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Abstract— In this paper, the coordination and trajectory
tracking control design of multiple mini rotorcraft systems
are discussed. The dynamic model of a mini rotorcraft is
presented using the Newton-Euler formalism. Our approach is
based on a leader/follower structure of multiple robot systems.
The centroid of the coordinated control subsystem is used for
trajectory tracking purposes. A nonlinear coordinated control
design for multiple autonomous vehicle synchronization is
developed. The analytic results are supported by simulation
tests.

I. INTRODUCTION

An important challenge in automatic control field is the
problem of multiple spacecraft flying in formation which has
been intensively investigated during the last decades.

Different approaches for multiple spacecraft flying in
formation have been proposed in the literature for coordi-
nation of multiple robot systems. There are mainly three ap-
proaches: Leader/Follower, Virtual Structure and Behavioral
Control.

In the leader/follower architecture, one agent is designated
as leader while the others are designated as followers which
should track the leader. Leader/follower approaches are des-
cribed in [1], [2]. The virtual structure approach considers
every agent as an element of a larger structure [3] and [4].
Finally, the behavioral control in [5] and [6] is based on
the decomposition of the main control goal into tasks or
behaviors. This approach also deals with collision avoidance,
flock centering, obstacle avoidance and barycenter.

Generally, to analyze the communication between agents,
directed or undirected graphs are used. Every node in a
graph is considered as an agent which can have informa-
tion exchange with all or several agents. In [4], [7], [8],
and [9], the authors use algebraic graph theory in order
to model the information exchange between vehicles. By
using this technique, several control strategies have been
developed, e.g. [9], [10], [11], [12] and [13]. In [9], the
authors present several algorithms for consensus and obs-
tacle avoidance for multiple-agent systems. [10] presents an
algorithm for trajectory tracking of a time varying reference
for a single integrator multi-agent system. [11] and [12]
present a passive decomposition approach for consensus and
formation control. In [13], the authors present a bilateral
teleoperation control approach for the multi-agent trajectory
tracking problem.
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We are interested in the problem of multiple mini ro-
torcraft flying in formation using a nonlinear control with
a coordination control strategy. A coordination algorithm
assumes that there are n-agents which have some kind of
information exchange between them. In this approach, roll,
pitch and yaw angles are considered as agents with an infor-
mation exchange topology. Thus, the lateral and longitudinal
dynamical systems of each mini rotorcraft are considered as
agents to be coordinated and to follow a desired trajectory.
To do this, combined with a nonlinear control, we use an
algebraic graph theoretical approach to model information
exchange where every node in a graph is considered as an
agent which can have information exchange with all or seve-
ral agents. Several approaches of nonlinear control of a mini
rotorcraft can be found in the literature; for instance, in [14]
a nonlinear control based on nested saturations is presented.
In this approach, the dynamics is decoupled into lateral and
longitudinal dynamical subsystems. Thus, nested saturations
control was used to stabilize each subsystem. In [15], the
authors proposed a robust linear PD controller considering
parametric interval uncertainty. The authors also presented a
robust stability analysis and computed the robustness margin
of the system with respect to the parameters uncertainty.

This work addresses the nonlinear control for multiple
mini rotorcraft flying in formation, shown in Figure 1, based
on coordination control strategy. The novelty of this approach
is to consider that the lateral and longitudinal dynamical
systems of each mini rotorcraft as agents to be coordinated
which follow a virtual reference. In this way, the multiple
mini rotorcraft platoon can hover and thus keeping the
desired formation by following a constant zero-reference.
Another contribution of this work is that the centroid of
a virtual center of mass can be used to follow a given
smooth trajectory and a four integrator coordination problem
is developed.

This paper is organized as follows: Section II presents
some preliminary results on algebraic graph theory and
passivity systems. Section III presents the dynamical model
of the proposed architecture. In section IV the nonlinear
control design is presented. Simulation results are presented
in section V. Section VI presents the conclusions and future
work.

