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Abstract 

Flight delay is inevitable and it plays an important role in both profits and loss of the 
airlines. An accurate estimation of flight delay is critical for airlines because the results 
can be applied to increase customer satisfaction and incomes of airline agencies. There 
have been many researches on modeling and predicting flight delays, where most 
of them have been trying to predict the delay through extracting important charac-
teristics and most related features. However, most of the proposed methods are not 
accurate enough because of massive volume data, dependencies and extreme num-
ber of parameters. This paper proposes a model for predicting flight delay based on 
Deep Learning (DL). DL is one of the newest methods employed in solving problems 
with high level of complexity and massive amount of data. Moreover, DL is capable to 
automatically extract the important features from data. Furthermore, due to the fact 
that most of flight delay data are noisy, a technique based on stack denoising autoen-
coder is designed and added to the proposed model. Also, Levenberg-Marquart algo-
rithm is applied to find weight and bias proper values, and finally the output has been 
optimized to produce high accurate results. In order to study effect of stack denoising 
autoencoder and LM algorithm on the model structure, two other structures are also 
designed. First structure is based on autoencoder and LM algorithm (SAE-LM), and the 
second structure is based on denoising autoencoder only (SDA). To investigate the 
three models, we apply the proposed model on U.S flight dataset that it is imbalanced 
dataset. In order to create balance dataset, undersampling method are used. We meas-
ured precision, accuracy, sensitivity, recall and F-measure of the three models on two 
cases. Accuracy of the proposed prediction model analyzed and compared to previous 
prediction method. results of three models on both imbalanced and balanced datasets 
shows that precision, accuracy, sensitivity, recall and F-measure of SDA-LM model with 
imbalanced and balanced dataset is improvement than SAE-LM and SDA models. The 
results also show that accuracy of the proposed model in forecasting flight delay on 
imbalanced and balanced dataset respectively has greater than previous model called 
RNN.
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Introduction

As the air travels have a significant role in economy of agencies and airports, it is nec-

essary for them to increase quality of their services. One of the important modern life 

challenges of airports and airline agencies is flight delay. In addition, delay in flight 

makes passengers concerned and this matter causes extra expenses for the agency and 

the airport itself. In 2007, U.S government had endured 31–40 billion dollar downsides 

due to flight delays [1]. In 2017, 76% of the flights arrived on time. Where, in comparison 

to 2016, the percentage of on time flights decreased by 8.5% [2]. As some of the reasons 

of flight delays the following can be mentioned: security, weather conditions, shortage 

of parts and technical and airplane equipment issues and flight crew delays [3–5]. Delay 

in flight is inevitable [6], which has too much negative economic effects on passengers, 

agencies and airport [7–11]. Furthermore, delay can damage the environment through 

fuel consumption increment and also leads to emission of pollutant gases [1, 12–16]. In 

addition, the delay affects the trade, because goods’ transport is highly dependent to cus-

tomer trust, which can increase or decrease the ticket sales, so that on time flight leads 

to customer confidence [17, 18]. So that, flight prediction can cause a skillful decision 

and operation for agencies and airports, and also a good passenger information system 

can relatively satisfy the customer [19].

According to abundant and diversity of reasons for flight delays, We are faced with a 

massive amount of data which is not possible to be processed through previous methods 

of data [17] analysis like classification [1], or the decision tree [8] and machine learning 

based methods [1, 2, 17, 20, 21] to process this volume of data are not proper, because 

characteristics of older intelligent system has been designed by human and usually were 

personalized, also people rarely perceive some features and usually neglect these mat-

ters. On the other hand, in older learning process, as the number of categories available 

for classification increases, the level of difficulty increases [8] and extraction of impor-

tant and effective features becomes relatively impossible. Due to complexity and effect 

of parameters on each other, the problem of flight delay prediction is considered as NP-

Complete [22]. Furthermore, the problem essentially is accompanied by oscillation and 

also these are considered as non-linear problems [23]. On the other hand, applied data 

includes noise and error that should be handled to cope with the problem [24, 25].

�ere have been too many studies in this area. For example, older Regression method 

[26] has been used to compute delay propagation. For this model, the destination delay 

is highly dependent to arrival flights and the effective factors include; day, time, airport 

capacity and some factors are related to passenger loads. In addition, as the problem 

neglects the weather conditions, this model shows inefficiency in U.S.A but it is suit-

able for Europe. Where, only 1–4% of the Europe flights delayed due to weather condi-

tion, this value for U.S.A is between 70 and 75% in [27] an intelligent neural network 

has been designed which estimated the destination delay for actual applications in con-

trolling traffic progress. �is model employs factors of airport type, airplane type, date, 

time, flight path, flight frequency for network training and non-linear and linear for data 

analysis. As it is difficult to interpret neural network parameters, the way factor behavior 

and most important verification of the most important factors in flight is extremely dif-

ficult. Furthermore, older intelligent algorithm usually uses shadow learning models to 

solve conditions with a big data in complicated classifications. However, results of this 
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analysis are very different with respect to ideal condition. Although model design can 

have a good or bad situation, response is highly dependent to experience and even hap-

penstance and this procedure requires too much time. �erefore, traditional simulation 

and modelling techniques is not suitable or even efficient for such problems. �ere is an 

ongoing subject of study which solves this problem and this paper also has tried to use 

that subject in modelling.

One of the newest modern methods in solving such extended and complicated accom-

panied by bulky data that has been concerned by many scientists is deep neural net-

works [21, 24, 25, 28]. �e design of learning technology is taken from human neural 

network learning is a branch of machine learning and collection of algorithms that try-

ing to model such high-level abstract contents through application learning in different 

layers and levels. �erefore, this subject enables the deep learning to process a bulky 

data volume in complicated data classification [29]. Moreover, this structure is proper 

for extracting some the characteristics, so that learning is capable to extract maximum 

number of possible characteristics [29]. Layered network structure and capability of 

computation for each data scale has led to progressing application of techniques. �is 

networks have different types including convolutional Neural Network [30], Autoencod-

ers [31], Restricted Boltzmann Machine [32] and Sparse coding based method [33] that 

each of them is applicated for specified problem.

One of the recently presented works in solving problem employs the recurrent Deep 

Neural Network and its results has a high accuracy in flight delay prediction [24]. How-

ever, this model has drawbacks of overfitting, that researchers have solved that through 

typical data dropout technique for each step of repeated training procedure. Moreover, 

application of this method decreases the computation time and memory space during 

the training.

�e next drawback is the noise of input data. However, the researcher neglects the 

noise during prediction.

