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Abstract: In exploring the flight delay problem, traditional deep learning algorithms suffer from
low accuracy and extreme computational complexity; therefore, the deep flight delay prediction
algorithm is difficult to directly deploy to the mobile terminal. In this paper, a flight delay prediction
model based on the lightweight network ECA-MobileNetV3 algorithm is proposed. The algorithm
first preprocesses the data with real flight information and weather information. Then, in order
to increase the accuracy of the model without increasing the computational complexity too much,
feature extraction is performed using the lightweight ECA-MobileNetV3 algorithm with the addition
of the Efficient Channel Attention mechanism. Finally, the flight delay classification prediction level
is output via a Softmax classifier. In the experiments of single airport and airport cluster datasets, the
optimal accuracy of the ECA-MobileNetV3 algorithm is 98.97% and 96.81%, the number of parameters
is 0.33 million and 0.55 million, and the computational volume is 32.80 million and 60.44 million,
respectively, which are better than the performance of the MobileNetV3 algorithm under the same
conditions. The improved model can achieve a better balance between accuracy and computational
complexity, which is more conducive mobility.

Keywords: delay prediction model; lightweight neural network; lightweight attention mechanism

1. Introduction

In recent years, China’s air traffic industry has grown rapidly with the implementation
of the 13th Five-Year Plan for Civil Aviation [1]. However, the number of flights continues
to grow, but the normal rate of flights is becoming lower and lower. During this period, the
Civil Aviation Administration carried out total control of flight slots and adjusted flight
structure, and the problem of flight delays was alleviated. According to a report from the
Civil Aviation Work Conference 2022 held by the Civil Aviation Administration of China [2],
since 2020, due to the impact of the epidemic, the number of flights has significantly
decreased abnormally, so flight delays during the epidemic are not considered. In addition,
China will overtake the United States as the largest air transport organization in 2029,
according to research from the International Air Transport Association (IATA) [3]. With
the COVID-19 epidemic under effective control, the volume of air traffic will also increase
rapidly. Therefore, the speed of air traffic recovery and the projections of international
reports firmly reflect the urgent traffic demand of China’s air traffic industry. Serious flight
delays are likely to trigger “mass incidents of air passengers” [4–6], thus endangering the
public safety of the airport and the personal safety of the passengers. Understanding flight
delays in advance has become a pressing issue for civil aviation. To this end, a large number
of studies have been carried out by domestic and foreign scholars in related fields.

The traditional flight delay prediction methods mainly include statistical inference,
simulation and modeling, and machine learning methods [7]. Xu et al. [8] proposed
a permutation and incremental permutation SVM algorithm considering the demand
of flight volume and real-time refreshment of flight data and validated it on manual
data. Finally, the accuracy of flight delay prediction can reach more than 80%. Similarly,
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Luo ‘s team [9] and Luo ‘s team [10] also gradually considered using support vector
machines or improved support vectors to analyze flight delays. In view of the irregular
dynamic distribution attributes of flight data, Cheng et al. [11] proposed a classification
prediction model of flight delay based on C4.5 decision tree to avoid the impact of flight
distribution changes on the algorithm model, which is a certain improvement compared
with the traditional Bayesian algorithm. Nigam and Govinda [12] analyzed the flight
data and meteorological data of several airports in the United States and used the logistic
regression algorithm in the machine learning algorithm to predict the flight departure
delay. Khanmohammadi et al. [13] proposed a flight delay prediction model based on an
improved Artificial Neural Network (ANN), and they used multiple linear N-1 coding
to preprocess complex airport data models. Wu et al. [14] proposed a flight delay spread
prediction model based on CBAM-CondenseNet, which enhances the transmission of
deep information in the network structure by adopting a channel and spatial attention
mechanism to increase the prediction accuracy. When using deep learning to predict
flight delay, these scholars chose a relatively deep learning network, which requires a lot of
computing time and resources. They can only choose to deploy the flight delay algorithm to
the PC terminal. However, for the deployment requirements of mobile terminals, there is no
trade-off between the accuracy and computational complexity of the prediction algorithm.

Recently, experts from home and abroad have carried out in-depth research and in-
novation in lightweight materials. In the beginning, experts used knowledge distillation,
model pruning and other methods to try out algorithms. The former first trains a Net-
T network and then uses network distillation to obtain a smaller Net-S network, thus
achieving the effect of a simplified model. The latter simplified the model through channel
pruning and other operations on the trained model [15–19]. Lightweight convolutional
neural networks are an emerging branch of deep learning algorithms. This type of net-
work applies lightweight operations to the algorithm itself and continuously innovates
the algorithm from within so that it can maximize accuracy and continuously meet the
computational power requirements of mobile devices. For example, the peerless team [20]
proposed the ShuffleNet series algorithm, which uses the Channel Shuffle and Channel
split operations [21] to speed up network and feature reuse, and the lightweight neural
network Efficientnet algorithms presented by the Google team [22]. This algorithm com-
prehensively considers the input data size, network depth, and width, and proposes a
model compound scaling method to control model computing power and ensure accu-
racy. Iandola et al. [23] proposed a lightweight SqueezeNet algorithm that proposes a Fire
module structure to design the network structure. In this structure, to extract features and
lessen model computation, single-layer and double-layer convolutions were used. The
Google team [24] proposed MobileNet series algorithms, which are extremely influential
in lightweight neural networks, which use deep separable convolution and SE attention
mechanism for feature extraction and combine with structures, such as inverted residual
error, which considerably improve the accuracy and computational performance of the
model [25,26]. Excellent results have been achieved in face recognition, image classification,
target detection, etc. [27–29].

