) = {VSk
�= ∅ | ∀Sk ∈ S} (9)

A CVT is then defined as a Voronoi diagram whose

generator point of each Voronoi cell is also its center

of mass. The CVT is usually obtained by heuristic

algorithms, such as Lloyd’s algorithm, iteratively

performing updates after each assignment step until

convergence is reached.

In our approach, on account of our novel label

decision strategy as shown in Eq. (7), we are able to

jointly perform the update step and the assignment

step instead of separately. More specifically, after

pixel Ii is processed, if its label is changed to, say, Lj ,

we immediately update the current seed SLi
using

the following equation:

SLi
=

SLi
|ζLi

| − Ii

|ζLi
| − 1

(10)

where |ζLi
| is the number of pixels in superpixel ζLi

,

and update SLj
using the following equation:

SLj
=

SLj

∣

∣ζLj

∣

∣ + Ii
∣

∣ζLj

∣

∣ + 1
(11)

The bounding box of ζLj
is also updated accordingly.
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Fig. 2 Scanning order for each superpixel. Gray regions enclosed by blue lines represent superpixels. Red dashed rectangles denote their

corresponding bounding boxes. We first scan the bounding box from left to right and top to bottom (b) and then in the opposite direction (c).

The shape of each superpixel may change, whereupon we update the bounding box (d) if necessary.

As the above updates only contain very simple

arithmetic operations, they can be performed very

quickly. Such an immediate update will help later

pixels make a better choice during assignment, leading

to better convergence. Figure 10 given later illustrates

the speed of convergence of our approach.

3.5 Superpixel processing order

In our method, superpixels are processed inde-

pendently. Thus, the superpixel processing order will

affect the performance of the method; label changes

affect the surrounding pixels. However, we do not

want current pixel changes to affect the superpixels

we have already processed. Therefore, we give priority

to those complex superpixels in which many pixels

labels will be changed, processing them first and then

simple superpixels later. Superpixels which have a

uniform color are simple, and almost no pixels labels

need to change.

We use color entropy to define the complexity

of superpixels. We calculate it using the following

formulation (15):

Entropyl =

∑

p∈ζLj
(pl − p̂l)

2

∣

∣ζLj

∣

∣

(12)

Entropya =

∑

p∈ζLj
(pa − p̂a)2

∣

∣ζLj

∣

∣

(13)

Entropyb =

∑

p∈ζLj
(pb − p̂b)2

∣

∣ζLj

∣

∣

(14)

EntropyζLj
=

Entropyl + Entropya + Entropyb

3
(15)

where |ζLi
| is the number of pixels in superpixel ζLi

,

p is a three-dimensional vector in lab color space, and

p̂ is the mean of p in superpixel ζLi
.

After determining the entropy of all superpixels, we

process them in descending order of entropy. We later

demonstrate the benefits of this processing order.

4 Experiments

Our method has been implemented in C++ on a PC

with a 4.0 GHz Intel Core i7-4790K CPU with 32 GB

RAM, and 64 bit operating system. We compare

our method to various previous and state-of-the-

art works, including FH [5], SLIC [17], Manifold

SLIC [21], SEEDS [15], and ERS [16], using the

BSDS500 benchmark and the evaluation methods

proposed in Refs. [24, 25]. As the source codes used

in evaluation of the above works may not be the same

as the reported versions, we may observe performance

differences from the original during evaluation. For

fair comparison, we uniformly use publicly available

source code [24, 25] for all methods. As in previous

research in the literature [19, 21], we mainly evaluate

all algorithms on 200 randomly selected images of

resolution 481×321 from the Berkeley dataset [24]. In

addition, we compared our method with other state-

of-the-art methods on the Pascal Context dataset [26].

4.1 Datasets

The Berkeley dataset is the most common dataset

in the area of image segmentation and boundary

detection. The Pascal Context dataset includes

a set of additional annotations to the PASCAL

VOC 2010 dataset [27]. It goes beyond the original

PASCAL semantic segmentation task by providing

annotations for the whole scene and is mainly

intended for semantic segmentation and object

detection. Hence, we only perform an ablation study

on the Berkeley dataset and compare our method

with other methods on both datasets. We randomly
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selected six images and corresponding ground-truths

from the BSDS (Fig. 3) and Pascal Context datasets

(Fig. 4).