�is paper tries to represent a model based on deep learning, which considers the 

effective factors in the delay. Moreover, noisy data [24, 25] requires utility of stack 

denoising autoencoder (SDA) in designing the model. Afterwards, optimized structure 

of the flight delay forecasting model with Levenberg-Marquart (LM) algorithm. In addi-

tion, in this paper by developing a deep learning-based model, the accuracy of flight 

delay predictions can be increased.

Finally, we review previous work related to our topic in “Literature review” section, a 

complete description of research process and also the holistic structure of the designed 

model is represented in the third section. Fourth section evaluates the determined 

results from the previous methods. Fifth section presents a conclusion and an overall 

view about the study.

Literature review

Nowadays, service quality plays an important role in attracting customers. Among these, 

air travels have their special customers and the most important matter in these trav-

els is the flight time, on time arrival at destination for passengers such those who have 

an important meeting, that has been leading to high expenses for the passenger until 

get to their destination on time [34, 35]. Flight delay has negative economic effects on 
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the passenger, agencies and airports. �erefore, any reduction of these effect requires 

decreasing postponed flight price, so that prediction or estimation has a great signifi-

cance and numerous studies has been to dedicated this subject. Correspondingly, all the 

scientists have tried to design a model that understands effective factors and computes 

effect of each factor and their relation. Overall, the prediction methods are classified 

into five groups including Statistical Methods [3, 36–56], Probability methods [7, 9, 50, 

57–69], network-based methods [5, 70–85], operational methods [86–102] and machine 

learning methods [1, 2, 8, 17, 20, 27, 29, 34, 103–124].

In one of the best studies [56] that has been performed based on statistics delay time 

has been considered to be reduced. �eir study has investigated important factors before 

fly and those which occur on the ground. In the next step, it has predicted the delay 

at destination based on factors that occur in the vicinity of arrival time at destination. 

Eventually, results have shown that whenever, the delay is correctly predicted, pas-

senger disaffection and fuel consumption decrease and consequently number of flight 

increases. Moreover, it is possible to increase the agencies’ benefits through reducing 

number of passengers who wrongly selected their routs or specifying the probabilities 

for some flights and optimizing delay time prediction.

Another prominent investigation based on Probability [57] has been done and the 

author believes that huge storm in U.S.A has highly affected the flight delay. �is study 

has been devoted to predict delay based on mathematical calculations and through con-

sidering delay time duration of the flights that had been engaged to storm in the same 

day. Metrological reports have shown the effect of storm one hour before and after event 

cause ephemeral climate at the region. In the next step, Monte-Carlo simulation has 

been used to estimate the airport runway capacity, so that traffic of each runway would 

have been estimated. As the research has employed only one factor, the model has not 

enough accuracy, but it is possible to increase region air capacity path structure [57].

A model has been presented in [82], which is one of the best network-based mod-

els. �e researchers have presented a model based on Bayesian and Gaussian mixture 

model- expectation maximization (GMM-EM) algorithm to predict and analyze the fac-

tors affecting the flight delay in Brazil for several point along the path. At the first stage 

of model, the degree of effectiveness for each factor is specified and then it has speci-

fied investigated whether the delay had happened in a greater domain or no. the next 

delay probability is computed using GMM-EM [82] and EM algorithm which are speci-

fied based on similarity. �e result has shown that it is possible to predict the probabil-

ity of delay in higher levels through specifying low level factors. Moreover, GMM-EM 

[82] similarity function has more values rather than EM algorithm [82] in each step, so 

that the results would have been converged sooner. In addition, the model accuracy is 

increased, so that the prediction is more trustable.

One of the best studies [93] in the area of operating method has been presented. Stud-

ied the effects of capacity and damage on different levels of delay in American airports.

Other simulations focus on stability and reliability during the delay and its propaga-

tion. For instance, in [90] the problems of congestion were studied. �en, a queue-based 

model was presented for analyzing delay propagation in consecutive flights in the Los 

Angeles airport.
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One of the best studies [119] in the area of machine learning method has been pre-

sented by a model which applicate machine learning techniques to investigate delay in 

arrival flights. �is research firstly has extracted important characteristics and then has 

been used for both neural networks and deep believe network through arbitrary sam-

ples to train the model. �e model utilizes Memento [119] and Resilient Back Optimized 

Propagation [119] that the Resilient back propagations quicker than back propagation 

[119] and as a result the model training and consequently has been increased. Deep 

believe networks [119] is based on a few Boltzmann machine [119] that each com-

munication layer receives data from the previous layer and in each step a Boltzmann 

machine [119] is added to Believe Network overall, training time reduced using param-

eter adjustment operation and learning rate, false classified error rate. As each layer has 

convergence at the output, training speed is reduced and the gradient approaches zero. 

In addition, a relatively small data base is used for the model because of limited sys-

tem capacity. So that this problem leads to a noticeable reduction in prediction precision 

whenever it is not at database.

A model has been presented [125] which was one of the machine learning method. the 

researcher has presented a model based on support vector regressor (SVR) algorithm 

to predict flight delay in U.S.A airports. Due to the large amount of data, the data was 

grouped and sampled by month. At the first stage for categorical variables, cat-boost 

used the ordered boosting method. Because cat-boost itself had the effect of scoring fea-

tures, it was possible to select parameters that were more important to the model when 

the threshold was unknown, so cat-boost was used to evaluate the features of each fea-

ture to select features, and finally 15 features were selected to build a training model.

�en has been used several common regression prediction algorithms to predict the 

delay at the same time for the round-trip flight between John F. Kennedy International 

Airport and O’Hare International Airport.

Finally, the specific delay time was predicted. �e results have shown SVR has the best 

prediction result for the flight delay time with the best accuracy value was 80.44%. Also, 

the time characteristics had a large impact on the mode performance.

�e air time and flight distance would also have a greater impact on on-time perfor-

mance of specific flight; Different carriers and specific aircraft would also have a slight 

influence of on time performance. Accuracy of this model is low because detailed 

weather and aircraft data could not be collected.

A research [126] analyzes flight information of U.S domestic flight operated by Ameri-

can Airlines, covering top 5 busiest airports of US and predicting possible arrival delay 

of the flight using Data Mining and Machine Learning Approaches. Due to the imbal-

anced data, Over-Sampling technique, Randomized SMOTE was applied for Data Bal-

ancing. �e Gradient Boosting Classifier Model was deployed by training and then Grid 

Search on Gradient Boosting Classifier Model on flight data, caused hyper-parameter 

tuned and achieving a maximum accuracy of 85.73%. Result showed that deleting some 

features affected the value of accuracy and reduced it.

A group of researchers [127] have designed 5 models to predict flight delay based 

on machine learning models such as Logistic Regression, Decision Tree Regression, 

Bayesian Ridge, Regression and Gradient Boosting Regression. �ey collected data 
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from Bureau of Transportation, U.S. Statistics of all the domestic flights taken in 2015 

and predicted whether the arrival of a particular flight would be delayed or not.