To sum up, in view of the problems of low prediction accuracy and high computational
complexity of the existing flight delay prediction algorithms, which are not conducive
to deployment on mobile devices and other devices, this paper proposes an improved
lightweight ECA-MobilenetV3 algorithm, which replaces the SE model with a lightweight
ECA (Efficient Channel Attention) module, effectively reducing the computational com-
plexity of the model without losing accuracy; it lays a foundation for the application of the
model in mobile devices. The experiment uses real domestic meteorological data and flight
data for analysis and verification.

The organizational structure of this paper is as follows: Section 1 introduces the
background and significance of the paper, as well as the research status at home and
abroad. Section 2 proposes and introduces the ECA-MobileNetV3 network model. Section 3
introduces the building process of a flight delay prediction model in detail. Section 4
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shows the analysis of the experimental results and the application of the model. Section 5
summarizes the work of this paper and describes the future work.

2. Design of the ECA-MobileNetV3 Network Model
2.1. The Overall Structure of the Network

The network structure of the MobileNetV3 algorithm is shown in Figure 1a. Inherit-
ing the three advantages of deep separable convolution, inverted residue structure, and
linear bottleneck structure of MobileNetV2 network, the algorithm adds the SE atten-
tion mechanism in each inverted residue model [30]. In this paper, considering the non-
lightweight nature of the SE attention mechanism, we propose an improved lightweight
ECA-MobileNetV3 network, which replaces the SE module with the lightweight ECA
attention mechanism [31], and the improved algorithm structure is shown in Figure 1b.
The ECA-MobileNetV3 algorithm uses 1-dimensional convolution and cross-channel inter-
action methods to obtain channel importance, which effectively reduces the computational
complexity of the model while ensuring the accuracy of the model.
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Figure 1. Comparison of the backbone network structure of the two algorithms before and after the
improvement. (a) Backbone network structure of the MobileNetV3. (b) Backbone network structure
of the ECA-MobileNetV3.

The ECA-MobileNetV3 algorithm uses a deep convolution kernel of a different size
for the inverted residual structure. As can be seen from the structural configuration table
for the ECA-MobileNetV3 algorithm listed in Table 1, the size of the deep convolution
kernel in the inverted residual module 1, module 2, and module 3 is [3× 3], while the
size of the deep convolution kernel in the remaining inverted residual module is [5× 5].
Width Multiplier is the hyper parameter in the MobileNetV3 network; by adjusting its
size, one can change the channel number of the output matrix in each layer of the whole
network, so as to quickly change the model size; the number of output feature matrix
channels is NK ∈ (16, 16, 24, 24, 40, 40, 40, 48, 48, 96, 96, 96, 88, 1280, 5). The α denotes the
channel factor, which is the hyper parameter in the MobileNetV3 network. By adjusting
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its size, the number of channels in the output matrix in each layer of the network can be
changed, so that the model size can be changed quickly.

Table 1. Configuration table of the flight delay prediction model based on the ECA-MobileNetV3 algorithm.

Network Layer Output Matrix
Size DF×DF

Convolutional Kernel
Size DK×DK

Number of Output
Matrix Channels NK

Input 8× 8/8× 9 - 1

Traditional convolutional layer 8× 8/8× 9 [3× 3] α × 16

Inverted residuals
module 1

Traditional convolutional layer

8× 8/8× 9

[1× 1]

α × 16
Deep convolutional layer [3× 3]

ECA module -
Convolutional layer by point [1× 1]

Inverted residuals
module 2

Traditional convolutional layer

8× 8/8× 9

[1× 1]

α × 24
Deep convolutional layer [3× 3]

ECA module -
Convolutional layer by point [1× 1]

. . . . . .

Inverted residuals
module 11

Traditional convolutional layer

8× 8/8× 9

[1× 1]

α × 96
Deep convolutional layer [5× 5]

ECA module -
Convolutional layer by point [1× 1]

Traditional convolutional layer 8× 8/8× 9 [1× 1] α × 88

GAP (Global Average Pooling) 8× 8/8× 9 - -

Fully Connected Layer 1× 1 - α × 1280

Dropout layer 1× 1 - -

Fully Connected Layer 1× 1 - 5

2.2. Lightweight ECA Module

There is an SE module in the MobileNetV3 algorithm, in which the feature matrix is
first dimensioned down and then dimensioned up to obtain the weight channel importance.
However, the dimensionality reducing operation between the two completely connected
layers is not conducive to the weight learning of the channel and will lose certain feature
information. Moreover, the model’s calculation load will increase a little with the fully
connected layer. Therefore, this paper considers using the lightweight attention mechanism
ECA module to replace the SE attention mechanism module in MobileNetV3. The ECA
module also functions as a channel attention mechanism, completing the acquisition of
channel weights through an adaptive one-dimensional convolution and a cross-channel
interaction technique without dimensionality reduction. The model can effectively reduce
the computational complexity while maintaining the property.

