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Abstract

With the demand for more advanced fighter aircraft, relying on unstable flight
mechanical characteristics to gain flight performance, more focus has been put
on model-based system engineering to help with the design work. The flight
control system design is one important part that relies on this modeling. There-
fore, it has become more important to develop flight mechanical models that are
highly accurate in the whole flight envelope. For today’s modern fighter aircraft,
the basic flight mechanical characteristics change between linear and nonlinear
as well as stable and unstable as an effect of the desired capability of advanced
maneuvering at subsonic, transonic and supersonic speeds.

This thesis combines the subject of system identification, which is the art of build-
ing mathematical models of dynamical systems based on measurements, with
aeronautical engineering in order to find methods for identifying flight mechani-
cal characteristics. Here, some challenging aeronautical identification problems,
estimating model parameters from flight-testing, are treated.

Two aspects are considered. The first is online identification during flight-testing
with the intent to aid the engineers in the analysis process when looking at the
flight mechanical characteristics. This will also ensure that enough information
is available in the resulting test data for post-flight analysis. Here, a frequency
domain method is used. An existing method has been developed further by in-
cluding an Instrumental Variable approach to take care of noisy data including
atmospheric turbulence and by a sensor-fusion step to handle varying excitation
during an experiment. The method treats linear systems that can be both sta-
ble and unstable working under feedback control. An experiment has been per-
formed on a radio-controlled demonstrator aircraft. For this, multisine input
signals have been designed and the results show that it is possible to perform
more time-efficient flight-testing compared with standard input signals.

The other aspect is post-flight identification of nonlinear characteristics. Here
the properties of a parameterized observer approach, using a prediction-error
method, are investigated. This approach is compared with four other methods
for some test cases. It is shown that this parameterized observer approach is the
most robust one with respect to noise disturbances and initial offsets. Another
attractive property is that no user parameters have to be tuned by the engineers
in order to get the best performance.

All methods in this thesis have been validated on simulated data where the sys-
tem is known, and have also been tested on real flight test data. Both of the
investigated approaches show promising results.
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Populärvetenskaplig sammanfattning

Modellering och simulering används idag flitigt i flygindustrin. Detta görs för att
på ett säkert och kostnadseffektivt sätt undersöka flygegenskaper hos såväl nya
som befintliga flygfarkoster. Att från uppmätta data skapa matematiska modeller
av ett dynamiskt system, så som ett flygplans rörelse, kallas systemidentifiering.
Genom att ställa upp rörelseekvationerna och fylla dessa med uppmätta data kan
man optimera fram den modell som på bästa sätt beskriver rörelsen. Optimering-
en kan påverkas av olika störningskällor. Dessa kan komma från omgivningen,
så som turbulens, där farkostens rörelse påverkas, eller från mätningen i sig och
det är därför viktigt att den metod man använder vid systemidentifieringen kan
hantera dessa störningar så att en så bra modell som möjligt kan erhållas. För att
få ett bevis på att den framtagna modellen är tillräckligt bra behövs även ett test
på ny data.

I denna avhandling undersöks två typer av identifieringsalgoritmer. Den första
är tänkt att användas medan flygfarkosten är i luften för att förse provingenjörer
med information som kan användas för olika beslut under flygningen. Informa-
tion om huruvida insamlad provdata stämmer överens med befintliga modeller
kan leda till att man ger klartecken att fortsätta provningen eller att man vill av-
bryta för att utföra en noggrannare analys. För detta syfte har en redan befintlig
metod utvärderats och vidareutvecklats så att den har blivit mer robust mot olika
typer av störningar samt varierande informationsinnehåll i datan.

Den andra typen av algoritmer behandlar identifiering av en flygfarkosts mer
avancerade egenskaper. Denna analys utförs efter avslutat prov och är till för
svårmodellerade flygegenskaper. I denna undersökning har en relativt enkel och
robust metod jämförts med fyra andra. Resultatet visar att den förstnämnda me-
toden fungerar bättre än de övriga i de undersökta fallen.

Alla de använda metoderna har analyserats på simulerade data med kända egen-
skaper. Tester har även utförts på riktiga flygprovdata som ett bevis på att meto-
derna kan användas i praktiken.
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Math symbols

Notation Meaning

N Set of natural numbers
R Set of real numbers
C Set of complex numbers

Cov Covariance
E Expectation
∀ For all
= Imaginary part
< Real part
I Identity matrix

sup Supremum or least upper bound
σ Standard deviation
∗ Superscript for equilibrium
∗ Complex transpose
ˆ Predictor notation
ˆ Estimate notation
¯ Mean notation
˜ Fourier transform notation
|x| Euclidean vector norm
‖x‖2 L2-norm
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xvi Notation

System identification

Notation Meaning

A, B, C, D Linear system and measurement matrices, continuous
time

a, c Nonlinear system and measurement function, contin-
uous time

F, G, H, J Linear system and measurement matrices, discrete
time

f , g Nonlinear system and measurement function, discrete
time

Fy Feedback gain
Fr Feed-forward gain

F(m, Z) Model fit for model m using dataset Z
K Gain matrix
k Discrete time index corresponding to the actual time

t = Ts k
N Number of time samples
P Covariance matrix
S General notation for a system
Ts Sample time
t Time
u Input vector

VN (θ, ZN ) Cost function for θ based on the dataset ZN

v Measurement noise
w Process noise
x State vector
y Measurement or output vector
Z Dataset, e.g., an estimation dataset ZNe = {uk , yk}Nk=1

with N input and output data points
z System response vector
ε Prediction error matrix
ε Prediction error vector
Φ Regressor matrix
φ Regressor vector
λLM Levenberg-Marquardt regularization parameter
Θ Parameter matrix
θ Parameter vector
ϑ Parameter vector augmented with the state vector
ω Angular frequency
Z Instrumental variable matrix
ζ Instrumental variable vector
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Aeronautics

Notation Meaning

a Speed of sound
b Reference span
c Reference chord
S Reference area
SB Body-fixed system
SE Earth-fixed system
g Gravity constant
m Mass

x, y, z Cartesian coordinates
u, v, w Velocities in Cartesian coordinates
V , α, β Velocities in spherical coordinates,

speed, angle-of-attack and angle-of-sideslip
Φ,Θ,Ψ Euler angles, roll, pitch and yaw
p, q, r Roll, pitch and yaw angular velocities
δa, δe, δr Aileron, elevator and rudder deflection angles
δc Canard deflection angle

δLE , δT E Leading edge and trailing edge deflection angles
F Force

Fu , Fv , Fw Turbulence force filter in Cartesian coordinates
Fp, Fq, Fr Turbulence moment filter in Cartesian coordinates
Hp Pressure altitude
M Moment
M Mach number M = V /a
P Position
I Moment of inertia
Ta Ambient temperature

Fp, Mp Propulsive force and moment
Te Engine thrust

FA, MA Aerodynamic force and moment
L, D Aerodynamic lift and drag force
X, Y , Z Aerodynamic forces in the Cartesian coordinates
T , C, N Aerodynamic tangential (= −X), side (= −Y ) and nor-

mal force (= −Z)
L,M,N Aerodynamic rolling, pitching and yawing moments
Cx Aerodynamic coefficient Cx = X/(qa S y), where

x ∈ {L, D, T , C, N , l, m, n}, X ∈ {L, D, T , C, N ,L,M,N }
and y ∈ {1, 1, 1, 1, 1, b, c, b}

qa Dynamic pressure 0.5 ρ V 2

ρ Density
ω Angular velocity



xviii Notation

Abbreviations

Abbreviation Meaning
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ekf Extended Kalman filter
fcs Flight control system
ifac International federation of automatic control
isa International standard atmosphere
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1
Introduction

“Cause and effect are two sides of one fact.”
- Ralph Waldo Emerson (1803 - 1882)

This thesis is a combination of two subjects, system identification from the aca-
demic world and flight mechanics from aeronautical engineering in the industrial
world. Combining the two subjects leads to interesting research problems to be
studied in academia and enhanced capabilities that can be used in industry, a
typical win-win situation.

1.1 Background

Ever since the dawn of time there has been cause and effect, action and reaction.
We humans have observed these phenomena in order to try to understand the
world in which we are living. Many things in our world can be looked upon as
some kind of a system. A general definition of a system is a bounded set of compo-
nents or rules that form an integrated whole. The boundary separates the system
from its surroundings. The system can be affected by inputs from the surround-
ings, some of which can be controlled. The effect of the inputs can be observed
from the surroundings as outputs. Figure 1.1 shows a schematic description of a
general system.

Our understandings of the world have been put into theories, which in some cases
have been used to produce models of systems. With the introduction of comput-
ers, numerical simulations of systems using these models became possible. This
has led to many conceivable ways to learn more about the behavior of the systems
in a safe and structured manner.
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2 1 Introduction

Figure 1.1: A schematic diagram of a system.

System identification is the art of building mathematical models of systems based
on measurements of input and output signals. The subject is associated with dy-
namic systems, i.e., systems that have a memory of the states in which they have
been. A static system is, in contrast, a system that only takes the current input
and converts it to the current output regardless of earlier inputs. A very simple
example of a dynamic system is a falling apple. Isaac Newton studied the dynam-
ics of this system. The falling apple is autonomous, meaning that it falls without
a controlled input. Another example is a shower. This system is, in contrast to
the falling apple, controllable. The flow and temperature of the water can be
changed to a comfortable state. We can measure this state as an output with re-
ceptors in our skin and control the input until we are satisfied.

The dynamic system of interest in this thesis is the aircraft, with a focus on the
flight mechanical characteristics. An aircraft is an example of an aeronautical
system. The word aeronautics comes from the Greek words for air and seaman-
ship, giving the meaning of - sailing the air. Looking up in the sky, this is what
the birds are doing. The dream of flying has been and still is shared by many
people. In China, kites were used in 200 B.C. In the 15th century, Leonardo da
Vinci looked at ways to mimic the birds as the concept of flight. A major advance-
ment from this was when George Cayley separated lift and propulsion at the end
of the 18th century. In the following century, Otto Lilienthal conducted stability
tests with his gliders. One cornerstone to achieve sustained, three-axis controlled,
manned motorized flight was when the Wright brothers added a lightweight en-
gine and the means to control flight using a wing-warping technique for twisting
the wing tips like the birds do when turning in the air. The brothers also used
a movable horizontal surface for pitching the nose up and down and a movable
vertical surface for pointing the aircraft right and left, leading to their 12 s (37 m)
pioneering flight with the Flier I, on the 17th of December in 1903 at Kill Dev-
ils Hill, North Carolina, USA. A later analysis made by Culick [2001] shows that
this aircraft had both unstable and nonlinear aerodynamic pitch characteristics.
Fortunately, the characteristics were no worse than the brothers could handle.
As design of aircraft led to higher speeds, it was necessary to turn to inherently
pitch stable solutions. From the first successful flight until the present day, the
understanding of the dynamics of flight has enhanced enormously.
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1.2 Research motivation

Modern fighter aircraft operate in a large envelope including flight at subsonic,
transonic as well as supersonic speeds at different altitudes, see Figure 1.2. To-
gether with aggressive maneuvering this results in different combinations of sta-
ble/unstable and linear/nonlinear flight mechanical characteristics. Robustly de-
signed Flight Control Systems (FCSs) aid the pilot in flying the aircraft in this
complex physical environment. In order to design the control laws, high quality
simulation models are needed. During an aircraft project, the fidelity of these
models is successively increased. Flight-testing is the last step in this process.
The data from these tests are highly valuable since a lot of time and effort have
been put into the project. It is therefore desirable to have tools that can make the
most of the evaluation of these test data.

Today on-line flight test evaluation software runs almost in real-time. This type
of software is used to monitor if set boundaries are crossed and to analyze the
flight characteristics so that safe and cost effective testing can be conducted. The
tool used for the aerodynamic analysis delivers resultant forces and moments. A
tool that, in a robust way, can divide these forces and moments into their compo-
nents of stability and control would increase the understanding of the observed
flight mechanical characteristics so that correct decisions can be made. If this
tool also gives an indication of the information content for post flight analysis,
a potential reduction of expensive repetitions and thereby a cost reduction can
be made.
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Figure 1.2: Typical flight envelope for a fighter aircraft with an afterburner.
The envelope covers altitudes from the Troposphere (0 – 11 km) past the
Tropopause up to the Stratosphere (11 – 47 km), for subsonic (Mach 0 – 0.8)
past transonic (Mach 0.8 – 1.2) into supersonic (Mach ≥ 1.2) speed.



4 1 Introduction

Post flight tools for aerodynamic evaluation already exist, but for the nonlinear
parts there are still a need for more efficient tools. It is therefore desirable to be
able to use robust methods that require a minimum of input from the engineer,
but still give accurate enough results. This is a challenging task that leads to
interesting research problems.

1.3 Goal

The goal of the work described in this thesis is to provide aircraft companies with
robust methods for identification of flight mechanical characteristics.

The aim is to improve the tools used in industry today, making the modeling pro-
cess easier for the engineers, leading to a more time and cost effective way of
working.

This will hopefully result in increased time for the engineers to ponder and better
understand the results from the identification process and thereby increasing the
accuracy of the models used for simulation and control law design.

1.4 System

Here, a short overview of the systems used is given to provide the reader with the
understanding of similarities and differences. The flight mechanical motion of
jet fighter aircraft is used as the system of choice since fighter aircraft is the main
product of Saab Aeronautics. However, not all the aircraft used in this thesis are
of Saab design. Six aircraft have been studied in this thesis. The geometrical
shape differs a bit between these. Three have a close-coupled canard delta-wing
layout, two are of conventional tail-plane configuration and one has a double-
delta wing. The difference between these layouts is shown in Figure 1.3.

!"#$%&'(&%)*+,-./+!&%)*+,-./+

0*-%'1%*.&+0*-%'1%*.&+

2*.*3(+

!&%)*+,-./+!&%)*+,-./+

2*.*3(+

!&%)*+,-./+!&%)*+,-./+!&%)*+,-./+!&%)*+,-./+

!&%)*+,-./+

0*-%'1%*.&+0*-%'1%*.&+

!"#$%&'(&%)*+,-./+

Figure 1.3: Aircraft configurations: Canard, Tail-plane and Double-delta.
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Figure 1.4: JAS 39C Gripen.

The JAS 39C Gripen, shown in Fig-
ure 1.4, is a single seat, single-engine
multi-role aircraft, meaning that it
can perform fighter, attack and recon-
naissance missions. The aircraft has a
maximum take-off weight of 14000 kg,
a wing area of 30 m2 and is powered
by the Volvo RM12 low by-pass af-
terburning turbofan engine, giving a
thrust of 54 kN dry and up to 80.5 kN
using the afterburner. The aircraft is
developed by Saab and has a close-
coupled delta-wing canard configura-
tion. The JAS 39 is aerodynamically
static unstable (subsonically) and has a fly-by-wire flight control system for sta-
bility and control. This means that the pilot gives inputs to a computer that
sends electric signals via wires to the actuators for control. The first flight was
performed on the 9th of December 1988 and the aircraft was introduced into the
Swedish Air Force in November 1997. More about this aircraft can be found in
Keijsper [2004].

Figure 1.5: Vegas & ADMIRE.

Vegas & ADMIRE are two simula-
tion model aircraft based on the same
Generic Aerodata Model presented in
Backström [1997]. This generic model
was developed at SAAB to be used for
research purposes of a close-coupled
canard delta-wing configuration sim-
ilar to the JAS 39 Gripen (see Fig-
ure 1.5). “Vegas” is a rigid body sim-
ulation model used at Saab. The air-
craft, with a wing area of 45 m2 and a
maximum take-off weight of 10000 kg,
is a slightly larger aircraft than the JAS
39 Gripen. The model has a single
afterburning turbofan engine giving
a thrust of 56.9 kN dry and 134.7 kN
with the afterburner running. The
model called ADMIRE [Forssel and Nilsson, 2005], with the same size and mass
as Vegas, developed by Swedish Defense Materiel Administration (FOI), has been
used for research of clearance of flight control laws both in Sweden and inter-
nationally in GARTEUR (Group for Aeronautical Research and Technology in
Europe), see Forssell and Hydén [2003] and Menon et al. [2005]. Some data from
the ADMIRE model is given in Appendix A.
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Figure 1.6: F-104G Starfighter.

The F-104G Starfighter, shown in Fig-
ure 1.6, is a single seat, single-engine,
supersonic point defense interceptor
designed by Lockheed as a product
of the Korean war. An interceptor is
a type of aircraft that usually attacks
enemy non-fighters. The F-104 has
a maximum take-off weight of about
13000 kg and is designed with a slen-
der low aspect ratio wing with an area
of 16.66 m2. Powered by a GE-J79
turbo-jet afterburner engine with a
trust of 44 kN dry and 69 kN using the
afterburner it has an overemphasized
rate-of-climb and brute speed. The Starfighter was the first aircraft to hold si-
multaneous official world records for speed, altitude and time-to-climb. The first
flight was performed on the 17th of February 1956 and it was introduced into the
U.S. Air Force in February 1958. This aircraft is called ”a missile with a man in
it”. More about this aircraft can be found in Upton [2003].

Figure 1.7: F-16C.

The F-16C Fighting Falcon, shown
in Figure 1.7, is a single seat, single-
engine multi-role fighter, first de-
signed as a air superiority fighter,
meaning that it should go into enemy
territory and take control over the air
space, preventing the enemy to use
its air force. Developed by General
Dynamics, the aircraft first flight was
performed on the 20th of January in
1974 and it was introduced into the
U.S. Air Force in August 1978. This
aircraft is aerodynamically static un-
stable (subsonically) and has a fly-by-
wire flight control system. The layout
is a conventional wing tail-plane con-
figuration where the horizontal tail is all moving for pitch and roll control. With
a wing area of 28 m2 and a maximum take-off weight of 19200 kg, it is an air-
craft of roughly the same size as the JAS 39 Gripen. The F-16 is powered by the
F110-GE-129 Afterburner turbofan engine, which gives a thrust of 76.3 kN dry
and 127 kN using the afterburner. Details can be found in Hamilton [2012].
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Figure 1.8: GFF.

The GFF [Jouannet et al., 2012],
shown in Figure 1.8, is a single-engine
Generic Future Multi-role Fighter
demonstrator. It is a sub-scale re-
search aircraft developed by Saab,
the Swedish Defense Research Agency
(FOI), Volvo Aero, Linköping Univer-
sity (LiU) and the Royal Institute of
Technology (KTH), ordered by the
Swedish Material Board (FMV) in
2006. The main objective was to
look at a future multi-role fighter with
stealth, super cruise and long range
capabilities. The aircraft has an all-
moving canard configuration with a fixed V-tail. The maiden flight was in Novem-
ber 2009. The full-scale aircraft design has a wing area of 47 m2 and a maximum
take-off weight of 23500 kg, being significantly larger then the JAS 39 Gripen.
The engine is estimated to have a max thrust of 170 kN using the afterburner.
The GFF has a JetCat P160 model jet engine capable of delivering 160 N thrust.

Figure 1.9: Saab 210 Lill-Draken.

The Saab 35 Draken was a Swedish
fighter of the cold war (1946-1991).
It was Saab’s first supersonic aircraft
with a max speed over two times the
speed of sound. Its double-delta wing
configuration was designed so that
both low- and high-speed flight re-
quirements could be met. The aero-
dynamics of the wing was first tested
with small-scale (0.92 m span) wire-
controlled model aircraft, then with
a sub-scaled (4.88 m span) manned
demonstrator aircraft (Saab 210, Fig-
ure 1.9) before finally testing the real

Figure 1.10: Saab 35 Draken.

full-scale aircraft. The Draken, shown
in Figure 1.10, has a wing area
of 49.2 m2 and a maximum take-off
weight of about 16000 kg. The en-
gine produced a thrust of 56.5 kN
dry and 78.4 kN with the afterburner.
Draken first flew on the 25th of Octo-
ber 1955 and was introduced into the
Swedish Air Force in March 1960. The
Draken history is found in Jørgensen
[2015].
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1.5 Contributions

The subject of system identification applied to aircraft is not new. Several books
have been published on the subject, like Klein and Morelli [2016], Jategaonkar
[2015] and Tischler and Remple [2012]. A historical perspective of the subject
is given in ’The Evolution of Flight Vehicle System Identification’, presented in
Hamel and Jategaonkar [1996]. Research is still continued to develop more ef-
fective methods supporting the development of new aircraft. One research topic,
described in this thesis, is a sequential method used for identification during
flight-testing. The aim of this method is to aid the aeronautical engineer in mak-
ing decisions if to repeat, proceed or abort the testing. These decisions are based
on the estimated parameters compared to an already existing model, but also on
the estimated amount of information content in data. An existing frequency do-
main method by Klein and Morelli [2016] was implemented both at Linköping
University and at Saab Aeronautics. The first contribution consists of the analysis
of a correctly implemented finite Fourier transform of the time derivative used in
the method and the second contribution is the implementation of an Instrumen-
tal Variable (IV) approach together with data fusion to take care of system noise
such as atmospheric turbulence and varying excitation. The method in Klein
and Morelli [2016] has been compared to the improved method as well as to a
recursive time domain method. Results are published in the following articles

R. Larsson and M. Enqvist. Real-time aerodynamic model parameter
identification. In Society of Flight Test Engineers International Sym-
posium, Linköping and Stockholm, Sweden, September 2009.

R. Larsson and M. Enqvist. Sequential aerodynamic model parameter
identification. In Proceedings of the 16th IFAC Symposium on System
Identification, pages 1413–1418, Brussels, Belgium, July 2012a.

The third contribution is a test of the frequency domain method. An experiment
was designed using multisine input signals and the GFF subscale demonstrator
aircraft was used as a test platform. The test execution and results from this are
given in

A. Sobron, D. Lundström, P. Krus, R. Larsson, and C. Jouannet. Meth-
ods for efficient flight testing and modelling of remotely piloted air-
craft within visual line-of-sight. In Proceedings of the 31th Congress
of the International Council of the Aeronautical Sciences, 2018.

R. Larsson, A. Sobron, D. Lundström, and M. Enqvist. Multisine in-
puts for a subscale demonstrator aircraft. Submitted to Control Engi-
neering Practice, March 2019.

Another research topic is the identification of unstable and nonlinear systems
working under feedback. This is a complex task. The aim is to simplify the mod-
eling process for the aeronautical engineer making nonlinear models post flight.
For this purpose, a benchmark problem has been formulated. This can in itself
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be seen as a contribution, but the results of the comparison are more important.
The fourth contribution is the analysis of the properties of a method that includes
a parameterized observer that stabilizes the predictor used. This method is com-
pared with four other direct identification methods with respect to how they are
affected by different noise sources. Effects of both white measurement noise and
process noise in the form of atmospheric turbulence have been investigated. An
interesting result is that the implemented parameterized observer method that,
in contrast to the other methods, is without any tuning parameters seems to be
least sensitive to noise and initial offset of the model parameters for the studied
cases. The methods and results are published in the following articles

R. Larsson, Z. Sjanic, M. Enqvist, and L. Ljung. Direct prediction-error
identification of unstable nonlinear systems applied to flight test data.
In Proceedings of the 15th IFAC Symposium on System Identification,
pages 144–149, Saint-Malo, France, July 2009.

R. Larsson and M. Enqvist. Nonlinear aerodynamic modeling of unsta-
ble aircraft using flight test data. In Proceedings of the 28th Congress
of the International Council of the Aeronautical Sciences, Brisbane,
Australia, September 2012b.

R. Larsson and M. Enqvist. An easy to use engineering method for
identification of complex flight dynamics from flight test data. In
Proceedings of 16th AIAA Aviation Technology, Integration, and Op-
erations Conference, AIAA Aviation 2016, Washington DC, USA, June
2016.

1.6 Thesis outline

This thesis is a continuation of the Licentiate thesis Larsson [2013]. The thesis
begins with a general description of system identification in Chapter 2 and an in-
troduction to flight mechanics and flight-testing in Chapter 3 and 4 respectively.
These three chapters are meant to give a foundation for the understanding of
the chapters that present the contributions. In Chapter 5 the sequential identifi-
cation is presented and in Chapter 6 the GFF flight test experiment is described.
Chapter 7 presents the parameterized observer (PO) for identification of unstable
and nonlinear systems. An analysis of the PO predictor characteristics, including
a comparison with four other methods is given in Chapter 8. A discussion of the
results is then presented in Chapter 9. Some background theory and complemen-
tary results are given in the appendices.





2
System identification

"When you have eliminated the impossible, whatever remains, however improb-
able, must be the truth."
- Sherlock Holmes, The sign of the four (1890)

As stated in the introduction, system identification is the art of building mathe-
matical models of dynamical systems based on measurements of input and out-
put signals. These models can then be used to study the system response for
different inputs. Hopefully, these studies lead to an understanding of the system
properties that then can be used, for example, to improve the system behavior
by adding a control system. In this chapter, some basics of system identifica-
tion are presented. The main concepts of this subject are the true system under
investigation, the model structure that is used to describe the true system, exper-
imental design to get the information for the identification and the method used
to estimate the model that should describe the true system in a satisfactory way.
Some standard references on the subject of system identification are Söderström
and Stoica [1989], Ljung [1999] and Pintelon and Schoukens [2012]. These books
cover the details of the subject, both for time and frequency domain system iden-
tification. An overview of the subject can be found in Ljung [2008].

2.1 System

What is a dynamical system? A system can be almost anything. One way of
defining a system is to let a human observer put a boundary around something
that he or she wants to investigate. A dynamical system is a system that includes
some time history dependence. This means that the state x(t) of the dynamical
system at time t is dependent on the state at earlier times. A system S can be
influenced by a controllable input u(t), which can come from a desired reference

11
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r(t) and also as a feedback of measured quantities from the system. Process noise
w(t) is another source of influence, which in contrast to u(t) is a disturbance that
can affect the system without any predetermined intention. The influence of both
the input and process noise leads to a response z(t) of the system. Observations
can be made by measuring the output y(t), which reflects some or all response
properties. The measurements can be affected by noise v(t) that come from the
sensors or the environment that these sensors are placed in. The measured output
of the system can mathematically be described as a function

y(t) = S(u(t), w(t), v(t)) (2.1)

Note that the function describes the entire signals from t = −∞ to t = +∞. How-
ever, the aircraft application studied in this thesis is causal, meaning that the
output at the current time is only affected by the history, of the input and noise,
up to the present time.

An important property of dynamical systems is the stability characteristics. There
exist several different types of stability concepts [Khalil, 2002] and [Cook, 1994].
Here, some versions used in system identification are given.

Consider a nonlinear system S described by a state-space equation

ẋ(t) = aS (x(t), u(t), w(t)), x(t0) = x0

y(t) = cS (x(t), u(t), v(t))
(2.2)

where aS (x(t), u(t), w(t)) is the function that describes the time history depen-
dency of the system state given the input and process noise. Initially the system
will be in some state x(t0) = x0. Observations of the states are then described
by the measurement function cS (x(t), u(t), v(t)) and depend on the input and
the measurement noise. An equilibrium (x∗(t),u∗(t)) of the system is defined as
aS (x∗(t), u∗(t), 0) = 0. This equilibrium can have different stability characteristics.
According to Khalil [2002], the equilibrium of the system (2.2) is said to be stable
if for any given ε > 0 there exists a δ > 0 such that

|x∗(t) − x(t0)| < δ⇒ |x∗(t) − x(t)| < ε ∀t ≥ t0 (2.3)

Otherwise the system is unstable. The system is convergent if there exist a δ > 0
such that

|x∗(t) − x(t0)| < δ⇒ |x∗(t) − x(t)| → 0 as t →∞ (2.4)

An equilibrium is said to be asymptotically stable if it is both stable and con-
vergent. Figure 2.1 shows an example of the three different stability cases of an
equilibrium both for non-oscillative and oscillative cases. With this stability def-
inition it is possible to analyze the falling apple, mentioned in the introduction.



2.1 System 13

0 5 10
−5

0

5

t (s)

x(
t)

A: Asymptotically stable

0 5 10
−5

0

5

t (s)

x(
t)

B: Stable

0 5 10
−5

0

5

t (s)

x(
t)

C: Unstable

0 5 10
−5

0

5

t (s)

x(
t)

0 5 10
−5

0

5

t (s)

x(
t)

0 5 10
−5

0

5

t (s)
x(

t)

Figure 2.1: Behavior of asymptotically stable (A), stable (B) and unstable (C)
systems for both oscillative (top) and non-oscillative (bottom) cases.

Example 2.1: Falling apple

Assume that there is an apple balancing on a branch in an apple tree. Let the po-
sition be measured from this point, which is an equilibrium since the time deriva-
tive of the states, position P (t) and speed V (t), both are zero. A wind disturbs
the tree at time t = 0 and the apple falls down. The true system and the observer
are shown to the left in Figure 2.2. To the right is a block diagram, which in the
control community is a common way to graphically describe a dynamic system.

This system is autonomous, meaning that it has no time dependent input. The ap-
ple falls towards the ground by the influence of gravity, which is here considered
to be process noise. This gravitational force determines the trajectory that the
apple will follow. By looking at this trajectory it is possible to make observations
of the position of the apple as it falls. The accuracy of the observations is affected
by the observer’s eyesight and maybe even the atmospheric properties around
the person. For example, the observations would be degraded if the apple falls
in rain. The apple will fall away from its initial condition. This means that the
distance from the initial position will grow to infinity (or in this case until it hits
the ground and finds a new equilibrium). The behavior of the apple is unstable
with respect to the equilibrium on the branch and can be described by the lower
right picture in Figure 2.1.
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Figure 2.2: The true system and block diagram used for the falling apple.

Another type of stability is called bounded-input, bounded-output (BIBO) stabil-
ity. In this case the system (2.2) is said to be BIBO-stable if there exists a finite
constant η such that for a bounded input u(t) with |u(t)| ≤ δ, δ > 0, it holds that

sup |y(t)| ≤ η sup |u(t)| ∀t ≥ t0 (2.5)

which means that the output is limited so that it does not grow to infinity.

The stability characteristics of a system can be affected by adding a control sys-
tem. One part of the control system can change the input based on the measured
output. This principle is called feedback and is denoted Fy . In addition to this,
a part that changes the input based on a user, or reference, signal is called feed-
forward and is denoted Fr . As an example consider the shower mentioned in the
introduction.

Example 2.2: Shower

The true system and block diagram are shown in Figure 2.3. Here, the reference is
a desired water flow and temperature, which in this case is controlled by turning
the water mixer lever. The flow and temperature can be measured by putting a
hand into the shower. The user can then adjust the mixer until the water reaches
the desired state. Here, the user and the mixer together act as both a feed-forward
and feedback system that mixes the cold and hot water, which is the input to
the system. In modern mixers there can also be a thermo element working as
a feedback system that takes care of minor changes in input temperature that
could be caused by pressure disturbances originating from the fact that other
people use the tap water system. This kind of disturbances is more common in
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Figure 2.3: The real system and block diagram used for the shower example.

old houses. The shower system is usually both asymptotically stable and BIBO-
stable since the temperature and flow will normally settle to an equilibrium after
a disturbance or user input.

2.2 Modeling

The exact details about the true system stability and controllability characteris-
tics may be unknown, but by performing experiments and observing the response
it is possible to make mathematical models that mimic the true system. The mod-
eling can be done in several ways. As an example, a parameterized state-space
structure (M)

ẋ(t) = a(x(t), u(t), w(t); θ)

y(t) = c(x(t), u(t), v(t); θ)
(2.6)

can be used. Here, x(t) is a nx × 1 state vector, u(t) is a nu × 1 input vector and
w(t) is the modeled process noise. The nonlinear continuous function a describes
the dynamics of the model. The output y(t) is a ny × 1 vector and v(t) is the
modeled measurement noise. The nonlinear continuous function c describes the
measurements. The vector θ contains the np parameters to be estimated so that
the model in (2.6) describes the physics of, for example, the nonlinear system
(2.2). In some cases the measurement and/or process noise are assumed to be
white, meaning that the power spectrum is flat. White noise is usually denoted
with e(t) to separate it from general noise characteristics. A state-space model of
a physical system can sometimes be obtained by ’first principles’, i.e., based on
some established physical law. For example, modeling the motion of the falling
apple is usually done using Newton’s second law.
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Measured data is often given in discrete time. Therefore (2.6) has a discrete-time
state-space formulation

xk+1 = f (xk , uk , wk ; θ)

yk = h(xk , uk , vk ; θ),
(2.7)

which normally is an approximation when (2.6) and (2.7) are compared. Here,
t = Ts k, which means that xk is the discrete state sample corresponding to x(t) =
x(Ts k). Note here the abuse of notation of w and v. These are not the same noise
terms as in (2.6), but they represent the same type of noise, i.e., process and mea-
surement noise, respectively.

Special, and simpler, cases of (2.6) and (2.7) are obtained if the models are linear,
such that the equations can be written as

ẋ(t) = A(θ)x(t) + B(θ)u(t) + w(t)

y(t) = C(θ)x(t) + D(θ)u(t) + v(t)
(2.8)

for the continuous-time case and

xk+1 = F(θ)xk + G(θ)uk + wk
yk = H(θ)xk + J(θ)uk + vk

(2.9)

for the discrete-time case.

It is important to use a model that is complex enough to describe the phenomenon
of interest, but not more complex than that. So, the model complexity (C) has to
be considered. The complexity could be represented by the number of param-
eters, np, to be estimated or by whether the model structure to be used should
be linear or nonlinear. As an example, consider again the falling apple in Exam-
ple 2.1.

Example 2.3: Falling apple continued

If the apple falls from a tree its motion could, to an acceptable accuracy, be mod-
eled as [

Ṗ (t)
V̇ (t)

]
=

[
0 1
0 0

] [
P (t)
V (t)

]
+

[
0
g

]
Pm(t) =

[
1 0

] [P (t)
V (t)

]
,

(2.10)

i.e., as a continuous-time linear system with the position P (t) and velocity V (t)
as states, influenced by gravity g. Capital letters have been used for the states to
avoid mixing the notation of the velocity V (t) with the measurement noise v(t).
The measurement is the observed position Pm(t) of the apple with the origin at the
initial apple position and positive direction towards the center of the earth. This
model could for example be used to estimate the gravity constant. Now, if the
apple were to be dropped from a hot air balloon flying at some high altitude, the
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model (2.10) would not be accurate enough. The reason for this is that the speed
of the apple would increase so much that the air resistance would significantly
affect the motion. The model would have to be modified as[

Ṗ (t)
V̇ (t)

]
=

[
V (t)

− ρCDSV
2(t)

2m

]
+

[
0
g

]
Pm(t) =

[
1 0

] [P (t)
V (t)

] (2.11)

where ρ is the air density, m is the apple mass, CD is a drag coefficient describing
the friction and pressure on the apple due to the air passing around it and S is
the cross section area. Note that the velocity V (t) now enters the equation both
in a linear and a quadratic way. Hence, this is a nonlinear model. The difference
in position when using the linear or the nonlinear model approach is shown in
Figure 2.4. It is easy to see that after only 1 second and about 4 meters the out-
puts from the two models differ.

The apple will actually reach a constant speed, using the nonlinear model, after
falling some time in the atmosphere. This speed is called the terminal speed. In
this example it is possible to measure it from Figure 2.4 as Vterminal ≈ 16(m/s).

0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

25

30

35

40

45

t (s)

P
 (

m
)

 

 
Linear
Nonlinear

Figure 2.4: Difference in position between the linear (2.10) and nonlinear
(2.11) model used for the falling apple.
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The model of the falling apple can be made even more complicated if one would
consider atmospheric turbulence. This will not be shown here, but an atmo-
spheric model has been implemented for the use of process noise investigations
in Chapters 5 - 8. This has been done using another type of model structure based
on transfer functions. The transfer function description is based on a differential
equation of the form

dn

dtn
w(t) + d1

dn−1

dtn−1w(t) + ... + dnw(t) = c1
dm

dtm
e(t) + c2

dm−1

dtm−1 e(t) + ... + cme(t).

(2.12)
The transfer function H(s) can be obtained by applying the Laplace transform to
(2.12), which results in

W (s) = H(s)E(s) =
c1s

m + c2s
m−1 + ... + cm

sn + d1sn−1 + ... + dn
E(s). (2.13)

The model description given here was of a fairly general type. In Chapter 3, a
dynamical model for aircraft and atmospheric turbulence will be presented in
more detail. The next question in the present chapter is, how can the model be
estimated?

