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Abstract: This paper proposes a novel nonlinear approa
for high performance flight control design. The dynami
linearization is accomplished via a kind of unknown inpu
observer, called Extended State Observer. A non-smo
feedback law is employed to achieve the desirable dynam
performances. A Lyapunov function is constructed for th
proposed method. 
 

1. Introduction 

Nomenclature 
g  Gravitational acceleration 

)(tm  Aircraft mass 

V  Velocity of aircraft center of mass 

P  Thrust force 
zyx ,,  Position of aircraft center of mass 

ρ  Density of air 

aM  Mach number 

refS  Reference wing area 

c  reference length 

xzzyx IIII ,,,  Moments of inertia and product of inertia 

zyx MMM ,,  Components of aerodynamic moment 

zyx ωωω ,,  Angular velocity components 

zyx vvv ,,  Velocity components 

ZYX ,,  Aerodynamic drag, side and lift force 
γψϑ ,,  Pitch angle, yaw angle and bank angle 

rea ddd ,,  Aileron, elevator and rudder deflection 
angles 

βα ,  Attack angle and sideslip angle 

Modern high-performance aircraft often have contro
difficulties over certain flight regimes, such as high attac
angle or high angular rates. These difficulties arise fro
highly nonlinear aerodynamic characteristics, from
undesired coupling between axes, and from control inp
saturation and delay. 

Conventional flight control designs are developed based 
the “small perturbation theory”, which assumes that th
aircraft dynamics is linear and time invariant around the tri
condition, and that the longitudinal motion is independent 
the lateral motion. Therefore the equations can be decoup
and treated independently[1,2,3]. Since the assumptions are
only valid for small regions about the trim conditions, se
point designs are needed to be carried out for a large se
trim conditions in the flight envelop, and then a gai
scheduling is constructed by interpolating gains with respe
to flight conditions. But in extreme flight conditions, the
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performance of these systems starts to deteriorate due to
un-modeled effects of the strong nonlinearities inherent
the flight dynamics, and the coupling between longitudin
and lateral motions, which become significant at high ang
of attack or rapid rolling.   

In recent years, extensive literatures have discuss
nonlinear feedback linearization methods, such as nonlin
transformation, nonlinear inverse dynamics, decouplin
theory, etc., for flight control design [4-7], which directly 
incorporate full nonlinear inertia dynamics an
aerodynamics into the design. These nonlinear methods 
offer the potential for providing improved levels o
performance over conventional flight control design
However, to perform exact nonlinear cancellation, the
methods assume exact knowledge of dynamic models 
aerodynamic coefficients in the entire flight envelop. I
practice, this assumption is not valid. To improve th
robustness of the aforementioned nonlinear design metho
[8-11] discussed how to combine sliding mode contro
adaptive control, neural networks and (or) robust contr
with these nonlinear methods. However, since th
dependence of the model and aerodynamic coefficients is
fundamentally relaxed in these approaches, only sm
parameters and/or unmodeled dynamic uncertainties 
permitted. 

This paper proposes a novel nonlinear flight control desig
the Active Disturbances Rejection Control (ADRC), for th
aircraft attitude control, which also takes into account th
nonlinear nature of the problem but is independent of t
nonlinear dynamics models. The main idea is to use 
Extended State Observer, a kind of nonlinear unknown in
observer (UIO), and a non-smooth feedback design. Th
only partial state feedback ( Vzyx ,,,,,, ωωωγψϑ ) is needed 
via this technique.  

The paper is organized as follows. In Section 2, the aircr
model and the attitude control problem under considerat
are briefly described. Then, the idea of dynamic linearizati
via ESO is outlined in Section 3. In Section 4, the ADR
design, based on the techniques of ESO and a non-smo
continuous control law, is given. In Section 5, a Lyapunov 
function is constructed for the closed-loop system. T
simulation results are presented in Section 6 and 
advantages of the proposed technique are summarize
Section 7.  
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2. Aircraft model and design specification 
The model for the motion of an aircraft is given by 
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The aerodynamic force coefficients ),,( fzfyfx CCC  and 
moment coefficients ),,( mzmymx CCC  are assumed to be
linear functions of the aileron (ad ), elevator ( ed ) and rudder 
( rd ) deflections: 
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(3) 

where )6( ∈iCi  are nonlinear functions of

),,,,,,,,( Vyzyx ωωωβαβα �

� , ( )F aMΣ  and ( )M aMΣ  are 

function matrixes of aM . Further details about the aircraf

model can be found in [1,2,3,5,10,12]. 