Figure 2 depicts the ECA module’s general structure. Assuming that the feature matrix
before the input to the ECA attention mechanism is X ∈ R(H ×W × C), through global
average pooling, the features first reduce the width and height of the feature matrix. The
model then enters the adaptive one-dimensional convolution calculation to complete the
acquisition of feature weights, as shown in Formula (1), in which adaptation refers to the
adaptive selection of k adjacent channels in the process of obtaining channel weights, as
shown in Formula (2).

Wc = σ(C1Dk(Zc)) (1)

k = ψ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(2)
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In Formula (1), Wc represents the channel-acquired weights, σ(•) the Sigmoid activa-
tion function, C1Dk(•) the adaptive one-dimensional convolution, and Zc the feature matrix
after global average pooling. In Formula (2), k represents the number of local cross-channel
interactions, which is the size of the one-dimensional convolutional kernel, C represents the
number of channels in the feature matrix, and γ and b represent constants. The experiment
is set to 2 and 1, respectively, according to the requirements of the original paper.

2.3. Network Training of Forward Propagation

An inverted residue module inside ECA-MobileNetV3 consists of [1× 1] traditional
convolution, [3× 3]/[5× 5] deep convolution, ECA attention mechanism, and [1× 1] point-
by-point convolution. Each layer is convolved with a BN regularization layer and an
activation function layer. The ECA-MobileNetV3 algorithm has 11 reverse residual modules.
In the first three reverse residual modules, the ReLU function is chosen as the activation
function for the first conventional convolutional layer and the second depth layer, as
shown in Formula (3), and the H-Swish function as the activation function, as shown in
Formula (4); all successive convolutional layers use the linear function as an activation
function and Sigmoid function for channel weight, as shown in Formula (5).

ReLU(x) = max(x, 0) (3)

H-Swish(x) = x
ReLU6(x + 3)

6
(4)

Sigmoid(x) =
1

1 + e−x (5)

Through the above description, we can obtain the feature matrix in the calculation
process, the convolution layer can be expressed as the following Formulas (6) and (7),
which can derive a residual module after three convolution operations, and they can be
represented by Formulas (8)–(10).

zl
j = ∑

k
W l

jk ⊗ yl−1
k + bl

j (6)

y
l

j = σ(BN(∑
k

W l
jk ⊗ yl−1

k + bl
j)) (7)

y1
j = σ(BN(∑

k
W1

jk ⊗ Xk + b1
j )) (8)
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y2
j = σ(BN(∑

k
W2

jk ⊗ y1
k + b2

j )) (9)

y3
j = line(BN(∑

k
W3

jk⊗y2
k + b3

j )) (10)

where W l
jk represents the weight of the k-th feature to the j-th feature in the layer l − 1, bl

j

represents the bias of the j-th feature in the layer l, zl
j represents the output value before

the k-th feature in layer l passes the activation function, σ(•) represents the activation
function, and yl−1

k represents the mapping value of the k-th feature in the layer l − 1 after
the activation function.

In addition, the feature matrix enters the ECA module after entering the deconvolu-
tional module and passing through traditional convolutional layers and deep convolutional
layers. The ECA module lies between deep convolution and pointwise convolution. As a
complete calculation unit for acquiring channel weights, its forward propagation process is
shown in Formula (11):

yj = yconv
k ⊗ sigmoid(C1D(GAP(yconv

k )) (11)

where yconv
k represents the feature matrix after the deep convolution operation, and the

second half of the formula represents the feature weights acquired through the ECA module.

2.4. Network Training of Back Propagation

After the forward propagation of the ECA-MobileNetV3 algorithm is completed to
obtain the predicted value of the model, the loss function between it and the true value
is computed. Then, the chain derivative rule is used to obtain the chain derivative of the
error term of the training samples, and the weight parameters and the bias are updated
continuously until the network model converges. Chain derivative rule can also be called
BP (back propagation) [32]. The error term δl

j between layers l + 1 and l is calculated
according to the rule, as shown in Formula (12). The chain analysis results of weight and
bias within a residual module are shown in Formulas (13) and (14):

δl
j =

∂J
∂zl

j
=

∂J
∂yl

j
σ(zl

j) = BN(∑
k

W l+1
jk ⊗δl+1

k + bl
j)⊗ σ′(zl

j) (12)

∂J
∂W1

jk
= (δ4

j ⊗W4
j + δ3

j ⊗W3
j + δ2

j ⊗W2
j )⊗ yj (13)

∂J
∂b1

jk
= (δ4

j ⊗W4
j + δ3

j ⊗ b3
j + δ2

j ⊗ b2
j ) (14)

where J represents the loss function, δl
j represents the error value of the j-th eigenvalue in

layer l, W l+1
jk represents the weight of neurons from k-th to j-th feature in layer l, and ⊗

represents the multiplication between matrices.δ2
j , δ3

j , and δ4
j , respectively, represent the

error terms between traditional convolutional layer, deep convolutional layer, ECA module,
and point-by-point convolutional layer. According to Formulas (13) and (14), the weight
and bias can be updated from back to forward, respectively.