2.3 Methods

Identification of the system (S) using a model structure (M) and the information
in a data set ZNe = {uk , yk}Nk=1 is the process of finding a model (m) that is usable
for the purpose of the application. Consider a discrete-time formulation

{yk}Nk=0 = S({uk}Nk=0, {wk}
N
k=0, {vk}

N
k=0) (2.14)

of the general system (2.1) with the signal time interval t = 0 to t = TsN . It is pos-
sible that the mathematical structure of the system is unknown, and then some
non-parametric or a general parametric identification method can be used. An
example of a non-parametric approach is to use a kernel based method described
in Roll [2003] where the estimation can be given as

ŷ(ti) =
N∑
k=0

Wkyk . (2.15)

Here Wk are weights applied to each output data point yk in the data set to make
an estimate ŷ(ti) of y(ti). Figure 2.5 shows an estimation ŷ(5.5) with a weight
coinciding with the triangular kernel of the form

Wk = K(tk , a, ti) =
{ 1

a2 (a − |tk − ti |) if a − |tk − ti | ≤ a
0 otherwise,

(2.16)

which has a base of 2a and a height of 1/a.
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Figure 2.5: A non-parametric estimation, ŷ(5.5), using a triangular kernel.

A ordinary Least-Squares method with a polynomial model in a linear regression
problem formulation can be used as an example for the general parametric iden-
tification method. The regression formulation is given as

yk = φTk θ (2.17)

where φTk = [yk−1 uk−1 y
2
k−1 yk−1uk−1 u

2
k−1 . . .]T and θ = [a1 b1 a2 c2 b2 . . .]T .

Caution must be taken to the polynomial degree, so undesirable characteristics
are avoided in the model. Particular caution is required for estimation outside
the data set. Here the polynomial can grow rapidly. Consider for example the
polynomial

y = a0x
0 + a1x

1 + a2x
2 + a3x

3 + e (2.18)

with a data set given in Figure 2.6. In the figure, three different models are sug-
gested for polynomial degree one, three and nine. As can be seen, all the mod-
els give reasonable amplitudes of y within the given data set, but grow outside
this range. The three models fit the data set differently giving different accuracy,
which is no surprise. The model with degree one gives a poor estimate, under-
fitting the data. On the other hand, the model with degree nine seems to give
the best estimate. This is even better that for the model with the true degree.
However, since the data is noisy some of the unwanted noise characteristics is
included in the model, leading to an overfitting of the data to the system.
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Figure 2.6: A general parametric method using a polynomial.

In this thesis, the mathematical structure is known since it is assumed that the
true system, for the studied aircraft application, can be described by a state-space
equation

xk+1 = fS (xk , uk , wk)

yk = hS (xk , uk , vk).
(2.19)

The desired result from the system identification is a simulation model that can
be used for investigation of flight mechanical characteristics. Such a model has
the following model structure

xk+1 = f (xk , uk ; θ)

yk = h(xk , uk ; θ)
(2.20)

Note that this model has no noise model. During the identification process a
noise model can be needed as a way to take proper care of noisy input and out-
put data.

When the parameters have been estimated, the quality of the model has to be
validated using a data set ZNv that is different from the set used for the estimation.
This has to be done in order to ensure that the model is useful in general, i.e., that
the model fit F(m, Z) is good for all possible data sets from the system and not
just the specific data set used during the estimation. Here

F(m, Z) = 100(1 −
‖yk − ŷk(θ)‖2
‖yk − ȳk‖2

) (2.21)

where ŷk(θ) is the estimated output when using the parameters θ and ȳk is the
mean of the output. It should be noted that it is in general good to have a high
model fit value, but a perfect model fit of 100% is not expected if noise is present
in the validation data.
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The identification methods presented here are described in a general sense. A
more specific description used for the aircraft application will be given in Chap-
ters 5 to 8.

2.3.1 Prediction-error method

The Prediction-Error Method (PEM) [Ljung, 1999] uses model predictions ŷk(θ)
of the present outputs, influenced by past inputs and outputs, to compare with
the present outputs. A simple predictor for a stable discrete-time nonlinear state-
space model can be written as

x̂k+1(θ) = f (x̂k(θ), uk , yk ; θ)

ŷk(θ) = h(x̂k(θ), uk ; θ)
(2.22)

where the dynamic model f is influenced by the measured inputs and outputs.
The prediction error is the difference between the measurement and the predic-
tion, given as

εk(θ) = yk − ŷk(θ). (2.23)

The PEM is based on the strategy to minimize the prediction-error with respect
to the model parameters. This can in general be described as an unconstrained
optimization problem with the cost function

VN (θ, ZN ) =
1
N

N∑
k=1

l(L(q)εk(θ)) (2.24)

where q is the time shift operator (qyk = yk+1), L(q) is a stable linear filter and l(.)
is a nonnegative scalar-valued function. In this thesis, a special choice, L(q) = 1
and l(.) = 1

2εk(θ)T εk(θ), is used. With this choice the optimization problem of
minimizing VN (θ, ZN ) w.r.t θ can be written as

minimize
θ

1
N

N∑
k=1

1
2
εk(θ)T εk(θ) (2.25)

or in vector form
minimize

θ

1
N

1
2
ε(θ)T ε(θ) (2.26)

where ε(θ) = [ε1(θ)T ε2(θ)T . . . εN (θ)T ]T . The argument that gives the solu-
tion to this problem is denoted θ̂. It should be noted that, even though the op-
timization is unconstrained, the predictors used in this thesis have to be stable,
which gives a kind of internal constraint.

If ŷk(θ) can be written as a linear regression, ŷk(θ) = φTk θ, where φk are regres-
sors that include past inputs and outputs. The solution to the minimization in
(2.25) and (2.26) can be expressed analytically as

θ̂LS = (
1
N

N∑
k=1

φkφ
T
k )−1 1

N

N∑
k=1

φkyk = (ΦTΦ)−1ΦT y (2.27)
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where Φ = [φ1 φ2 . . . φN ]T . This is called the Least-Squares approach and will
give a solution to the problem provided that the inverse exists. Assume that the
true output in (2.19) can be written as

y = ΦT θ0 + v0 (2.28)

where θ0 contains the true parameters and v0 is the true measurement noise.
Using the true output in (2.27) gives

θ̂LS = (ΦTΦ)−1ΦT y = θ0 + (ΦTΦ)−1ΦT v0. (2.29)

The expectation E[θ̂LS ] of the estimated parameters and the associated covariance
Cov[θ̂LS ] = E[(θ̂LS − E[θ̂LS ])(θ̂LS − E[θ̂LS ])T ] are given as

E[θ̂LS ] = θ0 + E[(ΦTΦ)−1ΦT v0] (2.30a)

Cov[θ̂LS ] = E[(ΦTΦ)−1ΦT v0v0
TΦ(ΦTΦ)−1]

− (E[(ΦTΦ)−1ΦT v0])(E[(ΦTΦ)−1ΦT v0])T .
(2.30b)

To have an unbiased estimate, the second term in the expectation E[θ̂LS ] in (2.30a)
has to be zero. This will be the case if the inverse exists, the noise v0 has zero
mean, i.e. E[v0] = 0, and is independent of the regressors Φ. If E[v0v0

T ] = σ2 I is
the covariance of v0, then

E[θ̂LS ] = θ0 (2.31a)

Cov[θ̂LS ] = σ2(ΦTΦ)−1. (2.31b)

In the cases when (2.25) cannot be solved analytically a numerical approach has
to be used. Then some method that searches for a sequence of θ-values that
iteratively improves VN (θ, ZN ) can be used. A general type of search routine is
given by

θ̂i+1 = θ̂i − µi[RiN ]−1V
′
N (θ̂i , ZN ) (2.32)

where i indicates the iteration number and µi is the step length that should be cho-
sen such that the loss function VN (θ, ZN ) decreases with increasing number of it-
erations. By changing RiN the search direction given by the gradient V

′
N (θ̂, ZN ) is

modified. Here, the choice called the Levenberg-Marquardt procedure [Nocedal
and Wright, 2006] is used, for which

RiN = JT J + λ2
LM Inθ×nθ (2.33)

where J = 1
N
∂ε(θ)
∂θ andλLM is used for regularization, i.e., to take care of numeri-

cal problems, typically when JT J is close to singular. Putting λLM = 0 gives the
well-known Gauss-Newton approach.

No analysis of convergence or consistency concerning the PEM is given here, but
these aspects can be found in Ljung [1978]. It should be noted that the nonlinear
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versions of the Kalman filter [Kalman, 1960] use approximations that lead to
convergence properties that are hard to analyze. A good starting guess of the
solution will help the convergence. This aspect is investigated in the aircraft
application in Chapter 8.

2.3.2 State and parameter estimation method

Another method, using prediction errors, is to augment the parameter vector
with the states at each time step

ϑ = [xT0 ... x
T
N−1 θ

T ]T . (2.34)

Hence, the predictor becomes

ŷk(ϑ) = h(uk ; ϑ). (2.35)

The dynamic equation for xk is not needed here since the states are included in
the parameter vector ϑ. Then the prediction error in (2.23) is rewritten as

εk(ϑ) = yk − ŷk(ϑ). (2.36)

This leads to a constrained optimization problem, described in Mulders et al.
[2010] that can be written as

minimize
ϑ

1
2
εk(ϑ)T εk(ϑ)

subject to F(ϑ) = 0
(2.37)

where ε(θ) = [ε1(ϑ)T ε2(ϑ)T . . . εN (ϑ)T ]T . For this, (2.22) has been used to
formulate the constraint with

F(ϑ) =


f (x0, u0, θ) − x1
f (x1, u1, θ) − x2

...
f (xN−1, uN−1, θ) − xN

 (2.38)

It should be noted that this constraint does not take care of any process noise. If
process noise is present, a noise model has to be included, otherwise the method
can lead to biased results. The solution of the minimization is given by, as in
(2.32), iteratively calculating the parameters

ϑi+1 = ϑi + δϑ (2.39)

until convergence. Here δϑ is calculated from a constrained version of the general
search routine (2.32) using the Levenberg-Marquardt procedure (2.33), which
gives [

JT1 J1 + λ2
LM Inϑ ,nϑ JT2
J2 0

] [
δϑ
λ

]
=

[
−JT1 ε
−F

]
(2.40)

where J1 = ∂ε(ϑ)
∂ϑ and J2 = ∂F(ϑ)

∂ϑ . The parameter λLM is used for regularization in
the same way as in (2.33). The model parameter estimates θ̂ is extracted from ϑ̂.
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2.3.3 Instrumental variable method

If there is correlation between the regressors φk and the noise vk when using
the Least-Squares approach to solve the linear regression problem, the solution
can be biased. An alternative that can be used to give consistent solutions and
that is a generalization of the Least-Squares method uses instrumental variables
ζk , which are independent of the noise but correlated with the regressors. The
Instrumental-Variable (IV) method [Söderström and Stoica, 2002], which is not a
PEM, gives the parameter estimate

θ̂IV = (
1
N

N∑
k=1

ζkφ
T
k )−1 1

N

N∑
k=1

ζkyk = (ZTΦ)−1ZT y (2.41)

where Z = [ζ1 ζ2 . . . ζN ]T . This will, as in the Least-Squares approach, give
a solution if the inverse exists. As can be seen, the structures of the solution
in the two approaches are similar. Optimal instruments in a variance sense are
dependent on the true system, which is unknown since it is the goal of the iden-
tification. However, one way would be to use a prior estimate of the model to
generate noise-free data, which would improve the identification [Ljung, 1999,
Chapter 7, p. 225].

2.3.4 State estimation method

A common method in the navigation community when treating unknown param-
eters is to add them as static states in the model,

x̄k =
(
xk
θk

)
. (2.42)

This gives rise to the following state-space model

x̄k+1(θk) =
(
xk+1(θk)
θk+1

)
=

(
f (xk(θk), uk ; θk) + wk

θk + wθ,k

)
yk(θk) = h(x̄k(θk), uk)

(2.43)

where wθ,k is a small artificial noise term that allows the parameters to vary dur-
ing the identification. The identification problem can be solved by using a recur-
sive filter to produce improved state estimates in a similar way as the Extended
Kalman filter [Welch and Bishop, 2006] does when fusing state estimates with
measurement data to minimize the state variance. Since, in the present case, the
model parameters are a part of the states they will also be improved during the
recursive filtering.

2.4 Testing

When designing an experiment, care has to be taken as to get enough information
in the estimation and validation data. This has to be done so that a proper estima-
tion can be performed. When the data has been collected, missing information
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means that further experiments have to be performed. This can be a costly and
time-consuming process. This makes the experiment design a crucial part of the
system identification process.

The systems under consideration can be unstable and work in closed-loop. This
means that the reference signal, i.e., the pilot input, has to be persistently exciting,
meaning that it leads to an input that will excite the system so that the model
parameters can be uniquely estimated.

2.5 Simple example

Here, a simple example is given to illustrate the identification process. Consider
a F104-A Starfighter aircraft, as shown in Figure 2.7. The goal is to identify a
model that can be used to describe a pure rolling maneuver at low speeds. This
type of maneuver is controlled by the ailerons, which are a control surface pair
that is deflected asymmetrically (δa), positioned at the trailing edge of the outer
part of the wing. The response is a motion given by the roll rate (p) around the
length-axis of the aircraft. The system can be described by the model structure

ṗ = Lpp + Lδaδa, (2.44)

which comes from prior knowledge of flight mechanics. Here Lδa and Lp are the
model parameters to be estimated. They are called aileron effectiveness and roll
damping respectively.

Assume that two datasets, ZN
e and ZN

v , at low speed and low altitude are available.
These datasets usually come from flight tests, but are here given by simulations.
The true parameters, Lp = −1.3 and Lδa = 4.66, used come from Nelson [1998].
The dataset ZN

e , an aileron step input shown in Figure 2.8, is used for the estima-
tion. White noise with zero mean and a standard deviation of 0.1 deg/s has been
added to the measurements, which can be seen in the figure.

Figure 2.7: F104A Starfighter.
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Figure 2.8: Dataset ZNe : an aileron step input and the roll response.

The identification is done in discrete time since data are sampled. For this a
simple Euler forward discretization of (2.44) with sample time Ts = (1/60) s has
been used, which resulted in the model

pk = (1 + Ts Lp)pk−1 + Ts Lδa δa, k−1. (2.45)

By looking at this equation it is possible to define the regression ŷk(θ) = φTk θ
with the regressors

φk =
[
pk−1 δa, k−1

]T
(2.46)

and the parameters

θ =
[
θ1 θ2

]T
=

[
(1 + Ts Lp) (Ts Lδa )

]T
(2.47)

Here the Least-Squares approach, described by (2.27), can be used to estimate θ̂1
and θ̂2. These are then used to calculate the estimate of L̂p and L̂δa , which are
the model parameters of interest in the continuous-time equation (2.44). In this
case the Least-Squares estimate based on the estimation data is L̂p = −1.2941 and
L̂δa = 4.6116.

To see if the estimated model is useful, a validation is performed on the second
dataset ZNv , an aileron doublet shown as the solid line in Figure 2.9. White noise
with zero mean and a standard deviation of 0.1 deg/s has, also here, been added
to the measurements. The model predicts the new data well as can be seen by
the dashed line in the figure. In this example the model fit (2.21) is 96.87% and
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Figure 2.9: Dataset ZNv : an aileron doublet input and roll response for the
true system (solid) and identified model (dashed).

one can conclude that the estimated model clearly is useful for describing roll
maneuvers at low speed and low altitude. Comparing the estimated parameters
L̂p = −1.2941 and L̂δa = 4.6116 with Lp = −1.3 and Lδa = 4.66 used to simulate
the true system, one can see that they are very close.

This simple example was only used to illustrate the identification process. It
was based on a simple system. The systems of interest in this thesis are more
complex since they are unstable and/or nonlinear working under closed-loop
conditions. All these aspects make the identification problem harder. The next
chapter describes the aircraft system in more detail, mostly for those without an
aeronautical background.





3
Aeronautics

“It is possible to fly without motors, but not without knowledge and skill”
- Wilbur Wright (1867 - 1912)

In the previous chapter, systems and modeling of systems were described in a
general sense. Here the flight mechanical system characteristics of an aircraft and
the corresponding modeling are going to be described in some detail to prepare
for the theory and results in the coming chapters. The aircraft flight mechanics
are given as the stability and control properties during maneuvering. To get the
whole picture of this subject, the reader is recommended to look into Etkin [1972],
Stevens and Lewis [1992] and Nelson [1998], which are considered as standard
references.

3.1 Definitions

To be able to describe the flight mechanical system there are two coordinate sys-
tems that have to be considered. First an Earth-fixed system SE (OExEyEzE) is
defined, as shown in Figure 3.1, with the origin at a fixed point on the Earth’s
surface and the axes pointing north, east and down. For all practical purposes
concerning aircraft maneuvering the Earth rotation is ignored and a “Flat Earth”
assumption is made, i.e., the local surface curvature is assumed to be zero. SE
can then be used as an inertial reference system. The second coordinate system
is a Body-fixed system SB (OBxByBzB) with the origin fixed in the aircraft center
of gravity and the axes pointing forward (roll axis), to the right (pitch axis) and
down (yaw axis), all from the pilot’s point of view. Traditionally, the axes of SB
are given as (Oxyz) as in Figure 3.2. The Euler angles [Φ Θ Ψ ]T that describe the
rotation between SE and SB are called the roll, pitch and yaw angles, respectively.

29
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Figure 3.1: Earth system: Used as inertial system.

Figure 3.2: Body System: Used to define stability and control parameters.
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The kinematic equations describe the motion of the aircraft. For this, parameters
concerning the translation and rotation of the aircraft have to be defined. The
translation is given by the velocity V = [u v w]T , which is the aircraft velocity
relative to the air. Here u, v and w are the components in the SB system. The
velocity is often given in spherical coordinates V = [V α β]T shown in Figure 3.2.
The components are defined as

V =
√
u2 + v2 + w2 airspeed

α = tan−1(
w
u

) angle-of-attack

β = sin−1(
v
V

). angle-of-sideslip

(3.1)

An often used alternative definition of airspeed is the Mach number, M or Mach,
which is the ratio between the airspeed V and the speed of sound a, M = V

a . It
should be noted that the speed of sound changes with the altitude, meaning that
the Mach number will change with altitude for a constant airspeed.

The rotation of the aircraft is given by the angular velocity ω = [p q r]T around
the axes of SB. Here p, q and r are called the roll, pitch and yaw angular velocity,
respectively.

To be able to describe the dynamics, i.e., the forces and moments that generate the
kinematic motion, the parameters that affect the forces and moments acting on
the aircraft have to be defined. There are three major sources that contribute to
the forces and moments. The first is the gravitational force (FG = mg) which acts
on the aircraft mass m and gives rise to a force in the center of gravity. Here, g is
the gravity vector pointing towards the center of the earth. In addition, due to the
rotation of the aircraft, the mass in itself gives rise to inertial forces and moments.
The corresponding part of the mass in the force equation is the moment of inertia
I in the moment equation. This is defined as

I =


Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (3.2)

where the components are given by

Ixx =
∫
m

(y2 + z2) dm, Iyy =
∫
m

(x2 + z2) dm, Izz =
∫
m

(x2 + y2) dm

Ixy =
∫
m

(xy) dm, Iyz =
∫
m

(yz) dm, Ixz =
∫
m

(xz) dm .
(3.3)

Here the coordinates (x, y, z) are viewed as functions of the mass distribution,
i.e., they give the distance to every incremental mass dm. The second source is
the propulsion, (FP = Te) where Te is the installed engine thrust vector. This de-
pends on the propulsion system used. Gliders use gravity (FP is then not used),
some aircraft use the power from one or more engine driven propellers, other
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aircraft use the thrust from one or several jet engines. The thrust depends on
the throttle setting δP LA (Power Leverage Angle), airspeed V defined above, at-
mospheric temperature Ta and pressure altitude Hp defined as the altitude in the
ISA (International Standard Atmosphere, ISO 2533:1975) with the same pressure
as measured by the aircraft. Generally, the propulsive force has its main compo-
nent in the x-direction in the body system. For military aircraft with the engine
embedded in the fuselage the thrust vector is often very closely aligned with the
x-axis. For aircraft with the engines at an offset from the x-axis there will also
be a pitching and/or yawing moment due to the thrust. The sizes of these con-
tributions depend on the offset size. The third source is the aerodynamic forces
(FA) and moments (MA), which in a flight mechanical perspective come from the
interaction between the airflow and the geometrical surface shape of the aircraft.
The components in SB, [T C N ]T are called Tangential, Side and Normal force,
[L M N ]T are called Rolling, Pitching and Yawing moment. These are defined
as

T = qaSCT , C = qaSCc, N = qaSCN

L = qaSbCl , M = qaScCm, N = qaSbCn

(3.4)

where qa = 1
2ρV

2 is the dynamic pressure, ρ is the air density, S is a reference
area, c is the longitudinal reference length and b is the lateral/directional refer-
ence length. The reference entities are usually the wing area, wing mean aerody-
namic chord and wingspan, of the main wing respectively. The coefficients Cx,
x = T , C, N, l, m, n, are commonly used in the field of aerodynamics. These are
non-dimensional versions of the forces and moments. When describing the equi-
librium condition of flight dynamics, lift L and drag D are used. The relation to
the body fixed forces are defined as

L = N cos(α) − T sin(α)
D = T cos(α) + N sin(α). (3.5)

Note that the angle-of-sideslip is assumed to be zero and hence neglected. Lift
and drag are also used for flight performance calculations, typically describing
the aircraft range or take-off/landing properties.

The above definitions apply to all types of aircraft regardless of whether it is
a canard configuration, as in Figure 3.2, or a conventional tail configuration or
even a V-tail configuration. However, the way an aircraft is controlled is specific
for each type. The most common way to control an aircraft is to deflect one or
more control surfaces, thereby changing the aerodynamics, to rotate the aircraft
around the different axes of SB. The surface deflection is named by the Greek
symbol δwith a subscript to define its function. The deflection is defined positive
as shown in Figure 3.2 for the δT E (Trailing Edge), δLE (Leading Edge) and the δc
(Canard). Note here that the δr (Rudder) is a type of trailing edge surface.
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3.2 Flight mechanics

The flight mechanical characteristics of an aircraft are about equilibrium, stabil-
ity and control. Equilibrium in aeronautics is called trim. This is when all acceler-
ations and angular accelerations are zero, i.e., when the sum of all forces and the
sum of all moments are zero. This is the same definition as for a general system.
Figures 3.3 and 3.4 show a typical longitudinal trim condition for an F16 aircraft
flying at low altitude and low speed. The pitching moment is zero and the lift
balances the gravitational force, i.e., the weight. This results in a drag that gives
the required thrust. The aircraft has to meet this with the thrust available given
by the installed engine. The balancing is here done by the elevator deflection and
angle-of-attack for a fixed leading and trailing edge flap setting. In this specific
case, δe = −1.35◦ and α = 7.55◦.

Velocity 

!

"e 

"LE "TE 

Figure 3.3: Forces and moments on an F16 aircraft.

In addition to the general stability definitions from Chapter 2, which can be used
to characterize the aircraft motion, a specific definition called static stability is
used in flight mechanics. This stability is often used to describe the static mo-
ment characteristics of the aircraft. The moments are evaluated around the body-
fixed axes, which have their origin at the center of gravity. The mass distribution
and thus the center of gravity will change with internal movement of mass such
as fuel or passengers as well as mounting or dropping of external stores.

An aircraft is said to be pitch stable when its pitching moment derivative with
respect to the angle-of-attack is negative (Mα = ∂M/∂α < 0). A disturbance that
changes the angle-of-attack from the trim condition will in this case create a mo-
ment, leading to a motion, which will change the angle-of-attack back towards
the trim condition. If the aircraft were unstable, then a motion would change the
angle-of-attack away from the trim condition. In the same way stability in roll
is defined to be when the rolling moment derivative is negative with respect to
the angle-of-sideslip (Lβ = ∂L/∂β < 0) and stability in yaw is defined to be when
the yawing moment derivative is positive with respect to the angle-of-sideslip
(Nβ = ∂N /∂β > 0).
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Figure 3.4: For the trim condition, the weight is balanced by the Lift and the
pitching moment is zero. The condition gives a specific combination of the
angle-of-attack and the elevator deflection resulting in a aerodynamic drag,
which has to be balanced with the engine thrust. The red dashed lines give
all these values. To the lower right the black line gives that trust required
equals trust available.

The concept of static stability is shown in Figure 3.5, where a solid line is stable
and a dashed line is unstable. The stability definition in Chapter 2 is closely
related to what in aeronautics is called dynamic stability, which is about the
damping characteristics of the aircraft motion. The size of the pitch and yaw
damping is mainly dependent on the main stabilizing surfaces, i.e., the horizon-
tal and vertical stabilizers. Roll damping on the other hand mainly depends on
the wingspan.

For the description of control, focus in this thesis is on the JAS 39 Gripen multi-
role aircraft. The primary control functions are called aileron (δa) for roll control,
elevator (δe) for pitch control and rudder (δr ) for yaw control. These control
functions are made by deflecting one or more of the control surfaces as
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Figure 3.5: Static stability for roll, pitch and yaw (solid is stable, dashed is
unstable).

δa =
δTE,Left − δTE,Right

2
(3.6)

and

δe =
δTE,Left + δTE,Right

2
. (3.7)

The rudder control is defined in Figure 3.2. For JAS 39 Gripen there is an addi-
tional control function mainly used for pitch control and that is the canard (δc).
This function is similar to that for the elevator

δc =
δc,Left + δc,Right

2
. (3.8)

A positive elevator deflection gives a negative pitching moment and a positive
canard deflection gives a positive pitching moment. The idea is to be able to
use combinations of elevator and canard settings to improve the aircraft perfor-
mance and maneuverability. Positive aileron and rudder deflections will give a
positive rolling moment and negative yawing moment, respectively. These two
last controls also have secondary effects. A positive rudder deflection will con-
tribute to a positive rolling moment. The aileron deflection gives a contribution
to the yawing moment that can be positive or negative depending on the speed
and the elevator setting. To improve take-off and landing performance, flaps are
used. For the JAS 39 Gripen, the trailing edge flaps coincide with the elevator. In
addition, there are leading edge flaps (δLE). Flaps are used to increase the wing
lift, which makes it possible to fly at lower speeds for a given weight. For a fighter
aircraft the flaps are also used to improve turning performance. With the flaps
deflected it is possible to make tighter turns. To illustrate the complexity of the
flight mechanical characteristics of a fighter aircraft, an example showing the dif-
ferent sources, is given in Appendix A. This is taken from the Admire simulation
environment described in Forssel and Nilsson [2005], which features an aircraft
similar to Gripen.
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The process noise w(t) comes, in a flight mechanical point of view, from atmo-
spheric turbulence. This is a chaotic, irregular random motion of air due to con-
vective heating and wind shear in the atmosphere. This leads to internal friction
in the atmosphere as layers of air close together get different velocities. Consider
for example a warm summer day. A paved asphalt road can then be about 40%
hotter than the grass surfaces on either side of the road. Therefore the air above
the asphalt will get warmer than the air above the grass and hence, due to con-
vection, ascend faster. This difference in air speed gives rise to friction, which in
turn will give rise to what is called thermal turbulence. Another source of fric-
tion is ground structures such as forests, hills, mountains and buildings. When
air flows over and around these, there will be friction between the air and the
surfaces, which will create turbulence. This type of turbulence is called mechan-
ical turbulence. Together with the thermal turbulence, this low level turbulence
can reach up to about two km if the turbulence is severe. At higher altitudes
there is thermal turbulence due to instabilities in weather systems when hot air
ascend. In the worst cases these instabilities lead to thunderstorms. There is
also mechanical turbulence due to larger two-dimensional atmospherical eddies
such as rotations around low or high-pressure centers or at cold or warm weather
fronts. The larger eddies give energy to smaller eddies, which in turn give energy
to even smaller eddies and when a critical scale is reached, the turbulence gets
three-dimensional. The intensity of turbulence can vary from light to severe and
the length scales can also change from centimeters up to kilometers. These effects
vary both with space and time.

The other noise source is measurement noise v(t). This comes from inaccuracies
in the sensors used, but can also come from the positioning of and the environ-
ment around the sensor. As an example, turbulence can affect the angle-of-attack
vane to give false measurements relative the effect on the aircraft as a whole.

3.3 Modeling

With the definitions and system description at hand it is now possible to look at
the modeling of the flight mechanical motion of the aircraft.

3.3.1 System modeling

The equations describing the dynamics of an aircraft in motion are based on New-
ton’s second law. The force equation is given by

F = mV̇ + ω ×mV (3.9)

Here, F on the left hand side is the sum of the forces acting on the aircraft that
come from the engine propulsion, the aerodynamics and gravity. The right hand
side represents the change in motion. The first term comes from the well-known
momentum change, i.e., mass times change in velocity (often given as mass times
acceleration), and the second term has to be added since the motion is described
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in a system (SB) that in itself is in rotational movement relative to the inertia
system, which in this case is the earth (SE). The equation can be written asTe,x0

0

 +

−T−C−N
 +

 −mg sin(Θ)
mg cos(Θ) sin(Φ)
mg cos(Θ) cos(Φ)

 = m

u̇v̇
ẇ

 +

pq
r

 ×m
uv
w

 (3.10)

Note here that the gravity components depend on the orientation of the aircraft
relative to the earth. Looking at the components in the aircraft body system (SB),
the equations can be split up as

Te,x − T −mg sin(Θ) = mu̇ + [m(qw − rv)]

−C + mg cos(Θ) sin(Φ) = mv̇ + [m(ru − pw)]

−N + mg cos(Θ) cos(Φ) = mẇ + [m(pv − qu)]

(3.11)

which can be rewritten as

u̇ =
1
m
Te,x −

1
m
T − g sin(Θ) − qw + rv

v̇ = − 1
m
C + g cos(Θ) sin(Φ) − ru + pw

ẇ = − 1
m
N + g cos(Θ) cos(Φ) − pv + qu

(3.12)

These give the change in velocity as a function of time. To get the time change
for the angular rotation velocity, Newton’s second law for the moment has to be
used. This is given by

M = I ω̇ + ω × Iω (3.13)

where M is the sum of all moments. The derivation follow the same principle
as for the forces, but the engine propulsion and the gravity give no contribution.
This is because the forces from these sources act in the center of gravity for the
aircraft under consideration. The component equation can then be written as

L = Ixx ṗ + [−Ixz ṙ + (Izz − Iyy)qr − Ixzpq]

M = Iyy q̇ + [(Ixx − Izz)rq + Ixz(p
2 − r2)]

N = Izz ṙ + [−Ixz ṗ + (Iyy − Ixx)pq + Ixzqr]

(3.14)

which can be rewritten as

ṗ =
Izz
I2
∗
L − Ixz

I2
∗
N +

Ixz(Iyy − Ixx − Izz)
I2
∗

pq +
I2
xz + Izz(Izz − Iyy)

I2
∗

qr

q̇ =
1
Iyy
M− (Ixx − Izz)

Iyy
rq − Ixz

Iyy
(p2 − r2)

ṙ =
Ixx
I2
∗
N +

Ixz
I2
∗
L +

Ixz(Iyy − Ixx − Izz)
I2
∗

qr +
I2
xz + Ixx(Ixx − Iyy)

I2
∗

pq

(3.15)
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where I2
∗ = IxxIzz − I2

xz . It is assumed that the aircraft under consideration is sym-
metric in such a way that Ixy = 0 and Iyz = 0.

Since the gravity components are dependent on the orientation of the aircraft
relative to the earth, kinematic equations that describe the change in orientation
have to be used to get a system of equations that gives a unique solution. The
change in orientation between the earth system SE and the body system SB is
derived by three consecutive rotations in a specific order. To simplify the descrip-
tion, the origin of the two systems is taken to be the same. Then two systems, S1
and S2, are used to help visualizing the three rotations. The order is first a yaw
rotation about zE , then a pitch rotation about y1 and finally a roll rotation about
x2. This is shown in Figures 3.6 and 3.7. SE is used as a fixed inertia system, i.e.,
it has no angular velocity

pE = 0

qE = 0

rE = 0

(3.16)

To describe the motion of S1 relative to SE , the angular velocity of SE is projected

Figure 3.6: Euler rotations in order: yaw, pitch and roll.
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Figure 3.7: Euler rotations for an aircraft.
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onto S1 and then the yaw angular velocity Ψ̇ is added to rE

p1 = pE cos(Ψ ) + qE sin(Ψ ) = 0

q1 = qE cos(Ψ ) − pE sin(Ψ ) = 0

r1 = rE + Ψ̇ = Ψ̇

(3.17)

Then the angular velocity of S1 is projected onto S2 and the pitch rotation is
added to q1

p2 = p1 cos(Θ) − r1 sin(Θ) = −Ψ̇ sin(Θ)

q2 = q1 + Θ̇ = Θ̇

r2 = r1 cos(Θ) + p1 sin(Θ) = Ψ̇ cos(Θ)

(3.18)

Next the angular velocity of S2 is projected onto SB and the roll rotation is added
to p

p = p2 + Φ̇ = −Ψ̇ sin(Θ) + Φ̇

q = q2 cos(Φ) + r2 sin(Φ) = Θ̇ cos(Φ) + Ψ̇ cos(Θ) sin(Φ)

r = r2 cos(Φ) − q2 sin(Φ) = Ψ̇ cos(Θ) cos(Φ) − Θ̇ sin(Φ)

(3.19)

Finally, this is solved for the Euler angular velocities, which gives

Φ̇ = p + q sin(Φ) tan(Θ) + r cos(Φ) tan(Θ)

Θ̇ = q cos(Φ) − r sin(Φ)

Ψ̇ = q sin(Φ) sec(Θ) + r cos(Φ) sec(Θ)

(3.20)

where sec(Θ) = 1/ cos(Θ). Equations (3.12), (3.15) and (3.20) make up the basic
model structure for the flight mechanical motion.

3.3.2 Noise modeling

In addition to the system model, the modeling of realistic noise properties is
needed to be able to simulate real flight test data. Both process noise w(t) and
measurement noise v(t) will be used in the coming chapters. Here the mathemat-
ical descriptions of these are given.

For the process noise, the Dryden continuous turbulence model, described in
U.S. military specification MIL-F-8785C (1980), has been used. Only turbulence
above 610m (2000ft) is considered. Below this altitude the airflow and thus also
the turbulence is affected by the ground topography such as trees, mountains and
buildings as well as by the vertical air movement due to solar heating. Over 610m
these effects are greatly reduced and the turbulence is said to be isotropic, mean-
ing that the total energy content is equal in all directions. However, the Dryden
model is described relative to the aircraft, which leads to different turbulence ef-
fects in different directions. The main idea is to let white noise, representing the
isentropic energy, pass through shaping filters that are different depending on
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the directions. The filters are given by

Fu(s) = 1
1+ L

V s
, Fv(s) =

1+
√

3L
V s

(1+ L
V s)

2 , Fw(s) =
1+
√

3L
V s

(1+ L
V s)

2

Fp(s) =
( π4b )1/6

L1/3(1+ 4b
πV s)

, Fq(s) =
± 1
V s

1+ 4b
πV s

Fw(s), Fr (s) =
± 1
V s

1+ 3b
πV s

Fv(s)

(3.21)

where L = 534m (1750ft) is a length scale, b is the wingspan and V is the aircraft
velocity. The white noises have zero mean and standard deviations given by

σwn,u = σ
√

2L
πV , σwn,v = σ

√
L
πV , σwn,w = σ

√
L
πV

σwn,p = σ
√

4
5V , σwn,q = σwn,w, σwn,r = σwn,v

(3.22)

where σ is the standard deviation of the velocity fluctuations, representing the
isentropic atmospheric turbulence energy, given in Figure 3.8.

The measurement noise used in the analyses has been assumed to be zero mean
white noise. The standard deviation has been chosen with consideration to actual
aircraft sensors.
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Figure 3.8: Standard deviation of the velocity fluctuations.
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3.3.3 Total model

Equations (3.12), (3.15) and (3.20) make up the basic model structure for the
flight mechanical motion. By putting these together the following model is given

u̇ =
1
m
Te −

1
m
T − g sin(Θ) − qw + rv

v̇ = − 1
m
C + g cos(Θ) sin(Φ) − ru + pw

ẇ = − 1
m
N + g cos(Θ) cos(Φ) − pv + qu

ṗ =
Izz
I2
∗
L − Ixz

I2
∗
N +

Ixz(Iyy − Ixx − Izz)
I2
∗

pq +
I2
xz + Izz(Izz − Iyy)

I2
∗

qr

q̇ =
1
Iyy
M− (Ixx − Izz)

Iyy
rq − Ixz

Iyy
(p2 − r2)

ṙ =
Ixx
I2
∗
N +

Ixz
I2
∗
L +

Ixz(Iyy − Ixx − Izz)
I2
∗

qr +
I2
xz + Ixx(Ixx − Iyy)

I2
∗

pq

Φ̇ = p + q sin(Φ) tan(Θ) + r cos(Φ) tan(Θ)

Θ̇ = q cos(Φ) − r sin(Φ)

Ψ̇ = q sin(Φ) sec(Θ) + r cos(Φ) sec(Θ)

(3.23)

where I2
∗ = IxxIzz − I2

xz and sec(Θ) = 1/ cos(Θ). The engine thrust and aerody-
namic contributions are given as

Te(δP LA, M, Ta, Hp)

Fa(u, v, w, p, q, r, δcs, Hp)
(3.24)

where Ta and Hp are going to be considered as constant parameters during the
simulations used. Furthermore, δcs is the control surface vector, which is depen-
dent on aircraft configuration and can containing any of δa, δe, δr , δc, δLE , or even
more. This is a nonlinear model of the form

ẋ = f (x, u) + wg
y = x + v

(3.25)

where

u =
[
δP LA δTcs

]T
(3.26)

and

x =
[
u v w p q r Φ Θ Ψ

]T
(3.27)

or by using (3.1)

x =
[
M α β p q r Φ Θ Ψ

]T
(3.28)
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Note that wg is the atmospheric turbulence that is based on (3.21) and (3.22).
The nonlinear model will, in coming chapters, be simplified based on the as-
sumptions made from case to case. Note also that it is assumed that all states
are measured, which is the case for the flight test cases used in this thesis.

