
Flicker: Saving Refresh-Power in Mobile
Devices through Critical Data Partitioning

Song Liu†, Karthik Pattabiraman‡, Thomas Moscibroda‡,
Benjamin G. Zorn‡

† Northwestern University, Evanston, IL, USA
‡ Microsoft Research, Redmond, WA, USA

Contact: zorn@microsoft.com

Technical Report MSR-TR-2009-138
October 2009

Microsoft Research
One Microsoft Way Redmond, WA 98052, USA

http://research.microsoft.com



Copyright c© 2009 Microsoft Corporation.



Flicker: Saving Refresh-Power in Mobile Devices
through Critical Data Partitioning

Song Liu†, Karthik Pattabiraman, Thomas Moscibroda, Benjamin G. Zorn
Microsoft Research, †Northwestern University

Abstract
Mobile devices are left in sleep mode for long periods of
time. But even while in sleep mode, the contents of DRAM
memory need to be periodically refreshed, which consumes
a significant fraction of power in mobile devices. This pa-
per introduces Flicker, an application-level technique to re-
duce refresh power in DRAM memories. Flicker enables
developers to specify critical and non-critical data in pro-
grams and the runtime system allocates this data in sepa-
rate parts of memory. The portion of memory containing
critical data is refreshed at the regular refresh-rate, while
the portion containing non-critical data is refreshed at sub-
stantially lower rates. This saves energy at the cost of a
modest increase in data corruption in the non-critical data.
Flicker thus explores a novel and interesting trade-off be-
tween energy consumption and hardware correctness. We
show that many mobile applications are naturally tolerant
to errors in the non-critical data, and in the vast majority
of cases, the errors have little or no impact on the applica-
tion’s final outcome. We also find that Flicker can save be-
tween 20-25% of the power consumed by the memory sub-
system in a mobile device, with negligible impact on appli-
cation performance. Flicker is implemented almost entirely
in software, and requires only modest changes to the appli-
cation, operating system and hardware.

1 Introduction

Energy has become a first-class design constraint in
many computer systems, particularly in mobile devices
and server-farms [9, 23]. In mobile phones, saving en-
ergy can extend battery lives and enhance mobility. In
the recent past, mobile phones have morphed into general
computing platforms, often called smartphones, (e.g., the
iPhone). Smartphones are typically used in short-bursts
over extended periods of time [17], i.e., they are idle most
of the time (approximately 95% of the time). Nonethe-
less, they are ”always-on” as users expect to resume their
applications in the state they last used it. Hence, even
when the phone is not being used, application state is
stored in the phone’s memory to maintain responsive-
ness. This wastes power because Dynamic Random Ac-
cess Memories (DRAMs) leak charge and need to be
refreshed periodically, or else they will experience data
loss. This energy drain is particularly problematic be-
cause memory is a significant contributor to the power
consumption of a smart phone (30% or more according
to studies of the Itsy pocket computer [11]), and the re-
fresh operation is the dominant consumer of power in

idle mode. Therefore, reducing refresh power can sig-
nificantly reduce the overall power-consumption of the
mobile phone and extend its battery-life.

This paper proposes Flicker1, a software technique
to save energy by reducing refresh power in DRAMs.
DRAM manufacturers typically set the refresh rate to be
higher than the leakage rate of the fastest-leaking mem-
ory cells. However, studies have shown that the leakage
current of memory-cells follows an exponential distribu-
tion [18], with a small fraction of the cells having sig-
nificantly higher leakage rates than other cells. Hence,
the vast majority of the cells will retain their values even
if the refresh rate of the memory chip is significantly re-
duced. Flicker lowers the DRAM refresh rate in order
to obtain power-reduction at the cost of knowingly intro-
ducing a modest number of errors in application data.

Typical smartphone applications include games, au-
dio/video processing and productivity tasks such as email
and web-browsing. These applications are inherently
resilient to errors in all but a small portion of their
data [24, 44]. We call such data critical data, as it is
important for the overall correctness of the application.
For example, in a video processing application, the data-
structure containing the list of frames is more important
than the output buffer (as the human eye is tolerant to
mild disruptions in a frame). Previous work has shown
the feasibility of identifying critical data in applications
for protecting them from pointer-based memory corrup-
tion errors [5, 33].

Flicker is implemented mostly in software, with mod-
est changes to the hardware. It enables the programmer
to distinguish between critical and non-critical data in ap-
plications. At runtime, Flicker allocates the critical and
non-critical data in separate memory pages and reduces
the refresh rate for pages containing non-critical data at
the cost of increasing the number of errors in these pages.
Pages containing critical data are refreshed at the regular
rate and are hence free of errors. This differentiated allo-
cation strategy enables Flicker to achieve power savings
without degrading the application’s reliability.

Our approach in Flicker fundamentally differs from
existing techniques for saving energy in low-power sys-
tems. In these solutions, energy reduction is achieved by

1CRT monitors occasionally exhibited flickering, i.e., loss of reso-
lution, when their refresh rates were lowered - hence the name.

1



appropriately trading-off performance metrics, such as
throughput/latency, Quality-of-Service (QoS), or user re-
sponse time, e.g. [43, 45]. In contrast, the key novelty of
our approach is to leverage a so-far unexplored trade-off
in system design, namely trading-off energy efficiency
for data integrity at the hardware level. By intentionally
lowering hardware correctness in an application-aware
manner, we show that it is possible to achieve significant
power-savings at the cost of a negligible reduction in ap-
plication reliability.

Flicker thus falls into the category of techniques
known as better-than-worst-case (BTWC) designs, an ex-
ample of which is Razor [8]. BTWC techniques exploit
the over-engineering of hardware to obtain performance
improvement or power-savings at the cost of reliability.
However, existing BTWC techniques correct the intro-
duced errors in hardware and maintain the abstraction
of correct hardware to software. In contrast, Flicker ex-
poses hardware errors all the way up the system stack
to the application, thereby leveraging power-saving op-
portunities that were unexposed or infeasible at the ar-
chitectural level. To the best of our knowledge, Flicker
is the first software technique to intentionally introduce
hardware errors for power-savings based on the charac-
teristics of the application.

Aspects of Flicker make it appealing for use in prac-
tice. First, Flicker allows programmers to control what
errors are exposed to the applications, and hence explic-
itly specify the trade-off between power consumption
and reliability. Programmers can define what parts of
the application are subject to errors, and take appropri-
ate measures to handle the introduced errors. Second,
Flicker does not require any changes to the memory con-
troller hardware or circuitry other than interfaces to ex-
pose refresh rate controls to the software. Current mobile
DRAMs already allow the software to specify how much
of the memory should be refreshed (Partial Array Self-
Refresh (PASR) [28]), and we show that it is straight-
forward to enhance the PASR architecture to refresh dif-
ferent portions of the memory at different rates. Finally,
legacy applications can work unmodified with Flicker,
because the default mode of Flicker is to consider all ap-
plication data as critical, unless the application developer
indicates otherwise. Further, even in non-legacy applica-
tions, developers can be conservative in identifying non-
critical data in their applications.

We have evaluated Flicker both using analytical
and experimental methods on five diverse applications
representative of mobile workloads. The analytical
model was derived based on typical mobile-phone usage
patterns[17] and power-values from the Micron mobile
DRAM data-sheet [28]. We use an architectural simula-
tor to estimate the power and performance overheads of
Flicker, and fault-injection experiments to evaluate appli-

cation resilience under Flicker. We find that Flicker can
save between 20% to 25% of the total DRAM power in
mobile applications, with negligible degradation in relia-
bility and performance (less than 1%). We also find that
the effort required to deploy Flicker is small (less than
half-a-day for each application considered in the paper).

This paper is organized as follows: §2 provides a brief
overview of the design of Flicker. §3 and §4 present the
hardware and software implementation of Flicker respec-
tively. §5 and §6 present the experimental setup and the
results of evaluating Flicker. Related work is discussed
in §7 before §8 concludes.

2 Flicker: Design Overview
Flicker requires a modest set of simple changes to
both hardware and software. Flicker enhances existing
DRAM architectures that allow for a partial refresh of
DRAM memory; by allowing different refresh rates for
different sections in memory. For the software portion,
Flicker (1) introduces a new programming language con-
struct that allows application programmers to mark non-
critical data, and (2) provides OS and runtime support
to allocate the data to its corresponding portion in the
DRAM memory. The hardware and software compo-
nents of Flicker are explained in detail in §3 and §4, re-
spectively.

The energy-gains of Flicker are thus a result of op-
timizing across the hardware/software boundary. This
“cross-layer” approach that involves minor changes to
the hardware may seem daunting at first. However, we
believe that it is justified for two reasons.

First, our approach allows us to explore a novel and
fundamental trade-off in system design. Traditionally,
the hardware/software boundary in computer systems
(and specifically the hardware memory) has provided
a clear abstraction layer. The hardware was assumed
to provide a resilient and “correct” substrate based on
which the operating system and application can run. The
DRAM’s task was to ensure that data was stored reli-
ably whenever the memory was powered. In Flicker, we
re-examine this assumption and consciously allow the
DRAM to violate data integrity to a limited degree for
the purpose of reducing energy consumption. In §6, we
show that this trade-off between application reliability
and energy efficiency can be exploited to achieve signif-
icant energy improvements at almost no degradation to
application performance or end-to-end correctness.