3. Flight Delay Prediction Model Based on ECA-MobileNetV3

The overall structure of the flight delay prediction model based on ECA-MobileNetV3
is shown in Figure 3. The flight delay prediction model is divided into three parts [33]: data
processing, feature extraction of the delay prediction model, and classification prediction of
the model.
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3.1. Data Preprocessing

The dataset used in this paper is mainly the flight dataset integrated with meteoro-
logical information and independently built. The data acquisition mainly comes from two
sources: the flight dataset from March 2018 to March 2019 provided by the East China Air
Traffic Administration and the meteorological dataset observed by the Automatic Weather
Observation System (AWOS) [34], and the flight dataset from September 2019 to October
2020 provided by the North China Air Traffic Administration and the corresponding mete-
orological dataset. The flight dataset integrated with meteorological information contains
multiple characteristic variables, including flight number, departure airport, destination
airport, departure time, arrival time, delay time, flight status, etc. It also includes meteoro-
logical data, such as temperature, humidity, wind speed, precipitation, etc. According to
the different sources of data acquisition, the dataset is divided into the Shanghai Hongqiao
Airport dataset provided by the East China Air Traffic Control Bureau and the Beijing–
Tianjin–Hebei Airport Cluster dataset provided by the North China Air Traffic Control
Bureau. The Shanghai Hongqiao Airport dataset contains 301,594 sample data, and the
Beijing–Tianjin–Hebei Airport Cluster dataset contains 1,048,576 sample data. The dataset
also contains missing values and duplicate values, the flight data provided by the air traffic
control bureau is manually recorded, and the meteorological data are collected by the
airport’s sensor equipment. There will be errors and omissions in the manually recorded
data, and some data will be missing and incomplete due to sensor failure. During data
integration processing, the same data may also be recorded repeatedly, so the dataset needs
to be cleaned and processed to ensure data quality.

A series of preprocessing operations is performed on the dataset before feeding into the
lightweight convolutional neural network algorithm. Figure 4 shows a data preprocessing
flowchart. The whole process can be divided into: data cleaning, data fusion, data encoding,
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and matrix quadrature. For the dataset of Shanghai Hongqiao Airport, the flights of
Shanghai Hongqiao Airport should be extracted from the original dataset according to
the planned departure airport and planned arrival airport according to the four-character
code of civil aviation airport “ZSSS” (Shanghai Hongqiao International Airport). Similarly,
for the Beijing–Tianjin–Hebei airport cluster dataset, flights from major airports in Beijing,
Tianjin, and Shijiazhuang were, respectively, extracted according to the four-character code
of civil aviation airport “ZBAA” (Beijing Capital International Airport), “ZBAD” (Beijing
Daxing International Airport), “ZBTJ” (Tianjin Binhai International Airport), and “ZBSJ”
(Shijiazhuang Zhengding International Airport), and then the subsequent data pretreatment
work was carried out.
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The first step in data preprocessing is data cleaning: attribute columns with many nulls
in the dataset, duplicate data and attribute deletion, and other operations. The second step
is data fusion operation: set the time attribute in the meteorological data as the association
primary key I, set the planned start time and planned landing time in the flight data as the
association primary key II according to the airport ID, and then conduct the association
fusion between the primary key I and the primary key II. In order to enhance the data, the
10 min meteorological information is fused in this paper to enlarge the feature information
of the fused data. The third step is the data encoding operation: Considering that the
categorical data in the dataset contain low-base data and high-base data, as well as the
numerical attributes of the data, the mixed encoding methods of Min–Max coding [35]
and CatBoost coding [36] are adopted in this paper to encode the dataset, so as to ensure
that the data remain in the same dimensional range before input into the algorithm. There
is also no dimensional explosion. The fourth step is the data matrix operation: since the
MobileNetV3 algorithm belongs to the convolutional neural network, its input data is
required to be in the form of a matrix, so the dataset in this paper needs to be converted
from the form of vector to the form of matrix before input into the algorithm, so as to meet
the input requirements.

3.2. Feature Extraction of the Delay Prediction Model

The processed dataset needs to be transformed into tensor form and fed into the
model for feature extraction and training. The specific feature extraction process is as
follows: After the ECA-MobileNetV3 network model accepts the input characteristic matrix,
the characteristic matrix first passes through the first standard convolution layer, which
converts the input characteristic matrix into a set of characteristic graphs and then activates
it immediately following a nonlinear activation function. Next, these feature maps will pass
through multiple inverse residual modules composed of a standard convolution layer, deep
convolution layer, ECA attention mechanism module, and point-by-point convolution layer
and activation function. These convolution layers with deep separability can effectively
reduce the model parameters and calculation amount, and multiple inverse residual models
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can extract features at different levels. During this period, the ECA-MobileNetV3 network
uses an ECA module and feature fusion technology to fuse feature maps at different levels
to improve the expression ability of feature maps. Then, the feature map passes through a
global average pooling layer. The global average pooling layer can reduce the dimension
of the feature map into a vector. Finally, this vector maps the feature vector to the target
category through a fully connected layer classifier to complete the classification task.