In this paper, we study the attitude control problem. T

output vector to be controlled is selected as [ ]Tγψϑ ,, . The 

control input is ( ( ), ( ), ( ))a e rd t d t d t  with nonlinear saturation

characteristics dddd ii

~
||,

~
|| �� ≤≤  ( reai ,,= ), where d

~
is the 

maximum deflection angle, and d
~
� is the maximum 

deflection angular velocity. It is assumed for this design t

only the states V , [ ]Tγψϑ ,,  and [ ]Tzyx ωωω ,,  can be 
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measured directly and that ωω ~≤i , ω~ is the maximum 

angular velocity. 

3. Dynamic linearization via ESO 
To state the idea clearly, the states of Equation (1) a
rearranged and defined as: 
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Then the aircraft equations of motion can be put into th
following form:  

),,,,,(         

),,(         
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              (4)   

To allow the nonlinear inverse dynamics technique [5] be 
applied to the subsystem (Ω), the nonlinear models 

),,,( 43212 XXXXF , ),,( 431 XXXB  should be exactly 
known and full state feedback is needed to perform exa
nonlinear cancellation. Next, the ESO technique is employ
to perform nonlinear cancellation for the subsystem (Ω) in a 
model-free way.  

From (1)~(3), it is assumed that 

 )(),,( 1
431 aMref McQSXXXB ΣΞ= −                            (5) 

is nonsingular. This is a commonly employed practic
assumption. Define 

,)),,((),,,() 043143212 U(V)BXXXBXXXXFH(t −+=
∆

     (6) 

where the nonsingular matrix 

constMMref a
cSVVB =

− ΣΞ= 12
0 2

1
)( , 

which is a function of  the state V , is an approximation for 
),,( 431 XXXB . Then system (Ω) can be rewritten as  

UVBtHX )()( 02 +=� .                                       (7) 

Similar to the idea of nonlinear inverse dynamics[5], applying 
the control law 

))()(( 1
1

0 UtHVBU +−= − .                              (8) 

to system (Ω) leaves it in the integrator-decoupled form

12 UX =� .  

To obtain a real-time estimation for )(tH , an ESO is 
designed: 



 

gn
rd
 

 
a
in

) 

 

th
t 
c

d

  

),

o
ti
th
e
or
0

u
 

 is 
ol 
ce 

 

de 
to a 
le 

he 
nce 

ges 
er 

n 
ion. 
or 

th 
t 

 
d” 

                         

aw 

    

 
s: 

e 

nd 
e 

e 
 

















−
−
−

=
















−
−
−

=







−=

−=+−=

)(

)(

)(

)(,

)(

)(

)(

)(

)(

,)(

231323

221222

211121

12

231313

221212

211111

11

122

21101121

xzf

xzf

xzf

EF

xzf

xzf

xzf

EF

EFZ

XZEUBEFZZ

c

c

c

c

c

c

c

c

c

c

�

�

     (9) 

where )3,2,1,2,1()( 21 ==− jixzf jjcij  are suitably 
constructed non-smooth functions. To simplify the desi
ESO (9) is designed to have the form of three second-o
ESOs with similar structure and parameters arranged
parallel, 
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For appropriate values of 0,0 0201 >> ββ , α and δ , the 
output )(2 tZ  approaches )(tH , which is viewed as an
extended state vector of system (Ω), at a desired rate. Then 
dynamic linearization can be accomplished by replac

)(tH  with )(2 tZ  in the control law (8), that is: 

))()(( 12
1

0 UtZVBU +−= − .                                     (12

By introducing )(tH , 3X  and 4X  in (4) are viewed as
external disturbances of the subsystem (Ω), and the 
derivatives of the aerodynamic forces with respect to 
control surface ),,( rea ddd , which are very small for mos
aircraft configurations, are also considered as disturban
and are included in )(tH . Then system (4) can be simplifie
to 
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Next, the ADRC law is designed for system (13) 

Remark 1. Unlike traditional observers (linear or nonlinear
ESO not only estimates the state but also the dynamics )(tH . 