Secondly, small hardware changes are not an inher-
ent show-stopper in terms of practical deployment, given
that mobile phone architectures (both hardware and soft-
ware) are still in a state of flux. New hardware and
software models for mobile phones are being developed
and put to market regularly. For example, the Partial-
Array Self-Refresh Mode (PASR) architecture for mo-

2



���������
�	��
���

�
	�������
��	���

�����
	��	��
 ��������	�

���

���
���
���

�
	�


��
��

��������
���	

Figure 1: Simplified diagram of DRAM operating states.

bile DRAMs on which we base Flicker was introduced
in the year 2003 [14].

3 Flicker Hardware
This section presents the hardware architecture of
Flicker, i.e., the Flicker DRAM (§3.2) and the impact
of lowering the refresh rate on DRAM error-rates (§3.3).
We present an analytical model to evaluate the power-
savings of the Flicker DRAM (§3.4). This model is then
used to determine the best refresh rates in our system
design (§3.5), and to estimate power savings in our eval-
uations (§5). We find that a refresh rate of 1 second pro-
vides a near optimal energy-reliability tradeoff.

We begin by providing a brief background on DRAM
systems in low-power mobile devices.

3.1 Background
Mobile phones have traditionally used SRAMs (Static
Random Access Memories) for memory. However, as
memory capacity increases, conventional SRAM be-
comes more expensive (per byte of memory), and hence,
smart phones have adopted DRAM (Dynamic RAMs). A
DRAM memory system consists of three major compo-
nents: (1) multiple banks that store the actual data, (2) the
memory controller (scheduler) that schedules commands
to read/write data from/to the DRAM banks, and (3) ad-
dress/data/command buses that connect banks and the
controller. The organization into multiple banks allows
memory requests issued to different banks to be serviced
in parallel. Each DRAM bank has a two-dimensional
structure, consisting of multiple rows and columns. The
usual memory mapping is for consecutive addresses in
memory to be located in consecutive columns in the same
row, and consecutive memory rows to be located in dif-
ferent banks. The size of a row varies between 1 to 32
kilobytes in commodity DRAMs. In mobile DRAMs, the
row size varies from 1 to 4 kilobyes.

A typical mobile DRAM chip has several modes of
operation, as shown in Fig. 1. The only state in which
the DRAM can be read from/written to is the active state
(activate/precharge). When the DRAM is idle for short
periods of time between accesses, it transitions to fast
low-power states, which have short wake-up times (on
the order of 10 nano-seconds or less), and less than half
the power-consumption of the active state. When the sys-

��������	�
�
��	����������

����
�����

�����	
���������
���

�������	�
�
������	���������� ��

���

��

Figure 2: Flicker Bank Architecture. The DRAM bank is par-
titioned into two parts, the high refresh part, which contains
critical data, and the low refresh part, which contains non-
critical data. The high/low refresh partition can be assigned
only at discrete locations (shown by the dashed lines).

tem is in sleep mode, i.e., the processor is not executing
any application for a long period of time, the DRAM chip
transitions to the self-refresh state, which has a much
lower power-consumption than the active and fast low-
power states. However, the refresh operations are still
carried out in the self-refresh state. Finally, when even
further power-savings are desired, the DRAM chip can
transition to the deep power-down state, where even re-
fresh operations are stopped. However, the DRAM will
lose its data in the deep power-down state, and hence this
state is rarely used in mobile systems.

Flicker is targeted towards reducing power-
consumption in the self-refresh state, i.e., when the
mobile device is idle. In this state, the DRAM array is
periodically refreshed even if the processor is in sleep
mode and not accessing any data. Therefore, the self-
refresh operation is performed by dedicated hardware on
the DRAM chip without any software intervention. The
Operating System (OS) needs to initiate the self-refresh
process before putting the mobile device to sleep.

Partial Array Self Refresh (PASR) is an enhance-
ment of the self-refresh low power state [28] in which
only a portion of the DRAM array is refreshed in sleep-
mode. The other portion is not refreshed and will lose
its data. The portion of the memory array that should
be refreshed can be configured by the OS before switch-
ing the device to sleep mode. The portions are typically
discretized in powers-of-two fractions. For example, Mi-
cron’s mobile DDR SDRAM [28] with 4 banks has five
different options for PASR, namely, full array (4 banks),
half array (2 banks), quarter array (1 bank), 1/8 array (1/2
bank), and 1/16 array (1/4 bank). The drawback of using
PASR is that it reduces the amount of memory available
in self-refresh state, which can be a constraint for mobile
applications.

3.2 Flicker DRAM Architecture
This section describes in detail the architecture of the
Flicker DRAM. The Flicker DRAM enhances the PASR
mode as follows. Instead of stopping refresh entirely to
a portion of the memory array, it refreshes different por-

3



tions of the array at two different frequencies, one por-
tion at the regular refresh frequency and the other por-
tion at a much reduced frequency. Similar to PASR, the
OS specifies how much of the DRAM array should be
refreshed at the high frequency before putting the mo-
bile device to sleep. This portion is also discretized to a
power-of-two fraction. Unlike PASR, however, the por-
tion of the DRAM that is refreshed at the lower rate is
still usable, although it may experience errors.

Flicker DRAM: Figure 2 illustrates a Flicker DRAM
bank. In the Flicker DRAM, each bank is partitioned
into two different parts, the high refresh fault-free part
and the low refresh faulty part. DRAM rows in the high
refresh part are refreshed at a regular refresh cycle time
Tregular (64 or 32 milliseconds in most systems). The
error rate of data in these high refresh parts is negligible
and is similar to data in state-of-the-art DRAM chips. On
the other hand, the low refresh part is refreshed at a much
lower rate (longer refresh cycle time Tlow) and its error
rate is a function of the refresh cycle time (§3.3).

Notice that we cannot simply emulate the behavior
of longer refresh cycle times by having the OS period-
ically adjust the portions of the memory array to be self-
refreshed, because the device is in sleep mode and the
OS is thus unable to set any register values. Therefore,
we need to modify the self-refresh hardware to refresh
the DRAM at two different rates.

Hardware changes: In order to implement Flicker,
small changes need to be made to mobile DRAM archi-
tectures. In particular, state-of-the-art mobile DRAMs
use a self-refresh counter to remember which row to
refresh next during the self-refresh operation. Flicker
DRAM extends this counter by a few extra bits and adds
an additional “refresh enable” output to the counter. A
Flicker DRAM row is refreshed only when the refresh
enable bit is set to “1”. A controller sets different val-
ues to the refresh enable bit based on the higher bits of
the row address and the extra bits, and thus configures
the refresh rate of different DRAM rows at different val-
ues. The modifications made to the self-refresh counter
by Flicker are shown in Figure 3.

Example: For illustration, consider a Flicker DRAM
system where Tlow = 16 × Tregular. In this system,
the self-refresh counter requires 4 more bits than corre-
sponding PASR implementation. The refresh enable bit
is always set to “1” when the row address is a high re-
fresh row. For low refresh rows, the refresh enable bit
is set to “1” only when the extra bits have a predefined
value (say “1111”). For example, if 1/8 of the DRAM
has been configured as high refresh, i.e. high refresh row
addresses are those with highest bits of “000” (while low
refresh rows addresses are the rest). When the extra bits
are “0000” through “1110”, the refresh enable bit is only
set for high refresh row addresses. However, whenever

����������
�����������������	
�

���������������	��� ���������
�
Figure 3: Self-refresh counter in the Flicker DRAM.

Refresh Cycle [s] Error Rate Bit Flips per Byte
1 4.0× 10−8 3.2× 10−7

2 2.6× 10−7 2.1× 10−6

5 3.8× 10−6 3.0× 10−5

10 2.0× 10−5 1.6× 10−4

20 1.3× 10−4 1.0× 10−3

Table 1: Error rate under different refresh cycle (under 48°C,
data derived from [3]).

the extra bits are “1111”, the refresh enable bit is set for
all row addresses. With this configuration, the low re-
fresh rows are refreshed 16 times less frequently than the
high refresh rows.

3.3 Flicker DRAM Error Rates
This section illustrates the dependence between error-
rates and refresh cycle times in a DRAM array. DRAM
cells experience vast variations in their retention times,
and hence require different refresh rates. Current DRAM
chips however refresh all cells at the same rate which
corresponds to cells with the lowest retention times. In
Flicker, we consciously lower the refresh rate for a por-
tion of the DRAM array, and hence some fraction of cells
in this portion are likely to lose their data, i.e., experience
errors. We estimate this fraction of cells (error rate) as a
function of the refresh cycle time of the low-refresh part.