�e metrics to evaluate the performance of the models were: Mean squared error 

(MSE), Mean Absolute Error (MAE), Explained Variance Score, Median Absolute 

Error and R2 Score. Due to the used of imbalanced data sets, the amount of calcu-

lated error was high. Based on the results, Random Forest Regressor was observed as 

the best model in prediction of arrival and departure delay.

One of the newest studies in the area of machine learning method has been pre-

sented by a model which applicate supervised learning methods to aggregate flight 

departure delays in china airports [128]. �e expected departure delays in airports 

was selected as the prediction target while four popular supervised learning methods: 

multiple linear regression, support vector machine, extremely randomized trees and 

LightGBM were investigated to improve the predictability and accuracy of the model. 

Of special note was that the model performances with local weather characteristics 

was not as good as those without Sustainability meteorological data.

�ey measured accuracy, MSE and MAE for evaluating 4 methods and result has 

shown LightGBM model could provide the best result, giving 0.86 accuracy.

A group of Researchers [129] designed a framework to integrate multiple data 

sources to predict the departure delay of a scheduled flight and discuss the details of 

the data pipeline. �ey were the first group, to take advantage of airport situational 

awareness map, which was defined as airport traffic complexity (ATC), and combined 

the proposed ATC factors with weather conditions and flight information.

In the first stage, historical data, weather condition data, and tarmac aircraft and 

vehicles GPS data were collected from different data sources. After that the feature 

extraction stage, was applied principal component analysis to weather data, and were 

extracted ATC features from tarmac aircraft and vehicle trajectory data, also utilize 

the historical scheduling table data. It seems that except for the extracted features 

more potentially useful features can be explored from the airport situational aware-

ness map. �en in the modelling stage, multiple datasets were combined and various 

data combinations were used to train a regressor model that could be used for pre-

dicting departure delay time.

Authors selected four popular regressors from different families (linear regression, 

SVR, ANN, and regression trees) to show the robustness of their proposed approach 

to different regressors. Finally, has been evaluated the prediction results using Root 

Mean Square Error (RMSE) to measure the performance of flight delay time predic-

tion using different models and different combinations of data sources. Result has 

shown LightGBM regressor outperforms other conventional regressors with exten-

sive experiments on a large real-world dataset.

Although Other works which have been done in recent years is not in the scope 

of this article, it is still related to the topic in a way that contributes to the progress 

of this article, so here we have included studies [130] that employed a support vec-

tor machine (SVM) model to explore the non-linear relationship between flight delay 

outcomes and another model that [131] explored a broader spectrum of factors. �is 

model could potentially affect the flight delay and proposed a gradient boosting deci-

sion tree (GBDT) based models for generalized flight delay prediction.
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�e presented techniques are faced to limitations, because these techniques cannot 

resist against the massive data volume and complicated computations. For example, in 

some of these studies, the model is designed based on the specifications and conditions 

of a special country [43–45, 73, 75, 100, 104]. Some other consider weather conditions in 

their prediction [38, 132], next group has considered the special situation like en-route 

[5, 82] or destination [61, 88].

Deep neural networks

Deep neural networks are composed of several hidden layers that each layer has an 

important role in learning the model [133, 134]. �erefore, actual learning process is 

repeatedly performed through theses layers [133, 134]. �erefore, it can be inferred that 

the difference of deep learning techniques from older method is the learning part and 

lack of limitation in amount of data and also finding the best solution for NP-Complete 

problems [22]. Deep learning is employed in different areas including speech recogni-

tion [135–139], machine vision [30, 140–142], language processing [143–145], recom-

mender systems [146], urban traffic forecasting [147] and air traffic [70, 71, 78, 96]. It is 

clear that raising the number of variables in forecasting, modeling and simulation results 

in more precise final model that is achieved using deep neural networks. �e remaining 

part of the section investigates previous studies in flight delay forecasting.

One of the newest studies [24, 25] has been presented which solves problems with 

massive data volume. �is research has designed high precision model for forecasting 

U.S.A flight delays, which employs Recurrent Deep Neural Network. �e research aimed 

to firstly compute daily delay for each airport and then estimate the delay for a special 

flight using results of the primary step. �is study has used recurrent deep neural net-

work, which stores information of each hidden layer and this matter increases the model 

performance. Although model has high precision but high model complicacy has led 

to depth increment and finally takes the model to overfitting state that has been solved 

using dropout techniques. Moreover, employing this technic, can reduce the computa-

tion time and memory space during training. Next challenge is the extremely noisy input 

data, that the author has neglected in the data during forecasting, which is highly effec-

tive in forecasting.

Some research [148] have designed a model to forecast which is based on Bayesian 

networks and long- and short-term memory (LSTM)that uses discretizing variables like 

water and air, crowd and airport parameters to compute daily delay for some airports in 

USA.

�is model is composed of three memory layers in network and also uses earlier four 

days to compute average delay for the destination. Moreover, non-specify or properties 

are extracted through Mont Carlo Dropout techniques. Although the research has deter-

mined a stabilized state between complicacy and overfitting using variable dimension 

reduction, although it cannot forecast some unique event that highly affect the delay.

Some researchers [132] have investigated the weather conditions and its effect on ori-

gin–destination delay and used one of weather underground (WU) protocols related 

to some variables of wind, that temperature and morning dew. In addition, the follow-

ing tools including Apache spark, the Analysis service, Elastic tools are used to analyze 

the data, which Apache spark is a processor for parallel computations and libraries for 
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machine learning. Statistical findings showed that 89% delays were due to wind. In the 

next step, they specified the correspondence between variables through dependencies 

decision tree and associate laws and then they have computed probability of delay occur-

rence using linear Regression. Moreover, using associate laws, they have proved that 

next factor in the delay is the humidity. As their researches only have investigated the 

weather conditions of some airport, so that only 10% of the flights have been postponed. 

Moreover, their research has not investigated the weather condition during the flight. 

�erefore, the model can be used only for some specified airports in specific states.

A group of researchers [149] have designed 2 models to forecast delay, one of which 

was based on long- and short-term memory (LSTM) [148] and the other model was 

based on Random Forest. In this study to create a dataset, the ground station continu-

ously received automatic dependent surveillance broadcast (ADS-B) messages and then 

uploaded to central cloud server. After that the weather information of airports, sched-

uled flight time, departure airport, and destination airport were collected and then were 

integrated them. �e random forest classification architecture was constructed in this 

model, then the ensemble classifier used the most voted result of the N sub-classifiers 

as its prediction. �e ability of each sub-classifier and the independence of the sub-clas-

sifiers jointly improved the model accuracy. Experimental results have shown that Ran-

dom Forest based method could obtain good performance with the best accuracy was of 

90.2 and the LSTM-based architecture can obtain relatively higher training accuracy, but 

overfitting problem occurred in limited dataset.