II. PRELIMINARIES

A. Graph Theory

A multi-agent dynamic system can be modelled as a group
of dynamical systems which has a information exchange
topology represented by information graphs. A graph G
is a pair G(N , E) consisting of a set of nodes N =
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Fig. 1. Multiple mini rotorcraft flying in formation

{ni : ni ∈ N, ∀i = 1, ..., n} together with their interconnec-
tions E on N [16]. Each pair (n1, n2) is called an edge
e ∈ E . An undirected graph is one where nodes i and j can
get information from each other. In a digraph, the ith node
can get information from the jth node but not necessarily
viceversa. We can think of the information exchange between
agents as an undirected graph but also as a digraph which
implies a more complicated problem. One important cha-
racterization of graphs is their connectivity. A graph is said
to be connected if for every pair {x, y} of distinct vertices
there is a path from x to y. A connected graph allows the
communication between all agents through the network. A
directed graph is said to be strongly connected if any two
vertices can be joined by a path. A graph is said to be
balanced if its in-degree (number of communication links
arriving at the node) is equal to its out-degree (number of
communication links leaving the node).

A typical consensus algorithm considers a first integrator
system of the form

ẋ = −Lx+ bu (1)
y = cTx

where L is the Laplacian matrix having the following pro-
perties:

1) L has a single eigenvalue at 0, λ1(L) = 0 with right
eigenvector wT1 =

[
1 1 · · · 1

]
, i.e. Lw1 = 0.

2) The remaining eigenvalues are all positive, i.e. λi(L) >
0 and Lwi = λiwi for i = 2, ..n, and wi ∈ Rn.

We assume that the information exchange graph is balan-
ced. Let us assume also that in the coordinating controller
the gains multiplying the signals in between agents are all
equal to 1. For the i− th row of L, the entries lij = −1 for
i 6= j correspond to the gains multiplying the signals from
other agents coming to agent i. For the i − th column of
L, the entries lji = −1 for i 6= j correspond to the gains
multiplying the signals going out of agent i towards the other
agents. We then have the following property.

3) w1 defined above is also the left eigenvalue of L
corresponding to the eigenvalue 0, i.e. wT1 L = 0.

It is worth to mention that dynamics (1) can be rewritten

as
ẋi = ui (2)

with multiple agent consensus achieved using a consensus
algorithm proposed in [17].

ui = −
∑
j∈Ni

(xi − xj) (3)

III. DYNAMIC MODEL

To obtain the vehicle dynamical model, it will be assumed
that it flies over a local area in the Earth. Then, the Flat-
Earth model equations will be used [18]. The equations
representing the kinematic and the moments are written as

Cb/n = fn(Φ) (4)

Φ̇ = H (Φ)ωbb/e (5)

ω̇bb/e =
(
Jb
)−1

[
Mb

A/T − Ωbb/eJ
bωbb/e

]
(6)

The vehicle center of mass, CM , is coincident with the
body frame origin, Fb. The angular velocity in terms of
the body system is given by ωbb/e =

[
P Q R

]T
and

its cross product matrix is denoted by Ωbb/e. The angular
velocity in the local inertial system has components Φ̇ =[
φ̇ θ̇ ψ̇

]T
. The matrix of rotation from Fe to Fb is

denoted by Cb/n. The set of attitude equations can be

Fig. 2. Quadrotor vehicle schematic for vertical flight mode

obtained using the equations (5) and (6). The transformation
of the components of the angular velocity generated by
a sequence of Euler rotations from the body to the local
reference system is written as follows:

H (Φ) =

 1 tθsφ tθcφ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (7)

where s, c and t are used to denote the sin, cos and the
tan respectively.