The nonlinear model (3.25) describes any kind of flight motion in the whole flight
envelope. For small disturbance motions a linearized system description of the
form

ẋ = Ax + Bu + wg

y = x + v
(3.29)

can be used. As an example, the classical flight mechanical stick fixed motion
modes are shown in Figure 3.9 for a F-16 aircraft in subsonic flight. The Phugoid
and Short period modes are longitudinal motions while the Roll, Yaw, Dutch roll
and Spiral modes are lateral-directional motions.

As can be seen, the Phugoid is a relative slow loosely damped oscillative motion.
This mode has a period P ≈ 40 s and a time to half amplitude t1/2 ≈ 10 s. In
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Figure 3.9: Pole-zero map for the F-16 aircraft describing the classical flight
mechanical modes.
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contrast, both the Short period and Dutch roll modes are usually hardly damped,
fast oscillative motions. They have a period P ≈ 2 s and a time to half amplitude
t1/2 ≈ 0.5 s. The Roll mode is a stable non-oscillative motion while the Yaw and
Spiral modes can be neutral or even unstable motions. For the example given in
Figure 3.9 the roll mode has a time to half amplitude t1/2 ≈ 0.5 s and the spiral
mode, which is unstable, has a time to double amplitude t2 ≈ 10 s. For more
information about these classical modes see Nelson [1998].

For more aggressive flight maneuvers the whole 6 DOF model in (3.25) is needed
to describe the motion. Examples of both small disturbance and more aggressive
flight test maneuvers will be given in Chapter 4.





4
Flight testing

“If you can walk away from a landing, it’s a good landing. If you use the airplane the
next day, it’s an outstanding landing.”
- Chuck Yeager (1923 - )

There is a long journey in an aircraft project between the writing of the customer
requirements and verifying these in a production aircraft. Flight testing is the
aircraft company’s final verification of the aircraft characteristics in this process.
Many of the early pioneers in aviation went directly to this testing stage, often
with a fatal outcome. Today’s flight testing is more controlled. The process can,
in a broad perspective, be presented as the verification and validation “V” shown
in Figure 4.1.
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Figure 4.1: The verification and validation process from beginning to end.
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In a first step the customer requirements, which can be as specific as “the aircraft
in a certain configuration shall have a maximum speed of Mach 2 at an altitude of
11 km” or as vague as “the aircraft shall be care-free in the normal flight envelope”,
are interpreted by the aircraft company. This interpretation is done by putting
specific and testable requirements into a project specification. The customer and
aircraft company have to agree on the content of this specification. This is the
start of the analysis and design phase. The project specification is then succes-
sively taken apart into system specifications and sub-system specifications to be
used as guiding documents during this phase. For every level of breakdown there
has to be a validation of the requirements to see that they reflect the intended use
in the level above in a correct way. During the design phase several models of
systems and physical characteristics are developed. These are used for analysis
and improvements of the design.

When the design is made, it is time to start to implement and produce the dif-
ferent sub-system components. These will, in the integration and test phase, be
tested by themselves to verify the functionality specified by the sub-system speci-
fication requirements. A validation of the properties is also performed to see that
the sub-system works as intended in a customer perspective. The sub-systems
are then combined and tested on a system level to verify the system require-
ments. Once again a validation is performed with a customer’s view in mind. For
this part simulation and rig testing of system characteristics are used extensively.
When the systems are mature enough they are put together in one or more test air-
craft. There are two main objectives for this level of testing. The first, and maybe
the most obvious, is the testing of aircraft characteristics on the ground and in
flight to see that the requirements given in the project specification are verified.
Another, almost equally important, reason is the verification of the accuracy of
the models used for simulation. If these models are found accurate enough, they
can be used to reduce cost and time for the flight test period and possible future
development of the aircraft. Methods for identifying flight mechanical character-
istics are what this thesis is all about. The flight testing is the last verification that
the aircraft company does before the customer tests a production aircraft. Then
a validation of the aircraft characteristics as intended for use in a real situation is
performed, reflected by the customer requirements documentation.

4.1 Pre-flight activities

Looking a bit closer on the above-described process, with focus on the flight me-
chanical characteristics of interest in this thesis, it can be divided into pre-flight
activities and flight testing.

4.1.1 The analysis and design phase

This phase can be symbolized by Figure 4.2. There is, as can be seen, three stages
in this phase.
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Figure 4.2: Overall design and down-selection.

Conceptual design is the stage in which many different concepts, based on the
project specification, are analyzed. Design possibilities, such as number and
placement of engines, wing shape and placement, tail plane or canard configu-
ration choice, etc., are considered. For the analysis of these, “pen and paper”,
statistics and simple computational tools, are used. As an example, panel meth-
ods are used for rough calculations of the aerodynamic properties. Some of the
configurations will not fulfill the requirements or are judged to be too expensive.
These are eliminated in the conceptual design phase.

In the preliminary design stage the remaining configurations are refined in terms
of body, wing and empennage sizing and placement. Also, major systems, like
landing gear, fuel system, control surfaces, etc., are sized and positioned. This
is used to get a weight and balance estimate. More advanced methods are used
during this stage. Computational fluid dynamics (CFD) and wind tunnel testing
are used for the aerodynamic analysis. Structural analysis of major components
and control solutions are studied in this stage. The configurations are compared
to each other to find the best one. If this concept meets all requirements, then the
go ahead for the next step is given. Otherwise an iteration back to the conceptual
design stage is needed.

The detailed design is a stage where extensive development of the structure and
systems are done. Drawings and blueprints are produced for the coming imple-
mentation and production. In this stage, detailed models of mass from CAD pro-
grams, engine thrust from the manufacturer and the aerodynamics from wind
tunnel test are developed. Databases for these together with models of systems
are put together in flight simulators.

Figure 4.3 shows the increasing complexity of the methods used for the aerody-
namic modeling during the analysis and design phase.
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Figure 4.3: Increase in method complexity during the design phase.

4.1.2 The production and implementation phase

In this phase the hardware is realized from the drawings and blueprints devel-
oped in the previous phase and software solutions are implemented into comput-
ers. Some systems are bought from subcontractors and others are made in-house.

4.1.3 The integration and test phase

This phase starts with the different sub-systems. They are put together and tested
by themself to see that they are working as they were supposed to. Then the sub-
systems are put together to perform integrated testing. Flight mechanical simu-
lations are made to investigate the handling and flying characteristics. When the
first prototype/test aircraft is assembled a test readiness review is performed.
This will be the starting point for the ground and flight testing. During the
ground testing, the vehicle characteristics are looked at during slow speed and
high speed test runs. These are made to ensure that the aircraft will behave satis-
factory during take-off and landing.

4.2 Flight testing

The maiden flight is truly a milestone in an aircraft development. Several test
aircraft are built and equipped with many sensors for different types of testing.
From the flight dynamic perspective this includes: accelerometers, gyros, sensors
for altitude, velocity, control surface deflections and more. For a modern fighter
aircraft, the amount of sensors leads to the positive effect that some properties
can be derived in more than one way. It is therefore possible to make corrections
to ensure that the best possible data is used for analysis of the flights.

During the testing engineers look at flight data in almost real-time. The flight
mechanical model is run in parallel with the actual flight using pilot inputs. At
Saab the tool ROMAC [Andersson et al., 2002] is used. This analysis is done to
give a feeling for how well the simulations can predict the true flight. The com-
parison is used when judging the progress of the testing performed.
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Figure 4.4: Normal flight envelop with a margin to the limits.

The testing of flight mechanical characteristics is performed in three phases.

Envelope expansion is a hectic period after the first flight. This is low risk flight
testing with the main purpose to check handling and flying qualities as well as
verifying engine thrust and aerodynamic models. Successively, the flight enve-
lope, shown in Figure 4.4, is opened for system testing of different kind. First
the subsonic envelope is opened, starting at medium speed and altitude. This
state is then varied step-by-step, finally ending up at low altitude with take-off
and landing speed. Typically small disturbance inputs, like steps and pulses, are
performed. In addition one-axis excitations like large but clean roll and pitch
maneuvers are also performed. Another maneuver used is the steady heading
sideslip (SHSS), in which a combination of roll and yaw commands increase the
angle-of-sideslip in a quasi-steady manner.

The next step is to open the supersonic envelope. The aircraft is tested up to max-
imum speed at different altitudes with similar maneuvers as in the subsonic case.
The last part to be tested at this stage is transonic envelope. Nonlinearities and
hysteresis effects due to aerodynamic shock wave transients can be encountered.
To investigate the nature of these, accelerations and retardations are added to the
previously mentioned test maneuvers.

To illustrate data from typical flight test maneuvers, the Vegas simulation model
has been used. Data from a subsonic double pulse can be seen in Figure 4.5. A
supersonic step is shown in Figure 4.6 and a retardation in Figure 4.7. Also, a
steady heading sideslip maneuver is given in Figure 4.8.

Currently these types of test maneuvers are mostly analyzed using linear regres-
sion of the error between the flight test data and the aircraft model data.
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Figure 4.5: Pitch pulse at subsonic speed.
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Figure 4.6: Pitch step at supersonic speed.
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Figure 4.7: Retardation from supersonic to subsonic speed.
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Figure 4.8: Steady heading sideslip at subsonic speed.
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Figure 4.9: Maneuver Load Limit (MLL) test envelope.

Maneuver Load Limit (MLL) flight test is a verification of the MLL-functionality
of the flight control system. This will give the pilot full access to the aircraft
performance without having to worry about the aircraft leaving the operational
envelope, which is a part of the care-free maneuvering concept. With this the
pilot can concentrate more on the task at hand. To test the MLL-functionality
means pushing the aircraft right to the boundary of the angle-of-attack, angle-of-
sideslip and load factor limits, see Figure 4.9. The maneuvers are more aggressive
and dynamic than in the envelope expansion phase, often ending up in nonlin-
ear states. Typical maneuvers are Wind-Up-Turns (WUT) with constant speed,
Bleed-Off-Turns (BOT) at constant altitude. They are performed as is or in com-
bination with a full roll command. Other maneuvers are continuously alternat-
ing roll command and simultaneous full pitch, roll and yaw commands. These
types of maneuvers are needed to reach the corners of the boundaries often using
a build-up process starting within the envelope and successively increasing the
amplitude up to the limit. Also, part of this testing is performed with the limits
widened a bit to ensure that nothing bad happens if the dynamic maneuvers lead
to smaller overshoots crossing the boundaries.

Figures 4.10 - 4.12 show three typical MLL-maneuvers for testing the limits of
the angle-of-attack/angle-of-sideslip envelope shown in Figure 4.9. The first is a
Bleed-Off-Turn with a roll command reaching the upper limits (α = 22◦, β = 6◦),
the second is a continuous alternating roll command which in this case is a build-
up for testing the side limits reaching (α = 15◦, β = ±5◦) and the last is a diagonal
stick forward checking the lower limit (α = −8◦, β = 5◦).

These types of testing are mostly analyzed with nonlinear regression and manual
work by looking at the error between the flight test data and the aircraft model
data. This is hard work leading to many working hours.
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Figure 4.10: Bleed-Off-Turn with a roll.
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Figure 4.11: Continuously alternating roll input.
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Figure 4.12: Diagonal stick forward input.

Hazardous flight testing is a special kind of high risk testing where the aircraft is
taken beyond the boundary of the intended flight envelope, see Figure 4.13. Even
though the MLL-function protects against leaving the operational envelope, some
cases cannot be prevented, for example flight into the low energy cone where a
steep climb at low speed is performed. If the pilot ignores the low speed warn-
ing the excess energy of the engine will eventually decrease to zero resulting in
a stall. The transient through the boundary is too fast for the flight control sys-
tem to handle. This is the first step beyond this boundary, where the airflow over
the aircraft starts to separate leading to a decrease in lift. Going further in to
post-stall flight can lead to ”deep stall”, which is a trimmed condition at extreme
angle-of-attack, or spin, which is a yaw rotational state during a deep stall. Both
of these conditions are dangerous since altitude is lost fairly fast and correct ac-
tions are needed to brake the fall and return into controlled flight. Figure 4.14
shows tree different post stall maneuvers for this kind of testing. It should be
mentioned that the entry could be inverted so that the aircraft tips over on its
back leading to similar problems for returning to normal flight. Also, the entry
could be over one of the wings. This leads to another kind of dynamics where
relative fast transitions between extreme angles-of-sideslip and angles-of-attack
can occur.

It is hard to find entries of this type of maneuvering in Vegas so no time histories
are given here.
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Figure 4.13: Low energy envelop near the stall limit.

Entry 

Exit Exit 

Entry 

Exit 

Deep stall 

Exit 

Deep stall 

Entry 

Spin 

Figure 4.14: Hazardous flight testing outside the operational flight envelope.
Left: Stall, Middle: Deep stall, Right: Spin. The angle-of-attack is shown in
blue.

4.3 System identification

System identification of the flight mechanical characteristics of the three differ-
ent flight test phases has different requirements on the methods needed. Dur-
ing the envelope expansion using the small disturbance testing, linear regression
is often the main tool. From this derivatives around a trimmed state are esti-
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Figure 4.15: Aerodynamic derivative update given in black due to flight test
data from small disturbance maneuvering shown as a red line.

mated. Since this only gives a limited coverage of the flight envelope, care has to
be taken when incorporating the results into the existing nonlinear model, oth-
erwise non-physical effects can be introduced and simulations can give strange
behaviors. As an example, a suggested local update to the aerodynamic pitch-
ing coefficient is given in Figure 4.15. The question is whether the entire surface
should be changed or if the effect is local, i.e., there is some nonlinearity in the
physics. Since the model describes the total system, which is multidimensional,
strange effects can spread in several state space directions. Therefore, more data
are needed. This can come from the MLL flight testing, which usually includes
nonlinear dynamic behavior. Good tools for estimating this type of effects are
needed. This is a much harder task than identifying linear effects, but it gives
more information in a sense. It should be noted that this still only gives a trace
in the state space, see Figure 4.16. Therefore, it is good to make several types
of maneuvers in the same state space area to excite the system in different ways.
Even harder is the identification for the Hazardous flight testing because the flow
over the aircraft is chaotic with separated flow over a large part of the aircraft.
This leads to a large aerodynamic wake of often oscillating flow. There are also
hysteresis effects, adding extra complexity, during the transition phases in and
out of the post-stall envelope. An example of this is shown in Figure 4.17.

In the next four chapters, a sequential method for online estimation of deriva-
tives and one method for post flight evaluation of nonlinear characteristics are
proposed and evaluated.
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Figure 4.16: Aerodynamic derivative update given in black due to flight test
data from aggressive maneuvering shown as a red line.

Figure 4.17: Example of the normal force coefficient CN for a deep stall
maneuver showing flight test data compared to a simulation based on quasi-
steady data. The picture is taken from [Kristiansson, 2006].





5
Sequential identification

"Time is an illusion."
- Albert Einstein (1879 - 1955)

Flight testing involves many hours of planning and preparation as described in
the previous chapter. To have a good model that describes the true aircraft be-
havior well can significantly help in this process by using a model based system
engineering way of working. To get as much out of every test as possible, analysis
of flight mechanical characteristics is today done during testing.

For estimation of linear flight mechanical parameters, Morelli [1999] and Klein
and Morelli [2016] present a real-time method, for aircraft system identification.
This is based on a frequency domain approach. Having a tool for this kind of
analysis can be used to make decisions about continuation or abortion of the test-
ing and also to see that enough information is available in the test data to make
good post-flight analysis possible and thereby increasing model quality. This can
make the flight testing more effective. The method has been used in a number
of aerospace applications. For example, DeBusk et al. [2010] have used it in a
framework of on-board estimation of flight characteristics for adaptive control.
In Basappa and Jategaonkar [2004] the method has been compared to Recursive
Least-Squares (RLS) and Extended Kalman Filter (EKF) time domain methods,
and it is commented that the frequency domain method is preferable since it is
computationally simpler and has no tuning parameter to be set by the engineers.

Here, analysis of this frequency domain real-time method is performed and some
improvements to the method are suggested. The improved method is applied to
real flight test data.

59
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5.1 Problem formulation

The methods described in this chapter are made for identification, during flight
testing, of a continuous-time linear system. A block diagram of a general linear
system with a controller is shown in Figure 5.1. Mathematically the linear system

System 

Measurement 

Controller 

L(r(t), y(t)) !x(t) = Ax(t)+Bu(t)+w(t)

y(t) =Cx(t)+Du(t)+ v(t)

u(t)

y(t)

r(t) x(t)

v(t)

w(t)

Figure 5.1: Block diagram for a general linear continuous-time closed loop
linear system.

and measurement part can be described as

ẋ(t) = A x(t) + B u(t) + w(t) (5.1a)

y(t) = C x(t) + D u(t) + v(t) (5.1b)

where x(t) is an nx × 1 state vector, u(t) is an nu × 1 input vector and w(t) is the
process noise, which in the application corresponds to atmospheric turbulence.
A and B are the state and input matrices of the system. For the measurement y(t)
is an ny × 1 output vector, and v(t) is white measurement noise. Here, C and D
are called the output and feedthrough matrices, respectively.

There are three assumptions used in the application. First, C is the identity ma-
trix, i.e., all states are measured. Secondly, u(t) is, not directly, influencing y(t)
resulting in D being a zero matrix. Thirdly, the measurement noise is white and
is therefore denoted e(t) instead of v(t). This gives the formulation

ẋ(t) = A x(t) + B u(t) + w(t) (5.2a)

y(t) = x(t) + e(t) (5.2b)

A linear parameterized model of the form

ẋ(t, θ) = A(θ) x(t, θ) + B(θ) u(t) + w(t) (5.3a)

y(t, θ) = x(t, θ) + e(t) (5.3b)
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is used for the identification, where θ is a vector containing the unknown pa-
rameters to be identified. If C in (5.1b) is not the identity matrix an observer is
needed which depends on the model and then the estimation problem gets more
complex.

The idea is to use (5.3a) in an equation-error framework where the inputs u(t)
and the outputs y(t, θ), approximating the state x(t, θ) through (5.3b), are used
to estimate the parameters in A(θ) and B(θ). The method should also, sequen-
tially, present the estimates of the parameters as well as an uncertainty estimate
to the user. This should be done so that the user can judge how accurate the esti-
mates are.

With a slight abuse of notation, the θ in the states x(t, θ) and the outputs y(t, θ)
will be dropped to increase the readability of the equations.

5.2 Methods

Here, the existing sequential frequency domain method, presented in Klein and
Morelli [2016], is described. It is compared to a recursive time domain method
and some improvements are suggested.

5.2.1 Sequential frequency domain method

There are two main parts that build up the sequential frequency domain method,
one using a recursive Fourier transformation of the input and output data and
the other solving a regression problem with a complex least squares approach in
the frequency domain. These parts will be described below.

The Recursive Fourier Transform uses a finite Fourier transform of a general
function f (t), which has to be piece-wise differentiable on the interval [0, T ]. The
continuous-time transform, for a frequency ωi , is defined by

f̃c,T (ωi) =

T∫
0

f (t)e−jωi tdt (5.4)

where the ˜ is used to denote the transformed entities and the index c marks
that the transform is for the continuous-time case.

When data are sampled, a rectangle approximation of the integral of the finite
Fourier transform with a sampling time Ts can be used

f̃c,T (ωi) ≈ Ts
N−1∑
k=0

fk e
−jωi k Ts (5.5)

where fk ≡ f (kTs). This will give a reasonable approximation if the sample time
Ts is short relative to changes in f (t). This is the case for the aircraft application
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in this thesis since the frequency interval of interest is [0.01 2] Hz and the sample
frequency is 60 Hz. Otherwise other approximations, like for example trapezoids,
can be used. The approximation (5.5) can be written as

f̃c,T (ωi) ≈ Ts F̃N (ωi) (5.6)

where

F̃N (ωi) ≡
N−1∑
k=0

fk e
−jωi k Ts (5.7)

is a discrete-time finite Fourier transform.

To make the method useful for a real-time application, the transform has to be
calculated at every time step. This can be done sequentially since

F̃N (ωi) ≡
N−1∑
k=0

fk e
−jωikTs = (

N−2∑
k=0

fk e
−jωikTs ) + fN−1 e

−jωi (N−1)Ts

= F̃N−1(ωi) + fN−1 e
−jωi (N−1)Ts

(5.8)

That is, the transform at the current time is made up of the transform from the
previous time step plus the function value from the previous time step. This
means that all information in the transform from earlier time steps is stored in
F̃N−1(ωi) much like the states in a state-space model.

The Complex Least-Squares Regression is obtained by rewriting (5.3a) in the
frequency domain using (5.7). This gives the following formulation

˜̇XN (ωi) = A(θ) X̃N (ωi) + B(θ) ŨN (ωi) + W̃N (ωi) (5.9)

where X̃N (ωi), ŨN (ωi) and W̃N (ωi) are the discrete-time finite Fourier trans-
forms of the states, inputs and process noise, respectively. These are given for
frequencies ωi , i = 1, ..., M, at times t = NTs. The following approximation has
been used by Klein and Morelli [2016] for the transform of the time derivative

˜̇FN (ωi) ≡
N−1∑
k=0

ḟk e
−jω k Ts ≈ jωi F̃N (ωi) (5.10)

With (5.10), (5.9) can be rewritten as

jωi X̃
T
N (ωi) =

[
X̃TN (ωi) Ũ T

N (ωi)
] [
A(θ) B(θ)

]T
+ W̃ T

N (ωi) (5.11)

where the parameters to be estimated in A(θ) and B(θ) have been collected in
a separate matrix. This formulation cannot be used directly because the states
are not available, but the transformed outputs can be used as approximations in
(5.11), since all states are assumed to be measured. This gives

jωi Ỹ
T
N (ωi) =

[
Ỹ TN (ωi) Ũ T

N (ωi)
] [
A(θ) B(θ)

]T
+ Ṽ T

N (ωi) (5.12)
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where Ṽ T
N (ωi) has a different structure than W̃ T

N (ωi) including both process and
measurement noise. However, both the color and structure of the noise are ig-
nored here since no noise model is to be identified in this approach.

The expression (5.12) is a complex regression of the form

z̃N (ωi) = φ̃N (ωi)Θ + Ṽ T
N (ωi) (5.13)

where Θ = [A(θ) B(θ)]T . The parameter estimation in the linear regression (5.13)
can be solved with a Complex Least-Squares (CLS) method where the prediction
error is given by

ε̃(ωi , θ) =
[
<(z̃N (ωi))
=(z̃N (ωi))

]
−
[
<(φ̃N (ωi))
=(φ̃N (ωi))

]
Θ (5.14)

The least-squares criterion becomes

VM (θ, ZM ) =
1
M

M∑
i=1

1
2
|ε̃(ωi , θ)|2 (5.15)

which gives the parameter estimator

Θ̂ = (Φ̃a TN Φ̃aN )
−1

(Φ̃a TN Z̃aN ) (5.16)

Here, the real and imaginary parts have been separated such that

Φ̃aN =
[
<(Φ̃N )
=(Φ̃N )

]
and Z̃aN =

[
<(Z̃N )
=(Z̃N )

]
(5.17)

where

Φ̃N =


φ̃N (ω1)

...
φ̃N (ωM )

 and Z̃N =


z̃N (ω1)

...
z̃N (ωM )

 (5.18)

Now, (5.16) can be written as

Θ̂ = (<(Φ̃∗N Φ̃N ))−1<(Φ̃∗N Z̃N ) (5.19)

where ∗ is the complex conjugate transpose. This expression is used by Klein and
Morelli [2016]. To show that (5.16) can be written as (5.19) consider two complex
matrices Ã and B̃ where Ã = Φ̃N and B̃ = Φ̃N or B̃ = Z̃N . Then

<(Ã∗ B̃) =<
(

(<(Ã)T − i=(Ã)T )(<(B̃) + i=(B̃) )
)

=<
(
<(Ã)T<(B̃) +=(Ã)T=(B̃) + i (<(Ã)T=(B̃) −=(Ã)T<(B̃))

)
=<(Ã)T<(B̃) +=(Ã)T=(B̃)

=
[
<(Ã)T =(Ã)T

] [<(B̃)
=(B̃)

]
= (Ãa T B̃a)

(5.20)
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An important property of (5.19) is that it makes sure that the parameter vector is
real, which is the case for the aircraft application. The error variance estimator
used is given by

σ̂2
k =

1
M − np

((Z̃N,k − Φ̃N Θ̂k)
∗(Z̃N,k − Φ̃N Θ̂k)) (5.21)

where np is the number of parameters to be estimated for each column in Θ̂ and k
is a column index. The covariance Cov(Θ̂) ≡ E{(Θ̂−E(Θ̂))(Θ̂−E(Θ̂))T } is estimated
as

P̂k(Θ̂) = σ̂2
k (<(Φ̃∗N Φ̃N ))−1 (5.22)

where (5.20) has been used once more. The predicted parameter standard devia-
tions can then be calculated as the square root of the diagonal elements of P̂ (Θ̂)
as

sk,i =
√
P̂k,ii(Θ̂), i = 1, ..., np (5.23)

The above-described method is given as Algorithm 0. For the method to give un-
biased results, ṼN (ωi) has to be zero mean white noise and uncorrelated with the
regressors in φ̃N (ωi). Improvements to the method will be suggested in a later
section.

To investigate the properties of Algorithm 0, simulations of an American F-16
fighter aircraft (Figure 5.2) flying at an altitude of 10,000 ft (3048 m) with a
speed of M=0.37 will be used.

Figure 5.2: Definition of the variables for the F-16.

Excitation of the flight mechanical short period, a highly damped motion in angle-
of-attack (α) and pitch angular velocity (q) where the aircraft nose moves up and
down in the pitch (symmetry) plane at almost constant altitude and speed, is
performed. The aircraft model, taken from Morelli [1999], is stable and runs in
an open-loop configuration. The problem formulation is given by[

α̇(t)
q̇(t)

]
=

[
Zα Zq
Mα Mq

] [
α(t)
q(t)

]
+

[
Zδe
Mδe

] [
δe(t)

]
+ w(t)[

αm(t)
qm(t)

]
=

[
α(t)
q(t)

]
+ e(t)

(5.24)
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where αm and qm are the measurements of the angle-of-attack and pitch angular
velocity, respectively, and δe is the elevator input. The true model parameters
taken from Morelli [1999] are

Zα = −0.6, Zq = 0.95, Zδe = −0.115,
Mα = −4.3, Mq = −1.2 and Mδe = −5.157.

It should be noted that the vertical force Z is the same as the normal force N
(shown in Figure 5.2) but with the opposite sign, i.e., Z = −N . The flight char-
acteristics for this stable open-loop system are given by the pole-zero map and
elevator step response shown in Figure 5.3. As can be seen the system has a damp-
ing, which results in an overshoot of about 25 % in the angle-of-attack.
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Figure 5.3: Pole-Zero map and elevator step response for the F-16.

The main frequency content of the short period rigid-body aircraft dynamics is,
according to Klein and Morelli [2016], in the range of [0.01 2.0] Hz. In this exam-
ple, a frequency band of [0.1 2.0] Hz is used and this should be adequate accord-
ing to Morelli [1999]. A frequency resolution of 0.04 Hz is recommended, which
gives the number of frequencies, M = 48. For the investigations, the simulation
tool Simulink® has been used to generate the data. This has been done with a
sample time of Ts = (1/60) s.

For this problem, the parameter estimation of the sequential frequency domain
method (5.19) is written as

Θ̂ = (<(Φ̃∗N Φ̃N ))−1<(Φ̃∗N Z̃N ) (5.25)
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where

Z̃N =


jω1α̃m(ω1) jω1q̃m(ω1)
jω2α̃m(ω2) jω2q̃m(ω2)

...
...

jωM α̃m(ωM ) jωM q̃m(ωM )

 (5.26)

Φ̃N =


α̃m(ω1) q̃m(ω1) δ̃e(ω1)
α̃m(ω2) q̃m(ω2) δ̃e(ω2)

...
...

...
α̃m(ωM ) q̃m(ωM ) δ̃e(ωM )

 (5.27)

and

Θ =

Zα Mα
Zq Mq

Zδe Mδe

 (5.28)

The Z̃N and Φ̃N matrices are updated every time step (t = NTs) using the sequen-
tial discrete finite Fourier transform (5.8).

A typical estimation result using the algorithm with low measurement noise can
look like Figure 5.4 where the regression and presentation of results are done
every second. At the top the input, i.e., the elevator (δe) double-pulse as well as
the outputs’ response in angle-of-attack (α) and pitch angular velocity (q), are
shown. This type of input is commonly used when investigating short-period air-
craft behavior. The estimates of the parameters are shown in row two and three
in the figure. Here the dashed line gives the true value. The estimates are given
as squares and the estimated uncertainties of two standard deviations are given
as vertical bars. The values at time t = 10 s are shown in Table 5.1. As can be
seen the results are fairly accurate at the end of the simulation. There is a larger
bias effect during the excitation, especially at time t = 2 − 3 s. The bias due to
excitation comes from the fact that the Fourier transform of the time derivative
used, i.e., the step from (5.9) to (5.11), is only an approximation.

When calculating the finite Fourier transform of a time derivative, ḟ (t), integra-
tion by parts has to be used, which gives

˜̇fc(ω) =

t1∫
t0

ḟ (t)e−jωtdt =jω

t1∫
t0

f (t)e−jωtdt + [f (t)e−jωt]t1t0

=jωf̃c(ω) − f (t0)e−jωt0 + f (t1)e−jωt1

(5.29)

If t0 → −∞ and t1 → +∞ the ordinary Fourier transform is obtained, and then

˜̇fc(ω) = jωf̃c(ω) (5.30)

because f (t) has to be absolutely integrable on the interval −∞ < t < +∞ leading
to the fact that f (t) → 0 as t → −∞ or t → +∞. However, this is not the case for
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Figure 5.4: Estimation of parameters based on simulated data for the F-16.
The dashed lines are the true parameters, the squares are the estimated pa-
rameters and the vertical lines are the estimated uncertainties of two stan-
dard deviations.

Table 5.1: True and estimated parameters including two standard deviations
for the F-16 model at time t = 10 s.

True Algorithm 0

Zα −0.600 −0.600 ± 0.036
Zq 0.950 0.959 ± 0.025
Zδe −0.115 −0.113 ± 0.054
Mα −4.300 −4.280 ± 0.039
Mq −1.200 −1.185 ± 0.027
Mδe −5.157 −5.110 ± 0.058
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the finite Fourier transform where the interval is 0 ≤ t ≤ T . Then
˜̇fc(ω) = jωf̃c(ω) − f (0) + f (T )e−jωT (5.31)

which leads to the discrete Fourier transform of the time derivative

˜̇F(ω) ≡
N−1∑
k=0

ḟk e
−jω k Ts ≈ jωF̃(ω) − 1

Ts
(f0 − fN e−jωNTs ) (5.32)

This was mentioned in Morelli [2010] and the effect was analyzed in Larsson and
Enqvist [2012a]. The principle is similar to what is done in Pintelon et al. [1997]
where system identification of arbitrary signals in the frequency domain using
correction terms is described. With this (5.12) can be rewritten as

jωi Ỹ
T
N (ωi)+

1
Ts

(yN e
−jωiNTs − y0) =

[
Ỹ TN (ωi) Ũ T

N (ωi)
] [
A(θ) B(θ)

]T
+ ṼN (ωi)

T

(5.33)
where the noise ṼN (ωi)T has a different structure compared to (5.12) due to the
added correction. Here, the changes have been underlined.

Putting the theory together ends up in Algorithm 1, which can be found in Ap-
pendix C. This algorithm will hereinafter be called the Method A.

Figure 5.5 and Table 5.2 show a comparison between Algorithm 0 and Method A
for the same simulated data as shown in Figure 5.4. As can be seen, the addition
of the boundary terms underlined in (5.33) improves the estimates during the
excitation at time t = 2 − 3 s.

Method A is easy to implement and has no explicit tuning parameters, like the
Kalman filter, that the user has to adjust. This is a big advantage in an industrial
application where many employees use the same method. What has to be done
is to specify the frequencies that should be used, which depend on the applica-
tion. This can be looked on as a kind of tuning, but for the application used here
the settings mentioned earlier from Morelli [1999] can be used. The elements in
the variables z̃N (ωi), φ̃N (ωi) and ỸN (ωi) can initially be put to zero without any
problem. A parameter (tpres), representing the time-step for when to start solving
the regression and present the results, has also to be specified.

Running a noise-free simulation based on the estimated model for Method A
given in Table 5.2 and comparing it to a new realization of simulated noisy data
using the true system is not a true validation, but it gives a hint of what response
one could expect from Method A for this type of maneuver. The result is shown
in Figure 5.6. The model fit of this comparison is 97.0%, which reflects the low
noise case and the accurate estimation.

Having a tool like this, running during a flight test where data from the prior
model is used as the reference, given as the dashed line instead of the true sim-
ulated value in the Figure 5.5, can help the flight test engineers. Analysis of the
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Figure 5.5: Estimation of parameters for the F-16 using Algorithm 0 in gray
and Method A in blue. The dashed lines are the true parameters, the squares
are the estimated parameters and the vertical lines are the estimated uncer-
tainties of two standard deviations.

Table 5.2: Comparison of Algorithm 0, Method A and the true parameters,
showing the estimated parameters including two standard deviations at time
t = 10 s for the F-16 model.

True Algorithm 0 Method A

Zα −0.600 −0.600 ± 0.036 −0.601 ± 0.035
Zq 0.950 0.959 ± 0.025 0.959 ± 0.024
Zδe −0.115 −0.113 ± 0.054 −0.113 ± 0.052
Mα −4.300 −4.280 ± 0.039 −4.281 ± 0.038
Mq −1.200 −1.185 ± 0.027 −1.184 ± 0.026
Mδe −5.157 −5.110 ± 0.058 −5.109 ± 0.058
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Figure 5.6: Validation of the estimated F-16 model. The blue dashed lines
are the responses using estimated parameters from Method A and the red
lines are the true simulated data.

stability and control characteristics can be done on-line and used to guide the
progress of the test in an effective way.

Before continuing, a short analysis of the use of the Fourier transform is given.
In Figure 5.7 the time signals and their Fourier transforms are shown for one
realization. Above a frequency of about 2 Hz most of the output amplitude spec-
trum, where the absolute value has been used, contain only noise as can be seen
in the lower row. This can cause a problem if a full Fourier transform is used.
Method A uses only data up to 2 Hz, which can be a benefit in this case. It should
be mentioned that other applications may have other limits. Figure 5.8 shows
the difference between Method A and the use of the fast Fourier transform (FFT)
when estimating the parameter Mα . For this open loop case with low and white
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Figure 5.7: Input and output data together with their discrete Fourier trans-
forms.

measurement noise, the estimates are fairly accurate and similar, but the esti-
mated uncertainties are larger when using the full FFT instead of a FFT when
only frequencies below 2 Hz are used. One reason for this is the estimation error
(z̃ − φ̃ Θ̂) used in (5.21) for calculating the uncertainty estimates. Above 2 Hz
these errors grow when using the full FFT and are so many that they out-weight
the increase in the number of frequencies used. The growth can be seen in Fig-
ure 5.9. This effect is probably due to the fact that even though the measurement
noise in itself is white, it is colored by the way it enters the model (5.12) since the
measurements are used as a substitute for the state.

Another important point is that both the input and the output signals are used
as regressors. Since these are noisy the problem to solve is not really on the
ordinary least squares form, which can lead to biased estimates (see Appendix B
for a simple example). The problem to solve is rather on an errors-in-variables
form. This can be treated in different ways and one of them will be used later in
this chapter.
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5.2.2 Recursive time-domain method

A natural question concerning the described identification method is, why go to
the frequency domain? Here a recursive least-squares time domain method, as a
comparison to the described sequential frequency domain methods, is given. It is
taken from Klein and Morelli [2016], but a similar description can also be found
in Ljung [1999].