One of the newest studies has been presented [150] which could solve problems with 

high-dimensional data and considered its relationship with space and time. this research 

was designed high accuracy model for forecasting U.S.A flight delays, which employed 

Stacked autoencoder. A stacked autoencoder was adopted to train networks and opti-

mizing all the networks’ parameters with back propagation method. �e model revealed 

the evolution rule of flight delay in space–time variation and superior after being com-

pared with the performance of traditional neural network. Results from plenty of experi-

ments had implicated that the prediction accuracy with deep stacked autoencoders was 

above 90%.

In one of the best studies that has been performed based on deep learning a frame-

work was designed which has three parts: command executive, data structure, and 

utilities [151]. �e command executive was described to provide the communication 

channel between the user and the functions. �e information such as flight plan and air-

port parameters via the data structures were defined as the inputs of the functions. �e 

utilities were known to contain common operations and tools to facilitate the commend 

executive and data structures. �is platform supporting the FAA’s Collaborative Deci-

sion-Making (CDM) process with the intent of reducing flight delays in the NAS Based 

on deep learning algorithms and used LTSM to predict accurate arrival and departure 

delays using time series data. �is system at first could integrate various databases to 

the NextGen’s SWIM program framework and then it could predict flight delays. Finally, 

in this study assessments of risks and sustainability of the proposed platform were pre-

sented. Based on the results they demonstrated that this platform can save billions of 

dollars and millions of hours, respectively but it is not possible to use this framework for 

everyone.
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Some Research [152] combined a deep belief network with a support vector machine to 

create a prediction model (DBN–SVR), in which DBN extracted the main factors with tan-

gible impacts on flight delays, reduced the dimension of inputs, and eliminated redundant 

information. �e output of DBN was then used as the input of the SVR model to capture the 

key influential factors (leading to flight delays) and generated the prediction value of delays. 

�ey employed a grid-search method to identify the key parameters in SVR and selected 

the optimal parameter values. After training the DBN–SVR model with proper parameter 

tuning, have been tried to detect and characterized the key influential factors using the 

observed DBN. Finally, the prediction performance was described by MAE and RSME. �e 

MSE was finally employed to measure the importance of input factors and detected the key 

influential factors. Results have shown that air traffic control was one of the key influen-

tial factors. Also, there was a strong relationship between the average delay of current and 

previous flights during 16:00–22:59, so that delays occurring in the afternoon and evening 

flights have a higher possibility of propagating and affecting the subsequent flights.

Some research [153] was carried out by employing quantitative research method. Author 

focused mainly on predicting airlines flight delays by analyzing flight data, especially, for 

the domestic Airlines that moves around the United States of America. �e main aim of 

the study was to reduce the number of data dimension before feeding it to the deep learn-

ing network. �e primary dataset was filtered first from more than 100 feature to one third 

of it. According to this study, before deep learning model implementing, dataset need to 

divide into train and test sets. Train set was divided randomly 80%, while the test set con-

tained 20% of the whole data. Train set was used to train the deep learning model. Where 

test set was used to check the accuracy by using confusion matrix performance measures.

Author used mainstream classification machine learning and deep neural networks 

to classify whether a flight would be delayed or not. For the machine learning algorithm, 

Decision Tree was used while for deep neural network as the name stands Deep Artificial 

Neural network (DANN) was used. �ey showed that the accuracy of DANN was slightly 

higher than the Decision Tree, however, even a tiny difference in accuracy was believed to 

be of tremendous valuable since the dataset was enormous and number of flights per day is 

numerous.

Based on the results of this study, with the reduced number of features the accuracy did 

not change. Also, the best accuracy was 82.10%. �erefore, several experiments had been 

carried out with the same setup with different number of neurons and hidden layers. Sur-

prisingly, there was no clear differences in accuracy rate. But when the number of hidden 

layers increased then the accuracy was 81.80%. So, it can be concluded that number of 

increased hidden layer did not ensure with higher accuracy.

According to the recommended structure [24, 25], one of the recent studies in this area 

still has some problems such as overfitting or memory space shortage. Moreover, data noise 

is neglected. �ese problems are effective in model forecasting precision.

Methodology

In this section, we issues to represent a our technique in which we tried to solve the 

problems related to massive data, processing complications [21, 24, 25, 28], lack of 

computational space, overfitting and existing noise in data [24, 25]. Figure  1 gives an 
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illustration of the development of proposed model. As can be seen from the figure the 

proposed technique contains three phases. We descript most important notation in the 

Table 1.

First phase: data collecting and pre-processing

Firstly, and at the beginning of the phase, it is necessary that model inputs be determined 

so that based on them, model learn and result in final structure. �e dataset used for 

evaluating the model was obtained from historical data which contains flight schedules 

data for 5 years. Variables which are used as inputs are shown in Table 2. It is applied 

to real-world data collected from the airports in the U.S and is compared with existing 

flight delay predictors.

Fig. 1 Structure of the proposed SDA-LM model
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After collecting data, characteristics enters system as X vectors which contains all 

variables in form of X = {X1 · X2 · . . . · X19} . In this model each Xi  represents a single 

characteristic. Since these characteristic’s adjustment range has lots of oscillation and 

no accordance to each other, pre-processing must be operated on the database. �us, 

we look for normalization techniques and among them, we use ‘min max’ normalization 

one. �is technique is mostly known as Feature Scaling in which Eq. 1 is used for each 

variable normalization.

In (1) Xi represents each variable and min(x) shows the lowest value in series and its 

number is zero. Max(x) represents highest number in series and has value of 1. Of all 

variables, ones related to time and flight information is normalized based on Eq. 1 and 

Fig.  2 shows min–max algorithm. Delay is calculated using timing difference of fields 

ArrTime and ArrDelay in beginning and DepTime and DepDelay in destination and 

if flight delay is more than fifteen minutes, values of DepDel15 and ArrDel15 fields in 

that flight turns 1, otherwise it turns 0. Also, flights delay due to various reasons which 

in database are divided into five general categories: CarrierDelay, WeatherDelay, NAS-

Delay, SecurityDelay and LateAircraft which value of 1 in these fields determines flight 

delay cause or causes. WeatherDelay field is weather conditions related where weather 

(1)Zi = Xi − min (xi)/max (xi) − min (xi)

Table1 Description of the most important notations

Notation Description Notation Description

X Input matrix X̂ Reconstruct-ed X̃

Min(x) Lowest value in series and its number is 
zero

WT Transposition of the weight matrix W

Max(x) Highest number in series and has value 
of 1

bh Show the bias associated with each hidden 
code

X
1

i
Normalized data in first layer L (X, X̃) Reconstruct-ion error rate

h Hidden layer cost Error rate

X̃ Corrupted input W Weighted matrix

c Corruption level y Output per x

H Activation function ŷ Output per X̂

Oj−1 → Oj Each layer’s input is from previous layer’s 
output

θ Is the parameters of the denoising autoen-
coder

b Bias vector

Table 2 Variables names

Variables related to delay 
time

Variables related to delay 
reasons

Variables related to �ight 
information

Variables 
related to �ight 
timing

DepDel15 CarrierDelay Flight Number Year

DepTime WeatherDelay Origin Month

DepDelay NASDelay Destination Dayofweak

ArrDelay SecurityDelay DayofMonth

ArrDel15 LateAircraft FlightDate

ArrTime
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information is provided by National Oceanic and based on database reports, flight time 

could change or face delay. If delay occurs due to bad weather, field value changes to 1. 