The term Jb in (6) represents the inertia matrix, and is
defined by

Jb =

 Jx Jxy Jxz
Jyx Jy Jyz
Jzx Jzy Jz
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Since the quadrotor prototype is symmetrical in the xz-
plane and the xy-plane, the products of inertia Jxy , Jyz and
Jxz vanish. Then Jb and its inverse can be written by

Jb =

 Jx 0 0
0 Jy 0
0 0 Jz

 (8)

The aerodynamics and thrust moments can be denoted by
M b
A,T =

[
` m n

]T
, and are shown in Figure 2. Then

differentiating (5) we get

Φ̈ = Ḣ (Φ)ωbb/e +H (Φ) ω̇bb/e (9)

Introducing the RHS of (6) into (9),

Φ̈ = Ḣ (Φ)ωbb/e +H (Φ)
(
Jb
)−1

[
Mb

A/T − Ωbb/eJ
bωbb/e

]
(10)

It is proposed that

Mb
A/T , Ωbb/eJ

bωbb/e +H (Φ)−1
Jb
[
τ̃ − Ḣ (Φ)ωbb/e

]
(11)

where τ̃ =
[
τ̃φ τ̃θ τ̃ψ

]T
. Then (9) can be rewritten

as

φ̈ = τ̃φ (12)

θ̈ = τ̃θ (13)
ψ̈ = τ̃ψ (14)

Newton’s second law is used to obtain the equations of
translational motion in the inertial frame of reference as

p̈nCM/T = Cn/b
FbA,T
mb

+ gn (15)

where mb represents the mass of the vehicle. The po-
sition of CM in the NED (North-East-Down) coordinate
system with respect to the inertial frame origin, Fe, is
given by pnCM/T =

[
x y z

]T
. The aerodynamic and

thrust force vector in the body system is represented by
FA,T = [ XA,T YA,T ZA,T ]T . The aerodynamic and
thrust forces in the body frame of reference is given by

FA,T =
4∑
i=1

FiZA,T (16)

Then (15) can be rewritten as

ẍ = −FA,T sinθ (17)
ÿ = FA,T cosθsinφ (18)
z̈ = FA,T cosθcosφ−mg (19)

where the constant m is the mass of the mini rotorcraft
and g is the gravitational acceleration.

IV. NONLINEAR CONTROL DESIGN

A. Vehicle Stabilization and Consensus Agreement

In this section, a nonlinear controller with a coordination
control strategy is developed. It will be proved that the
proposed control scheme stabilizes the rotorcraft in hover

flight. The altitude and the vehicle’s heading can be stabilized
by using

FA,T ,
−a1ż − a2(z − zd) +mg

cosφcosθ
(20)

where a1 and a2 are positive constants; zd is the desired
altitude. Around the origin, using (20) in (17)-(19), the
lateral dynamic model of the mini rotorcraft is given by the
following set of equations:

ÿ = tanφ (21)
φ̈ = τ̃φ (22)

and the longitudinal dynamic model can be represented by

ẍ =
− tan θ
cosφ

(23)

θ̈ = τ̃θ (24)

Then, we aim at synchronizing the lateral and longitudinal
dynamical systems of two mini rotorcraft. Therefore, we
propose a consensus algorithm which allows to stabilize the
platform in attitude and position. The cases of having three
agent dynamical systems with cyclic and chain information
exchange topology are considered. It will be shown that the
considered approach reaches consensus to a desired position
while maintaining a stable attitude. It is assumed that pitch
angle and roll angle are operated in a neighborhood of the
origin, i.e., |ϕ| < π/10 ∀ϕ = θ, φ. Then, the longitudinal
dynamical systems, equations (23)-(24) are reduced to

ẍi = −θi (25)
θ̈i = τ̃θi

(26)

for all i ∈ G. The lateral dynamical systems, equations (21)-
(22) are reduced to

ÿi = φi (27)
φ̈i = τ̃φi

(28)

for all i ∈ G. It is clear that systems (25)-(26) and (27)-
(28) are four integrators in cascade and we propose to use
a consensus algorithm to stabilize the rotorcraft. Let us
consider the system given by

x
(iv)
i = τ̃θi

= ui (29)

A first change of variable is proposed

ξi , ẋi + λxi (30)