3.3. Classification Prediction

The pre-processed dataset needs to be transformed into tensor form and fed into the
model for training. According to the relevant definition of flight delay in Normal Flight
Management Regulations [37] issued by the Civil Aviation Administration of China in 2017,
on this basis, this paper subdivides the delay situation into five different time periods. In
this paper, the five levels of flight delay are taken as the labels of the dataset, and the flight
arrival delay time is taken as the flight delay time T. It defines the difference between the
actual arrival time and the planned arrival time.

According to the classification of flight delay levels given in Table 2 and the sample
number of each delay level in the two datasets, when T is less than 15 min, it is considered
as delay-free; that is, the flight delay level is 0 and the label is 0. When T is between 15
and 60 min, it is considered to be slightly delayed; that is, the flight delay level is 1 and the
label is 1. When T is between 60 and 120 min, it is considered moderate delay; that is, the
flight delay level is 2 and the label is 2. When T is between 120 and 240 min, it is considered
to be highly delayed; that is, the flight delay level is 3 and the label is 3. When T is above
240 min, it is considered a severe delay, that is, a flight delay level of 4 with a label of 4.

Table 2. Flight delay level classification.

Flight Delay Grade Flight Delay Time T (minute) Hongqiao Airport Beijing–Tianjin–Hebei Airport Cluster

0 (No delay) T ≤ 15 242,873 898,033
1 (Mild delay) 15 < T ≤ 60 34,388 91,362

2 (Moderate delay) 60 < T ≤ 120 14,904 32,053
3 (Highly delayed) 120 < T ≤ 240 7379 16,932

4 (Heavy delay) T > 240 2049 10,195

The flight delay prediction algorithm then uses the Softmax classifier to determine
the flight delay level. Softmax function is a commonly used activation function, which
is often used for the final output of multi-classification problems. The original Softmax
classifier formula is shown in (15), where xi represents the i-th sample, q represents the
number of categories, and j represents the number of categories. The Softmax function can
map a q-dimension vector to a q-dimension probability distribution, where the value of
each element represents the probability size of the category. Therefore, the classifier can
compute a probability value for each delay level, and the highest value is used as each
datum’s final result. The Softmax classifier formula is shown in (16):

so f tmax(xi) =
exi

q
∑

j=1
exi

(15)

hθ(x) =


p(y(i) = 1)x(i); θ

p(y(i) = 2)x(i); θ

p(y(i) = 3)x(i); θ
. . .

p(y(i) = q)x(i); θ

 =
1

q
∑

j=1
eθT

j x(i)


eθT

1 x(i)

eθT
2 x(i)

eθT
3 x(i)

. . .
eθT

q x(i)

 (16)
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Among them, hθ(x) is the final output of the flight delay prediction model, θ is the
optimal parameter obtained by the model, i represents the serial number of data quantity,
and q represents the classification number of flight delay level.

4. Interpretation
4.1. Experimental Environment and Model Parameter Configuration

The computer used in this paper was set up as follows under the described experi-
mental setting: the processor was an Intel Xeon E5-1620 with a CPU frequency of 3.60 GHz;
memory 16.004 GB; the OS is Ubuntu16.04. The graphics accelerator GeForce GTX TITAN
Xp; the deep learning development framework is Tensorflow 2.3.0. The sample size of the
Shanghai Hongqiao Airport dataset used in the experiment is 301,089, the feature attribute
quantity is 64, and the size after matrix is 8× 8; the sample size of Beijing–Tianjin–Hebei
airport cluster dataset is 1,650,797, the feature attribute quantity is 72, and the size after
matrix is 8× 9. The specific experimental parameter configurations used to train the model
are shown in Table 3 below.

Table 3. Table of configuration of experimental parameters.

Parameter Name Hongqiao Airport
Parameters Take the Value

Beijing–Tianjin–Hebei Airport
Group Parameter Value

Iteration number 300 150
Train_test_split 9:1 9:1
Loss function Cross entropy Cross entropy

Optimizer Adam Adam
Learning rate 0.001 0.000001

Dropout 0.2 0.2
Training batch volume 256 128

Test batch volume 256 128
Width Multiplier α 0.50/0.75/1.00 0.50/0.75/1.00

4.2. Evaluation Index of the Model

Loss value and accuracy rate are evaluation metrics that characterize how well a deep
learning algorithm fits. The loss value is mainly used to measure the difference between
the predicted result of the model and the actual value and can be calculated from the
loss function, which is negatively correlated with accuracy, with higher accuracy leading
to smaller loss values. The percentage of samples that produced accurate predictions
compared to all samples is known as the accuracy rate. The formula is shown in (17), where
C represents the predicted correct sample.

Accuracy =
∑ C
N

(17)

Computational complexity can describe the hardware consumption at runtime. The
higher the complexity, the more memory is occupied and the higher the processing time
required. It is mainly divided into spatial complexity and time complexity: spatial com-
plexity is expressed in terms of the number of parameters. The number of parameters of
single-layer convolutional layer and single-layer fully connected layer in the algorithm can
be approximated as Formulas (18) and (19). The time complexity is expressed in compu-
tational quantities, which might be understood as the quantity of FLOPs (Floating Point
Operations). The computation amount of single-layer convolutional layer and single-layer
fully connected layer can be approximated as Formulas (20) and (21).