Generally, if a flight is delayed due to any reasons, value of CarrierDelay, WeatherDelay, 

NASDelay, SecurityDelay and LateAircraft field or fields related to delay cause changes 

to 1.

Second phase: pre-training model- building stack denoising auto encoder (SDA)

After pre-processing phase, second phase initiates, in which model enters pre-training 

phase that the training algorithm of a denoising autoencoder is summarized in Fig. 3. 

Normalized variables enter first denoising autoencoder as inputs and is mapped to 

first hidden layer in form of X1
i

→ h
(i+1) [154]. �en, some of characteristics of X vec-

tors inputs will be decayed randomly by rate of c. �ere are different methods to decay 

data and, in this study, used zero mask, meaning we change the value of those varia-

bles to zero and organize vector X̃ . �erefore, encrypting phase begins and X̃ vector is 

encrypted in hidden code H and its value is calculated based on Eq. 2 [154].

W represents variable’s Weight and b represents its Bias. When an input enters a neu-

ron, it’s categorized by a Weight. In addition to Weight, another linear component that 

(2)H = sigmoid
(

X̃ ∗ W + b
)

Fig. 2 The step of min–max algorithm

Fig. 3 Training algorithm of a denoising autoencoder
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affects input is called Bias and its value is added to Weight multiplier in input in order to 

change the range of resulted value from Weight multiplier in input. Bias is the last lin-

ear component which assists input conversion. �e initial Weight and Bias is randomly 

assigned and are updated during training process. After training process beginning, 

Neural network assign more Weight to inputs that it considers more important. Having 

Weight of 0, show Ineffective variable. After encrypting phase, X̃ vector is reconstructed 

based on Eq. 3 and using hidden code H, resulting in X̂ vector. �is phase is well known 

as decoding phase. X̂ vector is transferred into output [154].

W
T show transposition of the weight matrix w and bh show the bias associated with 

each hidden code, After the decryption process is completed, the reconstruction error 

rate [155] of X̂ vector is calculated based on Eq. 4.

One denoising autoencoder is formed in this phase. �erefore, using Cost Func-

tion, error rate could be estimated based on Eq. 5, which means measuring difference 

between real inputs and reconstructed inputs. Precision rate of each coded unit is deter-

mined by Cost Function. Minimizing the amount of difference between real input and 

reconstructed input, is the goal here. Next, model parameters are randomly initialized 

and then optimized using gradient descend algorithm. �e best value of X̂ vector, is the 

one that costs the least. X̃ vector is forced to have smarter mapped than X vector, so that 

in situation where there’s lots of noise, this method is able to extract useful characteris-

tics and remove their noise while reconstructing.

Cost Function tries to penalize the network whenever it makes a mistake. After estab-

lishing network, foresight precision must increase while error rate decreases. �e most 

optimized output, is the one that costs the least. In order to increase network’s learning 

ability and decrease its error, numbers of denoising autoencoder must be increased. Fig-

ure 4 shows training algorithm of stack denoising autoencoder.

In fact, each autoencoder represents a hidden layer containing a few hidden units in 

which encryption, decoding, weight determination and bias operations takes place and 

finally, X̂ vector is output of each hidden unit. After adding a denoising autoencoder to 

the network, previous hidden layer information is transferred as an input to this layer 

and non-linear transmission among consecutive hidden layers cause learning of struc-

ture and next, the resulted network could foresee flight delay. �erefore, with computing 

cost.

Function, rate of error between real output and predicted output can be computed. 

Finally, assigning the network to the two sets of training and testing, in case forecast 

accuracy are increasing in both series, a denoising auto encoder will be added to net-

work again. Otherwise, if training accuracy increase while test set decreases, it shows 

(3)X̂ = sigmoid(h ∗ WT
+ bh)

(4)L
(

X, X̃
)

= −

d
∑

i=1

[xi log x̃i + (1 − xi) log (1 − x̃i)]

(5)Cost = L(X, X̃) ∗ 1/m

m∑

i=1

(y, ŷ)
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that training series has estimated the noise in data and learned the noise-related behav-

ior. �erefore, denoising autoencoder addition operation is ended and stack of denoising 

auto encoder structure [154] is finally formed against noise.

Third phase: model optimization with Levenberg-Marquart (LM) algorithm

�e third phase’s goal is model optimization. Figure 5 show supervised fine-tuning algo-

rithm of stack denoising autoencoder. When a network is formed, Weight and Bias val-

ues are distributed randomly among the nodes. After determining the output, with its 

help, network error could be computed and then return the value along with Cost Func-

tion chart back to the network to update network’s Weights. �ese Weights are updated 

in the way that decreases similar errors. �is action is called back-propagation. In back-

propagation, network’s movement is backwards, errors and charts return to the hidden 

layer so that Weights are updated based on them.

�e last hidden layer’s output is taken as input to a supervised learning algorithm to 

fine-tune all the parameters of this deep architecture with respect to the supervised cri-

terion [156]. In this phase parameters are fine-tuned, we use the LM [157] on top of the 

whole network to train the input generated by the last autoencoder. �e LM Algorithm 

can provide a numerical solution to the nonlinear problem minimizing a function over 

a space of the function parameters [158] and also it is stable and can generate good con-

vergence [157, 159]. LM algorithm has benefits of gradient descent and Gauss–Newton 

methods at the same time and is created from linear combination gradient descent and 

Gauss–Newton based on adaptive rules [160]. �is algorithm interpolates between gra-

dient descent and Gauss–Newton and in most cases, it finds an answer, even if it started 

off from farthest final minimum. �is algorithm is stronger than Gauss–Newton but 

in some occasions where initial parameters are logical and function behavior is com-

patible, it’s a little slower than Gauss–Newton. It’s also one of the most popular curve 

Fig. 4 Training algorithm of a stack denoising autoencoder
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fitting algorithms that its main usage is in least squares [161]. �is algorithm has two 

main phases [162]; Computing the Jacobian Matrix that is the most complicated part of 

this algorithm, and calculate the Hessian matrix and updating Weights which Network’s 

error is computed in this phase. According to the update rule, if the error goes down, 

which means it is smaller than the last error, it implies that the quadratic approximation 

on total error function is working and the combination coefficient μ could be changed 

smaller to reduce the influence of gradient descent part (ready to speed up). On the 

other hand, if the error goes up, which means it’s larger than the last error, it shows that 

it’s necessary to follow the gradient more to look for a proper curvature for quadratic 

approximation and the combination coefficient μ is increased.