)(tH  can be viewed as the “total disturbance” of the system, 
which lumps the “internal disturbance” and the “external 
disturbance”. The former is composed of nonlinear nature 
the dynamics, the coupling effects, the dynamic uncertain
et al, while the latter includes the unknown factors from 
environment. Disturbance rejection is an old but k
problem for high performance control. A great deal of eff
has been devoted to tackling this difficulty, see [13,19,2
and the references therein. However, these methods us
assume the knowledge of the disturbance model and/or
225
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nominal plant model. The breakthrough brought by ESO
that it facilitates solutions for a series of challenging contr
problems, such as dynamic linearization, disturban
rejection and decoupling control, in an ingenious way. 

Remark 2. It is obviously that (10) is in the form of the
classical Luenberger observer when )1()( +∈= nieefci  and 
is in a form of a variable structure observer when 

)1)(()( +∈+= niesignkeef cici  [21]. However, the nonlinear 
structure (11) is not a simple substitution for a sliding mo
estimator. The state trajectory of ESO does not converge 
certain sliding mode but a special region, the self-stab
region, determined by (11). The advantages of t
continuous non-smooth structure in ESO and its converge
analysis are discussed in [14]. 

4. Non-smooth flight control design 
[15~17] and the references therein discussed the advanta
of non-smooth feedbacks, especially the fractional pow
control (FPC) law for providing excellent capabilities o
dynamic performances, robustness and disturbance reject
Next, the non-smooth flight control design is proposed f
system (13).  

Since system (13) is in the strict feedback form, non-smoo
backstepping techniques[18] can be employed. Suppose tha

)(*
1 tX  is the command for )(1 tX . Using 2X  as the control 

for 1X , the FPC law for 1X  to follow *
1X  is designed as:  
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where )3,2,1(01 => ik i  are the gain coefficients. Considering
the physical bound for the angular velocity, the “comman
for 2X  is designed as: )~,)(( 01

1
1

*
2 ωUXFsatX −= , 

1
1

1
1 )( −− Θ=XF  is nonsingular.                                             

Then based on (12), the continuous non-smooth control l
for 2X  tracking *

2X  is designed as  
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where 10 2 << α , )3,2,1(02 => ik i  are the gain coefficients. 
Hence control law (15) is mainly composed of two part

)(2 tZ  is used to compensate the “nonlinear dynamics” )(tH  
and )( 2

*
21 XXU −  is a non-smooth feedback law to achiev

satisfactory performance.  

Since the proposed control law can automatically detect a
compensate this “total disturbance”, it is called Activ
Disturbance Rejection Control (ADRC) technique [15]. Fig. 1 
shows the diagram of ADRC designed for aircraft attitud
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Fig. 1. Diagram of ADRC for aircraft attitude control 

Remark 3. Backstepping technique avoids the sta
transformation or higher order derivatives of the control
state so that the phase variables can be controlled direct

Remark 4. To simplify the algorithm and avoid chattering,
the FPC law can be simply substituted by the piecewise 
linear (PL) law, for example: 
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5. Stability and closed-loop performance analysis 
The ADRC law designed for system (13) has nice propert
high speed, small overshoot and steady errors. Nex
Lyapunov function will be constructed for the closed-lo
system, and the advantages of the non-smooth structures
be analyzed. In the following analysis, the saturati
characteristics are ignored. )(tf�  denotes the generalize
derivative of )(tf , if the function )(tf  is non-smooth. 

From (9), (13) and (15), the closed-loop system can 
described as follows: 
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From Theorem 4 of [14], the following lemma can b
obtained: 

Lemma 1.  Assuming that [ ]TthththtH )()()()( 321
���� =  is 

bounded, that is, 3,2,1,)( =< iWthi
� , for some W>0, if 

,1,
)1(

2
'
2022

2
2
01 >

+
> cfc

k

k
cββ  then 

,01 <V�  when W
c

c
g i 12

2
201 −

>β .                      (18) 

From (18), an upper bound for the steady estimate error
ESO (10) can be derived as follows [14]: 

2,1,][

.
)1(

)1(
})({sup

otherwise  ,
)1(

,
)1(

     ,1,)
)1(

(

})({sup

321

201

2*
1012

)(

*
2

202

2

202

2
1

202

2

1
)(

*
1

==





















−
−

−=∞=













−

≥
−

>
−=

∞=

<

<

iEeee

c

Wck
eee

c

Wkc

c

Wkc
k

c

Wkc

ee

i
T

iii

ii
Wth

i

i
Wth

i

i

i

β
β

β

δ
ββ

α

�

�

          (19) 

which shows that, when 
12

2
02 −

>
c

Wkc
β , the smaller the α  is, 

the smaller the steady estimation errors *
1ie  and *

2ie  will be. 