PC = DK × DK × CF × NK (18)

PQ = DF × DF × CF × NK (19)

FC = DF × DF × CF × NK × DK × DK (20)
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FQ = DF × DF × CF × NK × 1× 1 (21)

In Formulas (18) and (19), PC and PQ are the number of parameters of single-layer
convolutional layer and single-layer fully connected layer, respectively, DK is the convo-
lutional kernel size in the current layer, CF is the number of input feature channels of the
current layer, NK is the number of output feature channels of the current layer, and DF
is the input feature size of the current layer. In Formulas (20) and (21), FC and FQ are the
calculated amount of single-layer convolutional layer and single-layer full connection layer,
respectively. Thus, 1 represents the output feature size of the full connection layer, and the
other parameters have the same meaning in the parameter number formula.

4.3. Loss Values and Accuracy Rates

The validation will be performed on the Shanghai Hongqiao Airport dataset and the
Beijing–Tianjin–Hebei Airport dataset.

Based on the Shanghai Hongqiao Airport dataset, the accuracy and the magnitude of
loss values in the MobileNetV3 algorithm and ECA-MobileNetV3 algorithm with different
channel factors are given in Table 4. According to Table 4, from the longitudinal analysis,
the accuracy of MobileNetV3 and ECA-MobileNetV3 algorithms gradually increases and
the loss value gradually decreases as the channel factor becomes larger, and the accuracy of
the MobileNetV3 algorithm reaches the highest at 98.87% when the channel factor is 1.00.
The ECA-MobileNetV3 algorithm achieves the highest accuracy of 98.97% at a channel
factor of 0.75. From a cross-sectional perspective, the accuracy of the ECA-MobileNetV3
algorithm with the addition of the ECA attention mechanism module is higher than that of
the original MobileNetV3 algorithm for the same number of channel factors, and it can be
seen that the improved algorithm does not lose accuracy on a single-airport dataset such as
the Shanghai Hongqiao Airport dataset.

Table 4. Comparison table of accuracy and loss values for different-width multipliers on Shanghai
Hongqiao Airport dataset.

Width Multiplier
MobileNetV3 ECA-MobileNetV3

Accuracy Loss Value Accuracy Loss Value

0.50 98.00% 0.0716 98.41% 0.0675
0.75 98.53% 0.0553 98.97% 0.0445
1.00 98.87% 0.0419 98.90% 0.0449

Based on the dataset of Shanghai Hongqiao Airport, the accuracy and loss curves
of the MobileNetV3 algorithm and ECA-MobileNetV3 algorithm under different channel
factors are, respectively, presented in Figures 5 and 6. According to the trend of the curves,
at different channel factors, the accuracy rate gently increases while the loss value gently
decreases. The loss values and accuracies of MobileNetV3 and ECA-MobileNetV3 tend
to stabilize when the number of training rounds is around 300. From the experimental
results, the MobileNetV3 algorithm has a loss value of about 0.0419 when the channel
factor is 1.00. The highest accuracy was 98.87%. When the channel factor is 0.75, the
lowest loss value of the ECA-MobileNetV3 algorithm is about 0.0449, and the highest
accuracy is 98.90%. Compared with the MobileNetV3 algorithm, the accuracy of the
ECA-MobileNetV3 algorithm with attention mechanism is slightly improved and the loss
value is slightly increased.

Based on the Beijing–Tianjin–Hebei airport cluster dataset, according to Table 5, from
the longitudinal analysis, as the channel factor becomes larger, the accuracy of the two
algorithms gradually increases and the loss value gradually decreases. Further, the accuracy
rates of the MobileNetV3 algorithm and ECA-MobileNetV3 algorithm reach the highest
when the channel factor is 1.00, and the accuracy rate of the MobileNetV3 algorithm reaches
96.60%; the accuracy rate of the ECA-MobileNetV3 algorithm reaches 96.81%. From a cross-
sectional perspective, the accuracy of the ECA-MobileNetV3 algorithm is slightly lower
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than that of the MobileNetV3 algorithm at channel factor numbers of 0.50 and 0.75, and the
accuracy of the improved algorithm is 0.18% lower than that before the improvement at a
channel factor of 0.50. At a channel factor of 1.00, the accuracy of the ECA-MobileNetV3
algorithm is slightly higher than that of the MobileNetV3 algorithm, and the accuracy
of the improved algorithm is 0.21% higher than that before the improvement. Therefore,
on the whole, the improved ECA-MobileNetV3 algorithm has a minor loss in accuracy
and still has some advantages in a multi-airport-associated cluster dataset such as the
Beijing–Tianjin–Hebei airport cluster dataset.
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Figure 5. Comparison of loss values and accuracy for different-width multipliers based on the
MobileNetV3 algorithm on Shanghai Hongqiao Airport dataset. (a) Accuracy comparison of different-
width multipliers. (b) Loss value comparison of different-width multipliers.
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Figure 6. Comparison of loss values and accuracy for different-width multipliers based on the
ECA-MobileNetV3 algorithm on Shanghai Hongqiao Airport dataset. (a) Accuracy comparison of
different-width multipliers. (b) Loss value comparison of different-width multipliers.