After learning is finished by LM algorithm, it’s time for choosing activation Function 

for the last layer so that it could foresee precisely. At the last layer, a logistic sigmoid 

function is used because the final output should be a binary class which is 0 and 1. After 

determine optimized values for weight and bias, we expect network’s foresight improve 

and the proposed model get as close as possible to reality. After prediction delay for an 

airport, the delay cause and whether it was a delay in the source or the destination will 

be determined.

Results and discussions

�e model is designed using Python in Tensor flow and is installed on a system of 40 

core CPU at a frequency of 2.6 hz, 80 G RAM and 250 G Hard. �e flight info data is 

an open dataset collected by the Bureau of Transportation Statistics of United State 

Department of Transportation [163] where, the reason for delay is due to canceled or 

flight delay, and time duration of each flight. Model testing and training employs these 

data that include 18 million records.

Fig. 5 Supervised fine-tuning algorithm of stack denoising autoencoder
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Model, uses 80% of data for training and the remaining 20% for testing [164]. Finally, 

the model evaluation considers two analysis which are studied in the following section.

First analysis

In order to evaluate the model, the number of denoising autoencoders and neurons must 

be determined based on the values for precision, accuracy and time consuming. In order 

to do this, at first, the model is trained using one stack and 64 neurons, and the preci-

sion and accuracy values are calculated. By adding another denoising autoencoder, the 

values for precision and accuracy are increased; therefore, another stack was added to 

the model’s structure. On the other hand, by adding each stack denoising autoencoder 

to the structure, the processing time is also risen. �erefore, denoising autoencoder 

increment process should consider excellence between processing time and number of 

denoising autoencoder. As a result, adding denoising autoencoder addition is continued 

until differences of precision and accuracy for previous and newer structure exceed the 

threshold limit. Figure 6 shows the amount of accuracy based on number of denoising 

autoencoders and computation time.

After determining the number of stacks denoising autoencoders, it is time to deter-

mine the number of neurons. By increasing the number of neurons in each hidden layer, 

the values for precision and accuracy for both the training and testing sets are evaluated. 

When the number of neurons increases from 16 to 32 and from 32 to 64, the values for 

precision and accuracy increased for both datasets; however, by increasing the number 

of neurons from 64 to 128, the precision and accuracy of the model increased in the 

training set while they decreased in the testing set. �erefore, increasing the number of 

neurons was also stopped. �e final structure is created with 3 stack denoising autoen-

coders, 64 neurons and 4 hidden layers.

Second analysis

�e data classified in two classes of 0 and 1. �e data in Class 0 include 15 million 

records for non-delayed flights and the data in Class 1 include 3 million records of 

delayed flights. Due to the imbalance of the datasets, the model was trained by the imbal-

anced and balanced datasets separately, and then the effects of each mode on the evalu-

ation parameters were evaluated separately. In order to create balance in the dataset, we 

Fig. 6 Amount of model accuracy versus number of stacks
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have to use sampling methods; undersampling and upsampling are two famous sampling 

methods [165]. In undersampling method, it is required to class zero data to 3 million 

and increase the classes to 15 million in upsampling. Whenever the upsampling method 

is used it is required to create 12 million chaos data that cause increment in process-

ing time, reduction in process velocity model overfitting and finally leads to lower con-

fidence of the model, so that it is required to use undersampling method. �e proposed 

operation is measured by confusion Table 3 [166]. Each column of the table shows pre-

defined samples.

�ese four criterions in the confusion table show the essence for quality of algorithms 

that perform forecasting. Table 4 shows how to solve evaluation problems such as preci-

sion, accuracy, sensitivity, recall and F-measure [166].

Moreover, in each measurement there are several micro and macro averages that are 

slightly different. Macro Average measurement is computed for each class and then 

their average is equally computed by considering all classes, while in computing average 

measurement for micro average adds share of all categories and finally weight average 

performs averaging according to amount of data in each class.

Table 5 shows how to solve evaluation problems such as micro avg, macro averages 

and weighted avg [167]. In addition, it is assumed that the delay means true Possible 

delay, and it is expected the proposed method has greater precision and accuracy in 

comparison to previous methods.

In order to study effect of stack denoising autoencoder and LM algorithm on the model 

structure, two other structures are also designed. First structure is based on autoencoder 

and LM algorithm (SAE-LM), and the second structure is based on denoising autoen-

coder only (SDA). �e first stage, trains three imbalanced model and the results of com-

parison is represented in Table 6.

Afterwards, in order to study the effect of balanced dataset on evaluation parameters, 

trains three balanced model and the results of comparison is represented in Table 7.

As it is shown in Table  7, balanced dataset has increased all values for evaluation. 

Moreover, all the evaluation parameters of the proposed model have increased over 

models. �erefore, effect of stack denoising autoencoder on noisy data is positive and 

Table 3 Presents some parameters for  evaluation of  model which are studied 

in the evaluation

Predicted delay Predicted non-delay

Actual Delay True Positive (TP) = number of behaviors 
that represent delay and is forecasted by 
model

False Positive (FN) = number of behaviors that 
represent delay and the model has incor-
rectly predicted no delay

Actual Non-Delay False Negative (FP) = Number of behaviors 
that show no delay and model incorrectly 
predicted as a delay

True Negative (TN) = Number of behaviors 
that show no delay and is forecasted by 
model

Table 4 Computation method precision, recall, speci�city, F1 measure and accuracy

Parameter Precision Recall Speci�city F1 measure Accuracy

Formula TP
TP+Fp

TP

TP+FN

TN

TN+FN

2∗Recall∗Precision
Recall+precision

TP+TN
TP+TN+FN+Fp
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increase in precision and accuracy in the structure. On the other hand, SDA model 

shows that optimization through LM algorithm is suitable for solving non-linear prob-

lems and achieving a stable model with good degree of convergence. Figure 7 shows the 

evaluation parameters for three structures; SDA-LM, SAE-LM and SDA.

Moreover, proposed model accuracy with imbalanced dataset had increased 4.1% 

compared to maximum accuracy in the previous model which is based on RNN [24]. 