Previous work [3, 41] has measured DRAM error rates
as a function of refresh cycle times. Although these two
measurements are at different granularities (per cell ver-
sus per row), their results are consistent with each other.
Table 1 shows the per-cell error rates we use based on
Bhalodia’s measurements [3].

Note that the above error-rates correspond to a tem-
perature of 48°C. The retention times of DRAM cells
decrease with temperature and hence, for a given refresh
cycle, the error-rate increases with ambient temperature.
An operating temperature of 48°Cis higher than the am-
bient temperature of most smartphones, and hence our
error-rates are likely higher than those in reality.

3.4 Flicker DRAM Power Model
We do not have a hardware implementation of the Flicker
DRAM, and hence cannot directly measure its power
consumption. Therefore, we derive an analytical model
to estimate its power-consumption. The model is based

4



High Refresh Size
Self-Refresh Current [mA]

PASR Flicker
1s 10s 100s

1 0.5 0.5 0.5 0.5
3/4 0.47* 0.4719 0.4702 0.4700
1/2 0.44 0.4438 0.4404 0.4400
1/4 0.38 0.3877 0.3807 0.3801
1/8 0.35 0.3596 0.3509 0.3501

1/16 0.33 0.3409 0.3310 0.3301
* This value is derived from linear interpolation of full array

(1) and half array(1/2) cases.
Table 2: Self-refresh current in different PASR and Flicker con-
figurations (PASR current values are from [28].)

on real power-measurements in mobile DDR DRAMs
with PASR from Micron’s data-sheet [28].

The self-refresh power consumption PFlicker is calcu-
lated as follows:

PFlicker =Prefresh + Pother

=Prefresh low+Prefresh high+Pother

=
(

PL × Tregular

Tlow

)
+(Prefresh high+Pother)

=
(

(Pfull−PPASR)× Tregular

Tlow

)
+ PPASR

(1)

As shown in Equation 1, PFlicker has two compo-
nents, Prefresh, which is the power consumed in re-
fresh operations, and Pother, which is the power con-
sumed in other parts of the DRAM (e.g., the control
logic). Prefresh is proportional to the refresh rate, while
Pother is a constant that is independent of refresh rate.
We divide Prefresh into Prefresh high and Prefresh low,
which correspond to the refresh power consumed by the
high and low refresh parts of Flicker DRAM respectively
(second line of Equation 1). In order to explicate the re-
lationship between refresh power and refresh cycle time,
we represent Prefresh low as PL (which is a constant)
times Tregular/Tlow (third line in Equation 1).

In order to evaluate the value of different compo-
nents of PFlicker, we consider PASR DRAM and regular
DRAM (full array refreshed at TRegular) as two extreme
cases of Flicker. We calculate PPASR and Pfull by as-
signing Tlow = ∞ and Tlow = Tregular in the third
line of Equation 1. Based on these two extremes cases,
we rewrite the third line of Equation 1 with PPASR and
Pfull (fourth line of Equation 1)

Table 2 summarizes the self-refresh current of differ-
ent PASR configurations and Flicker DRAM with differ-
ent refresh cycle times for the low refresh part. The self-
refresh power is calculated as self-refresh current times
power supply voltage (1.8V in our experiments). It is
important to understand that the self-refresh power com-

������
������
������

���
	��
	��
���

���
��
���

��

��	
��


���
�

���
��
���

�

��������	
���������������������
�
��������������������
��������	
�� ���������

������
�����

������
������
������
������

��
��

���
���
	��
	��
���

��� ��� ��� � � � �� ��

���
��
���

��

��
�	��

�	�
�

���

�
���

��
���

�

���������	
�����

��������	
���������������������
�
��������������������
��������	
�� ���������

����

����
����

�� �� �� ��� ���

���
���
���
���
���

��
��

��
��
	

�	



��
���

�

�
��

��

������������	
������������	�����

����

����
����

�� �� �� ��� ���

��
��

���
���
���
���
���

�������� �������� �������� �������� �������	

��
��

��
��
	

�	



��
���
��
���

�

�
��

��

����������

������������	
������������	�����

Figure 4: Error rate and power saving for different refresh
cycles. The high refresh part is 1/4 of DRAM array.

prises the power consumed in refreshing the DRAM ar-
ray, and the power consumed to control the refresh oper-
ations of the DRAM chip. The former is proportional to
the refresh rate, while the latter is a constant. Therefore,
the self-refresh power does not decrease to zero even if
the refresh period increases to infinity.

3.5 Power-Reliability Trade-off
The models derived in the two previous sections are used
to find a suitable refresh rate for Flicker. Figures 4 show
the self-refresh power saving and DRAM error rate of
different refresh cycles in a system with 1/4 of the mem-
ory array at the high refresh rate. In Figure 4(top), the X-
axis represents the refresh cycle time, the Y-axis on the
left represents the power-savings in self-refresh mode,
while the Y-axis on the right represents the error-rate on
a logarithmic scale. It can be observed that the DRAM
error rate increases steadily with the DRAM refresh cy-
cle. However, the self-refresh power saving saturates to
about 25% at a refresh cycle time of about 1 second.

Increasing the refresh cycle beyond 1 second leads to
significant increase in the error rates. For example, from
1 to 20 seconds, the error rate increases over 3000 times,
from 4.0 × 10−8 to 1.3 × 10−4. However, the improve-
ment in power saving corresponding to the refresh cycle
increase is small (22.5% to 23.9%). On the other hand,
reducing refresh cycle time from 1 second to 0.5 seconds
leads to a steep decrease in power saving. This finding
is also substantiated in Figure 4 bottom, which shows
the power-savings as a function of the error-rate (in log
scale). Therefore, we believe that a refresh cycle of 1
second is near-optimal, as it achieves a desirable trade-
off between power savings and reliability.

5



����������
��	
������	
�
�������
	���
������
�������

���
	���
���
��

��	
������	
�
������
	���
������������

��	���������

��	
	����
�����
�
�����	
	����
�����
�

�����������	

����

�������	

����

 !
"����
����	���
������������

��������	�
�����


������	�
�����


�������	

����

�������	

����

Figure 5: Flicker system diagram.

4 Flicker Software
In this section, we show how to modify existing software
so that they can use the Flicker DRAM. Figure 5 shows
the steps involved in the operation of Flicker. First, the
programmer marks application data as critical or non-
critical. Second, the runtime system allocates critical and
non-critical data to separate pages in memory, and places
the pages in separate regions of memory (i.e., high-
refresh and low-refresh respectively). Third, the Op-
erating System (OS) configures the DRAM self-refresh
counter before switching to the self-refresh mode. Fi-
nally, the self-refresh controller refreshes different rows
of the DRAM bank at different rates depending on the
OS-specified parameters. Based on Fig. 5, modifications
need to be made to the application, the runtime system
and the OS. We now describe how each of the above
components is modified.

4.1 Application
Critical data is defined as any data that if corrupted,
leads to a catastrophic failure of the application. It in-
cludes any data that cannot be easily recreated or regen-
erated and has a significant impact on the output. Many
applications already distinguish between soft-state and
persistent-state, and take active measures to protect the
persistent state by writing it to the file-system periodi-
cally. It has been shown that due to the natural separa-
tion among persistent- and soft-state in an application,
distinguishing critical from non-critical data in applica-
tions is often straight-forward [5, 33]. Our results in this
paper further confirm this observation as each applica-
tion considered in the paper took us less than half-a-day
to partition (including the time we spent understanding
its source code).

In Flicker, the programmer marks program variables
as “critical” or “non-critical” through type-annotations
in the program’s source code. We assume that the default
type of a variable is critical, so that we can run an unmod-
ified (legacy) application safely. An application’s mem-
ory footprint has four components, code, stack, heap, and

global data. Errors in the code or the stack are likely to
crash the application and hence, we place code and stack
data on the critical pages. Global data and heap data,
on the other hand, contain both critical and non-critical
parts. For global data, the programmer uses special key-
words to designate the non-critical part. This requires
support from the compiler and linker, which our system
currently does not provide (see §4.2 for the implications).
For heap data, the programmer allocates non-critical ob-
jects with a custom allocator, which involves modifying
malloc calls in the program where non-critical data ob-
jects are allocated.

Note that the programmer maintains control over what
data should be marked critical or non-critical in the pro-
gram. In case the programmer is unsure about whether
to mark a certain piece of data non-critical, she can be
conservative and mark it critical. Doing so will limit
the amount of power-savings Flicker provides, but will
not impact the reliability of the application. Further, pro-
grammers can incrementally mark non-critical data in the
application based on the amount of power-savings they
wish to obtain with Flicker and the extent of reliability
degradation they are willing to tolerate.

4.2 Runtime System
Flicker utilizes a custom allocator that allocates critical
and non-critical heap data on different pages. The al-
locator marks pages containing non-critical data using a
special bit in the page-table entry. The allocator also en-
sures that either all the data in a page is critical or all of
it is non-critical, i.e., there is not mixing of critical and
non-critical data within a page.