To get similar expressions for the time-domain method as for Method A, (5.2a)
can, with the use of (5.2b), be rewritten as

1
Ts

(yTN − y
T
N−1) =

[
yTN uT

N

] [
A(θ) B(θ)

]T
+ vTN (5.34)

where the approximation ẏ(T ) ≈ 1
Ts

(yN − yN−1) for the time derivative is used.

The noise term vTN is also here colored, similar to (5.12), but in the time domain.
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Now, (5.34) can be written as

zN = φN Θ + vTN (5.35)

The recursion is based on the following four equations:

KN,k = PN−1,kφ
T
N (σ̂2

N−1,k + φN PN−1,kφ
T
N )−1 (5.36)

PN,k = PN−1,k − KN,kφN PN−1,k (5.37)

Θ̂N,k = Θ̂N−1,k + KN,k(zN,k − φN Θ̂N−1,k) (5.38)

σ̂2
N,k =



( 1
N )((N − 1)σ̂2

N−1,k + (zN,k − φN Θ̂N,k)2) N < 5np + 1

( 1
N−np )((N − 1)σ̂2

N−1,k + (zN,k − φN Θ̂N,k)2) N = 5np + 1

( 1
N−np )((N − 1 − np)σ̂2

N−1,k + (zN,k − φN Θ̂N,k)2) N > 5np + 1

(5.39)

Here k is the column index in zN and Θ, i.e., the problem is solved separately
for each column. The matrix KN,k is a time varying gain working much like the
gain in the Kalman filter and PN,k is the covariance matrix. In fact the equations
are very similar to the Kalman filter [Kalman, 1960] equations. The expression
for the predicted error variance σ̂2

N,k changes appearance depending how many
iterations that have passed. This can give a bias in the early predictions but has
to be done to make the method stable in the beginning. The value of 5np has been
taken from Klein and Morelli [2016] and might not be optimal but seems to work
well. The algorithm that has been implemented is given in Algorithm 2, which
can be found in Appendix C. This will from now on be called the Method B.

A comparison of Method A and Method B is shown in Figure 5.10 and Table 5.3.
In the figure the estimates from Method B are given as brown squares and for
Method A as blue squares shifted to the left. The estimates are similar for the
two methods during the whole time sequence, but the estimated uncertainties
in the beginning are larger for Method B. This is better than for Method A that
underpredicts the uncertainty.

A validation similar to the one given for Method A has been run for Method B.
The result is shown in Figure 5.11. The model fit is 95.5%, which is close to the
result for Method A.

Method B has approximately the same complexity as Method A. Instead of the
sequential Fourier transform, used in Method A, the data have been run through
a low-pass-filter to get the selected frequency content of the signal before using
the recursion described by (5.36) - (5.39). This has been done to get the same
frequency content for all the studied methods.



74 5 Sequential identification

0 5 10
-5

0

5
x1 :  (deg)

0 5 10
-10

0

10
x2 : q (deg/s)

0 5 10
-5

0

5
u1 : e  (deg)

0 5 10
-8

-6

-4

-2

0

2
A11 : Z

0 5 10
0

1

2
A12 : Zq

0 5 10
-2

0

2
B11 : Z e

0 5 10

time (s)

-8

-6

-4

-2

0

2
A21 : M

0 5 10

time (s)

-5

0

5
A22 : Mq

0 5 10

time (s)

-8

-6

-4

-2

0

2
B21 : M e

Figure 5.10: Estimation of parameters for the F-16 using Method A in blue
and Method B in brown. The dashed lines are the true parameters, the
squares are the estimated parameters and the vertical lines are the estimated
uncertainties of two standard deviations.

Table 5.3: Comparison of Method A, Method B and the true parameters,
showing the estimated parameters including two standard deviations at time
t = 10 s for the F-16 model.

True Method A Method B

Zα −0.600 −0.601 ± 0.035 −0.569 ± 0.061
Zq 0.950 0.959 ± 0.024 0.973 ± 0.042
Zδe −0.115 −0.113 ± 0.052 −0.077 ± 0.104
Mα −4.300 −4.281 ± 0.038 −4.236 ± 0.061
Mq −1.200 −1.184 ± 0.026 −1.147 ± 0.042
Mδe −5.157 −5.110 ± 0.058 −5.174 ± 0.104
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Figure 5.11: Validation of the estimated F-16 model. The brown dashed
lines are the responses using estimated parameters from Method B and the
red lines are the true simulated data.

So far the estimations have been done for low noise conditions. Even though
this might sometimes be the case during real flight-testing, it is not true all the
time. Therefore the robustness against both measurement and process noise are
of interest. For this, two simulation study cases are used. The first is the mea-
surement noise case in which only measurement noise is added to disturb the
simulations. The noise amplitude is higher than expected in a real flight test of a
full-scale aircraft where very accurate sensors are used. This has been chosen to
challenge the methods. The second case, the process noise case, uses atmospheric
turbulence. For this, the Dryden continuous turbulence model, described in U.S.
military specification MIL-F-8785C, has been used (see Section 3.3.2 for some de-
tails). All four turbulence levels, No, Light, Medium and Severe have been used
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in study cases. To be more realistic, measurement noise with a low amplitude is
added to this case. To check how the estimates from Method A and Method B are
affected by noise, 200 Monte Carlo (MC) runs for different noise conditions have
been used.

For the measurement noise case, the results are shown in Figure 5.12. Here the
mean of the estimated parameter values are given as squares, for Method A in
blue and Method B in brown. The bars represent a mean of two estimated stan-
dard deviations based on the mean of the estimated variance over the 200 MC
runs. In addition, the value of two standard deviations of the estimated parame-
ters based on the MC simulations is given as dashed-dotted lines. This is done to
see if the estimated uncertainties are close to the actual standard deviation. The
estimated values at time t = 9 s are shown in Table 5.4, and a similar validation
as before is shown in Figure 5.13.

As can be seen in the figures and in the table, the effect of the measurement noise
on the estimated model parameters is, for this open loop and stable aircraft case,
not so large. The two methods appear to behave in a similar way. The model fit
has decreased from around 96.0% for the noise-free validation to about 81.0%.
This is to be expected, otherwise noise would most probably have entered into
the estimates.

As stated before, the process noise case uses the Dryden model, which has four
levels, no, light, medium and severe turbulence. Identification of flight mechan-
ical characteristics is seldom done for the two higher levels, but all levels will
be included in this analysis. This is done to see the robustness of the methods.
Figure 5.14 shows a condensed result, displaying the input signal, the response
of the angle-of-attack and the estimation of the model parameter Mα , which has
been chosen since it is one of the most important parameters in the model. The
figure gives an overview of how the process noise affects the identification re-
sults. The estimated parameters at time t = 10 s are shown in Table 5.5. More
detailed figures, showing all estimated parameters, can be found in Appendix D.

As expected, the identification gets harder for increasing levels of process noise.
For no and light turbulence the validation gives indications that the estimates are
accurate enough to be used. Estimation for medium turbulence conditions is on
the boundary of being rejected. For severe turbulence the biases in the estimates
are too big to give a reasonable accurate validation.

It should also be noted that the estimated uncertainties are much lower than the
standard deviation based on the MC simulations. This is not good since this im-
plies that the estimates are more accurate than they really are.

In conclusion Method A and Method B behave in a very similar way for the stud-
ied case. There are however some practical differences in the implementation and
use of the two methods. The time domain method is a recursive method, mean-
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Figure 5.12: Comparison of estimation using Method A (blue squares) and
Method B (brown squares) for the F-16 fighter. The true parameters are
given by the black horizontal dashed line. The dash-dotted lines are the
uncertainty of two standard deviations based on the parameter estimates,
which should be compared to the vertical lines based on the mean of the
estimated two standard deviations.

Table 5.4: Estimated parameters including two standard deviations, i.e., the
vertical bars in Figure 5.12, using Method A, Method B and the true param-
eters, at time t = 9 s for the F-16 model.

True Method A Method B

Zα −0.600 −0.592 ± 0.176 −0.519 ± 0.087
Zq 0.950 0.948 ± 0.123 0.949 ± 0.063
Zδe −0.115 −0.117 ± 0.267 −0.096 ± 0.134
Mα −4.300 −4.250 ± 0.161 −4.044 ± 0.087
Mq −1.200 −1.211 ± 0.112 −1.226 ± 0.063
Mδe −5.157 −5.167 ± 0.245 −5.211 ± 0.134
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Figure 5.13: Validation of the estimated F-16 model. The dashed lines
are the responses using estimated parameters from Method A in blue and
Method B in brown. The red lines are the true simulated data.

ing that the evaluation at one time instant is dependent on the previous one. This
can pose a problem if the data sent from the aircraft to the ground station is of
varying length. The estimates can then be delayed when longer time sequences
are transmitted. This problem, described in Andersson [2010], will not be as se-
vere for Method A since it is sequential and the Fourier transform in (5.8) can be
done in vector form.

5.2.3 Instrumental variables

Here some improvements to Method A will be suggested and analyzed. The focus
will be on improving the bias that occurs for identification using noisy data.
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Figure 5.14: Estimation and validation of the estimated F-16 model for dif-
ferent levels of process noise. To the left the input and model fit is given.
The middle column shows the response of the angle-of-attack. To the right
the estimates of the model parameter Mα are given.

Table 5.5: Comparison of Method A and Method B, showing the estimated
parameter Mα including two standard deviations at time t = 10 s for the
F-16 model. The true parameter Mα = −4.300.

Turbulence Method A Method B

No −4.302 ± 0.008 −4.317 ± 0.059
Light −4.153 ± 0.415 −4.096 ± 0.097
Medium −3.864 ± 0.721 −3.931 ± 0.158
Severe −3.410 ± 1.011 −3.786 ± 0.257
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The problem with bias due to process noise comes from the way that the noise
affects the least-squares solution. Assume that the true system can be written as

Z̃N = φ̃NΘ0 + Ṽ T
0 (5.40)

where Θ0 and Ṽ0 are the true model parameters and the transform of the true
noise, including the color and structure used in (5.33), respectively. Then under
fairly general assumptions [see Ljung, 1999]

lim
M→∞

Θ̂ − Θ0 = Ē{(<(Φ̃∗N Φ̃N ))−1} Ē{<(Φ̃∗N Ṽ0)} (5.41)

This mean that there has to be enough excitation so that the term <(Φ̃∗N Φ̃N )
is invertible and the noise Ṽ0 has to be uncorrelated with the regressors in Φ̃∗N
for the method to be consistent. In the applications studied here the process
noise comes from atmospheric turbulence, which is not white. The measurement
noise is assumed to be white, but gives rise to a noise contribution to Ṽ0 since the
measurements are used to approximate the states. All this might lead to biased
estimates of the ordinary least squares approach used in Method A. Furthermore,
an aircraft with a closed-loop system will respond to the noise adding to the
correlation between the noise and the output. To improve the consistency, the use
of a complex Instrumental Variable (IV) approach is suggested. Instruments ζ̃N
which are uncorrelated with the noise Ṽ0 but correlated with the regressors have
to be chosen. This will, according to Ljung [1999], give the following estimator
for parameters and their covariance

Θ̂ = (<(ζ̃∗N Φ̃N ))−1<(ζ̃∗N Z̃N ) (5.42)

Ĉk(Θ̂) = σ̂2
k (<(ζ̃∗N Φ̃N ))−1<(ζ̃∗N ζ̃N )(<(Φ̃∗N ζ̃N ))−1 (5.43)

where the real part has been used in the same way as was done for (5.19). The
choice of the instruments can be made more or less optimal. One choice is to
use an existing simulation model, which produces noise-free data (uN,sim, yN,sim).
In practice, this means that the signals α̃m, q̃m and δ̃e used for Φ̃N in (5.27) are
changed to α̃sim, q̃sim and δ̃e,sim used for ζ̃N in (5.42) and (5.43). This can be done
for the intended application during a flight test, where the simulation model is
run in parallel to the test (almost in real-time) using the true pilot command. The
model does not have to produce the exact truth as long as the simulated data is a
close approximation to the truth and correlated to the flight test data [Gilson and
Van den Hof, 2005]. The described improvement will be called Method IV.

Running 200 Monte Carlo simulations for Method IV, for the measurement noise
case, as for Method B, gives the results shown in Figure 5.15 and Table 5.6. It
is hard to see any big differences in the resulting models between the Method A
and Method IV. As a matter of fact, by looking at the validation in Figure 5.16 it
can be seen that the model fit is about 81% for both cases.
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Figure 5.15: Comparison of estimation using the Method A (blue squares)
and Method IV (green circles) for the F-16 fighter. The true parameters are
given by the black horizontal dashed line. The dash-dotted lines are the
uncertainty of two standard deviations based on the parameter estimates,
which should be compared to the vertical lines based on the mean of the
estimated two standard deviations.

Table 5.6: Estimated parameters including two standard deviations using
Method A, Method IV and the true parameters, at time t = 9 s for the F-16
model.

True Method A Method IV

Zα −0.600 −0.592 ± 0.176 −0.598 ± 0.178
Zq 0.950 0.948 ± 0.123 0.950 ± 0.127
Zδe −0.115 −0.117 ± 0.267 −0.115 ± 0.279
Mα −4.300 −4.250 ± 0.161 −4.300 ± 0.163
Mq −1.200 −1.211 ± 0.112 −1.203 ± 0.117
Mδe −5.157 −5.167 ± 0.245 −5.160 ± 0.256
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Figure 5.16: Validation of the estimated F-16 model. The lines are the re-
sponses using estimated data parameters from Method A in blue and Method
IV in green. The red lines are the true simulated data.

The effect of Method IV is clearer when looking at the results for the process noise
case. This is shown in Figure 5.17 and Table 5.7. The results for Method IV are
much closer to the true model than for Method A. Already at light turbulence
improvements, by using instruments from pre-model simulations, can be seen.
However, the estimated uncertainties of two standard deviations are larger. This
is, to some extent, expected since the pre-model is not the same as the true model
(system). One problem is that these uncertainties keep growing with time, which
is clearly seen for the medium and severe turbulence cases in Figure 5.17.
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Figure 5.17: Estimation and validation of the estimated F-16 model for dif-
ferent levels of process noise. From the top, no, light, medium to severe
turbulence at the bottom. To the left the input and model fit is given. The
middle column shows the response of the angle-of-attack, both measurement
and the models based on Method A and Method IV. To the right the estimates
of the model parameter Mα are given.

Table 5.7: Comparison of Method A and Method IV, showing the estimated
parameter Mα including two standard deviations at time t = 10 s for the
F-16 model. The true parameter Mα = −4.300.

Turbulence Method A Method IV

No −4.302 ± 0.008 −4.302 ± 0.009
Light −4.153 ± 0.415 −4.315 ± 0.447
Medium −3.864 ± 0.721 −4.316 ± 0.950
Severe −3.410 ± 1.011 −4.356 ± 3.406
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For the open-loop case Method IV works well. What will happen if the system
is working under closed-loop conditions? For this, a feedback loop, based on an
LQ-regulator using Bryson’s rule, has been added to the stable F16 simulation
model. Bryson’s rule is a simple way of choosing the Q and R matrices when de-
signing the LQ-regulator [Hespanha, 2018, Lecture 21, p. 285]. The changes of
the flight characteristics from an open loop to a closed-loop system are given by
the pole-zero map and elevator step response shown in Figure 5.18. As can be
seen the system get a little bit faster and more damped.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Pole-Zero Map

0 2 4 6 8
-1.5

-1

-0.5

0

T
o:

 
 (

de
g)

Step response from: e

0 2 4 6 8
time (s)

-2.5

-2

-1.5

-1

-0.5

0

T
o:

 q
 (

de
g/

s)

Figure 5.18: Pole-Zero map and elevator step response for the F-16. Gray is
used for the open-loop system and black is used for the closed loop system.

The results for the measurement noise case are shown in Figure 5.19 and Ta-
ble 5.8. The differences between Method A and Method IV are still small. This
can also be seen in Figure 5.20, which shows the validation. It is interesting to
see that the model fit has been reduced from 81% for the open loop case to 60%
for the closed loop case since the level of measurement noise is of the same level.
This means that the estimation is affected by the system feedback.

The effect on the system identification for the process noise case is shown in Fig-
ure 5.21 and Table 5.9. The closed-loop feedback makes it harder to get accurate
estimates of the parameters, but Method IV still works well, which can be seen
when looking at the model fit in the validation. It is harder to see why when
looking at the estimation. This however, only shows the estimates for the pitch
stability. To get the details, see Appendix D.

Method IV seems to give accurate enough results for the estimation of parame-
ters for the stable cases using open and closed-loop systems up to medium tur-
bulence. Many of today’s fighter aircraft are unstable, working under feedback
control. To investigate how well Method IV works in these conditions a model of
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Figure 5.19: Comparison of estimation using Method A (blue squares) and
Method IV (green circles) for the F-16 fighter in closed loop. The true pa-
rameters are given by the black horizontal dashed line. The dash-dotted
lines are the uncertainty of two standard deviations based on the parameter
estimates, which should be compared to the vertical lines based on the mean
of the estimated two standard deviations.

Table 5.8: Estimated parameters including two standard deviations using
Method A, Method IV and the true parameters, at time t = 9 s for the F-16
model in closed loop.

True Method A Method IV

Zα −0.600 −0.556 ± 0.429 −0.608 ± 0.450
Zq 0.950 0.958 ± 0.206 0.959 ± 0.215
Zδe −0.115 −0.116 ± 0.375 −0.092 ± 0.403
Mα −4.300 −4.045 ± 0.396 −4.330 ± 0.427
Mq −1.200 −1.233 ± 0.190 −1.197 ± 0.204
Mδe −5.157 −5.164 ± 0.346 −5.138 ± 0.382
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Figure 5.20: Validation of the estimated F-16 model. The dashed lines
are the responses using estimated parameters from Method A in blue and
Method IV in green. The red lines are the true simulated data.

the Swedish JAS 39 Gripen multi-role aircraft is used. The JAS 39 Gripen, shown
in Figure 5.22, is open-loop unstable in the subsonic flight envelope. As for the
previous F-16 case, a double pulse is used to excite the motion. However, this is
done both for the elevator and the canard with a small time delay in between to
avoid correlation between the input signals.

The model to estimate in this example is given by[
α̇(t)
q̇(t)

]
=

[
Zα Zq
Mα Mq

] [
α(t)
q(t)

]
+

[
Zδe Zδc
Mδe Mδc

] [
δe(t)
δc(t)

]
+ w(t)[

αm(t)
qm(t)

]
=

[
α(t)
q(t)

]
+ e(t)

(5.44)
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Figure 5.21: Estimation and validation of the estimated F-16 model, in
closed loop, for different levels of process noise. From the top, no, light,
medium to severe turbulence at the bottom. To the left the input and model
fit is given. The middle column shows the response of the angle-of-attack,
both measurement and the models based on Method A and Method IV. To
the right the estimates of the model parameter Mα are given.

Table 5.9: Comparison of Method A and Method IV, showing the estimated
parameter Mα including two standard deviations at time t = 10 s for the
F-16 model, in closed loop. The true parameter Mα = −4.300.

Turbulence Method A Method IV

No −4.307 ± 0.021 −4.306 ± 0.022
Light −4.467 ± 1.040 −4.216 ± 1.225
Medium −4.694 ± 1.649 −3.764 ± 2.775
Severe −5.066 ± 2.336 −1.502 ± 233.3
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Figure 5.22: Definition of the variables of JAS 39 Gripen.

The model structure is about the same as for the simulated F-16 case, but the JAS
39 Gripen aircraft has a close-coupled wing-canard configuration compared to
the more conventional configuration of the F-16. The canard input δc(t) has been
added in this case.

The true model parameters are
Zα = −0.679, Zq = 0.992, Zδe = −0.220, Zδc = −0.012,
Mα = 1.399, Mq = −0.537, Mδe = −10.330 and Mδc = 4.324.

The open loop and closed-loop system characteristics are given by the pole-zero
map and elevator step response shown in Figure 5.23. Here, there is an unstable
pole for the open-loop system, making the step response go to infinity.
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Figure 5.23: Pole-Zero map and elevator and canard step response for the
JAS 39 Gripen. Gray is used for the open-loop system and black is used for
the closed system.
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For the identification, the definition (5.26) for Z̃ stays the same as before, but
(5.27) and (5.28) have to be modified to take the canard data into account. The
result is

Φ̃ =


α̃m(ω1) q̃m(ω1) δ̃e(ω1) δ̃c(ω1)
α̃m(ω2) q̃m(ω2) δ̃e(ω2) δ̃c(ω2)

...
...

...
...

α̃m(ωM ) q̃m(ωM ) δ̃e(ωM ) δ̃c(ωM )

 (5.45)

and

Θ =


Zα Mα
Zq Mq

Zδe Mδe
Zδc Mδc

 (5.46)

Making 200 Monte Carlo simulations, as for the F16 cases, for the measurement
noise case gives the results shown in Figure 5.24 and Table 5.10, for Method A
and Method IV. As before, the results are still similar even for this case. As can
be seen by the validation in Figure 5.25 the model fit is about 54% for both cases.
However, there is a tendency for Method A to develop a bias over time. The
phenomenon is easiest seen for the B11 : Zδe parameter. This is an effect of the
continuously added noise after the end of the excitation at t = 7 s. More details
about this phenomenon will be given later in the convergence and consistency
analysis in Section 5.3.

For the process noise case, the results are a bit different. Figure 5.27 and Ta-
ble 5.11 show acceptable estimates for no and light turbulence. For medium
turbulence Method IV performs better than Method A, even if the accuracy is
not acceptable. For severe turbulence this is reversed. In fact Method IV gives
very poor results. One reason for this is given by Figure 5.26, which shows the
condition number for the matrix<(ζ̃∗N Φ̃N ) from (5.42) that should be inverted.
As can be seen this condition number is very high for the JAS 39 Gripen case,
leading to poor estimates. The signal-to-noise ratio is however very low so good
results are not expected.

In conclusion, Method A and Method IV seem to be fairly robust towards mea-
surement noise for the length of excitation used and instrument used here. For
non-white process noise Method IV adds to the accuracy of the estimation for the
F-16 cases. This is even true for the JAS 39 Gripen case up to the medium noise
level. For severe turbulence the results are varying between the three studied
aircraft system configurations, but system identification is not normally used for
this type of data. The use of other instruments could possible mitigate this, but
a study of this has not been included in this thesis. Method IV presented here
seems useful for identification purposes of the application used. One remaining
problem is however the tendency of the predicted uncertainty to grow over time.
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Figure 5.24: Comparison of estimation using Method A (blue squares) and
Method IV (green circles) for the JAS 39 Gripen fighter. The true parameters
are given by the black horizontal dashed line. The dash-dotted lines are the
uncertainty of two standard deviations based on the parameter estimates,
which should be compared to the vertical lines based on the mean of the
estimated two standard deviations.

Table 5.10: Estimated parameters including two standard deviations using
Method A, Method IV and the true parameters, at time t = 20 s for the JAS
39 Gripen model.

True Method A Method IV

Zα −0.679 −0.761 ± 0.715 −0.686 ± 0.793
Zq 0.992 1.068 ± 0.198 0.994 ± 0.213
Zδe −0.220 −0.059 ± 0.579 −0.219 ± 0.671
Zδc −0.012 −0.082 ± 0.324 −0.009 ± 0.361
Mα 1.399 1.265 ± 0.381 1.420 ± 0.424
Mq −0.537 −0.511 ± 0.106 −0.544 ± 0.114
Mδe −10.330 −10.311 ± 0.309 −10.370 ± 0.359
Mδc 4.324 4.311 ± 0.173 4.338 ± 0.193
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Figure 5.25: Validation of the estimated JAS 39 Gripen model. The lines
are the responses using estimated parameters from Method A in blue and
Method IV in green. The red lines are the true simulated data.
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Figure 5.27: Estimation and validation of the estimated JAS 39 Gripen model
for different levels of process noise. From the top, no, light, medium to severe
turbulence at the bottom. To the left the input and model fit is given. The
middle column shows the response of the angle-of-attack, both measurement
and the models based on Method A and Method IV. To the right the estimates
of the model parameter Mα are given.

Table 5.11: Comparison of Method A and Method IV, showing the estimated
parameter Mα including two standard deviations at time t = 20 s for the
JAS39 model, in closed loop. The true parameter Mα = 1.399.

Turbulence Method A Method IV

No 1.391 ± 0.024 1.403 ± 0.026
Light 1.674 ± 0.486 1.687 ± 0.616
Medium 1.867 ± 0.806 1.952 ± 1.859
Severe 2.242 ± 1.251 5.464 ± 96.37
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5.2.4 Data fusion

A suggestion to improve the behavior of growing uncertainty estimations, which
seems to be an effect of the excitation and the estimation method rather than the
system, is to separate the data into time batches as in Figure 5.28 and to use data
fusion, like the sensor fusion given in Gustafsson [2012, Chapter 2, p. 31], based
on the information content in each batch. This could also improve estimations
during longer time sequences that are without any excitation.

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

u
1
: 

e
 (

d
eg

) Time batch #1 Time batch #2 Time batch #3 Time batch #4 Time batch #5

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

y 1
: 

 (
d

eg
)

0 1 2 3 4 5 6 7 8 9 10

time (s)

-10

0

10

y 2
: 

q
 (

d
eg

/s
)

Figure 5.28: Data set divided into time batches to be used for data fusion.

An example of the effect of growing uncertainties for estimation during times
with no excitation using least squares is illustrated in Example 5.1 below.

Example 5.1: Simple LS estimator
Consider a simple scalar system

yk = b0uk + vk , k = 1, . . . , N (5.47)

where vk is zreo mean white noise with variance σ2
v and let the excitation be as in

Figure 5.29. The ordinary Least-Squares method in the time domain would then
be given by

b̂0 =
ΦTN yN

ΦTNΦN
(5.48)

with ΦN = uN . Here uN and yN are vectors containing the N samples.
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Figure 5.29: Data for an excitation using a single pulse as a input u giving
the response y. To the left a zoom of the time interval of [0 − 20] s is given.

By taking the sample mean of (5.47), the expression becomes

ȳN = b0ūN + v̄N (5.49)

where

ȳN =
1
N

N∑

k=1

yk, ūN =
1
N

N∑

k=1

uk and v̄N =
1
N

N∑

k=1

vk. (5.50)

This is similar to the discrete-time finite Fourier transform given by (5.7) by using
a single frequency of ω = 0. This new expression has a Least-Squares form

b̂0,N =
ΦT

N ȳN

ΦT
NΦN

=
ȳN
ūN

= b0 +
v̄N
ūN

(5.51)

with ΦN = ūN , since ūN and ȳN are a scalars. Here (5.49) has been used in the
third equality. Note also that using the IV approach does not change the estima-
tor in (5.51).

Let the true system parameter be b0 = 2. Then, for time t = 10 s

ȳ10 = 2 + v̄10 and ū10 = 1 (5.52)

which gives
b̂0,10 = 2 + v̄10 (5.53)

At time t = 1000 s

ȳ1000 = 0.02 + v̄1000 and ū1000 = 0.01 (5.54)



5.2 Methods 95

which gives
b̂0,1000 = 2 + 100v̄1000 (5.55)

This will give a growing variance with time as

var(b̂0,10) =
1

10
σ2
v increase to var(b̂0,1000) =

10000
1000

σ2
v (5.56)

In Figure 5.30 a time history of b̂0 is given together with var(b̂0).

0 10 20
-1

0

1

2

3

0 10 20
time (s)

0

0.01

0.02

0.03

0.04

0 200 400 600 800 1000
-1

0

1

2

3

0 200 400 600 800 1000
time (s)

0

0.01

0.02

0.03

0.04

Figure 5.30: The top figure shows a comparison of the estimate of b̂0, using
Method A (blue), with the true b0 = 2. In the lower figure the growing var(b̂0)
is shown. To the left a zoom of the time interval of [0 − 20] s is given.

This simple example shows that both the estimate and the uncertainties are af-
fected by the noise when the excitation is active only during a limited period of
time relative to the whole time sequence, which makes ūN → 0 as N →∞ .

Data fusion is a weighted average of two estimates θ̂1 and θ̂2 from different
sources measuring the same system. In this case the sources are two different
time sequences, which gives the fusion

Î = Î1 + Î2

θ̂ = Î−1(Î1θ̂1 + Î2θ̂2)
(5.57)

Here Îi = P̂−1
i is an estimate of the Fisher information matrix. Information can be

added from several time batches and to get an algorithm that runs sequentially
it is possible to store the old information in Îk and θ̂k , k = 1, . . . , B − 1 and let the
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new information from the latest batch be ÎB and θ̂B. This gives

Î[1,B] = Î[1,B−1] + Î[B]

θ̂[1,B] = Î−1
[1,B](Î[1,B−1]θ̂[1,B−1] + Î[B]θ̂[B])

(5.58)

At the start of each batch a new estimation is begun from scratch. If estimates are
to be presented more than one time in each batch, say every second in Figure 5.28,
then fusion is done between the old information, Î[1,B−1], and the part of the new
information in k = B that exist at those times. This means that at time t = 5 s
in Figure 5.28, the fusion is done between Î[1,2], and the information that exist in
time interval t = 4 − 5 s.

Ît=0−5 = Î[1,2] + Ît=4−5

θ̂t=0−5 = Î−1
t=0−5(Î[1,2]θ̂[1,2] + Ît=4−5θ̂t=4−5)

(5.59)

At t = 6 s the fusion of whole batches are done like

Î[1,3] = Î[1,2] + Î[3]

θ̂[1,3] = Î−1
[1,3](Î[1,2]θ̂[1,2] + Î[3]θ̂[3])

(5.60)

Example 5.2: Simple LS estimator cont.
Here, a continuation of Example 5.1 using the data fusion approach is presented.

The formulation (5.49) can, for the excitation given in Figure 5.29, be rewritten
as

ȳN =
{
b0ūN + v̄N if t ≤ 10 s
v̄N otherwise (5.61)

So, there is only noise in this system for t > 10 s. Therefore, the information is
zero for times larger than ten seconds.

For simplicity the batch length is set to 10 s, leading to 100 batches. Then, for
time t = 10 s

ȳ10 = 2 + v̄10 and ū10 = 1 (5.62)

which gives
b̂0,10 = 2 + v̄10

var(b̂0,10) =
1

10
σ2
v

(5.63)

as before. The information will at this time be

Î[1] =
1

var(b̂0,10)
=

10

σ2
v

(5.64)
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At time t = 1000 s the data fusion will give

Î[1,100] = Î[1] +
100∑

k=2

Î[k]

b̂0,[100] = Î−1
[1,100](Î[1]b̂0,[1] +

100∑

k=2

Î[k]b̂0,[k])

(5.65)

Since Î[k] = 0,∀k > 1 this becomes

Î[1,100] = Î[1]

b̂0,[100] = b̂0,[1]
(5.66)

Therefore, the resulting estimate and variance becomes

b̂0,1000 = 2 + v̄10

var(b̂0,1000) =
1

10
σ2
v

(5.67)

which is the same as for t = 10 s, i.e., both the estimate and the variance are
unaffected by the noise as time increases. Figure 5.31 shows b̂0 together with
var(b̂0) for the data fusion approach compared to Method A.
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Figure 5.31: The top figure shows a comparison of the estimate of b̂0, using
Method A (blue) and using data fusion (magenta), with the true b0 = 2. In
the lower figure the growing var(b̂0) is shown. To the left a zoom of the time
interval of [0 − 20] s is given.
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Adding the fusion part to Method IV gives Method C. The length of the time
batches can be adjusted to fit the problem at hand. This means that if there is
much noise in the data, longer batches can be used. By choosing a batch time that
is the whole test time, Method IV is regained. This might be the best choice for
short tests with much noise.

When running the Monte Carlo simulations for Method C, only the case of the
JAS 39 Gripen is presented since the results are very similar when compared to
Method IV. The differences are mainly in the estimates of the uncertainties. The
results for the F16 cases can be found in Appendix D.

The results for the measurement noise case are shown in Figure 5.32 and Ta-
ble 5.12. As for the earlier analysis of Method IV, it is hard to see any big differ-
ences in the resulting models between the Method A and Method C. In fact, by
looking at the validation in Figure 5.33 it can be seen that the model fit is about
54% for both methods.

It should be pointed out that the uncertainty bounds using the Monte Carlo sim-
ulations, shown as dash-dotted lines in Figure 5.32, are much wider than the
estimated ones, shown as the vertical bars, for this case. This is in contrast to
Method IV for which the two ways of estimating the uncertainty are closer to-
gether. The reason for these wider uncertainty bounds is that there is a spread in
the estimate as shown in Figure 5.34. As can be seen, most estimates are close to
the true value, but there are some outliers that really affect the MC boundaries.

The results from the process noise case for Method C follow closely Method IV
results as can be seen in Figure 5.35 and Table 5.13. Acceptable results are re-
ceived from the no and light turbulence data. At the medium level the results are
not so accurate and for severe turbulence the estimates give an unusable model.
Compared to Method IV, Method C does not have the problem of growing uncer-
tainties. Here, the Monte Carlo simulated uncertainty bounds are much smaller
than the estimated ones. This is the opposite from the measurement noise case
analysis.

5.3 Convergence and consistency analysis

Here the convergence and consistency of the three frequency domain methods
will be analyzed. As will be seen this also gives a reason to discuss how the input
affects the outcome of the identification using these methods.

As a first step in this analysis a noise free case for a double pulse input on the
elevator and canard is applied. The sequence is, first an elevator double pulse
with a period time of two seconds followed by a delay of one second before a
similar double pulse for the canard is executed. This is the same input as the one
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Figure 5.32: Comparison of estimation using Method A (blue squares) and
Method C (black circles) for the JAS39 fighter. The true parameters are given
by the black horizontal dashed line. The dash-dotted lines are the uncer-
tainty of two standard deviations based on the parameter estimates, which
should be compared to the vertical lines based on the mean of the estimated
two standard deviations.

Table 5.12: Estimated parameters including two standard deviations using
Method A, Method C and the true parameters, at time t = 20 s for the JAS39
model.

True Method A Method C

Zα −0.679 −0.762 ± 0.715 −0.592 ± 0.353
Zq 0.992 1.068 ± 0.198 0.984 ± 0.094
Zδe −0.220 −0.059 ± 0.579 −0.215 ± 0.297
Zδc −0.012 −0.082 ± 0.324 −0.014 ± 0.177
Mα 1.399 1.265 ± 0.381 1.751 ± 0.188
Mq −0.537 −0.511 ± 0.106 −0.633 ± 0.050
Mδe −10.330 −10.311 ± 0.309 −10.328 ± 0.158
Mδc 4.324 4.311 ± 0.173 4.324 ± 0.096
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Figure 5.33: Validation of the estimated JAS39 model. The dashed lines are
the responses using estimated parameters from the Method A in blue and
Method C in black. The red lines are the true simulated data.
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Figure 5.34: The 200 estimates of Mα at time t = 20 s for Method C, which
have been used for the Monte Carlo bounds in Figure 5.32.
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Figure 5.35: Estimation and validation of the JAS39 model for different lev-
els of process noise, from the top, no, light, moderate to severe turbulence
at the bottom. To the left the input and model fit is given. The middle col-
umn shows the response of the angle-of-attack, both measurement and the
models based on Method A and Method C. To the right the estimates of the
model parameter Mα are given.

Table 5.13: Comparison of Method A and Method C, showing the estimated
parameter Mα including two standard deviations at time t = 20 s for the
JAS39 model. The true parameter Mα = 1.399.

Turbulence Method A Method C

No 1.391 ± 0.024 1.403 ± 0.014
Light 1.674 ± 0.486 1.679 ± 0.328
Medium 1.867 ± 0.806 1.924 ± 0.975
Severe 2.242 ± 1.251 3.083 ± 46.64
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previously used in this chapter for the JAS 39 Gripen configuration. Here how-
ever, the simulation is run for a longer time. The result is shown in Figure 5.36.
Only the elevator input is shown to give a feeling for the excitation. In the same
way only the response in the angle-of-attack is show. Both the measurements and
the simulated instruments are given. The parameter A21 : Mα = 1.399 from Ta-
ble 5.13 has been chosen to represent the model estimates. The input used has
enough information for the estimates to be consistent, i.e., to converge to the true
parameter value.

When noise is added the results are very different. A case with both measurement
noise and severe turbulence is shown in Figure 5.37. As can be seen Method A
and Method IV both have large errors in the estimates and do not seem to con-
verge at all. Method C converges, but also with a bias. Clearly a single double
pulse is not enough to get consistency for a noisy case like this. The reason for the
convergence of Method C is that the data fusion part do not use so much of the
non-informative part after the end or the input. This can be seen in Figure 5.38,
which shows the saved and the new estimates as well as how they are weighted
together to get the fused estimate.