�is value also is approached to 8% after balancing the dataset. In Fig. 8, the accuracy of 

the SDA-LM, SAE-LM and SDA structures is compared with the structure of RNN [24, 

25]. As shown in Fig. 8, the accuracy of the proposed model is increased relative to the 

accuracy of the previous model which is based on RNN [24].

Finally, accuracy of the proposed prediction model is compared to other previous pre-

diction methods. As you can see in Table 8, the accuracy of the proposed model is higher 

than other methods.

Table 5 Computation method micro avg, macro avg and weighted avg

Parameter Micro avg Macro avg Weighted avg

Precision
∑

4

c=1
TPc

∑
4

c=1
TPc+

∑
4

c=1
FPc

1

4

∑
4

c=1

TPc
TPc+FPc

∑
4

c=1
TcPc

∑
4

c=1
Tc

Recall
∑

4

c=1
TPc

∑
4

c=1
TPc+

∑
4

c=1
FNc

1

4

∑
4

c=1

TPc
TPc+FNc

∑
4

c=1
TcRc

∑
4

c=1
Tc

Specificity
∑

4

c=1
TNc

∑
4

c=1
TNc+

∑
4

c=1
FNc

1

4

∑
4

c=1

TNc

TNc+FNc

∑
4

c=1
TcSc

∑
4

c=1
Tc

Accuracy
∑

4

c=1
TPc+

∑
4

c=1
TNc

∑
4

c=1
TPc+

∑
4

c=1
FPc+

∑
4

c=1
TNc+

∑
4

c=1
FNc

1

4

∑
4

c=1

TPc+TNc

TPc+FPc+TNc+FNc

∑
4

c=1
TcAc

∑
4

c=1
Tc

F1 measure 2∗Recall∗Precision
Recall+precision

2∗Recall∗Precision
Recall+precision

∑
4

c=1
TcF1c

∑
4

c=1
Tc

Table 6 Comparison between SDA-LM, SAE-LM and SDA structures on imbalanced dataset

Accuracy Precision Recall Speci�city F1 measure Support

SDA-LM model

 Class 0 0.92 0.98 0.88 0.89 0.92 2888640

 Class1 0.92 0.74 0.89 0.88 0.84 713039

 Micavg 0.92 0.88 0.88 0.89 0.88 3601679

 Macavg 0.92 0.89 0.88 0.88 0.83 3601679

 Weighted Avg 0.92 0.90 0.88 0.88 0.89 3601679

SAE-LM model

 Class 0 0.83 0.92 0.86 0.68 0.89 2888640

 Class1 0.83 0.55 0.68 0.86 0.61 713039

 Micavg 0.83 0.83 0.83 0.74 0.83 3601679

 Macavg 0.83 0.73 0.77 0.77 0.75 3601679

 Weighted Avg 0.83 0.84 0.83 0.75 0.83 3601679

SAE-LM model

 Class 0 0.80 0.93 0.82 0.73 0.87 2888640

 Class1 0.80 0.50 0.74 0.82 0.60 713039

 Micavg 0.80 0.80 0.80 0.78 0.80 3601679

 Macavg 0.80 0.72 0.78 0.77 0.73 3601679

 Weighted Avg 0.80 0.84 0.80 0.78 0.82 3601679
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At the end, for evaluate the validity of the proposed model and the results from 

training, we evaluate the standard deviation of all the parameters after the 30 times 

repetition. The smaller the standard deviation of the data That is, the data are closer 

Table 7 Comparison between SDA-LM, SAE-LM and SDA structures on balanced dataset

Accuracy Precision Recall Speci�city F1 measure Support

SDA-LM model

 Class 0 0.96 0.96 0.93 0.84 0.94 2888640

 Class1 0.96 0.84 0.84 0.93 0.89 713039

 Micavg 0.96 0.95 0.91 0.88 0.93 3601679

 Macavg 0.96 0.95 0.90 0.88 0.92 3601679

 Weighted Avg 0.96 0.94 0.92 0.88 0.93 3601679

SAE-LM model

 Class 0 0.86 0.96 0.90 0.89 0.93 2888640

 Class1 0.86 068 0.85 0.83 0.76 713039

 Micavg 0.86 0.89 0.89 0.86 0.89 3601679

 Macavg 0.86 0.82 0.88 0.87 0.85 3601679

 Weighted Avg 0.86 0.91 0.89 0.87 0.90 3601679

SDA model

 Class 0 0.89 0.96 0.83 0.85 0.89 2888640

 Class1 0.89 0.57 0.89 0.89 0.69 713039

 Micavg 0.89 0.84 0.84 0.87 0.84 3601679

 Macavg 0.89 0.77 0.86 0.87 0.79 3601679

 Weighted Avg 0.89 0.89 0.84 0.87 0.85 3601679

Fig. 7 Values of evaluation parameters for SDA-LM, SAE-LM and SDA. a Balanced dataset; b Imbalanced 
dataset
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to the average and the results are less scattered and therefore more reliable Tables 9 

and 10 show the standard deviation of the evaluation parameters using imbalanced 

and balanced datasets for the three structures of the current study, respectively.

As can be seen from Table 9, the standard deviation for all the evaluation param-

eters is a small number, and using the balanced dataset, this value is reduced further. 

Therefore, the balanced dataset has a positive impact on the standard deviation and 

reduces it, as shown in Table 10.

a Balanced dataset b Imbalanced dataset

Fig. 8 Comparison of the accuracy value between SDA-LM, SAE-LM, SDA and RNN methods. a Balanced 
dataset, b imbalanced dataset

Table 8 Comparison of  the  accuracy value between  of  SDA-LM, SAE-LM, SDA and  other 

methods

Method Accuracy

Stack Denoising Autoencoder- Levenberg Marquart Balanced dataset Imbalanced 
dataset

96% 92%

Random Forest [149] 90.2% –

Stack Autoencoder [151] – 90%

Stack Denoising Autoencoder 89% 80%

Recurrent Neural Network [24] – 88%

Stack Autoencoder- Levenberg Marquart 86% 83%

Supervised Learning Methods [128] – 86%

Data mining + Machine Learning [126] 85.73% –

Deep Belief Neural Network + Decision Tree [154] 82.10% –

Cat-boost Model [125] 80.44% –

Table 9 Standard deviation calculated for  all evaluation parameters for  the  three 

structures using the imbalanced dataset

model Accuracy Precision Recall Speci�city F1 measure

SDA-LM 0.045 0.042 0.036 0.055 0.048

SAE-LM 0.051 0.078 0.062 0.063 0.064

SDA 0.053 0.084 0.071 0.067 0.082
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Conclusion

Predicting flight delays is on interesting research topic and required many attentions 

these years. Majority of research have tried to develop and expand their models in order 

to increase the precision and accuracy of predicting flight delays. Since the issue of 

flights being on-time is very important, flight delay prediction models must have high 

precision and accuracy. In this study, we proposed a novel optimized forecasting model 

based on deep learning which engages LM algorithm. Afterwards, two other structures 

are created to study and validate the positive effect of denoising autoencoder and LM 

algorithm, which one has deleted denoising autoencoder and the other has omitted LM 

algorithm. Moreover, we have imbalanced dataset which should be balanced. We used 

undersampling and upsampling technique to balance the data. However, results show 

that upsampling leads to overfitting. �erefore, under sampling is used for balancing.