Then, the third derivative of ξi is

ξ
(iii)
i = x

(iv)
i + λx

(iii)
i

ξ
(iii)
i = ui + λx

(iii)
i (31)

and the control ui is defined as

ui , u
′

i − λx
(iii)
i (32)

Equation (31) can be rewritten as

ξ
(iii)
i = u

′

i
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By following the iterative algorithm, we define a new
variable

ζi , ξ̇i + λξi (33)

The second derivative ζi is given by

ζ̈i = ξ
(iii)
i + λξ̈i

ζ̈i = u
′

i + λξ̈i (34)

and the control u
′

i is defined as

u
′

i , ũi − λξ̈i (35)

Therefore, equation (34) can be rewritten as

ζ̈i = ũi

By following the iterative algorithm, we define the last
change of variable

wi , ζ̇i + λζi (36)

The first derivative of wi is given by

ẇi = ζ̈i + λζ̇i

ẇi = ũi + λζ̇i (37)

The control ũi is defined as

ũi , ūi − λζ̇i (38)

Equation (37) can then be rewritten as

ẇi = ūi (39)

We define control ūi as

ūi , −
∑
j∈Ni

(wi − wj) (40)

Introducing (40) into (38),

ūi = −
∑
j∈Ni

(wi − wj)− λζ̇i (41)

Introducing (41) into (35),

u
′

i = −
∑
j∈Ni

(wi − wj)− λζ̇i − λξ̈i (42)

Introducing (42) into (32),

ui = −
∑
j∈Ni

(wi − wj)− λζ̇i − λξ̈i − λx(iii)
i (43)

Introducing (43) into (29),

x
(iv)
i = −

∑
j∈Ni

(wi − wj)− λζ̇i − λξ̈i − λx(iii)
i (44)

where

ξ̈i = x
(iii)
i + λẍi (45)

ζ̇i = x
(iii)
i + 2λẍi + λ2ẋi (46)

Then, (44) can be rewritten as

x
(iv)
i = −

∑
j∈Ni

(wi − wj)− 3λx(iii)
i − 3λ2ẍi − λ3ẋi (47)

where wi =
[
x

(iii)
i 3λẍi 3λ2ẋi λ3xi

]
.

A positive definite Lyapunov function is proposed as in
[17]

V = 2(V1 + ...+ VN ) (48)

where Vi is the storage function for each quadrotor vehicle.
Then V̇ is

V̇ = −Si(wi)−K
N∑
i=1

∑
j∈Ni

(wi − wj)T (wi − wj) (49)

Nothing that Si(wi) = 0 ∀i and integrating the above
equation we can see that (wi − wj) ∈ L2. Using (36),

(wi − wj) = (ζ̇i − ζ̇j) + λ(ζi − ζj) (50)

Defining eij = ζi−ζj and differentiating w.r.t. we get that
ėij = ζ̇i − ζ̇j , then (50) is rewritten as

(wi − wj) = ėij + λeij (51)

Then ėij + λeij ∈ L2 which guaranties the exponential
convergence of eij to the origin. Assuming that the informa-
tion exchange graph is strongly connected then

lim
t→∞

|ζi − ζj | = 0

Since (ζi − ζj) ∈ L2. Using (33),

(ζi − ζj) = (ξ̇i − ξ̇j) + λ(ξi − ξj) (52)

Defining e
′

ij = ξi−ξj and differentiating w.r.t. we get that
ė

′

ij = ξ̇i − ξ̇j , then (52) is rewritten as

(ζi − ζj) = ė
′

ij + λe
′

ij (53)

Then ė
′

ij + λe
′

ij ∈ L2 which guaranties the exponential
convergence of e

′

ij to the origin. Assuming that the informa-
tion exchange graph is strongly connected then

lim
t→∞

|ξi − ξj | = 0

We can see that (ξi − ξj) ∈ L2. Using (30),

(ξi − ξj) = (ẋi − ẋj) + λ(xi − xj) (54)