In Figure 5.39 continuously input varying for the elevator and canard have been
used. When looking at the results both Method A and Method IV do not converge,
at least not based on the uncertainty estimates. Also, even though the estimates
are close to the true system parameter, there seem to be some problems. This
can for example be seen close to time t = 150 s and t = 300 s. The gray lines in
the subfigures show the condition number for the matrix to be inverted in the
estimation process. This condition number gets really big close to the mentioned
times. This will affect the estimates in a bad way. Therefore the consistency can
also be questioned. For Method A this behavior is expected since there is noise in
the regressors, but Method IV should be able to handle this phenomenon.

In contrast to the above behavior, Method C seems to converge as well as being
consistent. The reason is the same as before as and can be seen in Figure 5.40.
As the fused information Î[1,B−1] grow larger, it gets dominant over the informa-
tion of the new estimates Î[B] in (5.58). This means that new estimates are scaled
down. This also occurs before the condition number problem, and therefore im-
proves the consistency properties.

The problem with the condition number comes from the fact that the input and
the evaluation frequencies coincide with a full period at a rate of 150 s. Look-
ing at the input, it has a period of Tu = 6 s or a frequency of Tu = 1/6 Hz.
When setting up the identification the frequency vector used for the evaluation
is f = 0.10 : 0.04 : 2.0 Hz. This can be written as f = 0.10, 0.14, 0.18, . . . =
5 ∗ 0.02, 7 ∗ 0.02, 9 ∗ 0.02, . . ., which gives a period time of T = 50 s or a frequency
of f = 1/50 Hz. The common denominator of the two frequencies is 150. To show
that this frequency coupling really is the trigger to the problem a test to change
the frequency for evaluation to f = 1/100 Hz is done, which gives the common
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Figure 5.36: Comparison of the different frequency domain methods for a
single input noise-free excitation for convergence and consistency analysis.
The elevator double-pulse input and angle-of-attack output are shown to-
gether with the JAS 39 model parameter Mα = 1.399.
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Figure 5.37: Comparison of the different frequency domain methods for a
single input noisy excitation for convergence and consistency analysis. The
elevator double-pulse input and angle-of-attack output are shown together
with the JAS 39 model parameter Mα = 1.399.



5.3 Convergence and consistency analysis 105

0 50 100 150 200 250 300 350 400
-1

0

1

2

3

4
A21 : M

True

B-1

B

0 50 100 150 200 250 300 350 400

time (s)

-1

0

1

2

3

4
A21 : M

True
IB-1 B-1 / I

IB B / I

Method C

Figure 5.38: Display of the parts of the data fusion for the JAS 39 model
parameter Mα = 1.399. At the top are the estimated parameters from the
old fused data in red and the new data in blue. At the bottom are the fused
estimate in black and the weighted parts in red and blue.

denominator of the frequencies of 300. This is shown in Figure 5.41. The prob-
lem is then shifted to a time interval of Tu = 300 s, which supports the statement
of coinciding frequencies.

Another suggestion to get away from the problem is to use a more random input
to break the coupling. An example is shown in Figure 5.42. The condition num-
ber problem has vanished, but a bias problem occurs instead for Method A and
Method IV. It is interesting to note that Method C is fairly insensitive to all these
changes made in the convergence and consistency analysis.
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Figure 5.39: Comparison of the different frequency domain methods for a
continously varying noisy excitation for convergence and consistency anal-
ysis. The elevator double-pulse input and angle-of-attack output are shown
together with the JAS 39 model parameter Mα = 1.399.
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Figure 5.40: Display of the parts of the data fusion of the JAS 39 model
parameter Mα = 1.399 is given. At the top are the estimated parameters
from the old fused data in red and the new data in blue. At the bottom are
the fused estimate in black and the weighted parts in red and blue.
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Figure 5.41: Comparison of the different frequency domain methods for a
continuously varying noisy excitation for convergence and consistency anal-
ysis with a changes evaluation frequency span. The elevator double-pulse
input and angle-of-attack output are shown together with the JAS 39 model
parameter Mα = 1.399.
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Figure 5.42: Comparison of the different frequency domain methods for a
continuously varying noisy excitation for convergence and consistency anal-
ysis. The random elevator double-pulse input and angle-of-attack output are
shown together with the JAS 39 model parameter Mα = 1.399.
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5.4 Estimation on real data

In this section, Method C has been applied to real data from a flight test with the
JAS 39 Gripen fighter aircraft. The model structure is the same as for the JAS 39
Gripen model used for the estimation on simulated data, and can be written as[

α̇(t)
q̇(t)

]
=

[
Zα Zq
Mα Mq

] [
α(t)
q(t)

]
+

[
Zδe Zδc
Mδe Mδc

] [
δe(t)
δc(t)

]
+ w(t)[

αm(t)
qm(t)

]
=

[
α(t)
q(t)

]
+ e(t)

(5.68)

There is no known true model when looking at a real flight test, but one can use
the values from the current simulator model for the aircraft as a reference. Here,
a dataset has been selected from an old test that excites the short-period motion.
For this case the existing model parameters are

Zα = −0.679, Zq = 0.992, Zδe = −0.220, Zδc = −0.012,
Mα = 0.472, Mq = −0.551, Mδe = −10.490 and Mδc = 4.247.

During a real flight test, excitation is usually done for all types of control surfaces.
For the model given in (5.68) 2 DOF excitation is enough. Figure 5.43 shows the
input and response data as well as the estimates of the parameters.

The input in this maneuver is very close to the double-pulses of the elevator and
canard that were used in the simulation examples given earlier, but the flight con-
trol system is of an older version so it is not the same as the simple LQ-controller
used for the simulations. The estimates at the end of the maneuver are given in
Table 5.14. The results are fairly close to the data from the existing simulator
model in most cases. One concern is the change of the sign of the elevator (δe)
influence on the vertical force component. Otherwise, the conclusion based on
test data would be that the aircraft is a little more pitch stable and that the ca-
nard efficiency on the vertical force is a bit larger than what the simulator model
suggests. Information like this could have been used to make a decision to abort
or go ahead with the test, either for safety reasons or amount of data content.

During a flight test, the JAS 39 Gripen flight simulator is run in parallel with
the actual test. Data is transmitted to the ground station and the true pilot com-
mands are used to drive the simulation. This makes it easy to use the simulated
noise-free input and response as instrumental variables in Method C. These will
probably be well correlated to the tested values making them a logical choice. It
should be noted that the instrumental variables used in the current identification
was based on a Simulink model with the values given by the model values in Ta-
ble 5.14 . This was done since the older version of the FCS was not implemented
in the current version of the ARES simulator that otherwise would have been
used. However, it is believed that the result would not have changed too much
if ARES data had been used since the noise level is very low for the investigated
case.
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Figure 5.43: Estimation of parameters for the JAS 39 Gripen using Method C.
The dashed lines are values from the Saab simulation model, the circles are
the estimated values and the vertical lines are the estimated two standard
deviations.

Table 5.14: Comparison of the estimated parameters including two standard
deviations using Method C with the parameters for the JAS 39 Gripen model.

Model Method C

Zα −0.679 −0.619 ± 0.025
Zq 0.992 0.965 ± 0.006
Zδe −0.220 0.108 ± 0.022
Zδc −0.012 −0.111 ± 0.009
Mα 0.472 0.525 ± 0.145
Mq −0.551 −0.597 ± 0.033
Mδe −10.490 −10.780 ± 0.124
Mδc 4.247 3.982 ± 0.050
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5.5 A six degrees-of-freedom model

Up to now a two degrees-of-freedom model has been used to describe the system.
This simplification has been done to be able to better understand the underlying
mechanisms of the methods under investigation. During an actual flight test, a
full six degrees-of-freedom model is usually needed. Therefore, a model of a F-16
aircraft taken from Stevens and Lewis [1992] will be used in this section to mimic
a real flight test. The linear state-space system is given as

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(5.69)

Here the states include the velocity vector [V (t) α(t) β(t)]T , the Euler rotational
angles [Φ(t) Θ(t) Ψ(t)]T and the rotational angle velocities [p(t) q(t) r(t)]T . Fur-
thermore, as input vector the aileron, elevator and rudder, [δa(t) δe(t) δr (t)]T ,
are used to control the aircraft around the three roll, pitch and yaw axes. Three
things should be noted about the model. First, the speed V (t) is given in (ft/sec).
This has not been changed, but the presentation in the figures shows this in (m/s).
Second, the input values in the model have been converted from (deg) to (rad).
Third, the C and D matrices have been put to the identity and null matrices re-
spectively. This was not the case for the original model. With this the system
components are given by

As can be seen, the 6th state Ψ(t) is a pure integration of the yaw rotation ve-
locity r(t) and it only affects the angle-of-sideslip in a weak manner. To avoid
unnecessary numerical problems during the identification this is removed from
the model used. Therefore, there will be 88 parameters to be estimated.

The previously used two degrees-of-motion systems only covered the dynamics
for the short period motion. When completing the six degrees-of-freedom sys-
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tem, the additional four classical flight mechanical stick fixed motion modes, de-
scribed in Chapter 3, appear. The lower bound of the frequency vector used for
evaluation has to be reduced to match the Phugoid model, which has a frequency
of about 0.03 Hz. Therefore, a lower bound of 0.02 Hz will be used. The upper
bound of 2 Hz used for the Short period mode is enough to handle both the Roll
and Dutch roll modes. To mimic a realistic flight test some measurement noise
and light atmospheric turbulence is added. In addition, a prior model with a dif-
ference to the true system of up to ±10% is used to create the instruments.

For the analysis a closed-loop system is used. A simple LQ-feedback loop, using
Bryson’s rule is applied. To simulate a realistic flight test, a maneuver block of
three double pulses, one in each channel (roll, pitch and yaw), is performed. The
resulting response can be seen in Figure 5.44. During flight the most interest-
ing parameters to monitor are the ones for the input, main static stability and
damping. Estimation of these parameters, for the maneuver block, is shown in
Figure 5.45. Since the simulation is a low noise case, two things can be noted.
The first is that the uncertainty estimation for Mα is larger than expected based
on the previous simulations. The second is that some parameters do not converge
to the correct parameter value.

0 10 20 30
-5

0

5

a [d
eg

]

y
yIV

0 10 20 30
-5

0

5

e [d
eg

]

0 10 20 30
-5

0

5

r [d
eg

]

0 10 20 30
-10

0

10

V
T
 [m

/s
]

0 10 20 30
-5

0

5

 [d
eg

]

0 10 20 30
-5

0

5

 [d
eg

]

0 10 20 30

time [s]

-10

0

10

p 
[d

eg
/s

]

0 10 20 30

time [s]

-10

0

10

q 
[d

eg
/s

]

0 10 20 30

time [s]

-10

0

10

r 
[d

eg
/s

]

Figure 5.44: Realistic block of double-pulses in roll, pitch and yaw to excite
small disturbances responses around all axes. This is a low noise case.
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Figure 5.45: Estimation of the most interesting parameters with the original
settings.
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Figure 5.46: Estimation of the most interesting parameters with higher fre-
quency resolution (0.01 Hz) settings.
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To investigate these effects the estimation frequency vector was given a finer reso-
lution from 0.04 Hz to 0.01 Hz. The result is shown in Figure 5.46. As can be seen
this makes the uncertainty estimates smaller. It does not, however, improve the
accuracy of the estimated parameters. A possible source for this accuracy prob-
lem could be that the data fusion uses the information matrices for weighting.
If measurements of different sizes are used to estimate the information content
there could be a numerical problem affecting the accuracy. To investigate this a
threshold concept has been used. If the information is lower than a certain value
it is set to a very low value so that it cannot corrupt the identification process.
The result from this is shown in Figure 5.47. The estimates now converge to a
value that is very close to the real system.

A more noisy case with severe turbulence for the same maneuver block is shown
in Figure 5.48. The estimation without any threshold is shown in Figure 5.49.
Here the resolution of the frequency vector used for the estimation had to be re-
duced to 0.02 Hz. By applying the threshold much better estimates of the param-
eters can be achieved. This is shown in Figure 5.50. For this case the uncertainty
estimate is again large for Mα . In this situation it would be possible to ask for
more excitation in the pitch plane.
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Figure 5.47: Estimation of the most interesting parameters with higher fre-
quency resolution (0.01 Hz) settings and a threshold function on the infor-
mation matrix.
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Figure 5.48: Maneuver block in severe turbulence.

A request of this kind could be to excite a 3-2-1-1 pulse, with a broader frequency
content than the double pulse input. The result can look like in Figures 5.51
and 5.52. As can be seen the uncertainty in Mα decreases substantially with the
additional information, giving once again a usable estimate. One of the benefits
of using an online method is that decisions like this can be made while the aircraft
is still in the air. This will save time and reduce cost relative to have to get the
extra needed information during another flight.
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Figure 5.49: Estimation, without a threshold, of the most interesting param-
eters for a maneuver in severe turbulence.
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Figure 5.50: Estimation, with a threshold, of the most interesting parameters
for a maneuver in severe turbulence.
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Figure 5.51: Maneuver block in severe turbulence with extra excitation.
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Figure 5.52: Estimation, with a threshold, of the most interesting parameters
with severe turbulence and with extra excitation.
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5.6 Conclusions

When looking at the results in this chapter it is clear that the Method C, consisting
of the Method IV together with data fusion, improves the performance of Method
A taken from Klein and Morelli [2016] for system identification when noise is
present. The differences are small for measurement noise, but when process noise
is present the benefits of using an instrumental variables method together with
data fusion can be seen. This is due to the fact that Method A uses an ordinary
least squares approach, which can give biased results for the errors-in-variables
problem that arises in the studied cases. For severe turbulence Method C runs
into problems with the condition number for matrices to be inverted. This is not
a critical problem for the application studied since this is not a flight condition
where system identification is used. It can be seen from the convergence and
consistency analysis that Method C has better properties when the data fusion
part is added. It has also been shown that a 6 DOF problem can be handled
by Method C and that there is a benefit of having a method for online decision
during flight.





6
Generic future fighter

"To invent an airplane is nothing. To build one is something.
But to fly is everything."
- Otto Lilienthal (1848 - 1896)

The complexity and large cost associated with modern aircraft design makes sub-
scale model testing an interesting idea for risk and cost reduction. If a model is
dynamically scaled in a correct way, concerning geometry, mass, aerodynamics,
engine thrust, etc., so that the dynamics of the subscale model represents the full-
scale aircraft, there are ways to assess stability and control characteristics of the
real aircraft [Chambers, 2009]. Using remotely piloted vehicles (RPVs) requires
robust and reliable ground support for the pilot and the test team as described
in Bailey et al. [2005]. A more cost effective option is to use a radio-controlled
demonstrator to test the implementation of new technologies and also to support
choices early in the design process [Lundström, 2012, Sobron, 2018].

In this chapter an experimental flight test with a genetic future fighter (GFF), us-
ing the methods developed in the previous chapter, will be presented. The meth-
ods are as stated suitable for real-time applications, which is beneficial when
conducting radio-controlled flight with a subscale aircraft. The reason for this
is that in the early phase of an aircraft design only basic knowledge of the flight
characteristics exist. Hence, being able to support the test with information in
real-time can reduce risks and uncertainties and thereby increase the test perfor-
mance.

121
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6.1 Introduction

Historically, wind tunnel testing has been the main source used to build up
knowledge of aircraft concepts. With the continuous increase of computational
power in modern computers together with the advancement of computational
fluid dynamic (CFD) methods, it is nowadays easier to evaluate the static aircraft
characteristics earlier in the design phases. Subscale flight-testing is more concen-
trated on dynamic behavior. To get the full picture, both the static and dynamic
characteristics of the aircraft are needed.

A good example of subscale model testing is the early development of the Saab
J35 Draken, featuring a double-delta wing configuration. A step from transonic
speed up to two times the speed of sound was taken, thereby braking new unex-
plored physical ground in aeronautical technology. To investigate the low speed
stability characteristics, several 10% scale, swingline control models were built
and flown. Figure 6.1 show the principle of swingline model testing together
with a picture of one of these models. In the next step the Saab 210, a manned
double-delta demonstrator aircraft of about half scale, was built and several air
intakes were tested. Together with wind tunnel tests, these subscale demonstra-
tors added enough knowledge to develop the full scale Saab J35 Draken aircraft
[Dorr et al., 1987].

Figure 6.1: Draken 10% swingline model aircraft.

The subscale aircraft named GFF (Generic Future Fighter), shown in Figure 6.2,
uses today’s technology level for radio-controlled flight and is thereby much more
advanced than the 10% scale model of the Saab J35 Draken.

The GFF model aircraft is described in Jouannet et al. [2012]. Earlier existing
test data have been used for input design and results are given for new tests with
these inputs.
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Figure 6.2: GFF, Subscale model aircraft.

6.2 Input design using simulated data

In this section, the design of input signals will be described. For the design a
linear state-space model on the form (6.1), based on previous flight test data, was
created. The definitions of the variables are shown in Figure 6.3.

[
α̇(t)
q̇(t)

]
=
[
Zα Zq

Mα Mq

] [
α(t)
q(t)

]
+
[
Zδe Zδc
Mδe Mδc

] [
δe(t)
δc(t)

]

[
αm(t)
qm(t)

]
=
[
1 0
0 1

] [
α(t)
q(t)

] (6.1)
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Figure 6.3: Definition of the variables of the GFF. Note that Z in (6.1) is the
same as −N in the figure.
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The states x(t) = [α(t) q(t)]T are the angle-of-attack and the pitch rotation veloc-
ity, and the input u(t) = [δe(t) δc(t)]T are the elevator and canard deflections. All
states are measured. Making an estimation of the model parameters Z and M in
(6.1) using an ordinary least-squares (OLS) time domain method [Ljung, 1999]
on the existing data shown in Figure 6.4 leads to the following continuous-time
model

ẋ(t) =
[
−1.88 0.65
−36.39 −2.77

]
x(t) +

[
−0.33 −0.37
−39.04 17.49

]
u(t)

y(t) =
[
1.00 0.00
0.00 1.00

]
x(t)

(6.2)
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Figure 6.4: Estimation data from earlier flight tests. Test data (red) and sim-
ulated model data (black) are shown.
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The OLS in time domain has been used here in a batch mode since the whole data
set is available and it is a quick and easy way to get a model to use. The model
(6.2) has been validated on other data sets. One of these is shown in Figure 6.5.
Even though the match is not perfect, the model is deemed accurate enough to be
used for the experimental design.
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Figure 6.5: Validation data from earlier flight tests. Test data (red) and sim-
ulated model data (black) are shown.

Two types of signals are evaluated (see Figure 6.6). The first one is a double pulse,
commonly used for estimating aerodynamic derivatives from flight test data. The
second one is a multisine signal

u(t) =
Nu∑
r=1

Ar cos(ω0rt + ϕr ) (6.3)
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where Ar and ϕr are the amplitudes and phases for the signal components respec-
tively. One reason for using a multisine is that it is possible to achieve weakly
correlated, simultaneously excited input signals by using different frequencies
for the different control surfaces, a method described in Morelli [2011]. This will
save time and reduce cost since it reduces the time spent in the air for the same
amount of information gathered.
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Figure 6.6: A double pulse (DP) input (left) and a crest factor optimized
multisine (CR) input (right).

Nine different crest factor optimized multisine input signals have been created
with a sample frequency of 100 Hz and a period of 1 s. To generate the crest
factor optimized input signals the toolbox described in Kollár et al. [2006] has
been used. An example of the amplitudes and the phases for the separated input
signals is shown in Figure 6.7.
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Figure 6.7: Amplitudes (left) and phases (right) of the multisine frequency
separated elevator and canard input signals. The excitation has odd frequen-
cies for the elevator (red) and even for the canard (black).
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To get good input signals three periods of excitation have been used, one to take
care of the transient in the beginning and two steady-state periods. This type of
signal is described in Schoukens et al. [2016], where it is used to detect nonlinear-
ities.

Note that the frequency span of 1 − 10 Hz has been chosen to excite the short
period flight mechanical model for this subscale GFF aircraft. This is higher than
the 0.1 − 2 Hz for full-sized aircraft, stated in Klein and Morelli [2016]. It is
a well-known fact that small-scale aircraft have this short period characteristic.
The phenomena can be seen in the Bode plot in Figure 6.8, where the model of
the full scale Saab JAS 39 Gripen used in Larsson and Enqvist [2012a] has been
compared to the subscale GFF model from (6.2).
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Figure 6.8: Bode plot of GFF (red) and Gripen (black).

For the investigation of possible benefits of the multisine signals, the inputs for
the elevator and the canard have be run both separated and in parallel. They have
also been compared to the double pulse input when separated and with a small
time delay to mimic the parallel input without causing too much correlation be-
tween the different control surfaces. Examples of input signals from simulations,
with a process noise of about ten percent of the input amplitude are shown in Fig-
ure 6.9. The total excitation time is here 10 s, which is the time window available
in the real flight test.
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Figure 6.9: Simulations with different input signals. Crest factor optimized
multisine (red) vs. Double pulse (black).

Making simulations with the estimated models for nine realizations of input sig-
nals and comparing the double pulse (DP) and the crest factor optimized (CR)
multisine results to the true model using the relative error

ε = 100|θmodel − θtrue
θtrue

| (6.4)

as a measure, gives the results in Table 6.1. It is clear that the crest factor opti-
mized input gives more accurate estimates for this type of testing.
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Table 6.1: The relative error (6.4) when using the double pulse (DP) and the
crest factor optimized multisine (CR) input signals. The true model (6.2) is
given as a reference.

True Model εDP εCR
Zα −1.880 1.601 0.997
Zq 0.651 0.868 0.386
Zδe −0.332 3.703 2.871
Zδc −0.367 10.430 0.619
Mα −36.395 0.829 0.514
Mq −2.772 2.037 0.908
Mδe −39.044 0.317 0.244
Mδc 17.488 2.184 0.130

6.3 Experimental setup

A flight test has been carried out at Bråvalla, a disused military airfield on the
outskirts of the city of Norrköping, Sweden. Due to regulations, the rc-aircraft
has to remain within visual line-of-sight at all times. Such a limited available
airspace requires a precise management of the test area. An illustration is given
in Figure 6.10, which shows the test area and aircraft trajectory during one of the
flight tests of the campaign.

Figure 6.10: Test area at Bråvalla airfield and aircraft trajectory during a
flight test.
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The test was performed by a team of three persons: one test conductor, respon-
sible for controlling the test execution; one pilot, flying the aircraft from the
ground control; and one test monitor, evaluating the test results between the
flights and supervising the safety area. Test cards were used to predefine the
maneuvers to be performed. One of these test cards can be seen in Appendix E.
The corresponding commands and excitation signals were pre-programmed and
automatically executed from the radio-control transmitter by means of a novel
flight-test application developed at Linköping University [Sobron et al., 2018].
This application, based on Lua scripts, also allowed the team to easily reconfigure
the test sequences between flights, improving efficiency as fast decisions could be
taken during the test.

The test object was the radio-controlled subscale demonstrator aircraft GFF, which
is shown in Figure 6.2. The demonstrator was designed and produced within the
NFFP4 Swedish National Aeronautical Research Program and it made its first
flight in 2009 [Jouannet et al., 2012]. The aircraft is a jet-powered fighter with
close-coupled delta-wing canard configuration that reproduces the full-scale de-
sign at a 13 % scale, using the Froude number as similarity parameter. An overview
of the airframe is presented in Figure 6.11 and its main characteristics are given
in Table 6.2. Although it originated from a conceptual study at Saab, it is a
generic design and it has no couplings to any current or future Saab products.

Figure 6.11: Overview of the GFF subscale demonstrator.
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Table 6.2: Main characteristics of the GFF subscale demonstrator.

Length 2.4 m
Wing span 1.5 m
Typical take-off weight 19 kg
Typical fuel weight 3 kg
Engine Jetcat P160
Maximum static thrust 160 N

The GFF aircraft is one of the platforms used in the MSDEMO research program
for investigating the potential of subscale flight testing within aircraft conceptual
design [Lundström et al., 2016]. It is equipped with a data acquisition system and
several sensors. Two inertial measurement units (IMU) provide accelerations and
angular velocities. Furthermore, the IMUs together with GPS receivers, magne-
tometers, and air-pressure transducers are used to estimate the position, orienta-
tion and altitude. A custom-made nose-boom provides airspeed, angle-of-attack
and angle-of-sideslip. The system also registers the incoming pilot commands as
well as the deflection of each control surface. These signals are logged on-board
at an average sampling frequency of 100 Hz and are also sent to a ground station
in real-time via a separate telemetry link. Figure 6.12 shows the layout of the
data acquisition system.

Figure 6.12: Layout of the data acquisition system on the GFF platform.
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On the test day three flights were made. The first one was for checking and the
calibration of instruments. The two other were made to collect identification data.
The first two of the nine multisine input signals, mentioned earlier in Section 6.2,
were used both for parallel and separate excitation of the elevator and canard.
The test program can be seen in Table 6.3. The test setup was used to get repeti-
tions of excitation for different fuel weights. The fuel weight is about 16 % of the
take-off weight and can therefore have an effect on the outcome of the results. It
should be noted that Method C was run in IV-mode, i.e., the whole test sequence
was used for the identification since each excitation was only 10 s long.

Table 6.3: Test program for identification.
Flight FT. #2 Flight FT. #3

Take-off Take-off
Multisine 1 separated, MSs1 Multisine 1 parallel, MSp1
Multisine 1 separated, MSs1 Multisine 1 parallel, MSp1
Multisine 2 separated, MSs2 Multisine 2 parallel, MSp2
Multisine 1 parallel, MSp1 Multisine 1 separated, MSs1
Multisine 1 parallel, MSp1 Multisine 1 separated, MSs1
Multisine 2 parallel, MSp2 Multisine 2 separated, MSs2
Double pulse parallel, DPp Double pulse separated, DPs
Landing Landing

6.4 Results using real flight test data

Some examples of estimation results from the four different types of maneuvers,
(MSs, MSp, DPp, DPs) defined in Table 6.3, are shown in Figures 6.13 - 6.16.
The test with the separated double-pulse (DPs) had to be repeated during flight
FT. #3 since the first one was aborted due to ground proximity. This gave two
realizations DPs1 (aborted) and DPs2 (repeated). The figures show the flight test
data in red and the model (6.2), based on earlier flight test data, is shown as the
black dashed line. Estimated parameters are given as blue squares for Method
A and as black circles for method C. The estimated uncertainty measures of two
standard deviations are shown as vertical bars. It should be noted that the model
(6.2) is not the true system, but rather a reference. If the differences are big, when
comparing the test result with the model, then a decision has to be made if the
test can be continued or if it should be aborted and a more thorough analysis is
needed.

When comparing the results in Figures 6.13 and 6.14 for the separated and par-
allel multisine inputs, the methods give quite similar estimates in the end of the
two inputs. This can be seen in Table 6.4. The difference is during the test ma-
neuvers where the estimated canard effectiveness Zδc andMδc are quite uncertain
before the excitation for the separated maneuvers, as should be expected.
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Figure 6.13: Results from flight FT. #2 with maneuver MSs1. The flight
test data is shown in red, the results from Method A as blue squares and
the results from Method C as black circles. The uncertainties are given as
vertical bars.
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Figure 6.14: Results from flight FT. #2 with maneuver MSp1. The flight
test data is shown in red, the results from Method A as blue squares and
the results from Method C as black circles. The uncertainties are given as
vertical bars.
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Table 6.4: Comparison of estimates for the crest factor optimized multisine
(CR) input signal run separated and in parallel. The model (6.2) is given as
a reference.

Method A Method C
Model MSs1 MSp1 MSs1 MSp1

Zα −1.880 −1.322 −1.296 −3.939 −2.376
Zq 0.651 0.926 0.962 1.205 0.945
Zδe −0.332 1.288 −0.468 2.131 −0.499
Zδc −0.367 −1.643 −0.703 −2.161 −0.821
Mα −36.395 −26.387 −26.959 −27.502 −35.076
Mq −2.772 −7.078 −7.131 −8.080 −7.449
Mδe −39.044 −62.373 −62.951 −65.082 −63.570
Mδc 17.488 34.231 31.444 35.329 30.688

The differences are bigger when comparing the parallel multisine and double
pulse in Figures 6.14 and 6.15. This difference is mostly in the pitching moment.
The biggest difference is in the canard effectiveness Mδc where the estimated ef-
fectiveness is much lower for the double pulse input. A similar result can be seen
when comparing the two double pulse inputs in Figures 6.15 and 6.16. This can
also be seen in Table 6.5.

The results from the repeated separated double pulse (DPs2) are shown in Fig-
ure 6.16. It gives not exact, but similar results as the separated multisine in Fig-
ure 6.13 when using method C. It can also be seen that Method A and Method C
give the biggest difference in the estimates for this maneuver.

Table 6.5: Comparison of estimates for the classic double pulse (DP) input
signal run separated and in parallel. The model (6.2) is given as a reference.

Method A Method C
Model DPp DPs DPp DPs

Zα −1.880 −1.684 −1.938 −2.397 −2.600
Zq 0.651 0.851 0.645 1.072 1.000
Zδe −0.332 0.306 0.078 0.767 1.061
Zδc −0.367 0.450 −0.613 −0.730 −1.306
Mα −36.395 −27.740 −26.251 −30.032 −28.269
Mq −2.772 −3.431 −4.664 −4.408 −8.804
Mδe −39.044 −31.932 −40.702 −36.745 −58.807
Mδc 17.488 3.048 22.343 3.933 33.533
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Figure 6.15: Results from flight FT. #2 with maneuver DPp. The flight test
data is shown in red, the results from Method A as blue squares and the re-
sults from Method C as black circles. The uncertainties are given as vertical
bars.
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Figure 6.16: Results from flight FT. #3 with maneuver DPs. The flight test
data is shown in red, the results from Method A as blue squares and the re-
sults from Method C as black circles. The uncertainties are given as vertical
bars.
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In Table 6.6, the absolute values of the correlation between the real parts of the
regressors are given. The multisine input signals have much lower correlation
than the double pulses. The parallel double pulse, DPp, has the highest correla-
tion of 0.86. This might reduce the resulting estimation accuracy.

Table 6.6: Absolute value of correlation between the real parts of the regres-
sors.

MSs1 MSp1

δe δc α q δe δc α q
δe 1.00 0.07 0.04 0.18 1.00 0.08 0.02 0.35
δc 1.00 0.42 0.34 1.00 0.40 0.22
α 1.00 0.06 1.00 0.06
q 1.00 1.00

DPp DPs rep
δe δc α q δe δc α q

δe 1.00 0.61 0.78 0.72 1.00 0.68 0.54 0.49
δc 1.00 0.86 0.03 1.00 0.58 0.70
α 1.00 0.42 1.00 0.04
q 1.00 1.00

The validation of the estimated models is an important part of system identifica-
tion [Ljung, 1999, Morelli and Klein, 2005]. The test flight FT. #3, DPs1, that was
aborted due to ground proximity, has been used as the test data set to validate the
different estimated models. A common measure for judging how well a model, m,
can explain the information in the validation data set, Z, is the model fit criterion
defined as

F(m, Z) = 100(1 −
‖y − ŷ(θ)‖2
‖y − ȳ‖2

) (6.5)

This has been used to compare Method A and Method C. The results are shown
in Table 6.7 and Figure 6.17. Two things can be noted. First, Method C gives in
general a better model fit than Method A. This means that the addition of instru-
mental variables contribute in a positive way. Second, the double pulse excitation
gives a lower model fit than the multisine input with one exception. This means
that it is often beneficial to use multisine inputs for this type of testing with an
rc-aircraft.

6.5 Post flight analysis

For post flight analysis all test maneuvers are available and should be used to-
gether. This will improve the estimation result since the information content
available is much larger than for each maneuver separately. The aborted test
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Table 6.7: Comparison of Method A and Method C using the aborted test
flight DPs1 as validation data and the model fit criterion (6.5) as a measure.

Flight FT. #2 Flight FT. #3

Pos. Method A Method C Pos. Method A Method C
MSs1 62.5 % 66.7 % MSp1 50.3 % 47.0 %
MSs1 50.2 % 63.0 % MSp1 50.5 % 47.6 %
MSs2 −12.4 % 39.8 % MSp2 68.3 % 68.9 %
MSp1 54.5 % 60.8 % MSs1 62.5 % 68.1 %
MSp1 57.5 % 67.7 % MSs1 54.9 % 62.0 %
MSp2 66.3 % 67.7 % MSs2 55.2 % 64.3 %
DPp 26.1 % 41.9 % DPs 69.9 % 70.5 %

Figure 6.17: Validation with flight test data in red. Upper: Input, middle:
Output from Method A and bottom: Output from Method C.
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flight DPs1 has again been used as test data for validation purposes and the re-
maining K=14 maneuvers (including DPs2) given in Table 6.3 are used for model
construction. A data fusion approach, like the one given in Gustafsson [2012],
has been used to combine the models from the different maneuvers into one sin-
gle model. The model fusion is a weighted average of estimates θ̂i , i = 1 . . . K ,
where the weights are the information matrices Îi = P̂ −1

i from different time se-
quences. The model fusion is given as

Î =
K∑
i=1

Îi

θ̂ = Î−1
K∑
i=1

Îi θ̂i

(6.6)

The resulting model, based on Method A, is given by

ẋ(t) =
[
−1.90 1.03
−24.52 −7.11

]
x(t) +

[
0.90 −1.27
−51.25 29.43

]
u(t)

y(t) =
[
1.00 0.00
0.00 1.00

]
x(t)

(6.7)

and for Method C by

ẋ(t) =
[
−2.74 1.14
−26.29 −8.30

]
x(t) +

[
0.90 −1.46
−55.61 30.70

]
u(t)

y(t) =
[
1.00 0.00
0.00 1.00

]
x(t).

(6.8)

Validating these models on the DPs1 data set give a result shown in Figure 6.18.
Here, the pre-flight model (6.2) has also been incorporated. As can be seen, the
resulting models for Method A and Method C are almost on top of each other
and they give a good model fit of 68.4 % and 67.9 % respectively. The pre-flight
model (6.2) has a little more undamped behavior, which also is shown in a model
fit of 54.0 %.

It should be noted that since Method A and Method C give such similar results,
this could be due to an averaging effect since the estimates are based on more
data than what is available during one GFF flight test maneuver.

6.6 Conclusions

This chapter describes a cost effective way to perform flight tests with radio-
controlled aircraft for system identification of flight mechanical characteristics.
Multisine input signals have been designed based on old flight test data. It is
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Figure 6.18: Validation simulations with flight test data in red.

shown how the use of these signals can reduce the time needed for excitation.
This is important due to the requirements for rc-aircraft to be held within visual
line-of-sight. The difference between exciting the control surfaces in parallel or
separated is not so large, when using the multisine inputs. However, when com-
pared to traditional double pulses the multisine signals give a better result. For
the analysis of flight test data, two methods have been used. The first uses an ex-
isting real-time frequency domain approach, Method A. The second is Method C
where the full time sequence has been used so that only the instrumental vari-
ables are added compared to Method A. The result shows that Method C im-
proves the accuracy for flights in turbulent conditions. A post flight analysis the
using both methods has been done. The differences between the methods are here
small and this could be an averaging effect since the estimates are here based on
more data.





7
The parameterized observer method

"If you can’t explain it simply, you don’t understand it well enough."
- Albert Einstein (1879 - 1955)

A complex system can have properties that vary from stable to unstable, from lin-
ear to nonlinear and thereby need a closed-loop control system that can deal with
all combinations of these characteristics. The noise properties can add even more
complexity when performing system identification of such a system. Flight me-
chanical characteristics of a modern fighter aircraft are typically a system where
these kinds of problems can occur during system identification. Also, the process
noise for this application comes from atmospheric turbulence, which is noise that
is colored. This can be a problem in itself for some identification methods.

Engineers often look for simple ways to solve problems. One way is to use
Occam’s razor, a philosophical principle named after friar William of Ockham
(1287-1347), that states that, ”Of two competing theories, the simpler explana-
tion of an entity is to be preferred” [Duignan, 2018]. User friendliness is another
important aspect that can affect the choice of method to be used. This is espe-
cially true in industry since potential users can be inexperienced engineers.

In this chapter the properties of a relatively simple and robust prediction error
method [Larsson et al., 2009], which requires a minimum of input from the en-
gineer, is investigated. A direct identification approach is used to identify the
system without any knowledge of the control system. This makes the methods
more general and easier to apply to different aircraft. Methods like this need to
have a stable predictor and also be to robust against different noise properties.
The question is whether or not the mentioned method is a suitable candidate to
be used for identification of complex systems working in feedback control.

143
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7.1 Problem formulation

A block diagram describing a nonlinear continuous-time, closed-loop system is
shown in Figure 7.1.