Ideally, both heap and global data would be partitioned
into critical/non-critical parts. Our current version of
Flicker does not implement partitioning of global data
as this requires compiler support. However, as we will
show in the experimental results (§6), there is strong evi-
dence that global data has similar characteristics as heap
data in terms of the relative proportion of critical to non-
critical data.

4.3 Operating System Support
In a system with Flicker, the OS is responsible for man-
aging critical and non-critical pages. A “criticality bit”
is added to the page table entry of each page. This bit
is set by the custom allocator when allocating any data
from the page, unless the data has been designated as
non-critical by the programmer. Based on the criticality
bit, the OS maps critical pages to the high refresh part of
the bank (top down in Fig. 2), and non-critical pages to
the low refresh part (bottom up in Fig. 2). Before switch-
ing to the self-refresh mode, the OS configures DRAM
registers that control the self-refresh controller based on
the amount of critical data. Ideally, the high refresh rate

6



portion in the bank covers only pages containing criti-
cal data, but this may not always be possible due to dis-
cretization in the self-refresh mode (§3.4). Therefore,
the OS may end up placing more DRAM rows in high-
refresh state than absolutely necessary, leading to wasted
power. However, as we show in §5, this does not signifi-
cantly impact the power-savings of Flicker.

5 Experiment Setup
In this section, we present the applications and experi-
mental methods used to evaluate Flicker. As mentioned
in Section 3, Flicker requires minor changes to the hard-
ware and hence it is not possible to evaluate it directly
on a mobile device. Therefore, we use hardware sim-
ulation based on memory traces from real applications
to evaluate the performance overheads and active power
consumption of Flicker. Further, we evaluate the error-
resilience of these applications by injecting representa-
tive faults in the applications’ memory with an error-rate
corresponding to the expected rate of errors from Sec-
tion 3.3. The fault-injection experiments are carried out
during the execution of each application (to completion)
on a real system. We inject thousands of faults in each
application and observe their final outputs in order to
evaluate the reliability degradation due to Flicker. Fi-
nally, we evaluate the total power consumed by combin-
ing the active power consumption with the idle power
consumption from the analytical model.

5.1 Selected Applications
We choose a diverse range of applications to evaluate
Flicker, based on typical application categories for smart-
phones. Each application’s output is evaluated using cus-
tom metrics based on its characteristics. For each appli-
cation, we describe the application, the choice of critical
data and the metrics for evaluating its output as follows.

mpeg2: Multimedia applications are important for
smartphones. Many multimedia applications utilize
lossy compression / decompression algorithms, which
are naturally error resilient. We select mpeg2 decoder
from MediaBench [22] to represent multimedia appli-
cations. We mark the input file pointer, video informa-
tion, and output file name as critical because corrupting
these objects will cause unrecoverable failures in the ap-
plication. We use the Signal-to-Noise-Ratio (SNR) to
evaluate the output of the mpeg2 application, which is a
commonly-used measure of video/audio fidelity in multi-
media applications.

c4: Computer games constitute an important class of
smartphone applications. Games usually have a save
mechanism to store their state to files. Since the game
can be recovered entirely from the saved files, the data
stored to these files constitute the critical data. We select
c4 [10] (known as connect 4 or four-in-a-row), which is

Application LoC Input Metric
mpeg2 10,000 mei16v2.m2v output SNR
c4 6100 N/A saved moves
rayshade 24,200 balls.ray output SNR
vpr 24,600 ref/test output file
parser 11,500 ref/test output file

Table 3: Application characterizations and the output cri-
teria used for evaluating Flicker. (LoC = Lines of Code)

a turn-based game similar to chess. c4 stores its moves
in a heap-allocated array, which we mark as critical. We
modify c4 to save its moves at the end of each game, and
use the saved moves to check its output.

rayshade: Rayshade [20] is an extensible system for
creating ray-traced images. Rayshade represents a grow-
ing class of mobile 3D applications [31]. In rayshade,
objects that model articles in the scene are marked crit-
ical as errors in these objects impact large ranges of the
output figure. As was the case with mpeg2, we use the
SNR to evaluate the output of Rayshade.

vpr: Optimization algorithms may be executed on
mobile phones for a variety of common tasks, e.g.
calculating driving directions. We select vpr from
SPEC2000 [40] to represent these algorithms, as it em-
ploys a graph routing algorithm for optimizing the de-
sign of Field-Programmable Gate Arrays(FPGAs). We
choose the graph data-structure as critical because any
error in this structure will crash the program. We evalu-
ate the output of vpr by perfoming a byte-by-byte com-
parison with the fault-free outputs.

parser: Natural language parsing is used in applica-
tions such as word processing and translation. The parser
application from SPEC2000 [40] is chosen to represent
this class of applications. Parser translates the input file
into the output file based on a dictionary. Errors in the
dictionary data are likely to affect multiple lines in the
output and hence the dictionary is marked critical. Simi-
lar to vpr, we evaluate the results of parser by comparing
the output file with the fault-free output.

Table 3 summarizes the characteristics and evaluation
metrics of these applications.

5.2 Experimental Framework
We introduce the main components of our experimental
infrastructure in this section.

Memory Footprint Analyzer: We analyze the mem-
ory footprint of each application in order to calculate the
proportion of critical data in the program. This foot-print
is used to calculate power-consumption in idle-mode.
These measurements were performed by enhancing the
Pin dynamic-instrumentation framework [25].

Architectural simulator: We use a cycle-accurate ar-
chitectural simulator for evaluating the Flicker hardware.
The simulator contains a functional front-end based on

7



Parameter Value
Processor single core, 1GHz
Cache 32KB IL1 and 32KB DL1, 4-way set associative, 32-byte block, 1-cycle latency
DRAM 1Gb, 4 banks, 200MHz (see [28])
Low power scheme precharge row buffer after 100ns idle; switch to fast low power state 100ns after precharge
Cache miss delay row-buffer-hit: 40ns, row-buffer-close: 60ns, row-buffer-conflict: 80ns

Table 4: Major architectural simulation parameters.

Pin [25] and a detailed memory system model. A DRAM
power model based on the system-power calculator [29]
is incorporated into the simulator. We do not specify the
physical allocation of pages among different banks in
the simulator - this is implicitly assigned depending on
whether the page is critical. The simulator takes instruc-
tion traces as inputs, and produces as outputs estimates
of the total power consumed and the total number of pro-
cessor cycles and instructions executed in the trace.

Table 4 shows the main processor and DRAM param-
eters used by the simulator. These parameters are chosen
to model a typical smart phone with a 1GHz processor
and 128 Mega-bytes of DRAM memory.

Fault-injector: We built a fault-injector based on the
Pin [25] dynamic instrumentation framework. The in-
jector starts the application and executes it for an initial
period. No errors are injected during this period. Then a
self-refresh period is inserted, after which errors are in-
jected to the non-critical memory pages to emulate the
effect of lowering their refresh rate. In order to keep
track of the errors injected during the self-refresh pe-
riod, the injector maintains a “modified” bit for each byte
in the low refresh pages denoting whether this byte has
been accessed after the self-refresh period. Before a low
refresh byte is read, the corresponding modified bit is
checked. If it is “0”, meaning that the byte has not been
accessed after self-refresh, a single bit is flipped in the
byte with a pre-computed probability (3rd column of Ta-
ble 1)2. Modified bits that correspond to target bytes of
memory read or write operations are set to “1” to prevent
future injections into these bytes. Figure 6 shows the
state transition diagram of the “modified” bit maintained
by the injector.

5.3 Experimental Methodology
We evaluate the performance overhead, power savings,
and reliability degradation due to Flicker. Figure 7
demonstrates our overall evaluation methodology. The
main steps are as follows:

1. First partition each application’s data into critical and
non-critical (top box of Figure 7).

2. Obtain the memory footprint of each application and
use the analytical model to calculate the idle DRAM

2Given the low error rates presented in Table 1, the probability of
multiple bit flips in a single byte is very low.

�

�

����� ��	
����
������

�������
�		
	

����

�

Figure 6: State transition diagram of “modified” bit in fault-
injection. Error is injected to the DRAM with probability “P”.����������	����������	
�����������	
��	������� ���������	
�����������	
��	�������

����
����������	� ���
����������	� ��������	
����
���������
������������ 	��� ��	���	��
����������
��	�������������	���	��
���������������������	����� ������������
��������

��������	�������������������
����� ���	������������������ �	�
����������� ��
�����
��	�����������	���!���"
Figure 7: Evaluation Framework.

power consumption with and without Flicker (left
portion of Figure 7).

3. Apply architectural simulation for measuring the per-
formance impact and active DRAM power consumed
by the application (middle portion of Figure 7).

4. Calculate average DRAM power consumption and
the total DRAM power saving achieved by Flicker
(bottom left portion of Figure 7).

5. Use fault-injection to evaluate the application’s reli-
ability under Flicker (right portion of Figure 7).

In the following section, we will describe each of the
above steps in detail.