As we can see, the images in the Pascal Context are

more realistic, while the annotations for the BSDS

dataset are more detailed.

4.2 Parameters

Our approach requires three parameters to be set.

The first is the number of superpixels K. One of the

common advantages of clustering-based algorithms is

that the desired number of superpixels can be directly

chosen by setting the clustering parameter K. The

second parameter is the spatial distance weight m. It

has a large effect on the smoothness and compactness

of superpixels. We show that performance increases

as m decreases. However, making m too small can

also lead to irregularity of superpixels. To achieve a

good trade-off between compactness and speed, in the

following experiments, we set m = 5 as default. The

last parameter is the maximum number of iterations

itr. Here we set itr = 2 by default to balance time

taken and result quality. We emphasise that, to make

a fair comparison, we optimize the parameters for

each method to maximize its recall value for the

BSDS500 benchmark.

Fig. 3 Images and ground-truths for the BSDS dataset. Rows 1,3: original images. Rows 2,4: corresponding annotated edges.
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Fig. 4 Images and ground-truths for the Pascal Context dataset. Rows 1,3: original images. Rows 2,4: corresponding annotated edges.

4.3 Comparison using BSDS dataset

Our approach outperforms previous methods that

have similar computational efficiency, and achieve

at least comparable results compared to slower

algorithms with an order of magnitude faster speed.

Details are discussed below.

4.3.1 Boundary recall

Boundary recall (BR) [17] is a measurement which

assesses how well superpixel boundaries represent

ground-truth boundaries. It computes the fraction

of ground-truth edges that fall within ε-pixel length

from at least one superpixel boundary. BR can be

computed by

BRG(S) =

∑

p∈ξG
Π(minq∈ξS

‖p − q‖ < ε)

|ξG |
(16)

where ξS and ξG respectively denote the union set of

superpixel boundaries and the union set of ground-

truth boundaries. The indicator function Π checks

if the nearest pixel is within ε distance. Here we
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follow Refs. [17, 21] and set ε = 2 in our experiment.

The boundary recall curves for different methods are

plotted in Fig. 5(a). One can easily observe that our

FLIC method outperforms all other methods.

4.3.2 Undersegment error

The undersegment error (UE) [28] reflects the extent

to which superpixels do not exactly overlap the

ground-truth segmentation. As for BR, UE also

reflects boundary adherence, but UE uses segmenta-

tion regions instead of boundaries in the measurement.

Mathematically, UE can be computed by

UEG(S) =

∑

G∈̺G
(
∑

S:S∩G�=φ min(Sin, Sout))

N
(17)

where �S is the union set of superpixels, �G is the

union set of the segments of the ground-truth, Sin

denotes the overlap between superpixel S and ground-

truth segment G, and Sout denotes the rest of the

superpixel S. As shown in Fig. 5(b), our results

are nearly the same as those of the best approach

ERS [16], while our method is significantly faster.

4.3.3 Achievable segmentation accuracy

Achievable segmentation accuracy (ASA) [16]

gives the highest accuracy achievable for object

segmentation that utilizes superpixels as units. As

for UE, ASA utilizes segments instead of boundaries.

It can be computed by

ASAG(S) =

∑

k maxi |Sk ∩ Gi|
∑

i Gi

(18)

where Sk represents the superpixel and Gi represents

the ground-truth segment. A better superpixel

segmentation will have a larger ASA value.

Figure 5(c) shows that, compared to the ERS

method [16], the quality of results provided by our

approach is competitive, and our method achieves

Fig. 5 Comparisons between state-of-the-art methods and our approach on the BSDS500 benchmark. In (b)–(d), K is fixed to 200 for the

best trade-off between result quality and speed. In terms of boundary recall, our strategy significantly outperforms methods that take similar

time. Furthermore, competitive results are also achieved compared to slower methods (e.g., the state-of-the-art ERS method [16]) according to

all evaluation metrics, but at an order of magnitude faster speed.
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the best trade-off between quality and speed.