System 

Measurement 

Controller 

L(r(t), y(t)) !x(t) = a(x(t),u(t),w(t))

y(t) = c(x(t),u(t),v(t))

u(t)

y(t)

r(t) x(t)

v(t)

w(t)

Figure 7.1: Block diagram of a general continuous-time, closed-loop system.

Mathematically the closed-loop system can be described as

ẋ(t) = aS (x(t), u(t), w(t))

y(t) = cS (x(t), u(t), v(t))

u(t) = LS (r(t), y(t))

(7.1)

where x is a nx × 1 state vector, u is a nu × 1 input vector, w is the process noise
and aS describes the dynamics of the system, which can have combinations of
both stable and unstable parts. Furthermore, y is a ny × 1 output vector, v is the
measurement noise and cS describes the measurement system. The controller LS
is based on a reference signal r and the measurements y.

It is assumed that no direct influence from the input to the output exists. It is
also assumed that the process noise as well as the measurement noise are addi-
tive. Furthermore, the measurement noise is white. This simplifies the system
description (7.1) to

ẋ(t) = aS (x(t), u(t)) + w(t)

y(t) = cS (x(t)) + e(t)

u(t) = LS (r(t), y(t)).

(7.2)

For the identification, a discrete-time nonlinear model structure of (7.2) is used

xk+1 = f (xk, uk ; θ) + wk

yk = h(xk ; θ) + ek
(7.3)

where xk ≡ x(kTs) is the state vector with sample time Ts and θ is a model param-
eter vector.
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The problem is to estimate the unknown parameters in θ so that the model (7.3)
represents the system (7.2) well enough to be used for accurate enough simula-
tions of the system properties.

7.2 Method

The problem described in the previous section can be solved in different ways.
Here a relatively simple and robust system identification method called the Pa-
rameterized Observer (PO) method will be described. This method is based on a
prediction-error method (PEM) approach [Ljung, 1999, Chapter 7, p. 199].

A prediction-error method uses a predictor of the output in (7.3). One such class
of predictors is given by

x̂k+1(θ) = f (x̂k(θ), uk ; θ) + Kk(θ)εk(θ)

ŷk(θ) = Cx̂k(θ)

εk(θ) = yk − ŷk(θ)

(7.4)

Here it is assumed that the measurements are linearly dependent of the states.
The prediction error εk(θ) is used to define a scalar cost function

VN (θ, ZN ) =
1
N

N∑
k=1

1
2
εk(θ)T εk(θ), (7.5)

where ZN represents the N input-output measurements. To obtain a parameter
estimate θ̂, an unconstrained optimization problem has to be solved

θ̂ = arg min
θ∈DM

VN (θ, ZN ) (7.6)

The minimization problem is in this thesis solved using the iterative Levenberg-
Marquardt approach described in Chapter 2. Traditionally, an optimal predictor
is sought, but sub-optimal predictors can also work. It is however required that
Kk(θ) in (7.4) gives a stable predictor. This leads to an implicit constraint on the
optimization problem since the parameters θ are limited under this requirement.
If the system dynamics are linear, stable and working under open loop condi-
tions, then it is possible to use a predictor with Kk(θ) = 0. A particular choice of
a nonzero Kk(θ) can be used when the system is linear but unstable [Forssell and
Ljung, 2000]. However, the choice of the predictor is not obvious if the system is
nonlinear and unstable. The closed-loop part of the system makes the identifica-
tion extra hard in this case. For example, in Schön et al. [2011] a particle filter
approach is tested on nonlinear systems, but in open loop.

In the PO method, it is assumed that the stabilization of the predictor can be
achieved by using a time-invariant observer gain Kk = K . It is not obvious that
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such a gain exists, but if it does, a PEM using the predictor (7.4) with

θ =
[
θf
θK

]
(7.7)

can be used. Here θf are the parameters that appear in f and θK = vec(K) is a
vector containing the observer gain parameters. It is however unclear what per-
formance can be expected from this predictor.

The PO is a simple approach and if the performance is good enough it will be
attractive since the calculation of a time-varying Kk in (7.4) is generally a fairly
complicated process, as is described in Ljung [1999] or as can be seen for a EKF or
UKF approach where the Kk is updated recursively over time. Here an analysis
of the properties of the PO method will be given and in Chapter 8 it will be
compared to other identification methods.

7.3 Noise

The observer gain, Kk(θ) in (7.4), does not only have to be stabilizing, it also needs
to take care of different noise characteristics, i.e., the term Kk(θ)εk(θ) in (7.4) has
to act as a noise model. As stated in Chapter 2, no consistency analysis of the
PEM will be given, but to get a feeling for the PO method in this context, a short
comparison with another method is given here. The PO method works in a sim-
ilar way as the non-stationary linear predictor method described in Abdalmoaty
[2017], which states that given a nonlinear model on the form

yk = fA(ϕk−1, wk−1, θ) + vk with ϕk−1 = (uk−1, uk−2, . . . , uk−nb ) (7.8)

where v and w represents the measure and process noise, it is possible to rewrite
(7.8) as

yk = f̂A(ϕk−1; θ) + ṽk (7.9)

where
f̂A(ϕk−1; θ) = E(yk |ϕk−1) = E(fA(ϕk−1, wk−1; θ)|ϕk−1) (7.10)

and

ṽk = vk + fA(ϕk−1, wk−1; θ) − f̂A(ϕk−1; θ) with E(ṽk |ϕk−1) = 0. (7.11)

If it is assumed that ṽk can be described as filtered white noise

ṽk = H(q)ek , (7.12)

then a predictor can be defined as

ŷk = H−1(q)f̂A(ϕk ; θ) + (1 − H−1(q))yk (7.13)

This predictor is only nonlinear in the known regressors ϕ and parameters θ. It
has been shown in Abdalmoaty [2017] that the choice (7.10) makes the predictor
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consistent. The key is the conditional expectation, which in many cases can be
quite hard to calculate.

To get the feeling for the consistency of the predictor (7.4), consider the simple
scalar FIR problem

xk+1 =
[

uk
f ([1 0]xk , uk ; θf )

]
+ wk

yk = [0 1]xk + ek

(7.14)

which is of the form (7.3). It can be written as

yk = f (uk−2 + [1 0]wk−2, uk−1; θf ) + [0 1]wk−1 + ek , (7.15)

This expression looks like (7.8) with

fA(ϕk−1, wk−1, θ) = f (uk−2 + [1 0]wk−2, uk−1; θf ) + [0 1]wk−1. (7.16)

The similarities between (7.13) and (7.4) can be seen if (7.4) is rewritten as

ŷk(θ) = C(f (x̂k−1(θ), uk−1; θf ) − θK ŷk−1(θ)) + CθKyk (7.17)

where the filter H(q) is chosen as

H(q) =
1

1 − dq−1 (7.18)

and d = CθK . With ϕk = (uk , uk−1) and this specific choice of the filter H(q),
the predictor (7.17) is on the form (7.13) which will give a consistent estimator.
This means that there exist simple problems on the state-space form that are
consistent. In the general case this cannot be guarantied, but the PO method has
at least the potential to be consistent for the problems under consideration.

7.4 Stability of nonlinear systems

To be able to say something about the stability of the predictor (7.4), some basics
of stability for nonlinear systems is needed. For a linear state-space system

xk+1 = Axk + Buk (7.19)

the stability is analyzed by looking at the eigenvalues of the system matrix A. For
a nonlinear system

xk+1 = f (xk , uk) (7.20)

the Lyapunov stability theory [Lyapunov, 1892] can be used. Since a nonlinear
system can have multiple equilibria, the stability is referred to an equilibrium
point x∗ and not to the system. There are different levels of stability for both lin-
ear and nonlinear systems as stated in Chapter 2. These are shown in Figure 7.2.
The system can be (1) asymptotically stable, (2) stable or (3) unstable. In addition,
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Figure 7.2: Different stability levels. The red curve show trajectories for a,
(1) asymptotically stable, (2) stable or (3) unstable, nonlinear system.

input-to-state stability (ISS) is of interest to see that the input does not drive the
states away. For nonlinear systems, the stability is also divided into two cases,
either local around one or more of the equilibrium points or it can be globally
stable. In the later case there can be only one equilibrium and hence the system
can be said to be stable.

Mathematically the stability can be formulated as

|xk | ≤ β(|x0|, k), ∀x0 and k ≥ 0 (7.21)

and for the ISS

|xk | ≤ β(|x0|, k) + γ(‖u‖∞), ∀x0,∀u and k ≥ 0 (7.22)

Here β(r, s) is a function for which β(0, s) = 0 ∀s. For a fixed s = sf , β(r, sf ) is
strictly increasing and for a fixed r = rf , β(rf , s) is decreasing and β(rf , s)→ 0 as
s → ∞. Also, γ(s) is a function for which γ(0) = 0 and γ(s) is strictly increasing
as s increases.

In Khalil [2002], stability theory for continuous systems is given. For discrete-
time systems the theory is given in Bof et al. [2018] and it can be summarized
as

V (x∗) = 0, x∗ is an equilibrium point

V (x) > 0, ∀x ∈ Ω, x � x∗, Ω ⊂ R

V (x)→∞ as ‖x‖ → ∞
V (xk+1) − V (xk) ≤ 0

(7.23)
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Here V (x) is a Lyapunov function that increases with the distance from the equi-
librium x∗, but decreases with time. If there exist a Lyapunov function then the
system is stable.

7.5 Piecewise affine systems

In this thesis, the nonlinear system in (7.3) is assumed to be piecewise affine.
An example of a model for such a system is shown in Figure 7.3. Since affine
systems are non-smooth, finding Lyapunov functions to prove stability requires
some special attention. For example, in Johansson [1999] it is stated that not
only the dynamics in each segment, but also the geometry of the segment has
to be taken into account when looking at the stability. Techniques like solving
a set of linear matrix inequalities [Feng, 2002] or applying linear programming,
semi-definite programming and sum-of-squares [Biswas et al., 2005] can be used.

The conditions for global input-to-state stability of discrete-time piecewise affine
systems are given in Lazar and Heemels [2008]. In this article the stability is ana-
lyzed from a control design point of view. In the present thesis it is the predictor
that is under consideration. This means that there are not the same limitations
as for a physical system since the predictor is a mathematical construction used
in system identification.

Figure 7.3: Piecewise affine function with ten segments.
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In the following, a simple example of a scalar piecewise affine system is analyzed.
This is done to give a feeling for the problems and possibilities of the PO method
and further how a predictor with a constant Kk(θ) = K affects the system identi-
fication.

7.6 Simple example

Here, the piecewise affine system is given by

xk+1 = fS (xk , uk) + wk
yk = xk + ek

(7.24)

with

fS (xk , 0) =


−2Abab + Aaxk if xk < −ab, m = 1

(Aa + 2Ab)xk if |xk | ≤ ab, m = 2
2Abab + Aaxk if xk > ab, m = 3

(7.25)

is used. Figure 7.4 shows the piecewise affine function fS (xk , 0). This can also be
written as

xk+1 = A0,m + Amxk + Buk + wk , m = 1, 2, 3

yk = xk + ek .
(7.26)

Here, a predictor for (7.26), using (7.4) is

x̂k+1(θ) = A0,m + Amx̂k(θ) + Buk + K(yk − ŷk(θ))

ŷk(θ) = x̂k(θ).
(7.27)

Figure 7.4: Piecewise affine function with three segments divided by the
break points ±ab. The white area shows the stability region for an equilib-
rium point at the origin.
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This can be reformulated as

x̂k+1(θ) = A0,m + (Am − K)x̂k(θ) +
[
B K

] [uk
yk

]
= Ã0,m + Ãmx̂k(θ) + B̃ũk

(7.28)

where Ã0,m = sign(m−2)2Abab(1− δ(m−2)) and Ãm = Aa + 2Abδ(m−2)−K . Note
that both uk and yk acts as inputs to the predictor.

In this example the parameters Ab = 0.3, ab = 0.2 and B = −0.115 are assumed to
be known. This means that Ã0,m is known while Ãm and B̃ include the unknown
parameters Aa and K . This simplification makes it easier to show the results.

To make the stability analysis of (7.28), using the Lyapunov stability theory the
predictor can be looked upon as

x̂k+1(θ) = fm(x̂k(θ), uk ; θ) (7.29)

with

θ =
[
Aa
K

]
(7.30)

Unperturbed analysis, ũk =
[
0 0

]T
: For K = 0 there are three equilibrium

points (0,±0.4) in this example, one in each segment. These can be seen in Fig-
ure 7.4. Here, the point xk = 0 is chosen for the stability analysis. This is done
since it is independent of K and therefore will not change during the identifi-
cation. A similar analysis can be done for the other two equilibrium points by
coordinate changes.

By using the numerical values for Ab, ab and B in (7.25) the following nonlinear
function is received

f (x̂k , 0) =


−0.12 + (Aa − K)x̂k if x̂k < −0.2, m = 1

(Aa − K + 0.6)x̂k if |x̂k | ≤ 0.2, m = 2
0.12 + (Aa − K)x̂k if x̂k > 0.2, m = 3

(7.31)

A common quadratic Lyapunov function used is

Vm(x) = xT P x (7.32)

which satisfies the first three conditions of (7.23) for a symmetric positive definite
matrix P . To prove stability V (xk+1)−V (xk) ≤ 0 is needed. With a choice of P = 1
and since xk+1 = f (x̂k , 0), this requirement becomes

f (x̂k , 0)2 − x2
k ≤ 0 (7.33)
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Putting in (7.31) into (7.33) and making the calculations gives the following con-
ditions for stability

1 + (0.12/ x̂k) ≤ (Aa − K) ≤ −1 + (0.12/ x̂k) if x̂k < −0.2, m = 1
−1.6 ≤ (Aa − K) ≤ 0.4 if |x̂k | ≤ 0.2, m = 2

−1 − (0.12/ x̂k) ≤ (Aa − K) ≤ 1 − (0.12/ x̂k) if x̂k > 0.2, m = 3
(7.34)

These stability requirements are given by red lines in the left part of Figure 7.5.
As can be seen, the range of stability for a constant observer gain K over the whole
state region is −1 ≤ Aa − K ≤ 0.4. This is given by the black dashed line in the
figure.

To make the simulations easier the structure of the predictor is changed to a struc-
ture that is switching between two linear parts. This is done by setting the param-
eter ab = 0. This turns (7.31) into

f (x̂k , 0) =


(Aa − K)x̂k if x̂k < −0.2, m = 1

(Aa − K + 0.6)x̂k if |x̂k | ≤ 0.2, m = 2
(Aa − K)x̂k if x̂k > 0.2, m = 3

(7.35)

From a stability point of view there is not a big difference between the two struc-
tures. The stability condition is changed so that it looks like the graph to the right
in Figure 7.5. The requirement for a stable predictor with a constant K is actually
the same as before, i.e., −1 ≤ Aa − K ≤ 0.4 as is shown by the black dashed lines.

Perturbed analysis, ũk ,
[
0 0

]T
: When the input is taken into account in the

stability analysis, an analysis of the input-to-state stability [Jiang et al., 1999] is
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Figure 7.5: To the left the stability requirements for the piecewise affine
function given by (7.34) is shown. The black dashed lines are the boundaries
for a constant (Aa − K) over all segments. Similar boundaries are given for
the switched system to the right.
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needed. For this the first three conditions of (7.23) is the same, but the fourth
criterion is changed to

V (xk+1) − V (xk) ≤ −α(|xk |) + σ (|uk |) (7.36)

which needs to be fulfilled. Here, the functions α(s) and σ (s) are strictly increas-
ing with increasing s.

The switching predictor (7.34) with the input included will look like

f (x̂k , u) =


(Aa − K)x̂k + B̃ũk if x̂k < −0.2, m = 1

(Aa − K + 0.6)x̂k + B̃ũk if |x̂k | ≤ 0.2, m = 2
(Aa − K)x̂k + B̃ũk if x̂k > 0.2, m = 3

(7.37)

where B̃ =
[
B K

]
and ũk =

[
uk yk

]T
. This predictor can then be written as

x̂k+1 = Ãmx̂k + B̃ũk , m = 1, 2, 3 (7.38)

If the Lyapunov function
Vm(x) = x2 (7.39)

is applied to (7.38) the following analysis can be made

V (x̂k+1) − V (x̂k) = (Ãmx̂k + B̃ũk)
2 − x̂2

k = Ã2
mx̂

2
k + 2Ãmx̂k B̃ũk + (B̃ũk)

2 − x̂2
k

= −(1 − Ã2
m)x̂2

k + 2Ãmx̂k B̃ũk + (B̃ũk)
2

≤ −(1 − Ã2
m)|x̂k |2 + 2(

|Ãmx̂k |2

2
+
|B̃ũk |2

2
) + |B̃ũk |2

= −(1 − 2Ã2
m)|x̂k |2 + 2|B̃ũk |2 ≤ −(1 − 2Ã2

m)|x̂k |2 + 2|B̃|2|ũk |2
(7.40)

where Young’s inequality of products [Young, 1912] has been used for the product
Ãmx̂k B̃ũk . Furthermore, since Ãm and x̂k are scalars |Ãmx̂k | = |Ãm||x̂k |. In the last
step, Cauchy-Schwarz inequality |B̃ũk | ≤ |B̃||ũk | has been used. The expression
(7.40) is on the form (7.36) with α(s) = (1 − 2Ã2

m)s2 and σ (s) = 2|B̃|2s2 if it holds
that (1−2Ã2

m) > 0, which means that 1/
√

2 > |Am|. The system is therefore ISS sta-
ble in the different segments with the boundaries −0.71 ≤ Aa − K ≤ 0.11, which
has been derived in the same way for a constant K as the analysis made for (7.35).
This bound is more restrictive than the one given by the unperturbed analysis,
but none of these two cases might give a tight bound for the largest possible sta-
bility boundary of the predictor since there might be other Lyapunov functions
than the one used here that can be used for this. Finding such a maximum bound
is beond the scope of the current analysis, but optimization will probably have to
be used like in Biswas et al. [2005] .

7.7 Simulation study

A simulation study of different noise properties has been performed using the
switching predictor (7.37). This has been done to illustrate the robustness of the
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PO method. The system has been switched between the inner unstable segment
(Ãm = 1.3) and the outer stable segment (Ãm = 0.7). A switching feedback loop
with the poles placed in 0.5 has been used.

The simulations have been done so that the amount of data in the inner segment,
i.e., for |x̂k | ≤ 0.2, has been varied as [0 3 10 25 50 75 90 100] %. As an exam-
ple, Figure 7.6 shows a dataset for medium noise. This specific data set has 50 %
of the data in each segment. The first part of the data is in the unstable segment
where (Ãm = 1.3). This can be seen as u works with a larger amplitude.

In Figures 7.7, identification using four different start guesses of Aa and K are
shown. The identification result is shown as a red dot. Also, the stability bound
are plotted as dashed lines. The red line gives the minimum value of Aa for
each predictor gain K . In Figure 7.8 the prediction error surface for VN (θ, ZN ) is
shown in the left part of the figure and to the right in the figure, contour lines are
shown. The identification result for 100 % of data in the inner segment is shown
as a blue dot and for 100 % of data in the outer segment as a violet dot. These are
given as references. The result for this case is Âa = 0.69, which is close to the true
value of Aa = 0.70. The observer gain is predicted as K = 0.74 for this case.
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Figure 7.6: Simulation data for medium sized noise including the reference,
input and output signals. Here a shift from the unstable to the stable seg-
ment is done at time t = 500 s.
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Figure 7.7: Identification using four different start guesses of Aa and K . Here
a shift, which gives 50 % of data from the inner segment (Ãm = 1.3) and 50 %
of data from the outer segment (Ãm = 0.7) is used. All start guesses end up
in the point Aa = 0.69 and K = 0.74.
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Figure 7.8: A surface (left) and a contour plot (right) of VN (θ, ZN ) for
medium sized noise together with the stability requirements from Figure
7.5. Here the shift from the unstable to the stable segment is done at time
t = 500 s as in Figure 7.7.

The whole result from this simulation study is shown in Figure 7.9. Four different
noise properties have been investigated. Low white noise (SNR = 4), medium
white noise (SNR = 4e−4), high white noise (SNR = 1e−4) and medium colored
noise. As can be seen the results for the white noise with 100 % of data in one of
the segments give accurate results. For the colored noise there is a slight bias for
this case. For low white noise the result is accurate regardless of the distribution
of data between the two segments. As the noise level increases the result depends
on the data distribution. Furthermore, colored noise makes things worse. It is
interesting to note that the red dots appear to be situated in the tangent between
the level curves of the two segments regardless of the noise properties.
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Figure 7.9: Visualization of the effect of noise level and color on the esti-
mation. The results are given as red dots for [0 3 10 25 50 75 90 100] % of
data in the inner segment, i.e., for |x̂k | ≤ 0.2,. The black line is the true
system parameter for Aa = 0.7. Blue level curves are from the inner segment
(Ãm = 1.3) and violet level curves are from the outer segment (Ãm = 0.7).

7.8 Conclusions

The Parameterized Observer (PO) method has been analyzed in this chapter with
respect to noise properties and stability characteristics. The method is relative
simple to implement and has no tuning parameters to be set by the user. A simu-
lation study of a scalar problem has been performed to give some intuitive results.
It has been shown that the identification result is dependent on the data distri-
bution between the segments and that increasing noise levels can give a biased
result if this distribution is unfavorable. Colored noise seems to add to this prob-
lem. There is also a small bias regardless of the distribution in this case. All in all,
the PO method seems to be an interesting approach to use for identification of
nonlinear systems. In the next chapter the PO method will be compared to four
other methods.
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Identification of unstable nonlinear

systems

"Simplicity is the ultimate sophistication."
- Leonardo da Vinci (1452 - 1519)

In this chapter, the Parameterized Observer (PO) method is compared to four
other methods. This has been done for a piece-wise affine system with mixed
characteristics (stable-unstable) working under feedback control. The compari-
son includes a robustness analysis against both measurement and process noise.
Since iterative optimization methods are used, a study of initial parameter set-
tings has also been performed. The question is whether or not the PO method
is a suitable candidate to be used for identification of complex systems and how
well it performs against other methods of equal complexity. Most of the analyses
have be done by using a simulation example where the true system is known, but
the methods are also tested on real flight test data.

Some of the descriptions from the previous chapter are repeated here for the
convenience of the reader.

8.1 The identification methods

Here, the five identification methods, for which the basics are described in Chap-
ter 2, are presented. The first three are prediction-error methods including an
observer gain based on the parameterized observer (PO) from Chapter 7, the ex-
tended (EKF) and unscented Kalman filter (UKF). Furthermore, one state estima-
tion method, using augmented states (AUG) is analyzed as well as one parame-
ter and state estimation method featuring a constrained Levenberg-Marquardt
(CLM) optimization.

157
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There are other possible methods that could have been included in this analysis,
like the maximum likelihood method with an estimation-maximization (ML-EM)
approach or a particle filter (PF) method. The ML-EM approach is described in
Moon [1996], Schön et al. [2006] and Hagenblad et al. [2008] and the particle fil-
ter theory can be found in Gordon et al. [1993], Moral [1996], Gustafsson [2010]
and Schön et al. [2011]. These two methods rely on detailed knowledge about
the probability distributions of the measurement and process noise. However,
the true noise distributions can be time consuming and hard to find for the air-
craft application studied here. The real distribution can also possibly change
with time and position since the atmospheric turbulence can be different from
day to day and also for example over sea compared to over land. Using an in-
correct distribution can lead to decreasing accuracy of the ML and PF estimators.
This is one aspect why the PO method is interesting since no such assumptions
have to be made. In addition, for the particle filter method the number of parti-
cles that has to be used can also have an effect on the identification result. For
large dimensional problems the number of particles grows rapidly and even if
parallel computing can be used this can lead to costly computations.

It is also possible to use a different model structure than a state-space formu-
lation, for example neural networks (NN) [Narendra and Parthasarathy, 1990,
Ljung and Sjöberg, 1992]. Neural networks are very flexible and can thereby
model complex systems. From an engineering point of view however, it is hard
to interpret the resulting model. There has to be a step after the identification
that brings the NN-model into an simplified model that the engineer canunder-
stand.

8.1.1 Prediction-error methods

The three different prediction-error methods use the predictor formulation of
(7.3)

x̂k+1(θ) = f (x̂k(θ), uk ; θ) + Kk(θ)εk(θ)

ŷk(θ) = H(θ)x̂k(θ)

εk(θ) = yk − ŷk(θ).

(8.1)

The methods can be used for general measurement equations, but here the partial
derivative H(θ) = ∂h(xk , θ)/∂xk , making h a linear approximation in x, is used.
The prediction error εk(θ) is used to define a scalar cost function

VN (θ, ZN ) =
1
N

N∑
k=1

1
2
εk(θ)T εk(θ) (8.2)

where ZN represents the N input-output measurements. To obtain an estimate
of θ, the following unconstrained optimization problem has to be solved

minimize
θ

VN (θ, ZN ). (8.3)
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This is in Ljung [1999] called a prediction-error method (PEM). In order to use
PEM, a stable predictor is required. Since the system can be unstable the term
Kk(θ)εk(θ) in (8.1) will act as a stabilization as well as an indirect noise model
for the predictor. This stability requirement on the predictor will work as an im-
plicit constraint on the optimization problem since the parameters θ are limited
under this requirement. The choice of the predictor is not obvious if the system
is unstable and nonlinear. In the current work, three approaches for calculating
the observer gain Kk(θ) in (8.1) are suggested.

Parameterized observer (PO) approach: This approach was described in Chap-
ter 7 and is a simple approach, commonly used for linear cases, where the ob-
server gain Kk is added to the parameters to be estimated.

θ =
[
θf
θK

]
(8.4)

where θf are the parameters that appear in f and θK = vec(Kk) is a vector con-
taining the observer gain parameters. By applying this approach, the optimiza-
tion method used for solving (8.3) will find a time-invariant Kk that minimizes
the cost function (8.2). The PO approach is attractive since the calculation of a
time-varying Kk in (8.1) is general a fairly complicated problem, as is described
in Ljung [1999] or as can be seen in the EKF and UKF approaches below.

Extended Kalman Filter (EKF) approach: The EKF is an extension of the Kalman
filter [Kalman, 1960] to nonlinear systems. If the system would have been linear
and all noise signals Gaussian distributed then the Kalman Filter would mini-
mize the mean square error of the estimated states (x̂k) giving optimal predic-
tions. One of the first papers to discuss the ideas of the EKF is Smith et al. [1962].
The main idea is to compute Kk(θ) at each time step using a linearized model
based on a Taylor expansion. This linearization is performed by computing the
partial derivatives of f with respect to x and u evaluated for x̂k and uk , giving the
matrices Ak(θ) and Bk(θ), respectively. This gives the following gain recursion

Sk(θ) = [H(θ) P xxk|k−1(θ)HT (θ) + R]

Kk(θ) = P xxk|k−1(θ)HT (θ) S−1
k (θ)

P xxk|k (θ) = (I − Kk(θ)H(θ)) P xxk|k−1(θ)

P xxk|k−1(θ) = Ak(θ) P xxk−1|k−1(θ)ATk (θ) + Q

(8.5)

where the predicted covariance matrix P xxk|k (θ) represents the uncertainty of the
state prediction. A description of the EKF recursion is given in Appendix F.1 and
a more detailed theory of the EKF can be found in Kailath et al. [2000].

Unscented Kalman Filter (UKF) approach: The EKF is sometimes said to have
problems with highly nonlinear functions because only the predicted mean is
propagated through the nonlinearity. An alternative is to use the Unscented
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Kalman filter [Julier et al., 1995], which is another approximate method for prop-
agating both the predicted mean and a representation of the covariance through
the nonlinearity. This is done by using an unscented transformation where de-
terministically chosen points, sigma points, are used to represent both the mean
and covariance. In this case, the gain recursion is

Kk(θ) = P
xy
k|k−1(θ) (P yyk|k−1(θ))−1

P xxk|k (θ) = P xxk|k−1(θ) − Kk(θ) P yyk|k−1(θ)KTk (θ)
(8.6)

where the covariance matrices P yyk|k−1(θ), P xxk|k−1(θ) and P xyk|k−1(θ) are calculated us-
ing the sigma points. The full UKF recursion is given in Appendix F.2.

Tuning parameters: Unlike the PO approach, the two Kalman filter approaches
include tuning parameters that have to be set by the user. This is undesirable
since some prior knowledge of how to set these parameters is required leading
to a subjective part of the identification. The parameters are the covariance Q of
the process noise, the covariance R of the measurement noise and the initial state
covariance P0. The matrices Q and R work in pairs so when Q is larger than R
the method relies more on the measurements. For the linear case the choice of
the initial state covariance P0 is not critical because the convergence properties
are well understood and it is not difficult to get the filter to converge. There is
no general proof of a similar property for the nonlinear case. Here, one can only
hope that the filter will converge. For the application presented in this thesis, P0
is chosen as the identity matrix. It is possible to use cross-validation to estimate
the tuning parameters. For this a dataset that has not been used during the pa-
rameter estimation has to be used.

Other subjective inputs that apply to all PEM approaches are the initial values
of the states x0 and parameters θ0. It is possible to make an estimation of x0,
but in our case one can use the initial measurements y0 which should not be too
far from the true value. This can be done since it is assumed that all states are
measured. The initial parameter vector θ0 is an initialization of the PEM opti-
mization routine and will affect how good the initial estimates using the different
approaches are.

8.1.2 State estimation method

The fourth method includes the unknown parameters as additional states, which
are estimated together with the real states.

Augmented state (AUG) approach: This approach is commonly used in the nav-
igation community when treating uncertain parameters. These parameters are
added to the model as static states, i.e., states that do not vary with time. The
augmented state vector can be written as

x̄k =
[
xk
θk

]
. (8.7)
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This gives rise to the following augmented state-space equation that should be
used instead of (7.3)

x̄k+1 =
[
xk+1
θk+1

]
=

[
f (xk , uk ; θk) + wk

θk + wθ,k

]
yk = H̄ x̄k + vk

(8.8)

where wθ,k is a zero mean artificial noise term with a covariance matrix that can
be used to tune the estimator and H̄ = [H 01×np ] . Here, the same method to esti-
mate the observer gain Kk(θ) as in the EKF approach is used, but for the model
(8.8) instead of (7.3). The theory for this approach can be found in Simon [2006],
Haessig and Friedland [1997] and Rangegowda et al. [2018]. For this approach
the augmented system is filtered only once and the parameter estimate is then
taken from the last estimate of x̄.

Tuning parameters: Since the EKF is used, the same tuning strategy for Q and
R as described earlier applies. The same goes for x0 and P0. The covariance of
the artificial noise term wθ,k can, as mentioned above, also be used as a tuning
parameter. This adds to the user’s burden when trying to solve the identification
problem.

8.1.3 Parameter and state optimization method

The fifth method differs from the previous four in the way that it does not depend
on prediction of the system at all. Therefore the system instability is not an issue.

Constrained Levenberg-Marquardt (CLM) approach: This approach uses a Lev-
enberg-Marquardt optimization procedure of a Lagrangian function. Instead of
augmenting the states xk with the unknown parameters, as in the AUG approach,
the unknown parameter vector θ is augmented with all time samples of the state
vector

ϑ = [xT0 . . . xTN−1 θ
T ]T . (8.9)

The scalar cost function is then given by

VN (ϑ, ZN ) =
1
N

N∑
k=1

1
2
εk(ϑ)T εk(ϑ) (8.10)

and the estimate of ϑ is found by solving the constrained optimization problem

minimize
ϑ

VN (ϑ, ZN )

subject to F(ϑ) = 0
(8.11)

where

F(ϑ) =


f (x0, u0; θ) − x1
f (x1, u1; θ) − x2

...
f (xN−1, uN−1; θ) − xN

 (8.12)
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which comes from using the motion model in (7.3).

The constrained optimization problem can be formulated as iteratively solving
the linear system [Nocedal and Wright, 2006][

JT1 J1 + λ2
LM Inϑ ,nϑ JT2
J2 0

] [
δϑ
λ

]
=

[
−JT1 ε
−F

]
(8.13)

where ε = [ε1(ϑ)T ε2(ϑ)T . . . εN (ϑ)T ]T and

J1 =
∂ε
∂ϑ
, J2 =

∂F
∂ϑ

(8.14)

Here, the vector δϑ contains additive increments to the augmented parameter
vector (8.9) and λ is a vector containing the Lagrangian multipliers.

A drawback with this method is that the Karush-Kuhn-Tucker matrix, contain-
ing J1 and J2, in (8.13) to be inverted grows with the number of time samples
used. This matrix is however sparse so efficient inversion methods can be used.
Another problem with this method is that the constraint (8.12) cannot deal with
process noise. Therefore, there is no noise model for this and if process noise is
present in the signals a bias is likely to occur in the solution. The CLM method is
described in Mulders et al. [2010].

Tuning parameter: Also this method has a tuning parameter, the Levenberg-
Marquardt regularization parameter λLM . This is used to improve the rank prop-
erties of the KKT matrix and it thus affects the possibility to solve the system.
This parameter has to be chosen carefully.

8.2 Estimation on simulated data

In this section, the five different methods will be analyzed based on simulated
data. For this a Simulink® model has been developed as a benchmark problem.
This model is based on the present aerodynamic model for JAS 39 Gripen. The
simulations feature pitch maneuvers, with two degrees of freedom only. The vari-
ables used in the simulations are given in Figure 8.1. The definitions of these can
be found in Chapter 3.

A simplification has been made in that the implemented control law moves the
leading edge flap in full correlation with the angle-of-attack. Therefore the lead-
ing edge parameters have been incorporated into the angle-of-attack parameters.
Furthermore, it is assumed that only the pitch stability, i.e., the pitching moment
as a function of the angle-of-attack, is nonlinear and that all other relations are
linear. In addition to this all states are measured. This is true for the JAS 39
Gripen aircraft used in this example, but might not be true for other aircraft.
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This gives the following simplified continuous-time system

ẋ(t) = a(x(t)) + Bu(t) + w(t)

y(t) = x(t) + e(t)
(8.15)

Here, the state and input vectors are x(t) = [α(t) q(t)]T and u(t) = [δe(t) δc(t)]T

respectively, e(t) is white noise and the system matrices are given as

a(x(t)) =
[
Zαα(t) + Zqq(t)
f (α(t)) + Mqq(t)

]
B =

[
Zδe Zδc
Mδe Mδc

] (8.16)

which makes (8.15) a nonlinear version of the model (5.44) used in Chapter 5.
Note that Z = −N as defined in Figure 8.1. The Zs and Ms are scaled aerody-
namic forces and moments. The scaling includes data from several parts. These
are the used speed-altitude envelop point in the form of the speed V and dynamic
pressure qa, the mass-inertia properties m and Iyy and also the geometrical refer-
ence wing area S and mean aerodynamic chord c̄.

The nonlinear function f (α(t)) is built up as a piecewise affine function, similarly
to the structure of the present aerodynamic model for JAS 39 Gripen, with break-
points positioned at αi = αmin, αmin + ∆α, ..., αmax. In general the piecewise func-
tion for αi < α(t) < αi+1 looks like

f (α(t)) =
f (αi+1) − f (αi)
αi+1 − αi

· (α(t) − αi) + f (αi) (8.17)

An example of a piecewise affine function with αmin = 5 and αmax = 11 is shown
in Figure 8.2. A value of ∆α = 1◦ is used in the example as well as in implemen-
tation. In general, this choice has to reflect the problem to be solved and it could
very well change in different parts of the angle-of-attack envelop. The current
value has been chosen for simplicity.

Figure 8.1: Variables used in simulation.
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All Zs, Ms and break-points in f (αi) in (8.16) are put into the parameter vector.
For the simulation model, there are 18 break-points from α = −1◦ to 16◦. All the
true parameters used to generate the simulated data are given in Table 8.1.

Table 8.1: True continuous-time model parameters.
Zα Zq Mq Zδe Zδc Mδe Mδc

−0.9759 1.1740 −1.2616 0.3043 0.0289 −31.0898 8.2557

f (−1◦) f (0◦) f (1◦) f (2◦) f (3◦) f (4◦) f (5◦)
−0.2923 −0.2577 −0.2221 −0.1787 −0.1294 −0.0837 −0.0695

f (6◦) f (7◦) f (8◦) f (9◦) f (10◦) f (11◦) f (12◦)
−0.0645 −0.0798 0.0102 0.1833 0.3731 0.5011 0.6187

f (13◦) f (14◦) f (15◦) f (16◦)
0.7343 0.8076 0.8540 0.9133

To generate data, a simple linear quadratic (LQ) regulator for a servo problem
has been implemented in the simulation model. This will take care of the fact
that the system is unstable for pitch motions. An algorithm in Skogestad and
Postlethwaite [2005] has been used for the LQ design. The regulator is given by

ξ̇(t) = r(t) − Fy(t)

u(t) = −Kr
[
ξ(t)
y(t)

]
(8.18)

where r(t) = αref (t), F =
[
1 0

]
and Kr =

[
−0.2339 0.1575 0.0483
0.9723 −0.7610 −0.0643

]
.