Critical Data Partitioning: We modify all 5 applica-
tions to use Flicker’s custom allocator for allocating heap
data. Our experimental infrastructure does not allow us
to partition the global data into critical and non-critical
parts. To understand the impact of global data parti-
tioning, we consider two configurations: “conservative”,
in which all global data is critical, and “aggressive”, in
which all global data is non-critical. The configurations

8



Configuration High Refresh Low Refresh

conservative
Code, Stack Noncrit-Heap
Crit-Heap, Global

aggressive
Code, Stack Global
Crit-Heap Noncrit-Heap

crazy
Code Stack, Global

Crit/Noncrit-Heap

Table 5: Configurations used to evaluate Flicker

bound the performance benefit and the reliability impact
of partitioning the global data respectively. We anticipate
that partitioning global data yields a power-savings close
to that of the aggressive configuration and has reliabil-
ity impact close to that of the conservative configuration,
provided that the critical data is a small fraction of all
global data (in Section 6.4, we present evidence that this
is indeed the case for almost all the applications consid-
ered in this paper).

In the above discussion, we assumed that stack data is
placed in the high-refresh state. However, in some ap-
plications, the stack data may also be amenable to be-
ing partitioned into critical and non-critical. To emulate
this condition, we consider a third-configuration “crazy”,
where both the stack and critical data are also placed in
low-refresh state. Table 5 summarizes the configurations
used for evaluating each application.

Memory foot-print and Idle-power calculator: Ta-
ble 6 summarizes the memory footprint break down for
code, stack, global data, critical, and non-critical heap
pages. For stack and heap data, we report the maximum
number of pages used during the execution. Hence, these
measurements form an upper-bound on the total memory
foot-print of the application.

We calculate the power consumed by the system in
idle mode based on the analytical model in §3.4 and the
data presented in Table 6. The refresh cycle in the low
refresh portion of memory is assumed to be 1 second, as
derived in §3.5. Further, the high refresh portions in each
application are rounded up to discrete levels in Table 2.

Architectural Simulation: We evaluate the perfor-
mance and power consumption in active mode using the
hardware simulator described in Section 5.2. For evalu-
ating performance, we meaure the Instructions Per Cy-
cle (IPC) of the system3, and for evaluating the power
consumption, we measure the total energy consumed by
each DRAM bank and divide it by the simulation time.
The simulations are performed with application traces
consisting of 100 million instructions chosen from the
approximate middle of the execution of each application
(this is standard in architectural simulations where sim-
ulating the entire application may not be feasible due to
prohibitive performance costs). We repeat the simula-

3The IPC defined as the average number of instructions executed in
each clock-cycle of the processor

App. Code Stack Global Crit Noncrit
Heap Heap

mpeg2 79 31 181 1 618
c4 473 21 10062 1 0
rayshade 97 10 603 2 541
vpr 114 713 4271 1739 2888
parser 88 544 1570 27 7688

Table 6: Memory footprint breakdown (No. of 4kB pages).

tions for multiple intervals in each application. For vpr
and parser, we use the SPEC ref inputs in architectural
simulations, while for the other applications, we choose
inputs representative of typical usage scenarios.

The main source of performance overhead due to
Flicker stems from the partitioning of application
data, which can potentially impact locality and bank-
parallelism. Therefore, the overhead of Flicker is
evaluated by considering a system that employs data-
partitioning (Part) with one that does not (Base)4. In
both cases, we assume that the DRAM aggressively tran-
sitions to low-power states when not in use, as mentioned
in Section 3.1.

Power-savings calculation: We assume a mobile
DRAM device having a capacity of 128 Megabyte,
which corresponds to the memory capacity of current
smartphones (e.g., the iPhone)5. Most of the selected
applications will use far less RAM than this space. How-
ever, in a realistic scenario, multiple applications will
share the RAM space and hence it is important to account
for power-savings on a per-application basis. Therefore,
we compute the proportion of critical and non-critical
data for the application, and scale it to the size of the
entire DRAM. This allows us to emulate the multiple-
application scenario while considering only one applica-
tion at a time. In order to evaluate overall DRAM power
reduction, we assume that the cell phone usage profile is
5% busy versus 95% in idle mode (self-refresh state) as
assumed in prior work [41].

Fault-injection: The fault-injection experiments are
performed using the fault-injector described in Sec-
tion 5.2. Note that the inputs used for each applica-
tion during fault-injection are the same as those used
for performance evaluation and active-power calculation
(the only exceptions are vpr and parser, where we use
the smaller SPEC test inputs for fault-injection due to
the large number of trials performed). When perform-
ing the fault-injection experiments, we monitor the ap-
plications for failures, i.e., crashes and hangs, and record
them. If the application does not fail, its final output is
evaluated using application-specific metrics shown in Ta-
ble 3. We classify the fault-injection results into three

4The refresh rate plays no part in the measurement of active power.
5Future smartphones may have higher memory capacities, and

hence the power savings achieved by Flicker will be even higher.

9



Application Scenario IPC Active Power [mW]

mpeg2
Base 1.462 4.17
Part 1.462 4.18

c4
Base 1.057 5.06
Part 1.068 5.03

rayshade
Base 1.734 4.15
Part 1.734 4.15

vpr
Base 1.772 4.14
Part 1.772 4.14

parser
Base 1.694 4.17
Part 1.695 4.16

Table 7: Performance (IPC) and Active Power Consump-
tion of Flicker

categories as follows, (1) perfect (the output is identical
to an error-free execution), (2) degraded (program fin-
ishes successfully with different output), and (3) failed
(program crashes or hangs).

6 Experimental Results
This section discusses the results of experiments used to
evaluate the power-savings, reliability and performance
degradation due to the Flicker system.

6.1 Performance & Active Power
Table 7 shows the performance (IPC) and active power-
consumption of the Base and Part system scenarios. Re-
call that Base represents the non-partitioned version of
the application, while Part represents the partitioned ver-
sion. The results in Table 7 confirm that the IPC and
active power consumption of the Base and Part scenarios
are similar for all applications (both within 1% of each
other). Therefore, the performance overhead of Flicker
is negligible for the applications considered. Further,
Flicker does not significantly increase the active power
consumption of the application. Note that in some cases,
the active power consumption is actually lower in the
Part scenario because of increase in bank-parallelism due
to the partitioning.

6.2 Power Reduction
Fig. 8 shows the reduction in DRAM standby power for
different applications and the three configurations in Ta-
ble 5. Fig. 9 shows the overall power reduction for dif-
ferent applications, which are obtained by combining the
results in Fig. 8 with the active power-measurements in
Table 7. We make the following observations.
• Both the standby and overall power consumed vary

with the application and the configuration. For all
applications, the crazy configuration achieves the
highest power-savings (25-32% standby and 20-25%
overall), followed by the aggressive configuration
(10-32% standby and 9-25% overall) and finally the
conservative configuration (0-25% standby and 0-
17% overall).

���
���
���
���
���

��������	
��������
��������
��	
������ �����

�� �����

��
��

���
���
���
���
���
���

����� �� ���
���� �� ���
��

��������	
��������
��������
��	
������ �����

�� �����

Figure 8: Standby DRAM power reduction.

• The aggressive configuration achieves significant
power-savings in all other applications except vpr.
This is because the applications’ memory foot-print
is dominated by global and non-critical data, whereas
in vpr the stack, code and critical data pages consti-
tute a sizable fraction of the total memory pages (over
35% according to Table 6). However, the crazy con-
figuration achieves significant power-savings for vpr
when the stack and critical data pages are placed in
the low-refresh state.

• For mpeg2, c4 and rayshade, the aggressive and crazy
configurations yield identical power-savings (both
standby and overall) as these applications have very
few stack and critical data pages.

• Among all applications in the conservative configura-
tion, parser exhibits the maximum reduction in both
standby and overall power consumption (22% and
17% respectively). This is because parser has the
largest proportion of non-critical heap data among
the applications considered, and this data is placed in
low-refresh state in the conservative configuration.

• The power savings for the c4 application in the con-
servative configuration is 0% as its memory footprint
is dominated by global data pages (according to ta-
ble 6), which are placed in high-refresh mode in the
conservative configuration.

6.3 Fault Injection Results
In this section, we present the results of fault-injection
experiments to evaluate the reliability of Flicker. We
first present overall results corresponding to the error-
rate for a low-refresh period of one second, which we
showed represents the optimal refresh period for power-
reliability trade-off in Section 3.4. We further evaluate
the output degradation for each application under faults.
Finally, we demonstrate the importance of protecting
critical data by performing targeted fault-injections into
the critical heap data.

6.3.1 One Second Refresh Period

Figure 10 shows the result of the fault-injection experi-
ments for five applications and three configurations with

10



���

���

���

���

���

���������	
�������	�������
��	
������ �����

�� �����

��

��

���

���

���

���

���

����� �� ���
���� �� ���
��

���������	
�������	�������
��	
������ �����

�� �����

Figure 9: Overall DRAM power reduction.

an error-rate corresponding to a 1 second refresh period.
Each bar in the figure represents the result of 1000 fault-
injection trials. The results are normalized to 100%.