Comparing the three models for two of imbalanced and balanced datasets shows that 

accuracy of SDA-LM model with imbalanced dataset respectively is greater by 8.2 and 

11.3% �an SAE-LM and SDA models. On the other hand, these values for balanced 

datasets are respectively as 10.4 and 7.3%. �erefore, using stack denoising autoencoder 

and LM algorithm in optimizing the results, and also balancing the dataset, has positive 

effect on delay forecasting and leads to increment in accuracy and precision of SDA-LM 

model with imbalanced dataset is greater by 6.1 and 5.4% than SAE-LM and SDA mod-

els. Whereas, the accuracy of the SDA-LM model with balanced dataset is greater by 

10% than SAE-LM and SDA models and the amount of precision is the same for all three 

models with balance dataset.

At the next stage, the model has been evaluated and computed for subjects of discard-

ing with a standard deviation for all evaluation parameters during 30 times of model 

run. �e results, shows that standard deviation for all balanced evaluation parameters is 

lower than the imbalanced form. �erefore, data balance leads to lower standard devi-

ation. amount of model standard deviation for imbalanced dataset is 0.045 while this 

value is reported 0.21 for balanced dataset which is a small value and means that scatter-

ing results are low and close to average.

Finally, we compared the accuracy of the proposed Model against SAE-LM, SDA 

and RNN [24, 25] models. Using our experimental results, we show that accuracy of 

the model on imbalanced dataset is 92.1% and for balanced dataset is 96.2%, which 

is respectively greater by 4.1 and 8.2% respectively. �erefore by proposed model has 

greater accuracy in forecasting flight delay compared to previous model called RNN [24, 

25]. �e next step would be to apply this technique on other data sets or on other sam-

pling data and investigate the accuracy.

Table 10 Standard deviation calculated for  all evaluation parameters for  the  three 

structures using the balanced dataset

Model Accuracy Precision Recall Speci�city F1 measure

SDA-LM 0.021 0.013 0.021 0.021 0.016

SAE-LM 0.065 0.032 0.069 0.052 0.048

SDA 0.058 0.067 0.046 0.053 0.054
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Network; DBN: Deep Belief Network; DANN: Deep Artificial Neural Network; RF: Random Forest; MSE: Mean Squared Error; 
MAE: Mean Absolute Error; RMSE: Root Mean Square Error; GBDT: Gradient Boosting Decision Tree; ATC : Airport Traffic 
Complexity; ADS-B: Automatic Dependent Surveillance Broadcast; TP: True Positive; FN: False Negative; FP: False positive; 
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Appendix

Runway: a paved strip of ground on a landing field for the landing and takeoff of aircraft.

En-route: In aviation, an en-route chart is an aeronautical chart that guides pilots fly-

ing under instrument flight rules (IFR) during the en-route phase of flight.

Random Forest: It is an ensemble learning method, which uses decision tree as sub-

classifiers, and introduces random attributes selection into the decision tree.

LSTM: LSTM network is one of most powerful RNNs with more complex cell struc-

ture, and overcomes the gradient vanishing problem in RNNs.

Autoencoder: An autoencoder is a type of artificial neural network used to learn effi-

cient data coding in an unsupervised manner. �e aim of an autoencoder is to learn a 

representation (encoding) for a set of data, typically for dimensionality reduction, by 

training the network to ignore signal “noise”.

Denoising autoencoder: Denoising autoencoders are an extension of the basic autoen-

coder, and represent a stochastic version of it. Denoising autoencoders attempt to 

address identity-function risk by randomly corrupting input (i.e. introducing noise) that 

the autoencoder must then reconstruct, or denoise.

Weight: Weights in an ANN are the most important factor in converting an input to 

impact the output. �is is similar to slope in linear regression, where a weight is multi-

plied to the input to add up to form the output. Weights are numerical parameters which 

determine how strongly each of the neurons affects the other.

Bias: is the conflict in trying to simultaneously minimize these two sources of error 

that prevent supervised learning algorithms from generalizing beyond their training.

Cost function: A cost function is a measure of “how good” a neural network did with 

respect to it is given training sample and the expected output. It also may depend on 

variables such as weights and biases.

http://www.transtats.bts.gov/ONTIME/


Page 23 of 28Yazdi et al. J Big Data           (2020) 7:106  

Activation function: An activation function determines the output behavior of each 

node, or “neuron” in an artificial neural network.

Overfitting: A model overfits the training data when it describes features that arise 

from noise or variance in the data, rather than the underlying distribution from which 

the data were drawn. Overfitting usually leads to loss of accuracy on out-of-sample data.

Dropout: Dropout changed the concept of learning all the weights together to learning 

a fraction of the weights in the network in each training iteration.

Epoch: in neural networks generally, an epoch is a single pass through the full training 

set.

Supervised learning: Supervised learning is the machine learning task of learning a 

function that maps an input to an output based on example input–output pairs.

Unsupervised learning: Unsupervised learning is a type of machine learning that looks 

for previously undetected patterns in a data set with no pre-existing labels and with a 

minimum of human supervision.

Fine-tune: Fine tuning is a process to take a network model that has already been 

trained for a given task, and make it perform a second similar task.

Precision: precision is the ration of system generated results the correctly predicted 

positive observations (True Positive) to the system’s total predicted positive observa-

tions, both correct (True positive) and incorrect (False Positives).

Recall: Recall is the ratio of system generated results that correctly predicted positive 

observations (True positives) to all observations in the actual malignant class (Actual 

positives).

Accuracy: Accuracy is the most intuitive performance measure and is simply a ratio of 

the correctly predicted classifications (both True Positives + True Negatives) to the total 

Test Dataset.

Fi measure: the F1 Score is the weighted average (or harmonic mean) of Precision and 

Recall. �erefore, this score takes both False Positives and False Negatives into account 

to strike a balance between precision and Recall.

Specificity: Specificity (also called the true negative rate) measures the proportion of 

actual negatives that are correctly identified as such (e.g., the percentage of healthy peo-

ple who are correctly identified as not having the condition).
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