Defining ẽij = xi − xj and differentiating w.r.t. we get
that ˙̃eij = ẋi − ẋj , then (54) is rewritten as

(ξi − ξj) = ˙̃eij + λẽij (55)

Then ˙̃eij + λẽij ∈ L2 which guaranties the exponential
convergence of ẽij to the origin. Assuming that the informa-
tion exchange graph is strongly connected then

lim
t→∞

|xi − xj | = 0

After a time T > 0,
∑
j∈Ni

(wi − wj) → 0; therefore,
from (47) it can be seen that x(iii)

i , ẍi, ẋi → 0.
To achieve yaw angle synchronization, let us recall the

yaw dynamics given by

ψ̈i = τ̃ψi (56)
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By using the same approach described above, we propose
a control law such that

τ̃ψi
, −

∑
j∈Ni

[
(ψi − ψj) + (ψ̇i − ψ̇j)

]
− λψ̇i (57)

which ensures the consensus agreement in the sense that

lim
t→∞

|ψi − ψj | = 0 (58)

Control law (47) guaranties the synchronization of all
quadrotor vehicles to the origin. However, this makes no
sense in practical situations. Instead, we propose a formation
control described in next section.

B. X4 Formation Control

In this section, we propose a leader-relative position
consensus (UAV formation) for the multi quadrotor system,
i.e. the quadrotor vehicles will converge to a desired position
with respect to the leader of the group. We define the control
ūi as

ūi = −
∑
j∈Ni

(wi − wj)−
∑
j∈Ni

λ3(x(d)
i ) (59)

where the xdi are constants. Then the formation control
law is rewritten as:

x
(iv)
i = −

∑
j∈Ni

(wi − wj)− 3λx(iii)
i − 3λ2ẍi

−λ3ẋi −
∑
j∈Ni

λ3(x(d)
i ) (60)

It is important to note that

(wi − wj) = x
(iii)
i − x(iii)

j + 3λẍi − 3λẍj
+3λ2ẋi − 3λ2ẋj + λ3xi − λ3xj (61)

Then,(59) can be rewritten as

ūi = −
∑
j∈Ni

(x(iii)
i − x(iii)

j )−
∑
j∈Ni

3λ(ẍi − ẍj)

−
∑
j∈Ni

3λ2(ẋi − ẋj)−
∑
j∈Ni

λ3(xi − xj)

−
∑
j∈Ni

λ3(x(d)
i ) (62)

ūi = −
∑
j∈Ni

(x(iii)
i − x(iii)

j )−
∑
j∈Ni

3λ(ẍi − ẍj)

−
∑
j∈Ni

3λ2(ẋi − ẋj)

−
∑
j∈Ni

λ3(xi − x(d)
i − xj) (63)

The control law ūi can be written as

ūi = −
∑
j∈Ni

(wi − wj) (64)

Then, (29) can be rewritten as

x
(iv)
i = −

∑
j∈Ni

(wi − wj)− 3λx(iii)
i − 3λ2ẍi − λ3ẋi (65)

where wi =
[
x

(iii)
i 3λẍi 3λ2ẋi λ3(xi − x(d)

i )
]

and wj =
[
x

(iii)
j 3λẍj 3λ2ẋj λ3xj

]
∀j ∈ Ni.

The change of variable (30) can be rewritten as

ξi = ẋi + λ(xi − x(d)
i )

Since x
(d)
i is a constant reference position for i − th

vehicle, the third derivative is given by (31).
Defining ẽij = xi−x(d)

i −xj and differentiating w.r.t., we
get ˙̃eij = ẋi − ẋj , then (54) is rewritten as