A block diagram of the benchmark system is shown in Figure 8.3.

f(  )α

α5 6 7 8 9 10 11

Figure 8.2: Example of a piecewise affine function with αmin = 5◦ and
αmax = 11◦.
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The parameter estimation is done on sampled data and therefore the model is
described in discrete time using Euler’s method for the time derivatives. Thus,
the total parameterized model is given by

[
αk+1
qk+1

]
=
[

θ1αk + θ2qk
f (θ8, . . . , θ25, αk) + θ3qk

]
+
[
θ4 θ5
θ6 θ7

] [
δe k
δc k

]

[
αk,m
qk,m

]
=
[
αk
qk

] (8.19)

where the index m separates the measurements from the states.

Investigations of sensitivity to measurement noise, biased initial parameters (θ0)
and process noise have been made. The first test of the methods is to run them
on noise-free data with the true parameters as initial parameters. This is done to
see if there are some basic deficiencies in the methods.

Noise-free simulation: The data used for estimation is based on a maneuver that
starts from zero and is set to reach a reference angle-of-attack r = 15◦. To check
how good an estimated model is, a validation has to been run on a separate data-
set. This is based on a different maneuver which starts off like the one used for
estimation but after one second changes to try to reach a reference angle-of-attack
r = 3◦, so that the maneuver is exposed to the nonlinearity twice. Example data
for estimation and validation is shown in Figure 8.4.

The true parameters of the discrete-time formulation, used as initial values for
the estimation, can be seen as a black line in Figure 8.5 and as the left-most col-
umn in Table 8.2. The estimates using the different methods can also be seen
in this figure and table. Since the PO method is the subject for comparison this
is given in all sub-figures. All methods give estimates that are close to the true

System 

Measurement 

Controller 

!Kr !x(t) = a(x(t))+Bu(t)+w(t)

y(t) = x(t)+ e(t)

u(t)

y(t)

r(t) x(t)

v(t)

w(t)

F

!! (t) ! (t)
!

y(t)

+ 

- 
!Kr

F

!! (t) ! (t)
!

! (t)!
! !

! (t)

F

+ + 

- - 

Figure 8.3: Block diagram for the benchmark system.
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Figure 8.4: Example of simulations with measurement noise. Estimation
data is shown to the left and validation data to the right. At the top is the
reference signal. Below this, the two inputs elevator and canard deflection
are shown. The two bottom figures gives the two outputs, angle-of-attack
and pitch angular velocity respectively.

parameters. There is a slight bias at the lower end of the angle-of-attack for the
nonlinearity. This is most probably due to the low number of samples in this part
of the envelope. The outcome of the validation can be seen in Figure 8.6. The
conclusion is that all methods give usable model estimates for this noise-free case.

Measurement noise simulation: To investigate the noise sensitivity, 100 Monte-
Carlo (MC) runs have been made with five different signal-to-noise ratios (SNRs),
(10k , k = 7, 6, 5, 4, 3). The test case SNR 104 represents the lowest SNR expected
in real flight test data for this type of maneuver. Real flight test data will be run
through a post-processing procedure, which will increase the SNR further and
thereby improving the possibility to make more accurate estimations. The set-
ting 103 has been used to get a test of a lower SNR, which can be relevant for
other types of maneuvers or other applications.
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Figure 8.5: True and estimated nonlinear model parameters for the noise-
free case.

Table 8.2: True and estimated linear model parameters for the noise-free
case.

True PO EKF UKF AUG CLM

Zα 0.9804 0.9813 0.9813 0.9814 0.9813 0.9813
Zq 0.0163 0.0159 0.0159 0.0159 0.0159 0.0159
Mq 0.9790 0.9769 0.9767 0.9897 0.9769 0.9770
Zδe −0.0051 −0.0084 −0.0085 −0.0085 −0.0085 −0.0084
Zδc −0.0005 0.0013 0.0014 0.0014 0.0013 0.0013
Mδe −0.5182 −0.5010 −0.5009 −0.5368 −0.5013 −0.5014
Mδc 0.1376 0.1335 0.1335 0.1423 0.1336 0.1336
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Figure 8.6: Simulated and true angle-of-attack and pitch angular velocity for
noise-free validation data.

Different tuning parameter settings have been investigated. This has been done
since the tuning is often done by the user. The tuning parameters for the EKF
and UKF methods are R = 10−k I2 for k = 1, 3, 5, 7, 9 and Q = 10−5I2 has been kept
fixed. These settings have also been used for the EKF part in the AUG method.
The tuning of the artificial noise variance σ2

wθ = 10−k for k = 1, 3, 5, 7, 9 has been
investigated. For the regularization tuning of the CLM method, λm = 10k for
k = −2,−1, 0, 1, 2 have been used. The PO method has no tuning parameters
as stated previously. In the results only the best tuning parameter settings are
shown. The results for other settings can be found in Appendix G. It should also
be noted that the estimated models are based on the mean of the MC simulations.
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The results for SNR 107 to 105 do not differ much in appearance from the noise-
free case when using the best tuning parameters. These results have been put in
Appendix G. For SNR 104 the estimates are given in Figure 8.7 and Table 8.3. All
methods are affected by the noise, but the PO, EKF and CLM methods still seem
to give acceptable results. Both the AUG and the UKF methods do not predict the
nonlinearity correctly. Also, the uncertainty of two standard deviations, given as
dashed lines in the figure, are much wider for these two methods.

The result for the validation is shown in Figure 8.8. It is clear that all methods
except the UKF method follow the true data well. This can also be seen in the
model fit values given in the figure. The AUG method is doing well in the vali-
dation even though the nonlinearity is incorrect. This is probably due to the fact
that the error in the nonlinearity is mostly a bias, i.e., the slope of the curve is
similar to the correct slope. Also, the linear part of the AUG model seems to be
reasonable. It is also worth mentioning that the sign of Zδc is wrong for the AUG
method, but this does not seem to affect the result much.

The estimates for SNR 103 are shown in Figure 8.9 and Table 8.4. The UKF esti-
mate is even worse than for SNR 104. As can be seen, the linear part is wrong and
the nonlinearity is not correctly estimated above α = 4◦. The AUG method seems
to make a correct estimation in contrast to earlier, but the CLM method has now
some problems with the nonlinearity.

The validation shown in Figure 8.10 clearly supports the estimation results. The
model fit for the UKF method is now down to 18.60%. The rest of the methods
show a good model fit. It is hard to see the problem with the nonlinearity in the
validation result for the CLM method.

In conclusion, the PO and EKF methods seem to be most robust against measure-
ment noise. The AUG method has a small bias for the whole angle-of-attack range,
and the other two methods have problems describing the nonlinearity correctly.

Initial parameter offset: It is unlikely that the initial guess of the parameters
will be the exact truth, even if a lot of work has been done prior to the estimation.
To investigate how the proposed methods are affected, a random initial offset of
up to 10% of the linear terms and of the bias and slope of the nonlinearity have
been investigated. The values are given in Figure 8.11 and Table 8.5. The noise
setting SNR 104 has been chosen as a reference case.

The estimates for initial offsets θ0,1 - θ0,3 are shown in Figure 8.12 - 8.14 and Ta-
ble 8.7 - 8.9, respectively. For these three cases the PO and EKF methods seem to
be most robust. Depending on the case and tuning, the AUG and CLM methods
can give accurate or inaccurate results. The UKF method does not give any accu-
rate results at all. If this is due to the chosen SNR of 104 or the tuning setting or
both is hard to say. For initial offsets θ0,2 the result is similar to the result in the
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Figure 8.7: Estimated and true pitching moment for noisy data with
SNR 104.

Table 8.3: Estimated and true aerodynamic derivatives for noisy data with
SNR 104.

True PO EKF UKF AUG CLM

Zα 0.9804 0.9813 0.9828 0.9882 0.9796 0.9804
Zq 0.0163 0.0159 0.0140 0.0127 0.0169 0.0163
Mq 0.9790 0.9767 0.9758 0.9758 0.9849 0.9771
Zδe −0.0051 −0.0085 −0.0225 −0.0371 −0.0083 −0.0051
Zδc −0.0005 0.0000 −0.0564 0.0006 0.0025 −0.0005
Mδe −0.5182 −0.5033 −0.5112 −0.6546 −0.5631 −0.5182
Mδc 0.1376 0.1333 0.1131 0.1957 0.1511 0.1376
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Figure 8.8: Simulated and true angle-of-attack and pitch angular velocity for
noisy validation data with SNR 104.

measurement noise study shown in Figure 8.7. The tuning settings are the same
for these two cases. Estimates with initial offsets θ0,1 and θ0,3 show similar re-
sults and also have the same tuning parameters, but different from initial offsets
θ0,2. There is no additional information for θ0,4 and θ0,5. They have therefore
been put in Appendix G.

In conclusion, the above results show once more that the tuning can play a criti-
cal role for the resulting model estimates. This is also shown in Table 8.6 where
the worst and best tuning settings for the different offsets are given. Even the
EKF method is of cause affected if wrongly tuned.
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Figure 8.9: Estimated and true pitching moment for noisy data with
SNR 103.

Table 8.4: Estimated and true aerodynamic derivatives for noisy data with
SNR 103.

True PO EKF UKF AUG CLM

Zα 0.9804 0.9815 0.9852 1.0179 0.9808 0.9806
Zq 0.0163 0.0158 0.0111 −0.0002 0.0162 0.0166
Mq 0.9790 0.9783 0.9779 1.0490 0.9818 0.9681
Zδe −0.0051 −0.0086 −0.0441 −0.1525 −0.0079 −0.0060
Zδc −0.0005 0.0037 0.1425 0.0511 0.0008 0.0008
Mδe −0.5182 −0.5050 −0.5545 0.0309 −0.5243 −0.5159
Mδc 0.1376 0.1369 0.0447 2.6781 0.1385 0.1369
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Figure 8.10: Simulated and true angle-of-attack and pitch angular velocity
for noisy validation data with SNR 103.



174 8 Identification of unstable nonlinear systems

0 2 4 6 8 10 12 14
 (deg)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

f(
)

True

0,1

0,2

0,3

0,4

0,5

Figure 8.11: True pitching moment and initial offset in θ0.

Table 8.5: True aerodynamic derivatives and initial offset in θ0.
True θ0,1 θ0,2 θ0,3 θ0,4 θ0,5

Zα 0.9804 0.9824 0.9797 0.9821 0.9787 0.9819
Zq 0.0163 0.0179 0.0151 0.0172 0.0160 0.0155
Mq 0.9790 0.9811 0.9753 0.9834 0.9815 0.9778
Zδe −0.0051 −0.0046 −0.0052 −0.0055 −0.0051 −0.0052
Zδc −0.0005 −0.0004 −0.0005 −0.0004 −0.0005 −0.0005
Mδe −0.5182 −0.4664 −0.5728 −0.4520 −0.4555 −0.5734
Mδc 0.1376 0.1238 0.1657 0.1520 0.1460 0.1539
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Table 8.6: Model fit for initial offset in θ0. A reference value for SNR 104

with no initial model offset is given and compared to the worst and best
tuning for the estimates with initial offset for the investigated cases.

Method SNR 104 Model Fit lower Model Fit upper

PO 86.88% 86.50% 86.84%
EKF 86.90% 59.42% 87.31%
UKF 71.76% 68.96% 88.74%
AUG 93.43% < 0% 95.55%
CLM 91.37% 76.36% 87.32%

Process noise simulation: For the study of how process noise affects the esti-
mations, only the PO and EKF methods are compared. This is due to the fact
that the results from the measurement noise analysis show that the performance
of the UKF method is uncertain depending on noise characteristics and tuning
parameter settings. The CLM approach uses a constraint that is based on the
dynamic equation xk+1 = f (xk , uk ; θ). This does not take care of process noise.
If process noise is present there will likely be a bias in the estimates. The AUG
method is discarded since it is more complex and computationally heavy than
the EKF approach.

To be able to investigate the properties of the two methods, 100 Monte Carlo (MC)
simulations have been generated. One realization of the estimation data is shown
in Figure 8.15 together with a validation data set. A slightly different type of ma-
neuver has been used for the validation. It should be noted that more excitation
is needed when process noise is present compared to the earlier case with only
measurement noise. The differences can be seen when comparing Figure 8.15
with Figure 8.4.

For the new excitation, the reference controls the angle-of-attack, which is fairly
smooth. The input and pitch angular velocity on the other hand are more affected
by the noise, which corresponds to atmospheric turbulence. Different tuning
settings for the EKF method have been investigated to see the effect they have
on the estimation accuracy. R has been changed between R = 10−1 and R =
10−9 while Q = 10−5 has been kept constant. As can be seen in Figure 8.16 and
Table 8.10 the PO approach gives estimates close to the true system for the case
studied. The EKF approach on the other hand seems to find a minimum away
from the true system. The estimated models are validated using the validation
data sets. The result can be seen in Figures 8.17 - 8.19. Even though the PO
method gives the better estimates, the differences between the two methods are
not so significant as one could expect from the model estimates. This can also be
seen in Table 8.11.
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Figure 8.12: Estimated and true pitching moment for initial offset in θ0,1.

Table 8.7: Estimated and true aerodynamic derivatives for the initial offset
in θ0,1.

True PO EKF UKF AUG CLM

Nα 0.9804 0.9813 0.9740 0.9652 0.9801 0.9787
Nq 0.0163 0.0158 0.0251 0.0330 0.0168 0.0193
Mq 0.9790 0.9768 0.9792 1.0133 0.9812 0.9803
Nδe −0.0051 −0.0086 0.0594 0.0719 −0.0087 0.0163
Nδc −0.0005 −0.0000 0.2797 0.3565 0.0005 0.1038
Mδe −0.5182 −0.5013 −0.4981 −0.2849 −0.4718 −0.4821
Mδc 0.1376 0.1324 0.1759 0.6742 0.1251 0.2262
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Figure 8.13: Estimated and true pitching moment for initial offset in θ0,2.

Table 8.8: Estimated and true aerodynamic derivatives for the initial offset
in θ0,2.

True PO EKF UKF AUG CLM

Nα 0.9804 0.9813 0.9827 0.9882 0.9798 0.9805
Nq 0.0163 0.0158 0.0142 0.0127 0.0171 0.0166
Mq 0.9790 0.9774 0.9770 0.9724 0.9749 0.9687
Nδe −0.0051 −0.0086 −0.0211 −0.0363 −0.0086 −0.0060
Nδc −0.0005 −0.0008 −0.0505 0.0027 0.0003 0.0006
Mδe −0.5182 −0.5001 −0.5090 −0.6631 −0.5709 −0.5612
Mδc 0.1376 0.1465 0.1216 0.2021 0.1653 0.1622
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Figure 8.14: Estimated and true pitching moment for initial offset in θ0,3.

Table 8.9: Estimated and true aerodynamic derivatives for the initial offset
in θ0,3.

True PO EKF UKF AUG CLM

Nα 0.9804 0.9814 0.9840 0.9622 0.9794 0.9783
Nq 0.0163 0.0158 0.0124 0.0363 0.0175 0.0198
Mq 0.9790 0.9774 0.9766 1.0058 0.9758 0.9814
Nδe −0.0051 −0.0088 −0.0338 0.1094 −0.0070 0.0200
Nδc −0.0005 −0.0007 −0.1035 0.4656 0.0085 0.1192
Mδe −0.5182 −0.4977 −0.5121 −0.2075 −0.5369 −0.4746
Mδc 0.1376 0.1441 0.1090 0.8361 0.1597 0.2580
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Figure 8.15: Example of simulations with process noise, estimation data to
the left and validation data to the right. At the top is the reference signal.
Below this, the two inputs elevator and canard deflection are shown. The two
bottom figures gives the outputs angle-of-attack and pitch angular velocity
respectively.

One possible explanation can be the feedback system. This can also be seen when
analyzing how close the different signals from the estimated models are to the
validation data using the model fit formula for the separate signals

Fv(m, Z) = 100(1 − ‖si − ŝi‖2
‖si − s̄i‖2

). (8.20)

Here si , i ∈ [δe, δc, α, q] is the validation input or output signal and s̄i is the mean
of this signal. Furthermore, ŝi is the predicted signal from the model m. The re-
sult from this analysis is shown in Table 8.12. The table shows that the EKF have
slightly lower fitness values than the PO approach.
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Figure 8.16: Estimation of the nonlinear part, fm(θ8, . . . , θ25, α̂k), of the pre-
dictor (8.1). The true model is given in black. The results are based on 100
Monte Carlo simulations. The means are given as solid lines and ±2 stan-
dard deviations are given as dashed lines. The PO result is shown in blue
and the EKF result is shown in green. The PO approach gives better predic-
tions of the true system characteristics compared to the EKF approach when
atmospheric disturbances are present.

Table 8.10: Estimation of the linear part of the predictor (8.1). The results
are based on 100 Monte Carlo simulations.
θ True PO EKF: R = 10−1 EKF: R = 10−5 EKF: R = 10−9

Zα 0.9804 0.9799 0.9911 0.8566 0.7947
Zq 0.0163 0.0166 0.0152 −0.1441 −0.2232
Mq 0.9790 0.9850 −0.0274 0.5744 0.5265
Zδe −0.0051 −0.0042 −0.1042 1.1756 1.7530
Zδc −0.0005 −0.0070 −0.4062 4.9494 7.3410
Mδe −0.5182 −0.4662 −7.8893 −3.4566 −3.8158
Mδc 0.1376 0.1119 −30.7782 −12.2434 −13.7008
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Table 8.11: Model Fit for process noise.
PO EKF: R = 10−1 EKF: R = 10−5 EKF: R = 10−9

75.0% 74.1% 67.6% 67.9%

Table 8.12: Model fit of input and output signals.
True model PO EKF: R = 10−1 EKF: R = 10−5 EKF: R = 10−9

δe 66.63% 66.52% 63.44% 64.72% 66.25%
δc 59.77% 59.92% 56.40% 58.66% 59.88%
α 87.60% 87.58% 86.39% 87.08% 87.52%
q 68.56% 68.90% 66.30% 67.97% 68.85%
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Figure 8.17: Validation data. PO is shown in blue and the EKF (R = 10−1) is
shown in green.
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Figure 8.18: Validation data. PO is shown in blue and the EKF (R = 10−5) is
shown in green.
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Figure 8.19: Validation data. PO is shown in blue and the EKF (R = 10−9) is
shown in green.
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8.3 Estimation on real data

The five methods have been evaluated on data from a flight test where a wind-up
turn is performed. A wind-up turn is a flight maneuver where an initial roll of 90
degrees is performed followed by an almost pure, high angle-of-attack, pitching
maneuver at almost constant speed. The identification is based on data collected
after the initial roll has been performed. The sample frequency is 60 Hz and
the dataset contains approximately 300 measurements, which are shown in Fig-
ure 8.20. Note that the leading edge deflection (δLE) has been added as an input
compared to the previous investigation based on simulated data.
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Figure 8.20: Input and output data from flight test.
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The estimation result, based on this dataset, is shown in Figure 8.21 and Ta-
ble 8.13. All the parameters were initialized using the values from the present
model. As can be seen, all methods capture the nonlinearity around α = 7 (deg)
and the slope of the curve. It is interesting to see that the methods predict that
the nonlinearity should be more aggressive, i.e., the curve slope should change
more abruptly, than what is in the present model. There are rather large varia-
tions of the estimated curves at higher angles-of-attack. This can be due to the
fact that there were few data for angles-of-attack between 12 to 14 degrees. Com-
paring the different approaches, it is interesting to note that the PO and CLM
approaches give a closer resemblance to the present model, which has been built
up from numerical calculations, wind tunnel tests and flight tests during a period
of more than 30 years.

8.4 Conclusions

Five approaches for direct system identification of unstable nonlinear systems
have been presented. Three of the methods are variations of the prediction-error
method (PEM). These are the parameterized observer (PO) approach and two
approaches based on the Kalman filter, the extended Kalman filter (EKF) and
the unscented Kalman filter (UKF). The fourth approach is a state estimation
method, the augmented system approach (AUG) using the extended Kalman fil-
ter. The fifth method is a parameter and state estimation method, the constrained
Levenberg-Marquardt (CLM) approach.

These methods have been evaluated on simulated data from an unstable nonlin-
ear system and tested for measurement and process noise sensitivity as well as
for initial value offsets. From these tests one can conclude that the PO and EKF
approaches seem most robust. The approaches have also been tested on real data
from a flight test near the speed of sound. Here, the PO and CLM approaches
show promising results since a good resemblance to the present aerodynamic
model was found. The other methods show some biases in the results compared
to the present aerodynamic model for the JAS 39 Gripen.

All in all, the relatively simple PO approach seems to be most robust against noise
and initial model offset for the studied cases. There is also the gain that engineers
using the PO method do not have to be experts in the tuning of Kalman filters
to get good results. With that said it has to be pointed out that this is a limited
study and there might be cases for which the EKF approach outperforms the PO
approach, but at the cost of tuning.
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Figure 8.21: Estimated and present model for the pitching moment.

Table 8.13: Estimated and present model aerodynamic derivatives.
Present PO EKF UKF AUG CLM

Nα 0.9804 0.9975 0.9984 0.9930 0.9930 0.9962
Nq 0.0163 0.0125 0.0116 0.0135 0.0134 0.0131
Mq 0.9790 0.8948 0.9095 0.8867 0.9040 0.9370
Nδe −0.0051 −0.0011 −0.0063 −0.0087 −0.0090 −0.0030
Nδc −0.0005 0.0072 0.0048 0.0013 0.0017 0.0013
NδLE 0.0001 −0.0068 −0.0078 −0.0058 −0.0057 −0.0071
Mδe −0.5182 −0.5512 −0.4837 −0.4528 −0.4828 −0.4968
Mδc 0.1376 0.1730 0.1617 0.2279 0.1851 0.1242
MδLE −0.0031 −0.0305 −0.0488 −0.0467 −0.0454 −0.0334





9
Discussion

"If I have seen a little further it is by standing on the shoulders of giants."
- Isaac Newton (1643 - 1727)

The aim of this work was to improve the tools used in industry today, making
the modeling process easier for the engineers, leading to a more time and cost
effective way of working. To do this, two aspects have been considered.

The first aspect treats estimation of linear system characteristics during flight
tests [Larsson and Enqvist, 2009]. This is an interesting topic that can save both
time and reduce cost as well as being a tool for flight safety. This gives the pos-
sibility for the engineers to make decisions when the aircraft is still in the air. If,
for example, the excitation is weak during a maneuver so that post-flight analysis
would be hard or impossible and the tool give an indication of this, the test en-
gineer can ask the pilot to make a new and stronger excitation. This means that
the test does not have to be redone during another flight. A flight safety situation
could be that the test engineer sees that stability and/or control characteristics
are degrading in a way that calls for a more thorough analysis and the flight can
be aborted in a safe way. Another use of this kind of method could be to imple-
ment it in an adaptive control setting. Then the online identification could be
used to reconfigure the controller as the flight characteristics change either to a
new flight condition or perhaps if the aircraft is damaged in some way. There
is also a benefit of using this kind of method when working with demonstrator
aircraft where prior knowledge of the flight characteristics might not be as good
as for a real production test aircraft [Larsson et al., 2019].

In this thesis, improvements of an existing frequency domain method (Method A)
have been suggested. This method is based on an ordinary least squares approach

187



188 9 Discussion

and can therefore run into problem if noisy data is analyzed. An Instrumental
Variable (IV) method has been included in a proposed modified method, which is
also based on the use of data fusion (Method C). This takes care of noise that is col-
ored, such as atmospheric turbulence, and/or correlated with the regressors for
the studied cases. The benefits of using these improvements have been verified
in simulations and the algorithm has been run on real flight test data. A time-
domain method (Method B) has been compared to Method A. What can be done
in the time domain can often be done in the frequency domain and vice versa.
There might however be issues that make it easier to implement methods in one
of the domains. Three master theses [Andersson, 2010, Larsson Cahlin, 2016,
Nyman, 2016] have been performed at Saab to make a software-demonstrator
in the real flight test-monitoring environment. These have looked at both the
time domain method and parts of the improved frequency domain method. The
frequency domain method seems to have some practical benefits in this environ-
ment, which have made this the method of choice.

The second aspect concerns post-flight analysis of more advanced maneuvers
where nonlinear flight characteristics are part of the problem in the system identi-
fication process. This modeling is one of the important parts of the flight-testing
besides verifying that the performance requirements are fulfilled. With accurate
models, hundreds of thousands of simulations can be performed to find prob-
lems so that control system design can be used to improve the flight mechanical
characteristics and thereby increasing the flight performance. This way of model-
based working is effective since problems can be eliminated as early as possible.
A lack of accuracy in the models will probably lead to a more robust control de-
sign with larger margins, which will reduce the flight performance.

To make post-flight estimation of nonlinear flight mechanical characteristics more
effective a prediction-error method, using a parameterized observer gain, has
been developed [Larsson and Enqvist, 2012b, 2016]. This method has been com-
pared to four other direct methods. The methods have been compared and con-
trasted with respect to signal-to-noise ratio effects of measurement noise as well
as to effects of parameter initiation. The effect of process noise has been ana-
lyzed, but here the study has been limited to the parameterized observer and
the EKF approaches. The investigations have been done since a fighter aircraft,
like the JAS 39 Gripen, can be tested under different weather conditions, but also
since the existing flight dynamical model, even though it has been developed
over a long period of time, will always contain some approximations leading to
differences when compared to the true system. A benchmark problem has been
implemented to test the methods for a simplified two degree-of-freedom setup.
The simplification has been made so that only one nonlinearity is included in the
system. The rest of the system and the input part have been left as linear. The
result is a bit unexpected. The parameterized observer approach with no tuning
parameters seems to be most robust against different kinds of noises and initial
offsets, for the studied problems. To make the methods useful, further studies of
six degrees-of-freedom problems with several nonlinearities have to be made.



189

Apart from the studies made in this thesis it can also be interesting to look at
other types of methods, as for example indirect identification.

The goal of the work described in this thesis was to provide aircraft companies
with robust methods for identification of flight mechanical characteristics, mak-
ing working life easier for the engineers working with this subject. The tools
developed have taken the combined subject of system identification and aeronau-
tical engineering a little further, and will hopefully prove to be valuable assets
during future flight tests.





A
Nonlinear aircraft model

This appendix describes the nonlinear physics of the simulation model ADMIRE
[Forssel and Nilsson, 2005]. ADMIRE is a Matlab/Simulink model that describes
a generic fighter with a single engine and a close-coupled delta-canard configu-
ration, similar to the Gripen fighter. The aircraft is shown in Figure A.1 together
with the geometric, mass and inertia data.

Figure A.1: The ADMIRE aircraft and some of the key parameters.

Three envelop points, at an altitude of 6000 m, have been chosen to illustrate
the difference between subsonic (Mach 0.5), transonic (Mach 0.9) and supersonic
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(Mach 1.4) characteristics. Table A.1 shows the envelope data for the chosen
points.

Table A.1: Envelope data at 6000 m.
Mach V (m/s) ρ(kg/m3) qa(N/m2)

0.5 158.2 0.6012 7523
0.9 284.8 0.6012 24376
1.4 443.0 0.6012 58983

In Chapter 3, it was stated that the forces and moments acting on the aircraft
come from gravity (working on the mass), inertia, engine thrust and aerodynam-
ics. The mass and inertia were given in Figure A.1. The thrust for ADMIRE is
shown in Figure A.2 for the chosen envelope points. The thrust does not increase
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Figure A.2: The engine thrust as a function of Mach and PLA.

linearly with the P LA (Power Leverage Angle) setting, which can clearly be seen
in the difference between Mach 0.9 and Mach 1.4 for a P LA setting of 0.8. It
should be noted here that the P LA has here been made nondimensional, where
P LA > 0.8 represents a setting using the afterburner. The thrust (Te) is given as

Te = Thrust(M, P LA) (A.1)

The aerodynamic model characteristics, which come from Backström [1997] , are
shown in Figures A.3 - A.8, where the effect of the wind vector (α,β) and control
surface deflections (δa, δe, δc, δr ) are given. Furthermore, the damping charac-
teristics (α̇, β̇, p̂, q̂, r̂) are given in Tables A.2 - A.4. The aerodynamic tangential
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force coefficient is given as

CT = CT (α) + ∆CT (δe) + ∆CT (δc) + CTα̇
α̇c
2V

+ CTq̂
qc

2V
(A.2)

where the terms are CT (α) = CT (α, 0), ∆CT (δe) = (CT (α, δe) − CT (α, 0)) and
∆CT (δc) = (CT (α, δc) − CT (α, 0)), respectively . With the same principle, the rest
of the aerodynamic coefficients are given as

CN = CN (α) + ∆CN (δe) + ∆CN (δc) + CNα̇
α̇c
2V

+ CNq̂
qc

2V
(A.3)

Cm = Cm(α) + ∆Cm(δe) + ∆Cm(δc) + Cmα̇
α̇c
2V

+ Cmq̂
qc

2V
(A.4)

CC = CC(β) + ∆CC(δa) + ∆CC(δr ) + CCβ̇
β̇c

2V
+ CCp̂

pc

2V
+ CCr̂

rc
2V

(A.5)

Cl = Cl(β) + ∆Cl(δa) + ∆Cl(δr ) + Clβ̇
β̇c

2V
+ Clp̂

pc

2V
+ Clr̂

rc
2V

(A.6)

Cn = Cn(β) + ∆Cn(δa) + ∆Cn(δr ) + Cnβ̇
β̇c

2V
+ Cnp̂

pc

2V
+ Cnr̂

rc
2V

(A.7)

Using (3.3), (3.11), (3.14) and (3.19) together with (A.1) - (A.7) and the data in
Figure A.1 and Table A.1, it is possible to build a simulation model. It should
be noted that this simulation model is only valid for angles-of-attack close to 5◦

and angles-of-sideslip around 0◦. This is due to the fact that outside this enve-
lope there are other dependencies, for example Cn could depend on the angle-of-
attack.
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Figure A.3: Tangential force coefficient as a function of angle-of-attack α,
elevator deflection δe and canard deflection δc.
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Figure A.4: Normal force coefficient as a function of angle-of-attack α, ele-
vator deflection δe and canard deflection δc.
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Figure A.5: Pitching moment coefficient as a function of angle-of-attack α,
elevator deflection δe and canard deflection δc.
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Figure A.6: Side force coefficient as a function of angle-of-sideslip β, aileron
deflection δa and rudder deflection δr .
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Figure A.7: Rolling moment coefficient as a function of angle-of-sideslip β,
aileron deflection δa and rudder deflection δr .
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Figure A.8: Yawing moment coefficient as a function of angle-of-sideslip β,
aileron deflection δa and rudder deflection δr .
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Table A.2: Dynamic derivatives (CTα̇ etc.) at M 0.5.
α̇ β̇ p̂ q̂ r̂

CT
CN 1.65 3.54
Cm −0.54 −1.64
CC 0.35 −0.06 −0.52
Cl 0.00 −0.29 0.08
Cn 0.02 −0.06 −0.27

Table A.3: Dynamic derivatives (CTα̇ etc.) at M 0.9.
α̇ β̇ p̂ q̂ r̂

CT
CN 3.13 4.08
Cm −1.18 −2.70
CC 0.32 −0.03 −0.63
Cl 0.00 −0.32 0.13
Cn −0.11 −0.08 −0.30

Table A.4: Dynamic derivatives (CTα̇ etc.) at M 1.4.
α̇ β̇ p̂ q̂ r̂

CT
CN 2.14 1.75
Cm 0.42 −1.88
CC 0.11 0.00 −0.53
Cl 0.00 −0.26 0.19
Cn −0.03 −0.08 −0.24



B
Some mathematics

In this appendix some mathematical details from Chapter 5 are presented.

To see the asymptotic bias for the ordinary least squares method with noisy
regressors, consider the following simple regression problem for a scalar Θ

Y = ΘΦ + ε (B.1)

where Φ is the true regressors. If the regressors are noisy φ = Φ + v then

Y = ΘΦ + ε = Θφ + ε − Θv = Θ(φ − v) + ε (B.2)

The ordinary least squares solution can then be written as

Θ̂ = (φTφ)−1φT Y

= (φTφ)−1φT (Θ(φ − v) + ε)

= Θ + (φTφ)−1φT (ε − Θv)

= Θ + ((Φ + v)T (Φ + v))−1(Φ + v)T (ε − Θv).

(B.3)

Under general excitation assumptions, the limit of Θ̂ for the scalar problem is

lim
N→∞

Θ̂ = lim
N→∞

Θ + ((Φ + v)T (Φ + v))−1(Φ + v)T (−Θv + ε)

= Θ(1 − σ2
v /(σ

2
v + σ2

Φ))
(B.4)

since E[ΦT ε] = E[ΦT v] = E[vT ε] = 0, E[ΦTΦ] = Nσ2
Φ

and E[vT v] = Nσ2
v .

If σ2
v = 0 then limN→∞ Θ̂ = Θ. Otherwise this equality does not hold since

(1 − σ2
v /(σ

2
v + σ2

Φ
)) < 1 in that case. The calculations for a non-scalar problem are

more complex, but the principle is that the normal of the hyperplane spanned by
the system is tilted compared to the case σ2

v = 0.
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The normalization used in this thesis is described below.

Consider an IV problem of the form

Θ̂ = (ZT X)−1ZT Y (B.5)

where Z ∈ Rm×n, X ∈ Rm×n and Y ∈ Rm×l . Let H ∈ Rn×n be a diagonal ma-
trix where the elements hjj are the inverses of the maximum column elements
max(Zij , Xij , i = 1, . . . , m). Define A = ZH and B = XH . Let

Θ̂H = (AT B)−1AT Y (B.6)

Then,
Θ̂H = ((ZH)T (XH))−1(ZH)T Y

= (HT ZTXH)−1(HT ZT )Y

= H−1(ZTX)−1(HT )−1HT ZT Y

= H−1(ZTX)−1ZT Y = H−1Θ̂

(B.7)

This means that
Θ̂ = HΘ̂H (B.8)

It can be numerically better to solve (B.6) than (B.5). The original estimates can
then be retrieved by (B.8)

The same can be done for the information matrix.