The main results from Figure 10 are:

• No application exhibits failures in the conservative
configuration. In fact, c4, vpr, and parser, have
perfect outputs under the conservative configuration.
However, mpeg2 and rayshade have a few runs with
degraded results (about 33% for mpeg2 and 4% for
rayshade), but as we show later in the section, the
degradation is very small.

• Both aggressive and crazy configurations yield worse
results than the conservative configuration for all ap-
plications, except for c4. This is because c4 has a
very small proportion of critical pages, and these are
unlikely to get corrupted given the relatively low er-
ror rate corresponding to the 1 second refresh period.

• The difference between the aggressive and crazy con-
figurations is small, with aggressive having slightly
fewer failures and degraded outputs. This is because
the proportion of stack and critical pages is relatively
small, and hence the probability of corrupting objects
in these pages is very low.

• Finally, the aggressive configuration exhibits a very
small number of failures across applications (except
parser). This confirms our earlier intuition (see sec-
tion 5.3) that global data is likely to contain a very
small proportion of critical data.

As mentioned above, the conservative configuration
yields degraded outputs in about 33% of mpeg2 exe-
cutions and in about 4% of rayshade executions. The
aggressive and crazy configurations also yield degraded
output in about 40% and 20% of mpeg2 executions and
21% and 23% of rayshade executions respectively.

To further understand the extent of output degradation,
we measure the quality of the video or image using mea-
sures such as the Signal-to-Noise Ratio (SNR). Table 8
shows the average SNR measurements for the outputs av-
eraged across all trials exhibiting degraded outputs. Note
that SNR is measured in decibels (dB), a logarithmic unit
of measurement. As can be seen from the table, the con-
servative configuration yields over 95 decibels of output

Configuration mpeg2 rayshade
conservative 95 101
aggressive 88 72

crazy 88 73

Table 8: Average SNR of degraded output for mpeg2 and
rayshade [dB]. Larger values indicate better output quality.

(a) Original (b) 52dB

(c) Original mag-
nified

(d) 52dB magni-
fied

Figure 11: Rayshade output figures with different SNRs.

quality for mpeg2 and over 100 decibels for rayshade on
average. The aggressive and crazy configurations both
yield SNRs of over 80 decibels for mpeg2 and over 70
decibels for rayshade.

In order to understand better the qualitative impact of
output degradation in mpeg2, we encoded a raw video
with the mpeg2 encoder, and decoded the result with the
mpeg2 decoder. Compared with the original video, the fi-
nal output video has an SNR of 35 decibels. This demon-
strates that an SNR of 80 or above in fact represents a
video of high-quality, which we believe is acceptable for
a mobile smartphone with a limited display resolution.

For rayshade, we attempt to understand the output
degradation by studying the rendered images. Figures
11a and 11b show the original image and the correspond-
ing degraded image (with a SNR of 52 decibels). The
latter is generated during a faulty execution of rayshade.
These figures are shown with a scale factor of 0.25. As
can be seen from the figure, it is almost impossible to
tell the difference between the original image and the de-
graded image. However, when we magnify the images
to a factor of two of the original (Figures 11c and 11d),
small differences among the pixels become discernible.
Therefore, even for a significantly degraded image with
SNR considerably below 70 decibels, the differences be-
come discernible only at high resolutions.

6.3.2 Injection to Critical Heap Data

Based on the results presented in the previous section,
one may ask whether it is indeed necessary to partition
applications in order to prevent errors in the critical data.

11



������������������	��
���������
����������	
�	�	��
�����
� ��������	
����
�����������
��
������
����� ������ �����

��������������������	��
���������
���� ���� ����� ���� ���� ����� ���� ���� ����� ���� ���� ����� ���� ���� ��������� �� ���� �� !�� ���������������	
�	�	��

�����
� ��������	
����
�����������
��
������
����� ������ �����
Figure 10: Fault-injection result for systems with low refresh rate of 1 second.

Application Perfect Degraded Failed SNR
mpeg2 0% 0% 100% N/A

rayshade 42% 58% 0% 39.37dB
vpr 7% 0% 93% N/A

parser 52% 10% 38% N/A

Table 9: Results of injecting a single error in the critical
heap data.

We attempt to answer this question by performing tar-
geted injections into the critical data. If we do not ob-
serve any failures in these experiments, then we can con-
clude that preventing errors in the critical data (and hence
data-partitioning) is unnecessary for high reliability.

In these experiments, we inject a single error into the
critical data during each trial because the proportion of
critical data in each application is relatively small. Fur-
ther, we perform fewer trials (50-100) than previous ex-
periments as we obtained converging results even within
these trials.

Table 9 shows the results of these experiments nor-
malized to 100%. We exclude c4 from the experiments,
because its only critical heap data is the game record, and
this is precisely the output used for comparison6. mpeg2
always fails (crashes) due to the injected errors because
its output path or file pointer gets corrupted. On the other
hand, rayshade does not fail but its output quality with
even a single error in the critical data is 39 decibels on
average, which is much worse than the quality with er-
rors in non-critical data (over 70 decibels). Both parser
and vpr experience high failure rates due to a single er-
ror in the critical data - vpr even more so than parser.
The above results illustrate the importance of protecting
critical data in applications and underline the need for
data-partitioning to prevent reliability degradation due to
lowering of refresh rates.

6.4 Optimal Configurations
We now combine the fault-injection results (Fig. 10) with
the power-savings results (Figs. 8 and 9) to find the opti-

6Therefore, the injections into c4 will yield 100% degraded outputs.

mal configuration in terms of the power-reliability trade-
off for each application. The main results are:

• mpeg2, c4 and rayshade exhibit high overall power-
savings (20-25%) and no failures in the aggressive
configuration. Further, the output quality is high
(measured in SNR) for both rayshade and mpeg2 in
the aggressive configuration. Hence, the best config-
uration for these applications is aggressive, suggest-
ing that they have a large proportion of non-critical
global data (see section 5.3).

• For parser, the best results are achieved in the con-
servative configuration. This is because parser has
a large proportion of non-critical data pages, and
hence significant power-savings (about 25%) can be
achieved by putting these pages in the low-refresh
mode. Further, parser experiences quite a few fail-
ures in the aggressive configuration, which suggests
that it has a sizable chunk of critical global data.

• Finally, for vpr, the crazy configuration achieves the
best overall power-savings (nearly 25%) compared to
the other two configurations. Further, even under the
crazy configuration, the number of failures in vpr is
marginal (less than 3%). This is because vpr has a
significant proportion of stack data due to recursive
calls, which is mostly non-critical. Hence, crazy is
the optimal configuration for vpr.

6.5 Power vs. Output Sensitivity Analysis
In order to validate the analytical model in Section 3.4,
we study the sensitivity of the power/reliabiluty results
to the refresh rate. Due to space constraints, we focus on
the mpeg2 application for these experiments. We repeat
each experiment for 100 trials for refresh cycles ranging
from 1 to 20 seconds for the conservative and aggressive
configurations. Figure 12 shows the percentage of power
saving and output quality (in decibels) for the mpeg2 ap-
plication at different refresh cycles.

From the figure, we see that the output quality of the
conservative configuration is always better than that of

12



���

���

���

���

���

���

���

���

��
��

���
�	

��

�
��
��
���

���
��

�
��������	�
������������������������

	
����������������������� �����������������������
	
����������
��������� ����������
���������

��

��

���

���

���

���

�

��

���

���

���

���

�� �� �� ��� ���

��
��

���
�	

��

�
��
��
���

���
��

�

���������	
��

��������	�
������������������������
	
����������������������� �����������������������
	
����������
��������� ����������
���������

Figure 12: Sensitivity Analysis of mpeg2 in terms of
power saving and output SNR. The primary y-axis shows
the output video SNR in dBs. The secondary y-axis is the
overall DRAM power saving in percentage. An infinite
SNR is plotted as 100dB.

aggressive. However, the difference in output quality be-
tween conservative and aggressive increases as the re-
fresh period increases. For example, with a 1 second
refresh-period, both conservative and aggressive yield
high-quality outputs (over 88 decibels). However, when
the refresh period is increased to 20 seconds, the conser-
vative configuration yields output quality of over 38 deci-
bels; while the aggressive configuration’s output quality
drops to 0 decibels.

The power-savings obtained when increasing the re-
fresh rate from 1 to 20 seconds is relatively small for both
the conservative (0.5%) and aggressive (1.6%) configura-
tions. This confirms our earlier result from the analytical
model (Section 3.4) that reducing the refresh rate beyond
1 per second does not provide significantly higher power
savings. Hence a refresh period of 1 second provides a
near optimal power-reliability trade-off for most applica-
tions.

7 Related Work

This section discusses related work in the areas of critical
data protection, error-resilience of applications, better-
than-worst-case designs and DRAM refresh power re-
duction.