(ξi − ξj) = ˙̃eij + λẽij

Then ˙̃eij + λẽij ∈ L2 which guaranties the exponential
convergence of ẽij to the constant reference x(d)

i . Assuming
that the information exchange graph is strongly connected
then

lim
t→∞

|xi − xj | = x
(d)
i

1) Triangular Formation: A triangular formation around
a circle of radius r for the team of three quadrotor vehicles is
proposed. Assuming a cyclic information exchange topology,
the relative position is given by

x1 − x2 = r cos(π/6) (66)
x3 − x1 = −r cos(π/6) (67)
x2 − x3 = r cos(π/2) (68)
y1 − y2 = r sin(π/6) (69)
y3 − y1 = −r sin(π/6) (70)
y2 − y3 = 2r sin(π/6) (71)

Therefore, we can use (66)-(71) as a relative position
reference with respect to each other.

Assuming a chain information exchange topology, the
relative position is given by

x1 − x2 = cos(π/6) (72)
x2 − x3 = cos(π/2) (73)
y1 − y2 = sin(π/6) (74)
y2 − y3 = 2 sin(π/6) (75)

Therefore, we can use (72)-(75) as a relative position
reference with respect to each other.

C. X4 Trajectory Tracking Control

Now, we will consider the case of trajectory tracking of a
multiple vehicle system. It is assumed that the leader of the
group is always vehicle 1. Also, let us assume that the leader
is the only vehicle with access to the desired trajectory. Then,
ūi is rewritten as

ūi = −
∑
j∈Ni

(wi − wj) + buCM (76)

where bT = [ 1 0 . . . 0 ] and uCM is the input given

to the leader. Define wCM = 1
N

N∑
i=1

wi where N is the

number of agents in the formation. Let wdCMbe the desired
value for wCM . Assume for simplicity that agent 1 is the
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leader, i.e. cT = bT =
[

1 0 · · · 0
]

and that the
control law is

uCM (w) , Nksat
{
wdCM − wCM

}
(77)

where sat(·) represents the saturation function and k is a
positive gain. Note that wCM may not be directly measurable
for the leader (agent 1). We assume the system is observable
from the input and output of the leader. The state can
therefore be observed from the input and output of agent
1.

Trajectory tracking control law is such that wCM → wdCM
as t → ∞ which implies that ζ → wdCM/λ, which in turn
implies that ξ → wdCM/λ

2 and x→ wdCM/λ
3.

The reference for the center of mass is defined as wdCM =
λ3(x(d)

CM ) which implies that |xi − xdi | → xdCM .

V. RESULTS

A. Simulation

Here, we apply the results obtained in the previous sec-
tion. Extensive simulations were run on a platoon of three
rotorcraft considering the 6-DOF nonlinear dynamical model.
Cyclic and chain topologies of information exchange were
consider. The initial conditions for inertial position and
velocity are [2,-1,0](m) and [-0.1,-0.1,0.2](m/s) for the first
vehicle; [-1,2,0](m) and [-0.1,-0.2,0.3](m/s) for the second
vehicle and [-1,-1,0](m) and [0.2,0.3,-0.5](m/s) for the third
vehicle It is clear that the nonlinear coordinated control stra-
tegy can be used to synchronize the lateral and longitudinal
dynamical subsystems (21)-(24) and (21)-(24) as well as the
yaw angle system (21) of multiple mini rotorcraft. Thus,
using control inputs (20), (57) and (47) on the quadrotor
dynamical system (17)-(19) in simulation we get the results
shown in Figures 3 and 4.

Fig. 3. Formation flying of multiple quadrirotors

Fig. 4. Formation flying of multiple quadrirotors

VI. CONCLUSIONS AND FUTURE WORK

A nonlinear dynamical model of the mini rotorcraft has
been presented using the Newton-Euler formulation. Non-
linear control based on coordination control scheme for
flight formation mini rotorcraft was presented. Pitch, roll and
yaw angles were considered as dynamical agents with full
information access. Tracking of the virtual center of mass
of the agents formation has been achieved by using state
feedback control. Extensive simulations were run in order
to show the performance of the developed control scheme.
Future work in this area includes experimental tests on mini
rotorcraft with real-time embedded control systems.
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