4.3.4 Time

Similar to SLIC, our method has O(N) time

complexity. Speed is one of the most important issues

for using superpixels as elementary units. Many

approaches are limited by their speeds, such as

SSS [19] and ERS [16]. As shown in Fig. 5, the average

time taken by our FLIC method using two iterations

to process an image is 0.035 s, while the time needed

by ERS, Manifold SLIC, SLIC, and FH is 0.625 s,

0.281 s, 0.072 s, and 0.047 s, respectively. FLIC has

the lowest time cost of all these methods and is nearly

20 times faster than ERS whilst providing comparable

result quality.

4.3.5 Visual results and analysis

Figure 6 show several superpixel segmentation results

using different algorithms. It can be seen that

our approach is more sensitive to image boundaries,

especially when there is poor contrast between the

foreground and background. Compared to the SLIC

method, our approach follows boundaries very well

and runs twice as quickly. Compared to the ERS

method, our superpixels are much more regular and

the mean execution speed of our approach is 20 times

greater.

The above facts and Fig. 5 show that our approach

achieves an excellent compromise between boundary

adherence, compactness, and time.

4.4 Comparison using Pascal Context dataset

Additional, We evaluate the over-segmentation

methods on Pascal Context dataset, which is larger

and more realistic. We use the same metrics to

evaluate the over-segmentation method.

4.4.1 Boundary recall

The boundary recall curves for different methods are

plotted in Fig. 7(a). We can see that almost all

over-segmentation methods achieve quite high recall

values. Our method is no longer the best but still

achieves competitive performance. Figure 7(d) shows

that our method achieves 0.974 in terms of boundary

recall while the state-of-the-art method M-SLIC [21]

achieves 0.978. However, our method runs ten times

faster than M-SLIC. We think this difference may be

because that there are fewer edges in the ground-truth

in the Pascal Context dataset.

4.4.2 Undersegment error

Figure 7(b) shows that our results are nearly the

same as those of the best approach, SEEDS [15], but

run faster.

Fig. 6 Visual comparison of superpixel segmentation results using various algorithms, with 100 superpixels and m = 10. Our approach follows

boundaries very well and at the same time produces compact superpixels.
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Fig. 7 Comparisons between state-of-the-art methods and our approach on the Pascal Context dataset. Due to the simplicity of this dataset,

almost all over-segmentation methods yield good boundary recall. The proposed method achieves a competitive trade-off on this dataset.

4.4.3 Achievable segmentation accuracy

Figure 7(c) shows that, compared to other over-

segmentation methods, our approach provides

competitive result quality, giving the best trade-off

between quality and time.

4.4.4 Time

The size of images in the BSDS dataset is fixed,

either 480 ×320 or 320 × 480, while in the Pascal

Context dataset, the image size is arbitrary. Figure 7

shows that our proposed method still takes least time

amongst all over-segmentation methods.

4.5 Algorithm analysis

4.5.1 Efficacy of back-and-forth traversal

As shown in Fig. 2, we adopt a back-and-forth

traversal order to scan the whole enclosing bounding

box for each superpixel. Actually, using two forward

scans can also perform very well for our method.

Figure 8 provides a quantitative comparison between

two strategies: using four iterations of purely forward

scanning, and using the proposed back-and-forth scan

order twice (which also results in four iterations). The

blue line indicates results using normal forward scan

order while the red line indicates results using our

method. The red curve significantly outperforms the

blue curve while taking similar time: our back-and-

forth scan order considers more information about

the regions outside the bounding box, leading to more

reliable boundaries.

4.5.2 Role of spatial distance weight

Figure 9(a) shows that, unlike for SLIC [17], the

BR curve monotonically decreases with respect to

the spatial distance weight m in our approach. This

is because in our method, local region continuity is

mostly ensured by the active search algorithm, and

color boundaries are less well preserved for larger m.

On the other hand, small m results in less regular

superpixels, so we choose m = 5 for our comparison
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Fig. 8 Partial sensitivity analysis for standard evaluation metrics

and time taken.

with previous works. Superpixels are normally used

as a first step in vision tasks and these vision tasks

often favor superpixel methods with good boundaries.

Our approach allows users to select a reasonable value

for m according to their specific requirements. In any

case, our overall performance is significantly better

for all m values.