7.1 Critical-data protection

Critical data is defined as data whose integrity is impor-
tant to the overall correctness of the application. Check-
pointing and rollback-based systems periodically store
the application’s critical data to disk, and restore the state
of the critical data in the case of an application failure.
However, these mechanisms assume that the state of the
critical data is uncorrupted during roll-back. This as-
sumption may not always be true as shown by Chandra

and Chen[4]. Hence, we need robust mechanisms to pro-
tect critical data in applications.

Samurai [33] is a general-purpose mechanism to pro-
tect critical data in applications from errant pointer writes
due to type-unsafe code. Similar to Flicker, Samurai
modifies the memory allocator to isolate and protect
the application’s critical heap data. However, there are
two important differences between Samurai and Flicker.
First, Samurai requires the application developer to man-
ually identify the places in the application (i.e., source
lines) where the critical data is legitimately updated. This
can be tedious for developers as it requires significant
modifications to the source code. The second difference
is that Samurai employs in-process replication of critical
data in order to ensure that at most any one copy of the
data can be corrupted due to a memory error. This can be
expensive if the amount of critical data to be protected is
large or if memory space is limited.

7.2 Error-resilience of applications
A number of studies have showed that applications are
resilient to low-level hardware errors [6, 13]. Broadly,
there are two reasons for the resilience. First, each layer
of the system stack masks a subset of errors that occur
at lower layers of the stack. Hence, the number of errors
that are exposed to the application (i.e., impact some el-
ement of the application’s state) become progressively
lower with the level of origin of the error. For example,
only a small fraction of errors (less than 15% [37, 42]
that arise at the lowest level of the system stack, namely
circuit errors impact the application. This phenomenon
is called error derating, and arises due to myriad circuit
and architectural characteristics [7, 46].

The second reason for the resilience of applications is
that many applications are inherently tolerant of small-
deviations in their state, and can produce acceptable out-
puts even if there are faults in the architecture-visible
state. This phenomenon has been shown for soft-
computing applications such as probabilistic-inference
[44]. Surprisingly, it has also been observed in general-
purpose applications [24, 30]. This is because appli-
cations may perform many computations that are ulti-
mately discarded (e.g., sub-optimal solutions in opti-
mization algorithms) and hence errors in these compu-
tations are unlikely to affect application state. Further,
applications may employ error-correcting schemes (e.g.,
checksums in gzip) to automatically correct single errors
in their data.

7.3 Better-Than-Worst-Case Designs
Traditional hardware-design techniques consider the
worst-case behavior of the hardware circuit and over-
provision for that behavior. However, in common us-

13



age, the worst-case behavior rarely occurs, and this ap-
proach is wasteful. In contrast, Better-Than-Worst-Case
(BTWC) design approaches provision for the common-
case behavior and handle worst-case behavior as excep-
tions [1]. A well known example of the BTWC paradigm
is Razor [8], which reduces the energy consumption of
processors by progressively lowering their voltage until
the processor starts to experience errors due to timing vi-
olations. Razor corrects the introduced errors by flushing
the processor’s pipeline.

RAPID [41] is a software technique that applies the
BTWC principle to DRAM refresh-power reduction.
RAPID characterizes the leakage behavior of each phys-
ical page and partitions the pages into different classes
based on their leakage. Applications preferentially use
pages from the leakage class with the lowest leakage
rate and the overall refresh rate is set based on the high-
est leakage class of pages allocated by the application
(thereby preserving data integrity). RAPID benefits from
applications’ slack in memory usage, a condition that
often does not hold in smart-phone applications which
are memory-constrained. Further, RAPID is orthogonal
to Flicker and the two techniques may be combined to
achieve even higher power-savings.

Fault-tolerant refresh reduction is a circuit-level
BTWC technique [18] that uses ECC memory. Similar
to Flicker, this assume that the majority of memory cells
are likely to retain their charge even at reduced refresh
rates and use ECC to correct the errors that they intro-
duce. Flicker provides similar benefits to the above ap-
proach without requiring expensive ECC memory.

A number of other techniques modify the memory
controller hardware to reduce unnecessary or redundant
refreshes of DRAM cells. Block-based refresh [19] as-
signs different refresh rates to different memory blocks to
avoid refreshing the entire DRAM at the frequency of the
fastest-leaking cells. Smart refresh [12] avoids refresh-
ing DRAM rows that have recently been read/written as
these have had their charge restored by the read/write op-
eration. Value-based refresh [32] leverages the observa-
tion that memory consists predominantly of zeroes and
selectively disables refresh of clusters of zeroes. All of
the above techniques require substantial changes to the
hardware and are orthogonal to Flicker.

In very recent work, ESKIMO [15] saves DRAM
power using knowledge of application semantics. The
main idea is to reduce both active power and refresh
power based on application knowledge of unused mem-
ory areas. Similar to Flicker, ESKIMO modifies the allo-
cator to expose details of the application’s allocation pat-
terns to the hardware. In terms of refresh-power reduc-
tion, ESKIMO differs from Flicker in two ways: First,
ESKIMO reduces the refresh power of unused memory
areas, while Flicker reduces the refresh power of the used

memory areas. Second, ESKIMO does not trade-off re-
liability as Flicker does, and hence provides only limited
refresh-power savings (6 to 10%).

7.4 Energy–Reliability Trade-off
Recently, a technique called Fluid-NMR [38] performs
N-way replication of applications in a multi-core pro-
cessors for tolerating errors due to reductions in voltage-
levels of processors. The parameter ’N’ is varied based
on the application’s ability to tolerate errors. While
Fluid-NMR and Flicker have similar goals , there are im-
portant differences. First, Fluid-NMR reduces proces-
sor power in active mode while Flicker reduces memory
power in standby mode. Second, Flicker does not re-
quire replication of processes and can be deployed even
on single-core processors.

Rinard [36] proposes to discard application tasks that
experience errors in a computation, provided the dis-
tortion in the application’s output is within specified
bounds. Similar to Flicker, this approach leverages the
slack in application’s reliability, but their focus is on per-
formance improvement rather than power-reduction.

The Eon programming language and runtime sys-
tem allows programmers to annotate paths in the pro-
gram (i.e., flows) to trade-off output fidelity for power-
savings [39]. However, Eon requires programmers to
re-structure their program in the form of flows by using
Eon’s programming language. In contrast, Flicker only
requires that programmers identify critical data in exist-
ing programs through annotations or minor code changes
to use a different allocator.

Green [2] trades off Quality-of-Service (QoS) for en-
ergy efficiency in server applications by allowing pro-
grammers to specify regions of code in which the appli-
cation can tolerate reduced precision. Based on this in-
formation, the Green system attempts to compute a prin-
cipled approximation of the marked region to reduce pro-
cessor power. Similar to Green, SpeedGuard [35] per-
forms approximations of code-regions without requiring
programmer intervention. These systems share similar
goals as Flicker, but there are important differences be-
tween them. First, they are code-centric, while Flicker is
data-centric. Second, they target processor power while
Flicker targets memory power.

Clumsy Packet Processors (CPPs) [26] are deliber-
ately over-clocked processors used in network process-
ing which make occasional mistakes in computation (due
to over-clocking). Network applications are inherently
error resilient as they have to deal with many natural
causes of failures. CPPs leverage this error-resilience to
obtain power-savings in the processor. CPPs differ from
Flicker in that they do not protect important state in the
application, and may hence fail catastropically.

A number of network systems have explored the trade-

14



off between energy savings and reliability. These sys-
tems have typically focused on reducing the power-
consumption of fault-tolerance mechanisms such as
replication [16] or checkpointing [27, 34].

7.5 Alternatives to DRAM
Today, most smart-phones use DRAM as the main mem-
ory and Flash memory as secondary storage. Unlike
DRAMs, Flash memory is durable and does not need to
be periodically refreshed. Hence it can be used to store
critical data before the smart-phone transitions into sleep
mode. However, Flash memory read and write times are
an order of magnitude higher than DRAMs, with the re-
sult that it may take a long time to restart the phone from
sleep mode, and hence make it less responsive. While it
is possible to accelerate the process by writing out only
selected memory state, the challenges are similar to those
faced by Flicker, i.e., identifying critical data in the ap-
plication. Further, Flicker requires only that the program
be able to tolerate a small number of errors in the non-
critical data, rather than make the entire non-critical data
unavailable to the application.

Phase-Change Memory (PCM) is an emerging tech-
nology that offers unlimited data endurance while pro-
viding higher read/write speeds than Flash. Recent pro-
posals have called for the replacement of DRAMs with
PCMs [21], however this replacement incurs significant
performance and power costs. Flicker may be able to
ease this transition by storing the critical data on PCMs
and the non-critical data on regular DRAM.

8 Conclusion and Future Work

We present Flicker, a novel technique to save refresh
power in mobile DRAMs. Flicker enables programmers
to partition the application data based on its criticality
and lowers the refresh rate of the part of memory con-
taining the non-critical data to save power. This sep-
aration introduces a modest amount of data corruption
in the non-critical data, which is tolerated by the natu-
ral error-resilience of many mobile applications. Results
show that Flicker saves between 20-25% of total DRAM
power in memory systems with very little performance
degradation (less than 1%) and no loss in application reli-
ability. Flicker represents a novel tradeoff in systems de-
sign, namely trading off hardware reliability for power-
savings, as hardware only needs to be as reliable as the
software requires.