Based on the Beijing–Tianjin–Hebei airport cluster dataset, the accuracy and loss
curves of the MobileNetV3 algorithm and ECA-MobileNetV3 algorithm under different
channel factors are, respectively, presented in Figures 7 and 8. According to the trend
of the curves, at different channel factors, the accuracy rate gently increases while the
loss value gently decreases. The loss values and accuracies of MobileNetV3 and ECA-
MobileNetV3 tend to stabilize when the number of training rounds is around 150. From
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the experimental results, the MobileNetV3 algorithm has a loss value of about 0.0819 when
the channel factor is 1.00. The highest accuracy was 96.60%. When the channel factor is
1.00, the lowest loss value of the ECA-MobileNetV3 algorithm is about 0.0813, and the
highest accuracy is 96.81%. Compared with the MobileNetV3 algorithm, the accuracy of
the ECA-MobileNetV3 algorithm with an attention mechanism is slightly improved, while
the loss value is slightly decreased.

Table 5. Comparison table of accuracy and loss values for different width multipliers on Beijing–
Tianjin–Hebei airport cluster dataset.

Width Multiplier
MobileNetV3 ECA-MobileNetV3

Accuracy Loss Value Accuracy Loss Value

0.50 96.40% 0.0932 96.22% 0.1049
0.75 96.56% 0.0871 96.55% 0.0878
1.00 96.60% 0.0819 96.81% 0.0813
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4.4. Complex Calculation of the Model

Validation will be performed on the Shanghai Hongqiao Airport dataset and the
Beijing–Tianjin–Hebei Airport dataset.

Based on the Shanghai Hongqiao Airport dataset, Table 6 displays the suggested
algorithm’s accuracy and computational complexity before and after the enhancement.
Vertically, as the channel factor increases, the MobileNetV3 algorithm’s accuracy rises
together with the model’s complexity. The model complexity and accuracy of the ECA-
MobileNetV3 algorithm increase with the channel factor. However, for channel factors of
0.75 and 1.0, the accuracy rate does not improve significantly due to the complexity of the
model but gradually stabilizes. From a horizontal perspective, under the same channel
factor, the ECA-MobileNetV3 model can efficiently minimize the number of parameters
and computation without sacrificing accuracy.

Table 6. Algorithmic complexity comparison for different-width multipliers on Shanghai Hongqiao
Airport dataset.

Width Multiplier
MobileNetV3 ECA-MobileNetV3

Params(M) FLOPs(M) Accuracy Params(M) FLOPs(M) Accuracy

0.50 0.29 16.43 98.00% 0.17 16.21 98.41%
0.75 0.60 33.31 98.53% 0.33 32.80 98.97%
1.00 1.01 54.66 98.87% 0.55 53.76 98.90%

Based on the Beijing–Tianjin–Hebei airport cluster dataset, the computational complex-
ity and accuracy of the proposed algorithm before and after the improvement are shown in
Table 7. From the longitudinal point of view, as the channel factor increases, the complexity
of the MobileNetV3 model increases and the accuracy improves. However, with channel
factors of 0.75 and 1.00, the accuracy increases slightly and remains essentially stable. As
the channel factor increases, the complexity of the ECA-MobileNetV3 model increases
and the accuracy improves. When the channel factors are 0.75 and 1.0, the accuracy is
significantly improved. From a horizontal perspective, the computational complexity of
the ECA-MobileNetV3 model is effectively reduced with little loss in accuracy for the same
channel factor.

Table 7. Algorithmic complexity comparison for different-width multipliers on Beijing–Tianjin–Hebei
airport cluster dataset.

Width Multiplier
MobileNetV3 ECA-MobileNetV3

Params(M) FLOPs(M) Accuracy Params(M) FLOPs(M) Accuracy

0.50 0.29 18.44 96.40% 0.17 18.22 96.22%
0.75 0.60 37.39 96.56% 0.33 36.88 96.55%
1.00 1.01 61.35 96.60% 0.55 60.44 96.81%

It is clear from the experimental findings on the aforementioned two datasets that
the computational cost and precision of the proposed model are not only linear. We can
find algorithms that better balance the accuracy and computational complexity of the
model, which is also the direction of efforts in lightweight neural networks. By computing
conditions on different mobile devices, it is possible to match flight delay prediction models
of different sizes to maximize the model utilization.

4.5. Comparison of Different Network Models

Compared with traditional deep learning algorithms, the modified ECA-MobileNetV3
achieves better performance in terms of computational complexity and model accuracy
when dealing with real domestic flight datasets with weather information fusion. In this
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regard, this paper verifies the single airport and airport group datasets, compares the ECA-
MobileNetV3_1.00 model with the traditional ResNet [38], DenseNet [39] algorithm, and
MobileNetV2 algorithm under the same channel factor and analyzes it from the following
three aspects. ResNet and DenseNet are models that have been trained and widely used in
large-scale datasets and have achieved good results in many computer vision and natural
language processing tasks. Therefore, they are very representative models and can be used
as benchmarks for other models. MobileNetV2, as the leader in the lightweight model, has
been widely used in many mobile device applications. MobileNetV2 is the predecessor of
MobileNetV3, which can verify whether the improvement in ECA-MobileNetV3 is effective.
Taking MobileNetV2 as a comparative test can also provide reference and inspiration for
more lightweight model design. The results are shown in Table 8.