4.5.3 Convergence rate

FLIC significantly accelerates the evolution so that

we only need a few iterations before convergence.

We compare the result quality for different numbers

of iterations using the Berkeley benchmark. It can

be easily seen from Fig. 9(b) that our algorithm

quickly converges after two iterations and further

iterations only bring marginal benefits to the results.

For example, when K is set to 200, the boundary

recall of the superpixels with only one iteration is

Fig. 9 (a) BR–m curves; m is the spatial distance weight in Eq. (1).

Our results are far better than those from SLIC for all values of m.

(b) BR–iteration curves. Our method converges within 2 iterations,

much fewer than SLIC.

0.835; after two iterations it is 0.859 and after three

iterations it is 0.860. The undersegment error values

are 0.115, 0.108, and 0.107, respectively, while the

achievable segmentation accuracy values are 0.941,

0.945, and 0.946, respectively. As can be seen in

Fig. 9(b), our algorithm not only converges much

more quickly than SLIC (which requires ten iterations

to converge), but also obtains better quality results.

4.5.4 Role of joint assignment and update

Our algorithm jointly performs the assignment and

update steps. Figure 10 show the convergence

rates for both our joint approach and for separately

performing assignment and update steps. Clearly,

our joint approach converges very quickly as only two

iterations are needed, while the separate approach

needs another two iterations to reach the same BR

value. This demonstrates that our joint approach is
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Fig. 10 Comparison of convergence rate for joint and separate

assignment and update steps.

efficient while having no negative effect on the final

results.

4.5.5 Size of neighborhoods

In our method, the label of the current pixel relies on

its four neighboring pixels. Using eight neighborhoods

is also plausible, as more neighbors should definitely

further more useful information. In Table 1, we briefly

compare the results for these two approaches. As

might be expected, larger neighborhoods lead to an

increase in result quality but at the cost of reducing

speed. In real applications, users can select either

approach to suit their own requirements.

4.5.6 Traversal order

In our approach, we adopt the same traversal order

as used in PatchMatch [23]. Actually, there are many

other possible traversal orders. Below we list a few

simple ones:

• In PatchMatch, the horizontal axis is the major

axis. Instead, we could first scan the vertical

axis: forward scan first from top to bottom and

then from left to right. Backward scan first from

bottom to top and then from right to left.

• In PatchMatch, superpixels are scanned from the

top left corner to the right bottom corner. Instead

we may scan the superpixels from right bottom

to top left.

Table 1 Boundary recall versus time for 4-neighborhoods and 8-

neighborhoods with different superpixel counts: 100, 200, 300, 400

100 200 300 400

BR Time BR Time BR Time BR Time

4-N 78.6 34 85.9 35 89.1 36 91.8 38

8-N 80.5 54 87.4 56 90.5 59 92.7 61

• We also could combine the horizontal and vertical

scans: first adopt the default traversal method,

a horizontal scan, and then use a vertical scan,

and so on. In our setting, we set the number

of iterations to ten, with five horizontal and five

vertical scans.

We compare results using different traversal orders

in Table 2. The default traversal order achieves the

best results amongst all possible traversal orders, but

the difference is not great. In addition, the default

traversal order is most straightforward to implement,

hence we adopt it, as does PatchMatch [23].

4.5.7 Superpixel processing order

We further compared the results with and without

sorting superpixels according to their entropies. If we

process the superpixels in descending order of entropy,

we get the results mentioned in previous experiments,

with a boundary recall value of 85.9. However, the

boundary recall is 84.8 if we process the superpixels

according to their spatial order. As we can see, we

get a minor improvement by sorting.

4.5.8 Qualitative results

Figure 11 shows some segmentation results for the

BSDS dataset produced by our approach with m = 20

and the number of superpixels set to 1000, 400, and

200, respectively. It is seen that, in each case, the

edges of the resulting superpixels are always very

close to the boundaries. This is especially obvious

in the first and third images. We also show some

segmentation results for different values of m in

Fig. 12. When m is smaller, for example 10, the

shapes of the resulting superpixels become less regular.

When m is larger, for example 30, the resulting

superpixels become more compact.