We plan to extend Flicker for saving energy in data-
centers. Similar to mobile applications, data-center ap-
plications (1) have considerable periods of inactivity due
to workload variations, (2) consume significant power in
idle-mode, and (3) are inherently error-resilient as they
do not have to be 100% accurate. Therefore, data-centers
are particularly well-suited to a Flicker-like approach.

Acknowledgements
We thank Emery Berger, Martin Burtscher, Shuo Chen,
Trishul Chilimbi, John Douceur, Erez Petrank, Martin
Rinard, Karin Strauss, Nikhil Swamy and David Walker
for useful comments and discussions about this work.

References
[1] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportuni-

ties and challenges for better than worst-case design,” in Proc.
Conference on Asia South Pacific Design Automation, 2005.

[2] W. Baek and T. Chilimbi, “Green: A System for Supporting
Energy-Conscious Programming using Principled Approxima-
tion,” Microsoft Research, Tech. Rep., 2009.

[3] V. Bhalodia, “SCALE DRAM subsystem power analysis,” Mas-
ter’s thesis, Massachusetts Institute of technology (MIT), 2005.

[4] S. Chandra and P. Chen, “How fail-stop are faulty programs?”
in Twenty-Eighth Annual International Symposium on Fault-
Tolerant Computing (FTCS), 1998, pp. 240–249.

[5] Y. Chen, O. Gnawali, M. Kazandjieva, P. Levis, and J. Regehr,
“Surviving sensor-networks software faults,” in SOSP, 2009.

[6] G. Choi, R. Iyer, and V. Carreno, “Simulated fault injection: a
methodology to evaluate fault-tolerant microprocessor architec-
tures,” IEEE Transactions on Reliability, vol. 39, no. 4, pp. 486–
491, 1990.

[7] J. Cook and C. Zilles, “A characterization of instruction-level
error derating and its implications for error detection,” in IEEE
International Conference on Dependable Systems and Networks
(DSN), 2008, pp. 482–491.

[8] D. Ernst et al., “Razor: A low-power pipeline based on circuit-
level timing speculation,” in MICRO, 2003.

[9] C. Ellis, A. Lebeck, and A. Vahdat, “System support for energy
management in mobile and embedded workloads: A white pa-
per,” Duke University, Tech. Rep., 1999.

[10] M. Fierz, “4 in a row.” [Online]. Available: http://www.fierz.ch/
4inarow.htm

[11] J. Flinn, K. Farkas, and J. Anderson, “Power and energy char-
acterization of the Itsy pocket computer (version 1.5),” Compaq
Western Research Laboratory, Tech. Rep, 2000.

[12] M. Ghosh and H. Lee, “Smart refresh: An enhanced memory
controller design for reducing energy in conventional and 3D Die-
Stacked DRAMs,” in MICRO, 2007, pp. 134–145.

[13] J. Gray and D. Siewiorek, “High-availability computer systems,”
IEEE Computer, vol. 24, no. 9, pp. 39–48, 1991.

[14] H. Hwang, J. Choi, and H. Jang, “System and method for per-
forming partial array self-refresh operation in a semiconductor
memory device,” Jun 2003, US Patent App. 10/452,176.

[15] C. Isen and L. John, “ESKIMO - energy savings using seman-
tic knowledge of inconsequential memory occupancy for DRAM
subsystem,” in In MICRO, 2009.

[16] N. Joukov and J. Sipek, “GreenFS: Making enterprise comput-
ers greener by protecting them better,” in Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems (EuroSys). ACM New York, NY, USA, 2008, pp. 69–80.

[17] A. Karlson, B. Meyers, A. Jacobs, P. Johns, and S. Kane, “Work-
ing Overtime: Patterns of Smartphone and PC Usage in the Day
of an Information Worker,” in PERVASIVE, 2009.

[18] Y. Katayama, E. Stuckey, S. Morioka, and Z. Wu, “Fault-Tolerant
Refresh Power Reduction of DRAMs for Quasi-Nonvolatile Data
Retention,” in International Symposium on Defect and Fault Tol-
erance in VLSI Systems (DFT-VLSI), vol. 311, 1999, p. 318.

[19] J. Kim and M. Papaefthymiou, “Block-based multiperiod dy-
namic memory design for low data-retention power,” IEEE

15



Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 11, no. 6, pp. 1006–1018, 2003.

[20] C. Kolb, “Rayshade graphics program.” [Online]. Available:
http://graphics.stanford.edu/\∼cek/rayshade

[21] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” International
Symposium on Computer Architecture (ISCA), pp. 2–13, 2009.

[22] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Media-
Bench: a tool for evaluating and synthesizing multimedia and
communicatons systems,” in MICRO, 1997.

[23] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
T. Keller, “Energy management for commercial servers,” Com-
puter, pp. 39–48, 2003.

[24] X. Li and D. Yeung, “Application-Level Correctness and its Im-
pact on Fault Tolerance,” in HPCA, 2007.

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
Customized Program Analysis Tools with Dynamic Instrumen-
tation,” in PLDI, 2005.

[26] A. Mallik and G. Memik, “A case for clumsy packet processors,”
in MICRO, 2004.

[27] R. Melhem, D. Mossé, and E. Elnozahy, “The interplay of power
management and fault recovery in real-time systems,” IEEE
Transactions on Computers, vol. 53, no. 2, pp. 217–231, 2004.

[28] Micron Technology Inc., “1Gb Mobile LPDDR:
MT46H32M32LFCG-5 IT.” [Online]. Available: http://www.
micron.com/products/partdetail?part=MT46H32M32LFCG-5IT

[29] ——, “System power calculator.” [Online]. Avail-
able: http://www.micron.com/support/designsupport/tools/
powercalc/powercalc.

[30] N. Nakka, K. Pattabiraman, and R. Iyer, “Processor-level selec-
tive replication,” in 37th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), 2007, pp.
544–553.

[31] ngmoco, “Star defense.” [Online]. Available: http://blog.ngmoco.
com

[32] K. Patel, E. Macii, M. Poncino, and L. Benini, “Energy-Efficient
Value Based Selective Refresh for Embedded DRAMS,” Lecture
Notes in Computer Science (LNCS), vol. 3728, p. 466, 2005.

[33] K. Pattabiraman, V. Grover, and B. G. Zorn, “Samurai: protecting
critical data in unsafe languages,” in EuroSys, 2008.

[34] P. Pop, K. Poulsen, V. Izosimov, and P. Eles, “Scheduling
and voltage scaling for energy/reliability trade-offs in fault-
tolerant time-triggered embedded systems,” in Proceedings of the
5th IEEE/ACM International Conference on Hardware/software
Codesign and System Synthesis(CODESS). ACM New York,
NY, USA, 2007, pp. 233–238.

[35] M. Rinard, A. Agarwal, M. Rinard, S. Sidiroglou, S. Misailovic,
and H. Hoffmann, “Using Code Perforation to Improve Perfor-
mance, Reduce Energy Consumption, and Respond to Failures,”
Massachusets Institute of Technology (MIT), Tech. Rep., 2009.

[36] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant com-
putations that discard tasks,” in ICS, 2006.

[37] G. Saggese, N. Wang, Z. Kalbarczyk, S. Patel, and R. Iyer, “An
experimental study of soft errors in microprocessors,” IEEE MI-
CRO, pp. 30–39, 2005.

[38] J. Satori, J. Sloan, and R. Kumar, “Fluid NMR - performing
power/reliability tradeoffs for applications with error tolerance,”
Workshop on Power Aware Computing and Systems, 2009.

[39] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. Corner, and
E. Berger, “Eon: a language and runtime system for perpetual
systems,” in Conference on Embedded networked sensor systems
(SenSys). ACM, 2007, pp. 161–174.

[40] SPEC, “SPEC CPU2000.” [Online]. Available: http://www.spec.
org/cpu2000/

[41] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-aware
placement in DRAM (RAPID): software methods for quasi-non-
volatile DRAM,” in HPCA, 2006.

[42] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. patel, “Characterizing
the effects of transient faults on a high-performance processor
pipeline,” in Proceedings of the 2004 International Conference
on Dependable Systems and Networks(DSN). Washington, DC,
USA: IEEE Computer Society, 2004, p. 61.

[43] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling
for reduced CPU energy,” Kluwer International Series in Engi-
neering and Computer Science, pp. 449–472, 1996.

[44] V. Wong and M. Horowitz, “Soft Error Resilience of Probabilistic
Inference Applications,” SELSE II, 2006.

[45] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets,
“GRACE-1: Cross-layer adaptation for multimedia quality and
battery energy,” IEEE Transactions on Mobile Computing, vol. 5,
no. 7, pp. 799–815, 2006.

[46] M. Zhang and N. Shanbhag, “Soft-error-rate-analysis (SERA)
methodology,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 25, no. 10, pp.
2140–2155, 2006.

16