Table 8. Comparison of the evaluation indicators for the different models.

Model Name
Shanghai Hongqiao Airport Beijing-Tianjin-Heibei Airport Group

Params(M) FLOPs(M) Accuracy Params(M) FLOPs(M) Accuracy

ResNet18 11.18 1429.40 95.56% 11.18 1608.07 94.33%
DenseNet121 7.04 498.36 94.94% 7.04 580.54 93.76%

MobileNetV2_1.00 2.26 70.75 99.06% 2.26 88.40 95.99%
MobileNetV3_1.00 1.01 54.66 98.87% 1.01 61.35 96.60%

ECA-MobileNetV3_1.00 0.55 53.76 98.90% 0.55 60.44 96.81%

In the Hongqiao Airport dataset, the accuracy of the ECA-MobileNetV3_1.00 algorithm
increases by 3.34% and 3.96% and the number of citations decreases by 10.63 million and
6.49 million, respectively, compared to the other two traditional networks. The calculated
amounts were reduced by 1375.64 million and 444.6 million, respectively. In the single
airport dataset, it can be seen that the enhanced ECA-MobileNetV3 model outperforms
in terms of accuracy and computational complexity. In addition, when compared to the
MobileNetV2 method at the same channel factor, the accuracy of the enhanced algorithm is
decreased by 0.16%, and the number of parameters and computational cost are decreased,
respectively, by 171 million and 16.99 million. As compared to the MobileNetV2 algorithm
at the same level, it can be seen that the upgraded algorithm achieves a better balance
between model complexity and accuracy.

In the Beijing–Tianjin–Hebei airport cluster dataset, the accuracy of the ECA-
MobileNetV3_1.00 model increases by 2.48% and 3.05% and the reference number de-
creases by 10.63 million and 6.49 million, respectively, compared to the other two traditional
networks. The calculated amounts were reduced by 1547.63 million and 520.10 million,
respectively. On the airport cluster dataset, it can be shown that the revised model
performs quite well in the three evaluation measures mentioned above. Additionally,
the ECA-MobileNetV3 algorithm’s accuracy is increased by 0.82% when compared to
MobileNetV2 at the same channel factor, while the algorithm’s computational cost and
parameter count are decreased by 1.71 million and 27.96 million, respectively. As is evident,
the improved model also achieves a better balance of the above three metrics compared to
the MobileNetV2 algorithm of the same level.

4.6. Application of the Model

At present, the flight delay prediction Web visualization system based on the flight
delay prediction model of ECA-MobileNetV3 has been put into use in the air traffic control
bureau. The system uses the flight delay prediction model studied in this paper to predict
flight delay and then displays the predicted delay results on the web page through the
Web visualization technology and can carry out statistical analysis on the historical delay
information, so as to explore the deeper laws of delay generation, for example, to see in
which time periods of the day and in which months of the year flight delays mainly occur.
This application mainly takes advantage of the high prediction accuracy of the flight delay
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prediction model studied in this paper. The subsequent application direction will focus
on the advantages of light weight. The lightweight model has the characteristics of fast
prediction speed, less demand for computing resources, higher real-time performance, and
portability. Therefore, this model can be deployed on some low-power devices, such as
mobile devices and sensors. This can quickly process data input and quickly update
forecast results and provide real-time information for airlines and the base to help them
plan and manage flight missions.

5. Conclusions

This paper studies the lightweight neural network MobileNetV3 algorithm and the
improved ECA-MobileNetV3 algorithm. By using the Shanghai Hongqiao Airport dataset
and the Beijing–Tianjin–Hebei Airport Cluster dataset, for example, analysis and practical
application of the model, the following conclusions are drawn: The algorithm proposed
in this paper can effectively reduce the computational complexity in the model without
loss of accuracy or with a small loss of accuracy by replacing the SE module in the original
MobileNetV3 algorithm with a lightweight ECA attention mechanism module. Compared
with the ResNet algorithm, DenseNet algorithm, and MobileNetV2 algorithm under the
same channel factor, the improved ECA-MobileNetV3 algorithm has more advantages in
computational complexity and accuracy. The flight delay prediction model based on ECA-
the MobileNetV3 algorithm has the advantage of light weight compared with the flight
delay prediction model that has been deployed now. The lightweight flight delay model
can bring faster execution speed, fewer computing resources, higher real-time performance,
and higher flexibility and portability, which can greatly lay the foundation for subsequent
deployment on mobile terminals and other platform devices, and for airlines, the airport
and passengers provide better service and better experience. However, there is still a lot
of room for improvement in the process of research in this paper. On the one hand, the
number of flight samples with different delay levels is quite different, which will affect the
accuracy of flight prediction. It is necessary to consider the impact of sample imbalance
on model training. On the other hand, the problem of flight delay is time-varying, and
the prediction model needs to be updated at any time. The next step is to explore how to
achieve a real-time update of the model and improve the practicability of the model.
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