In Figs. 13 and 14 we show segmentation results

for the Pascal Context dataset. Most images in

the Pascal Context dataset come from real scenes, and

Table 2 Boundary recall for different traversal orders. TO1

represents the default traversal order which is first from left to right

and then from top to bottom. TO2 represents traversing the pixels

in a superpixel first from top to bottom and then from left to right.

TO3 represents traversing the pixels first from right to left and then

from bottom to top. TO4 represents the combined scheme

100 200 300 400 500 600

TO1 78.6 85.9 89.1 91.8 93.1 94.6

TO2 77.6 85.1 88.5 91.4 92.8 94.3

TO3 77.9 85.3 88.8 91.4 92.9 94.4

TO4 78.1 85.3 88.7 91.5 93.2 94.4
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Fig. 11 Images from the Pascal Context dataset segmented by our approach with m = 20 and the number of superpixels set to 1000, 400, and

200, respectively. The resulting superpixels follow region boundaries very well.

Fig. 12 Images from the BSDS dataset segmented by our proposed approach with m = 10, 20, and 30, respectively. When m is smaller, the

superpixels follow boundaries well. When m is larger, the superpixels are more compact.

Fig. 13 Images from the BSDS dataset segmented by our approach with m = 20 and the number of superpixels set to 1000, 400, and 200,

respectively. The resulting superpixels follow region boundaries very well.

Fig. 14 Images from the Pascal Context dataset segmented by our proposed approach with m = 10, 20, and 30, respectively. When m is

smaller, the superpixels follow boundaries well. When m is larger, the superpixels are more compact.
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are more complex than those in the BSDS dataset. As

a result, the segmentation results are more cluttered.

5 Applications

In this section, we applied our method to a higher

level application image segmentation problem [1].

In hfs [1], image over-segmentation is used as an

initial step: its results are taken as the input to the

algorithm to generate a final segmentation result. In

the original method, SLIC [17] is used to generate

the image over-segmentation result. Here we simply

replace SLIC with our proposed method and use the

same image segmentation evaluation metric. However,

we only use the optimal dataset scale (ODS) during

training as the proposed method has few parameters.

We use the F -measure of precision and recall on the

whole dataset to evaluate the boundary performance;

the following evaluation metrics are used to assess

region performance:

• Variation of Information (VI), which measures

the distance between ground-truth and the

segmentation result. Lower VI is better.

• Probabilistic Rand Index (PRI), which measures

the pairwise compatibility of element assignment

between ground-truth and the proposed

segmentation. A large value is better.

• Segmentation Covering (Covering), which

measures the average overlap between ground-

truth and the proposed segmentation. Again, a

large value is better.

The results can be seen in Table 3. The segmentation

results are closer when the number of superpixels is

large, e.g., 1000 or 2000: as the number of superpixels

increases, the quality of different over-segmentation

methods becomes closer. When the number of super-

pixels is small, e.g., 100, segmentation results using

Table 3 Comparison of segmentation results generated by SLIC and

FLIC for different numbers of superpixels. E.g., SLIC-100 indicates

use of SLIC to generate 100 superpixels which were then input to a

downstream algorithm to achieve the final segmentation result

F -measure Covering PRI VI

SLIC-100 0.559 0.502 0.711 2.031

FLIC-100 0.573 0.508 0.718 2.024

SLIC-1000 0.638 0.534 0.791 2.135

FLIC-1000 0.635 0.536 0.785 2.128

SLIC-2000 0.645 0.531 0.794 2.187

FLIC-2000 0.642 0.535 0.796 2.134

FLIC as the initial step perform better than those

using SLIC. Hence, it is reasonable to say that our

method is better than SLIC in practical applications.

6 Conclusions

This paper has presented a novel algorithm using

active search, which is able to improve the result

quality and significantly reduce the time taken when

producing superpixels to over-segment an image.

Taking advantage of local continuity, our algorithm

provides results with good boundary sensitivity even

for complex and low contrast images. Moreover, it

is able to converge in only two iterations, making it

faster than previous methods, providing result quality

comparable to the state-of-the-art ERS method in

1/20th of the time. We have used various evaluation

metrics on the Berkeley segmentation benchmark

dataset to demonstrate the speed and high quality

results of our approach.
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