It means that the ESO can have better ability for estimati

the uncertainties and disturbances. This is one advantag

the non-smooth structure  (11). 

Remark 5. Since )(tH  is the uncertain part of the angula
acceleration, W can be determined by the bound of th
angular acceleration rate, which is usually known in practic

Define )()(
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where iA][ means the ith element of vector A. Therefore 

,02 <V�   if [ ] iii XEXXk ][ *
222

*
22

2
�+>−

α
, i=1,2,3, (21) 

From (14), *
2X�  is bounded, if FPC law (14) is replaced by
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PL law (16). On the other hand, from (18), 2E  is bounded. 

Hence, an upper bound for the steady tracking err

[ ]iXX 2
*
2 −  can be obtained as follows: 

 [ ] [ ] 2

1

2

*
22

2
*
2
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i

i
i k

XE
XX

�+
<−                             (22) 

It is clear that, when ii XEk ][ *
222

�+> , the smaller the 2α  is, 

the smaller the steady tracking error [ ]iXX 2
*
2 −  will be. 

This is the advantage of the non-smooth structure in (15). 
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 Therefore, ,03 <V�  if 

 [ ] iii XXXXFXXk ]))(([ *
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*
2111
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11

1
�+−>−

α
, i=1,2,3. (24) 

It is assumed that *
1X�  is bounded.  From (22), 

i
XX 2
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2 − is 

bounded. Hence, an upper bound for the steady tracki

error [ ]iXX 1
*
1 −  can be obtained as follows: 
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1

1
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211

1
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))(( α
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i k

XXXXF
XX
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<− .           (25) 

It means that, when ii XXXXFk ]))(([ *
12

*
2111

�+−> , the 

smaller the 1α  is, the smaller the steady tracking error

[ ]iXX 1
*
1 −  will be. This is the advantage of the non-smoot

structure (14). 

fine 321 VVVV ++= . Combining (18), (21) and (24), it is 
obviously that V  is a Lyapunov function of the closed-loop
system (17). 

6. Simulation results 
Fig.2 depicts the simulation results under the followin
command: 
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3210 tttt <<< , 015≤id , 0300 /id s≤� . 

Fig. 2 and Table 1 show that the system has the performan
of high speed, small overshoot and steady errors.  Fig
shows that the output of ESO (11) approaches the “tot
disturbances” )(tH  very well.  
227
 Overshoot  
(Degree) 

Steady error  
(Degree) 

ϑ  0.3 <0.1 
ψ  2.4 <0.6 
γ   0.0≈  

Table 1. Dynamic response data 



i
h
)

h
 

e
 
s

e
io
re
ti

 
o
rs

, 

d
, 

 

 
. 

n

ms 

f 
of 

t 

s 
r

S. 
n 

rol 
ue 
y

ft 

ass 

for 
ate 

m 

e 
le 

., 
& 

t 
ar 
. 

n 
on 
ety 

, 
  

 

Remark 6. In the simulation, the deflection angles are
generated through a second order dynamic process, in wh
the saturation constraints are set on the bound of t
deflection angles and the deflection angular velocity (Fig.4 

7. Conclusions 
The paper proposes a novel method directed at t
difficulties of high-performance flight control design. The
major advantages of the method are: 
1) Realizing dynamic linearization by estimating the

unknown nonlinear dynamics )(tH  via ESO is 
essentially independent on the models and aerodynam
coefficients; 

2) Non-smooth feedback law is used to improv
performances, such as high speed and high accuracy;

3) Only partial states information is needed. The pha
variables can be controlled directly. 

The paper also provides an analysis for the propos
approaches. As a first step towards this goal, the saturat
characteristics are ignored in this paper. If they a
considered, the results may be local. This problem is s
under investigation.   
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