Î = (XT Z)(ZT Z)−1(ZT X)/ σ̂2 (B.9)

where
σ̂2 = (Y − XΘ̂)T (Y − XΘ̂) (B.10)

For this
ÎH = (BT A)(AT A)−1(AT B)/ σ̂2

H (B.11)

where
σ̂2
H = (Y − BΘ̂H )T (Y − BΘ̂H )

= (Y − XHH−1Θ̂)T (Y − XHH−1Θ̂)

= (Y − XΘ̂)T (Y − XΘ̂) = σ̂2

(B.12)

Then,
ÎH = ((XH)T (ZH))((ZH)T (ZH))−1((ZH)T (XH))/ σ̂2

H

= (HTXT ZH)(HT ZT ZH)−1(HT ZT XH)/ σ̂2
H

= (HTXT ZH)(H−1(ZT Z)−1(HT )−1)(HT ZT XH)/ σ̂2
H

= HT (XT Z)(ZT Z)−1ZT X)H/σ̂2 = HT ÎH

(B.13)

This gives
Î = (HT )−1 ÎH (H)−1 (B.14)



C
Sequential algorithms

This appendix present the three algorithms used in Chapter 5. This includes
Method A (based on the works in Morelli [1999], Morelli [2010], Larsson and
Enqvist [2012a] and Klein and Morelli [2016]), Method B (based on Klein and
Morelli [2016] and Ljung [1999]) and Method C presented in this thesis.
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Algorithm 1 Method A

1: Begin program
2: Input
3: Choose: ωi , i = 1, ..., M
4: Choose: tpres (should be a multiple of Ts)
5: Initialization
6: Get data: u0 and y0

7: Set: φ0 :=
[
yT0 uT0

]
8: Set: Ts and np := ny + nu
9: Set: φ̃0(ωi) := 01×np , Ỹ0(ωi) := 01×ny and z̃0(ωi) := 01×ny , i = 1, ..., M

10: Set: n := 1 and N := 1
11: while RUN == TRUE do
12: Get data: uN and yN
13: Set: uN := uN − u0
14: Set: yN := yN − y0

15: Set: φN :=
[
yTN uTN

]
16: for i = 1→ M do
17: Transform: φ̃N (ωi) = φ̃N−1(ωi) + φN−1e

−jωi (N−1)Ts

18: Transform: ỸN (ωi) = ỸN−1(ωi) + yN−1e
−jωi (N−1)Ts

19: Set: z̃N (ωi) := jωi Ỹ
T
N (ωi) + 1

Ts
(yTk e

−jωikTs − yT0 )
20: end for
21: Set: Φ̃N :=

[
φ̃TN (ω1) φ̃TN (ω2) . . . φ̃TN (ωM )

]T
22: Set: Z̃N :=

[
Z̃N,1 . . . Z̃N,ny

]
=

[
z̃TN (ω1) z̃TN (ω2) . . . z̃TN (ωM )

]T
23: if N = n(tpres/Ts) then
24: for k = 1→ ny do
25: Solve Regression: Θ̂k = (<(Φ̃∗N Φ̃N ))−1<(Φ̃∗N Z̃N,k)
26: Calculate: σ̂2

k = 1
M−np ((Z̃N,k − Φ̃N Θ̂k)∗(Z̃N,k − Φ̃N Θ̂k))

27: Calculate: Ĉk(Θ̂k) = σ̂2
k <(Φ̃∗N Φ̃N ))−1

28: Calculate: sk,i =
√
Ĉk,ii(Θ̂), i = 1, ..., np

29: Present: Θ̂k ± 2[sk,1 . . . sk,np ]T

30: end for
31: Set: n := n + 1
32: end if
33: if OP = RUN then
34: Set: N := N + 1
35: end if
36: end while
37: End program
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Algorithm 2 Method B

1: Begin program
2: Input
3: Choose: tpres
4: Choose: P0,1, . . . , P0,ny (P0,k is a np × np matrix) and σ̂0 =

[
σ̂0,1 . . . σ̂0,ny

]
5: Initialization
6: Construct: Butterworth filter with a cut-off frequency at 2Hz
7: Get data: u0 and y0
8: Set: Ts and np := ny + nu
9: Initialize: θ̂0 =

[
θ̂0,1 . . . θ̂0,ny

]
:= 0np×ny

10: Set: n := 1 and N := 1
11: while RUN == TRUE do
12: Get data: uN and yN
13: Set: uN := uN − u0
14: Set: yN := yN − y0 and yN−1 := yN−1 − y0
15: Filter: uN , yN and yN−1

16: Set: φN :=
[
yTN uTN

]
17: Set: zN := (yTN − y

T
N−1)/Ts

18: for k = 1→ ny do
19: Calculate recursion: KN,k = PN−1,kφ

T
N (σ̂2

N−1,k + φN PN−1,kφ
T
N )−1

20: Calculate recursion: PN,k = PN−1,k − KN,kφN PN−1,k
21: Calculate recursion: θ̂N,k = θ̂N−1,k + KN,k(zN,k − φN θ̂N−1,k)
22: if N < 5np + 1 then
23: Calculate: σ̂2

N,k = ( 1
N )((N − 1)σ̂2

N−1,k + (zN,k − φN θ̂N,k)2)
24: else if n = 5np + 1 then
25: Calculate: σ̂2

N,k = ( 1
n−np )((N − 1)σ̂2

N−1,k + (zN,k − φN θ̂N,k)2)
26: else if N > 5np + 1 then
27: Calculate: σ̂2

N,k = ( 1
N−np )((N − 1 − np)σ̂2

N−1,k + (zN,k − φN θ̂N,k)2)
28: end if
29: if N = n(tpres/Ts) then
30: Set: Ĉk := PN,k

31: Calculate: sk,i =
√
Ĉk,ii(θ̂), i = 1, ..., np

32: Present: θ̂k ± 2[sk,1 . . . sk,np ]T

33: Set: n := n + 1
34: end if
35: end for
36: if RUN == TRUE then
37: Set: N := N + 1
38: end if
39: end while
40: End program
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To get an easier to read algorithm for Method C, some parts are given as sepa-
rate sub-algorithms below. These are the parts for the calculations of the finite
Fourier transform, the Complex Least Squares solver for the IV approach and the
data fusion part. These are used as subroutines in the Method C algorithm.

Algorithm 3 Finite Fourier Transform

1: Input [F̃N−1(ω), fN−1, ω, N , Ts ]
2: Transform: F̃N (ω) = F̃N−1(ω) + fN−1e

−jω(N−1)Ts

3: Output [F̃N (ω)]

Algorithm 4 Complex Least Squares with IV

1: Input [Φ̃N , ζ̃N , Z̃N , M, np]
2: no ← no. of columns in Z̃N
3: for k = 1→ no do
4: Solve regression: Θ̂k = (<(ζ̃∗N Φ̃N ))−1<(ζ̃∗N Z̃N,k)
5: Calculate: σ̂2

k = 1
M−np ((Z̃N,k − Φ̃N Θ̂k)∗(Z̃N,k − Φ̃N Θ̂k))

6: Calculate: P̂k(Θ̂k) = σ̂2
k <(ζ̃∗N Φ̃N ))−1<(ζ̃∗N ζ̃N ))<(Φ̃∗N ζ̃N ))−1

7: Calculate: Îk = P̂ −1
k

8: end for
9: Output [Θ̂, Îk]

Algorithm 5 Data Fusion

1: Input [Θ̂1, Î1, Θ̂2, Î2]
2: ny ← no. of columns in Θ̂1
3: for k = 1→ ny do
4: Calculate: Îk = Î1,k + Î2,k
5: Calculate: Θ̂k = Î−1

k (Î1,kΘ̂1,k + Î2,kΘ̂2,k)

6: Calculate: sk =
√
Î−1
k,ii(Θ̂), i = 1, ..., np

7: end for
8: Output [Θ̂, Î , s]
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Algorithm 6 Method C

1: Begin program
2: Settings ω, Tseq, Tint
3: Get: (t0, u0, y0), (t1, u1, y1) and (tIV ,0, uIV ,0, yIV ,0)
4: Initialization Ts = t1 − t0, M := nω and np := ny + nu
5: Set: (t0 := 0, u0 := 0, y0 := 0) and (tIV ,0 := 0, uIV ,0 := 0, yIV ,0 := 0)
6: Set: φ0 := [yT0 uT0 ] and φIV ,0 := [yTIV ,0 u

T
IV ,0]

7: Set: φ̃0 := 0M×np , Ỹ0 := 0M×ny , z̃0 := 0M×ny and φ̃IV ,0 := 0M×np
8: Set: Î1 := 0np×np×ny and Θ̂1 := 0np×ny
9: Set: n := 1 and N := 1

10: while RUN == TRUE do
11: Get: (tN , uN , yN ) and (tIV ,N , uIV ,N , yIV ,N )
12: Set: tN := tN − t0, uN := uN − u0, yN := yN − y0
13: Set: tIV ,N := tIV ,N − tIV ,0, uIV ,N := uIV ,N − uIV ,0, yIV ,N := yIV ,N − yIV ,0
14: Set: φN := [yTN uTN ] and φIV ,N := [yTIV ,N uTIV ,N ]
15: Algorithm 3 [φ̃N−1(ω), φN−1, ω, N , Ts ]→ [φ̃N (ω)]
16: Algorithm 3 [φ̃IV ,N−1(ω), φIV ,N−1, ω, N , Ts ]→ [φ̃IV ,N (ω)]
17: Algorithm 3 [ỸN−1(ω), yN−1, ω, N , Ts ]→ [ỸN (ω)]
18: Set: z̃N (ω) := jωỸ TN (ω) + 1

Ts
(yTN e

−jωNTs − yT0 )

19: Set: Φ̃N :=
[
φ̃TN (ω1) φ̃TN (ω2) . . . φ̃TN (ωM )

]T
20: Set: ζ̃N :=

[
φ̃TIV ,N (ω1) φ̃TIV ,N (ω2) . . . φ̃TIV ,N (ωM )

]T
21: Set: Z̃N :=

[
Z̃N,1 . . . Z̃N,ny

]
=

[
z̃TN (ω1) z̃TN (ω2) . . . z̃TN (ωM )

]T
22: if N = n(Tint/Ts) then
23: for k = 1→ ny do
24: Algorithm 4 [Φ̃N,k , ζ̃N,k , Z̃N,k , M, np]→ [Θ̂2,k , Î2,k]
25: Algorithm 5 [Θ̂1,k , Î1,k , Θ̂2,k , Î2,k]→ [Θ̂k , Îk , sk]
26: Present: Θ̂k ± 2[sk,1 . . . sk,np ]T

27: end for
28: if N = n(Tseq/Ts) then
29: Set: Î1,k := Îk and Θ̂1,k := Θ̂k
30: Set: φ̃0 := 0M×np , Ỹ0 := 0M×ny and z̃0 := 0M×ny
31: end if
32: Set: n := n + 1
33: end if
34: if RUN == TRUE then
35: Set: N := N + 1
36: end if
37: end while
38: End program





D
Complementary results to the

sequential identification

In this appendix more detailed results for the methods A, IV and C from Chap-
ter 5 are presented. This is done so that the interested reader can check for more
information about the simulations that have been used to produce the results.

The following cases are given here:

F16 Open loop
- Measurement noise
- Process noise

F16 Closed loop
- Measurement noise
- Process noise

JAS 39 Gripen Open loop
- Measurement noise
- Process noise

The make it easier, the definition figures and the model structures for the F16
and JAS 39 Gripen fighters are given on the next page. Note again that the normal
force, denoted N , in the figures is the same as the negative vertical force, denoted
Z, in the model structure, i.e., Z = −N .
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Figure D.1: Definition of the variables for the F-16.

[
α̇(t)
q̇(t)

]
=

[
Zα Zq
Mα Mq

] [
α(t)
q(t)

]
+

[
Zδe
Mδe

] [
δe(t)

]
+ w(t)[

αm(t)
qm(t)

]
=

[
α(t)
q(t)

]
+ e(t)

(D.1)

Figure D.2: Definition of the variables of JAS 39 Gripen.

[
α̇(t)
q̇(t)

]
=

[
Zα Zq
Mα Mq

] [
α(t)
q(t)

]
+

[
Zδe Zδc
Mδe Mδc

] [
δe(t)
δc(t)

]
+ w(t)[

αm(t)
qm(t)

]
=

[
α(t)
q(t)

]
+ e(t)

(D.2)
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F16 Open loop

- Measurement noise
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Figure D.3: Estimation of the F16 open loop model parameters for the mea-
surement noise case, comparing Method A in blue with Method IV in green.

Table D.1: Estimation of the F16 open loop model parameters at time 9 s for
the measurement noise case, comparing Method A with Method IV.

True Method A Method IV

Zα −0.600 −0.592 ± 0.176 −0.599 ± 0.178
Zq 0.950 0.948 ± 0.123 0.950 ± 0.127
Zδe −0.115 −0.117 ± 0.267 −0.115 ± 0.279
Mα −4.300 −4.250 ± 0.161 −4.300 ± 0.163
Mq −1.200 −1.211 ± 0.112 −1.203 ± 0.117
Mδe −5.157 −5.167 ± 0.245 −5.159 ± 0.256
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Figure D.4: Validation of the F16 open loop model parameters for the mea-
surement noise case, comparing Method A in blue with Method IV in green.
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Figure D.5: Estimation of the F16 open loop model parameters for the mea-
surement noise case, comparing Method A in blue with Method C in black.

Table D.2: Estimation of the F16 open loop model parameters at time 9 s for
the measurement noise case, comparing Method A with Method C.

True Method A Method C

Zα −0.600 −0.592 ± 0.176 −0.608 ± 0.096
Zq 0.950 0.948 ± 0.123 0.954 ± 0.071
Zδe −0.115 −0.117 ± 0.267 −0.103 ± 0.143
Mα −4.300 −4.250 ± 0.161 −4.302 ± 0.102
Mq −1.200 −1.211 ± 0.112 −1.207 ± 0.074
Mδe −5.157 −5.167 ± 0.245 −5.158 ± 0.154
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Figure D.6: Validation of the F16 open loop model parameters for the mea-
surement noise case, comparing Method A in blue with Method C in black.
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- Process noise
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Figure D.7: Estimation of the F16 open loop model parameters for the no
process noise case, comparing Method A in blue with Method IV in green.

Table D.3: Estimation of the F16 open loop model parameters at time 10 s
for the no process noise case, comparing Method A with Method IV.

True Method A Method IV

Zα −0.600 −0.600 ± 0.009 −0.600 ± 0.009
Zq 0.950 0.950 ± 0.006 0.950 ± 0.007
Zδe −0.115 −0.115 ± 0.014 −0.115 ± 0.014
Mα −4.300 −4.302 ± 0.008 −4.302 ± 0.009
Mq −1.200 −1.201 ± 0.006 −1.202 ± 0.006
Mδe −5.157 −5.158 ± 0.013 −5.160 ± 0.013
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Figure D.8: Validation of the F16 open loop model parameters for the no
process noise case, comparing Method A in blue with Method IV in green.
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Figure D.9: Estimation of the F16 open loop model parameters for the no
process noise case, comparing Method A in blue with Method C in black.

Table D.4: Estimation of the F16 open loop model parameters at time 10 s
for the no process noise case, comparing Method A with Method C.

True Method A Method C

Zα −0.600 −0.600 ± 0.009 −0.601 ± 0.006
Zq 0.950 0.950 ± 0.006 0.951 ± 0.004
Zδe −0.115 −0.115 ± 0.014 −0.114 ± 0.009
Mα −4.300 −4.302 ± 0.008 −4.302 ± 0.006
Mq −1.200 −1.201 ± 0.006 −1.202 ± 0.005
Mδe −5.157 −5.158 ± 0.013 −5.160 ± 0.010
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Figure D.10: Validation of the F16 open loop model parameters for the no
process noise case, comparing Method A in blue with Method C in black.
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Figure D.11: Estimation of the F16 open loop model parameters for the light
process noise case, comparing Method A in blue with Method IV in green.

Table D.5: Estimation of the F16 open loop model parameters at time 10 s
for the light process noise case, comparing Method A with Method IV.

True Method A Method IV

Zα −0.600 −0.612 ± 0.030 −0.599 ± 0.033
Zq 0.950 0.936 ± 0.021 0.949 ± 0.023
Zδe −0.115 −0.143 ± 0.045 −0.120 ± 0.050
Mα −4.300 −4.153 ± 0.415 −4.315 ± 0.447
Mq −1.200 −1.000 ± 0.282 −1.186 ± 0.315
Mδe −5.157 −4.782 ± 0.621 −5.115 ± 0.689
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Figure D.12: Validation of the F16 open loop model parameters for the light
process noise case, comparing Method A in blue with Method IV in green.
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Figure D.13: Estimation of the F16 open loop model parameters for the light
process noise case, comparing Method A in blue with Method C in black.

Table D.6: Estimation of the F16 open loop model parameters at time 10 s
for the light process noise case, comparing Method A with Method C.

True Method A Method C

Zα −0.600 −0.612 ± 0.030 −0.605 ± 0.017
Zq 0.950 0.936 ± 0.021 0.951 ± 0.012
Zδe −0.115 −0.143 ± 0.045 −0.113 ± 0.025
Mα −4.300 −4.153 ± 0.415 −4.328 ± 0.197
Mq −1.200 −1.000 ± 0.282 −1.184 ± 0.144
Mδe −5.157 −4.782 ± 0.621 −5.119 ± 0.262
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Figure D.14: Validation of the F16 open loop model parameters for the light
process noise case, comparing Method A in blue with Method C in black.
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Figure D.15: Estimation of the F16 open loop model parameters for the
medium process noise case, comparing Method A in blue with Method IV
in green.

Table D.7: Estimation of the F16 open loop model parameters at time 10 s
for the medium process noise case, comparing Method A with Method IV.

True Method A Method IV

Zα −0.600 −0.638 ± 0.051 −0.595 ± 0.067
Zq 0.950 0.909 ± 0.034 0.950 ± 0.047
Zδe −0.115 −0.190 ± 0.076 −0.116 ± 0.102
Mα −4.300 −3.864 ± 0.721 −4.316 ± 0.950
Mq −1.200 −0.595 ± 0.473 −1.231 ± 0.664
Mδe −5.157 −4.065 ± 1.084 −5.195 ± 1.445
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Figure D.16: Validation of the F16 open loop model parameters for the
medium process noise case, comparing Method A in blue with Method IV
in green.
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Figure D.17: Estimation of the F16 open loop model parameters for the
medium process noise case, comparing Method A in blue with Method C
in black.

Table D.8: Estimation of the F16 open loop model parameters at time 10 s
for the medium process noise case, comparing Method A with Method C.

True Method A Method C

Zα −0.600 −0.638 ± 0.051 −0.609 ± 0.033
Zq 0.950 0.909 ± 0.034 0.951 ± 0.023
Zδe −0.115 −0.190 ± 0.076 −0.109 ± 0.046
Mα −4.300 −3.864 ± 0.721 −4.300 ± 0.411
Mq −1.200 −0.595 ± 0.473 −1.183 ± 0.295
Mδe −5.157 −4.065 ± 1.084 −5.179 ± 0.540
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Figure D.18: Validation of the F16 open loop model parameters for the
medium process noise case, comparing Method A in blue with Method C
in black.
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Figure D.19: Estimation of the F16 open loop model parameters for the se-
vere process noise case, comparing Method A in blue with Method IV in
green.

Table D.9: Estimation of the F16 open loop model parameters at time 10 s
for the severe process noise case, comparing Method A with Method IV.

True Method A Method IV

Zα −0.600 −0.693 ± 0.068 −0.592 ± 0.239
Zq 0.950 0.862 ± 0.040 0.961 ± 0.385
Zδe −0.115 −0.269 ± 0.112 −0.078 ± 0.782
Mα −4.300 −3.410 ± 1.010 −4.356 ± 3.406
Mq −1.200 0.152 ± 0.598 −1.429 ± 5.628
Mδe −5.157 −2.902 ± 1.676 −5.960 ± 11.486
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Figure D.20: Validation of the F16 open loop model parameters for the se-
vere process noise case, comparing Method A in blue with Method IV in
green.
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Figure D.21: Estimation of the F16 open loop model parameters for the
severe process noise case, comparing Method A in blue with Method C in
black.

Table D.10: Estimation of the F16 open loop model parameters at time 10 s
for the severe process noise case, comparing Method A with Method C.

True Method A Method C

Zα −0.600 −0.693 ± 0.068 −0.615 ± 0.080
Zq 0.950 0.862 ± 0.040 0.928 ± 0.049
Zδe −0.115 −0.269 ± 0.112 −0.129 ± 0.105
Mα −4.300 −3.410 ± 1.010 −4.399 ± 1.045
Mq −1.200 0.152 ± 0.598 −0.820 ± 0.629
Mδe −5.157 −2.902 ± 1.676 −5.049 ± 1.324
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Figure D.22: Validation of the F16 open loop model parameters for the
severe process noise case, comparing Method A in blue with Method C in
black.
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F16 Closed loop

- Measurement noise
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Figure D.23: Estimation of the F16 closed loop model parameters for the
measurement noise case, comparing Method A in blue with Method IV in
green.

Table D.11: Estimation of the F16 closed loop model parameters at time 9 s
for the measurement noise case, comparing Method A with Method IV.

True Method A Method IV

Zα −0.600 −0.556 ± 0.429 −0.608 ± 0.450
Zq 0.950 0.958 ± 0.206 0.959 ± 0.215
Zδe −0.115 −0.116 ± 0.375 −0.092 ± 0.403
Mα −4.300 −4.045 ± 0.396 −4.330 ± 0.427
Mq −1.200 −1.233 ± 0.190 −1.197 ± 0.204
Mδe −5.157 −5.164 ± 0.346 −5.138 ± 0.382
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Figure D.24: Validation of the F16 closed loop model parameters for the
measurement noise case, comparing Method A in blue with Method IV in
green.
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Figure D.25: Estimation of the F16 closed loop model parameters for the
measurement noise case, comparing Method A in blue with Method C in
black.

Table D.12: Estimation of the F16 closed loop model parameters at time 9 s
for the measurement noise case, comparing Method A with Method C.

True Method A Method C

Zα −0.600 −0.556 ± 0.429 −0.611 ± 0.233
Zq 0.950 0.958 ± 0.206 0.960 ± 0.118
Zδe −0.115 −0.116 ± 0.375 −0.088 ± 0.207
Mα −4.300 −4.045 ± 0.396 −4.298 ± 0.249
Mq −1.200 −1.233 ± 0.190 −1.208 ± 0.125
Mδe −5.157 −5.164 ± 0.346 −5.154 ± 0.223
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Figure D.26: Validation of the F16 closed loop model parameters for the
measurement noise case, comparing Method A in blue with Method C in
black.
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Figure D.27: Estimation of the F16 closed loop model parameters for the no
process noise case, comparing Method A in blue with Method IV in green.

Table D.13: Estimation of the F16 closed loop model parameters at time 10 s
for the no process noise case, comparing Method A with Method IV.

True Method A Method IV

Zα −0.600 −0.600 ± 0.023 −0.600 ± 0.023
Zq 0.950 0.950 ± 0.011 0.950 ± 0.011
Zδe −0.115 −0.116 ± 0.019 −0.116 ± 0.021
Mα −4.300 −4.307 ± 0.021 −4.306 ± 0.022
Mq −1.200 −1.202 ± 0.010 −1.203 ± 0.010
Mδe −5.157 −5.160 ± 0.018 −5.164 ± 0.019
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Figure D.28: Validation of the F16 closed loop model parameters for the no
process noise case, comparing Method A in blue with Method IV in green.
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Figure D.29: Estimation of the F16 closed loop model parameters for the no
process noise case, comparing Method A in blue with Method C in black.

Table D.14: Estimation of the F16 closed loop model parameters at time 10 s
for the no process noise case, comparing Method A with Method C.

True Method A Method C

Zα −0.600 −0.600 ± 0.023 −0.602 ± 0.013
Zq 0.950 0.950 ± 0.011 0.950 ± 0.006
Zδe −0.115 −0.116 ± 0.019 −0.115 ± 0.011
Mα −4.300 −4.307 ± 0.021 −4.309 ± 0.014
Mq −1.200 −1.202 ± 0.010 −1.203 ± 0.007
Mδe −5.157 −5.160 ± 0.018 −5.164 ± 0.012
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Figure D.30: Validation of the F16 closed loop model parameters for the no
process noise case, comparing Method A in blue with Method C in black.



239

0 5 10
-8

-6

-4

-2

0

2
A11 : Z

0 5 10
0

1

2
A12 : Zq

0 5 10
-2

0

2
B11 : Z e

0 5 10

time (s)

-8

-6

-4

-2

0

2
A21 : M

0 5 10

time (s)

-5

0

5
A22 : Mq

0 5 10

time (s)

-8

-6

-4

-2

0

2
B21 : M e

0 5 10
-5

0

5
u1 : e  (deg)

0 5 10
-5

0

5
y1 :  (deg)

0 5 10
-10

0

10
y2 : q (deg/s)

Figure D.31: Estimation of the F16 closed loop model parameters for the
light process noise case, comparing Method A in blue with Method IV in
green.

Table D.15: Estimation of the F16 closed loop model parameters at time 10 s
for the light process noise case, comparing Method A with Method IV.

True Method A Method IV

Zα −0.600 −0.590 ± 0.074 −0.602 ± 0.086
Zq 0.950 0.911 ± 0.032 0.954 ± 0.042
Zδe −0.115 −0.199 ± 0.056 −0.113 ± 0.077
Mα −4.300 −4.467 ± 1.040 −4.216 ± 1.225
Mq −1.200 −0.606 ± 0.449 −1.251 ± 0.591
Mδe −5.157 −3.921 ± 0.790 −5.189 ± 1.093
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Figure D.32: Validation of the F16 closed loop model parameters for the
light process noise case, comparing Method A in blue with Method IV in
green.
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Figure D.33: Estimation of the F16 closed loop model parameters for the
light process noise case, comparing Method A in blue with Method C in
black.

Table D.16: Estimation of the F16 closed loop model parameters at time 10 s
for the light process noise case, comparing Method A with Method C.

True Method A Method C

Zα −0.600 −0.590 ± 0.074 −0.613 ± 0.039
Zq 0.950 0.911 ± 0.032 0.951 ± 0.020
Zδe −0.115 −0.199 ± 0.056 −0.117 ± 0.033
Mα −4.300 −4.467 ± 1.040 −4.312 ± 0.465
Mq −1.200 −0.606 ± 0.449 −1.166 ± 0.247
Mδe −5.157 −3.921 ± 0.790 −5.065 ± 0.390
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Figure D.34: Validation of the F16 closed loop model parameters for the
light process noise case, comparing Method A in blue with Method C in
black.
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Figure D.35: Estimation of the F16 closed loop model parameters for the
medium process noise case, comparing Method A in blue with Method IV in
green.

Table D.17: Estimation of the F16 closed loop model parameters at time 10 s
for the medium process noise case, comparing Method A with Method IV.

True Method A Method IV

Zα −0.600 −0.587 ± 0.113 −0.630 ± 0.188
Zq 0.950 0.863 ± 0.042 0.962 ± 0.091
Zδe −0.115 −0.302 ± 0.073 −0.097 ± 0.171
Mα −4.300 −4.694 ± 1.649 −3.764 ± 2.775
Mq −1.200 0.166 ± 0.617 −1.375 ± 1.332
Mδe −5.157 −2.478 ± 1.063 −5.520 ± 2.517
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Figure D.36: Validation of the F16 closed loop model parameters for the
medium process noise case, comparing Method A in blue with Method IV in
green.
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Figure D.37: Estimation of the F16 closed loop model parameters for the
medium process noise case, comparing Method A in blue with Method C in
black.

Table D.18: Estimation of the F16 closed loop model parameters at time 10 s
for the medium process noise case, comparing Method A with Method C.

True Method A Method C

Zα −0.600 −0.587 ± 0.113 −0.635 ± 0.074
Zq 0.950 0.863 ± 0.042 0.945 ± 0.037
Zδe −0.115 −0.302 ± 0.073 −0.124 ± 0.063
Mα −4.300 −4.694 ± 1.649 −4.127 ± 1.038
Mq −1.200 0.166 ± 0.617 −1.066 ± 0.518
Mδe −5.157 −2.478 ± 1.063 −5.123 ± 0.876
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Figure D.38: Validation of the F16 closed loop model parameters for the
medium process noise case, comparing Method A in blue with Method C in
black.



247

0 5 10
-8

-6

-4

-2

0

2
A11 : Z

0 5 10
0

1

2
A12 : Zq

0 5 10
-2

0

2
B11 : Z e

0 5 10

time (s)

-8

-6

-4

-2

0

2
A21 : M

0 5 10

time (s)

-5

0

5
A22 : Mq

0 5 10

time (s)

-8

-6

-4

-2

0

2
B21 : M e

0 5 10
-5

0

5
u1 : e  (deg)

0 5 10
-5

0

5
y1 :  (deg)

0 5 10
-10

0

10
y2 : q (deg/s)

Figure D.39: Estimation of the F16 closed loop model parameters for the
severe process noise case, comparing Method A in blue with Method IV in
green.

Table D.19: Estimation of the F16 closed loop model parameters at time 10 s
for the severe process noise case, comparing Method A with Method IV.

True Method A Method IV

Zα −0.600 −0.616 ± 0.156 −0.7808 ± 16.86
Zq 0.950 0.826 ± 0.048 1.1159 ± 19.84
Zδe −0.115 −0.403 ± 0.080 0.1790 ± 34.04
Mα −4.300 −5.066 ± 2.336 −1.5018 ± 233.3
Mq −1.200 1.009 ± 0.725 −3.5015 ± 274.1
Mδe −5.157 −1.028 ± 1.213 −9.4085 ± 470.5
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Figure D.40: Validation of the F16 closed loop model parameters for the
severe process noise case, comparing Method A in blue with Method IV in
green.
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Figure D.41: Estimation of the F16 closed loop model parameters for the
severe process noise case, comparing Method A in blue with Method C in
black.

Table D.20: Estimation of the F16 closed loop model parameters at time 10 s
for the severe process noise case, comparing Method A with Method C.

True Method A Method C

Zα −0.600 −0.616 ± 0.156 −0.640 ± 0.208
Zq 0.950 0.826 ± 0.048 0.933 ± 0.097
Zδe −0.115 −0.403 ± 0.080 −0.140 ± 0.183
Mα −4.300 −5.066 ± 2.336 −3.738 ± 3.035
Mq −1.200 1.009 ± 0.725 −0.728 ± 1.430
Mδe −5.157 −1.028 ± 1.213 −4.987 ± 2.777
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Figure D.42: Validation of the F16 closed loop model parameters for the
severe process noise case, comparing Method A in blue with Method C in
black.
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JAS 39 Gripen Closed loop
- Measurement noise
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Figure D.43: Estimation of the JAS 39 Gripen closed loop model param-
eters for the measurement noise case, comparing Method A in blue with
Method IV in green.

Table D.21: Estimation of the JAS 39 Gripen closed loop model parame-
ters at time 19 s for the measurement noise case, comparing Method A with
Method IV.

True Method A Method IV

Zα −0.679 −0.761 ± 0.715 −0.686 ± 0.793
Zq 0.992 1.068 ± 0.198 0.994 ± 0.213
Zδe −0.220 −0.059 ± 0.579 −0.219 ± 0.671
Zδc −0.012 −0.082 ± 0.324 −0.009 ± 0.361
Mα 1.339 1.265 ± 0.381 1.420 ± 0.424
Mq −0.537 −0.511 ± 0.106 −0.544 ± 0.114
Mδe −10.330 −10.311 ± 0.309 −10.370 ± 0.359
Mδc 4.324 4.311 ± 0.173 4.338 ± 0.193
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Figure D.44: Validation of the JAS 39 Gripen closed loop model param-
eters for the measurement noise case, comparing Method A in blue with
Method IV in green.
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Figure D.45: Estimation of the JAS 39 Gripen closed loop model parameters
for the measurement noise case, comparing Method A in blue with Method C
in black.

Table D.22: Estimation of the JAS 39 Gripen closed loop model parame-
ters at time 19 s for the measurement noise case, comparing Method A with
Method C.

True Method A Method C

Zα −0.679 −0.761 ± 0.715 −0.592 ± 0.353
Zq 0.992 1.068 ± 0.198 0.984 ± 0.094
Zδe −0.220 −0.059 ± 0.579 −0.215 ± 0.297
Zδc −0.012 −0.082 ± 0.324 −0.014 ± 0.177
Mα 1.339 1.265 ± 0.381 1.751 ± 0.188
Mq −0.537 −0.511 ± 0.106 −0.633 ± 0.050
Mδe −10.330 −10.311 ± 0.309 −10.328 ± 0.158
Mδc 4.324 4.311 ± 0.173 4.324 ± 0.096



254 D Complementary results to the sequential identification

0 5 10 15 20
-5

0

5
u1 : e  [deg]

0 5 10 15 20
-5

0

5
u2 : c  [deg]

0 5 10 15 20

time (s)

-5

0

5
y1 :  [deg]

0 5 10 15 20

time (s)

-10

-5

0

5

10
y2 : q [deg/s]

Measurement
Method A: 54.5%
Method C: 54.6%

Figure D.46: Validation of the JAS 39 Gripen closed loop model parameters
for the measurement noise case, comparing Method A in blue with Method C
in black.
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Figure D.47: Estimation of the JAS 39 Gripen closed loop model parameters
for the no process noise case, comparing Method A in blue with Method IV
in green.

Table D.23: Estimation of the JAS 39 Gripen closed loop model parame-
ters at time 20 s for the no process noise case, comparing Method A with
Method IV.

True Method A Method IV

Zα −0.679 −0.679 ± 0.038 −0.679 ± 0.039
Zq 0.992 0.992 ± 0.010 0.992 ± 0.011
Zδe −0.220 −0.220 ± 0.030 −0.220 ± 0.033
Zδc −0.012 −0.012 ± 0.017 −0.012 ± 0.018
Mα 1.339 1.391 ± 0.024 1.403 ± 0.026
Mq −0.537 −0.537 ± 0.007 −0.539 ± 0.007
Mδe −10.330 −10.342 ± 0.020 −10.356 ± 0.022
Mδc 4.324 4.329 ± 0.011 4.335 ± 0.012
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Figure D.48: Validation of the JAS 39 Gripen closed loop model parameters
for the no process noise case, comparing Method A in blue with Method IV
in green.
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Figure D.49: Estimation of the JAS39 closed loop model parameters for the
no process noise case, comparing Method A in blue with Method C in black.

Table D.24: Estimation of the JAS 39 Gripen closed loop model parame-
ters at time 20 s for the no process noise case, comparing Method A with
Method C.

True Method A Method C

Zα −0.679 −0.679 ± 0.038 −0.679 ± 0.019
Zq 0.992 0.992 ± 0.010 0.992 ± 0.005
Zδe −0.220 −0.220 ± 0.030 −0.220 ± 0.016
Zδc −0.012 −0.012 ± 0.017 −0.012 ± 0.009
Mα 1.339 1.391 ± 0.024 1.403 ± 0.014
Mq −0.537 −0.537 ± 0.007 −0.539 ± 0.004
Mδe −10.330 −10.342 ± 0.020 −10.356 ± 0.011
Mδc 4.324 4.329 ± 0.011 4.335 ± 0.006
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Figure D.50: Validation of the JAS 39 Gripen closed loop model parameters
for the no process noise case, comparing Method A in blue with Method C in
black.
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Figure D.51: Estimation of the JAS 39 Gripen closed loop model parameters
for the light process noise case, comparing Method A in blue with Method IV
in green.

Table D.25: Estimation of the JAS 39 Gripen closed loop model parame-
ters at time 20 s for the light process noise case, comparing Method A with
Method IV.

True Method A Method IV

Zα −0.679 −0.958 ± 0.807 −1.429 ± 1.070
Zq 0.992 0.914 ± 0.210 1.017 ± 0.274
Zδe −0.220 −0.060 ± 0.617 −0.204 ± 0.773
Zδc −0.012 −0.158 ± 0.318 −0.076 ± 0.370
Mα 1.339 1.674 ± 0.486 1.687 ± 0.616
Mq −0.537 −0.462 ± 0.126 −0.447 ± 0.158
Mδe −10.330 −10.476 ± 0.371 −10.367 ± 0.445
Mδc 4.324 4.486 ± 0.191 4.438 ± 0.213
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Figure D.52: Validation of the JAS 39 Gripen closed loop model parameters
for the light process noise case, comparing Method A in blue with Method IV
in green.
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Figure D.53: Estimation of the JAS 39 Gripen closed loop model parameters
for the light process noise case, comparing Method A in blue with Method C
in black.

Table D.26: Estimation of the JAS 39 Gripen closed loop model parame-
ters at time 20 s for the light process noise case, comparing Method A with
Method C.

True Method A Method C

Zα −0.679 −0.958 ± 0.807 −1.425 ± 0.501
Zq 0.992 0.914 ± 0.210 1.015 ± 0.128
Zδe −0.220 −0.060 ± 0.617 −0.208 ± 0.362
Zδc −0.012 −0.158 ± 0.318 −0.083 ± 0.174
Mα 1.339 1.674 ± 0.486 1.679 ± 0.328
Mq −0.537 −0.462 ± 0.126 −0.445 ± 0.084
Mδe −10.330 −10.476 ± 0.371 −10.361 ± 0.237
Mδc 4.324 4.486 ± 0.191 4.445 ± 0.114
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Figure D.54: Validation of the JAS 39 Gripen closed loop model parameters
for the light process noise case, comparing Method A in blue with Method C
in black.
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Figure D.55: Estimation of the JAS 39 Gripen closed loop model parame-
ters for the medium process noise case, comparing Method A in blue with
Method IV in green.

Table D.27: Estimation of the JAS 39 Gripen closed loop model parameters
at time 20 s for the medium process noise case, comparing Method A with
Method IV.

True Method A Method IV

Zα −0.679 −0.537 ± 1.300 −2.655 ± 3.716
Zq 0.992 0.726 ± 0.324 1.128 ± 0.890
Zδe −0.220 0.214 ± 1.072 −0.152 ± 2.072
Zδc −0.012 −0.349 ± 0.556 −0.109 ± 0.835
Mα 1.339 1.867 ± 0.806 1.952 ± 1.859
Mq −0.537 −0.392 ± 0.201 −0.347 ± 0.445
Mδe −10.330 −10.759 ± 0.664 −10.357 ± 1.037
Mδc 4.324 4.694 ± 0.344 4.543 ± 0.418
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Figure D.56: Validation of the JAS 39 Gripen closed loop model parame-
ters for the medium process noise case, comparing Method A in blue with
Method IV in green.
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Figure D.57: Estimation of the JAS 39 Gripen closed loop model parame-
ters for the medium process noise case, comparing Method A in blue with
Method C in black.

Table D.28: Estimation of the JAS 39 Gripen closed loop model parameters
at time 20 s for the medium process noise case, comparing Method A with
Method C.

True Method A Method C

Zα −0.679 −0.537 ± 1.300 −2.639 ± 1.760
Zq 0.992 0.726 ± 0.324 1.123 ± 0.421
Zδe −0.220 0.214 ± 1.072 −0.164 ± 0.980
Zδc −0.012 −0.349 ± 0.556 −0.127 ± 0.402
Mα 1.339 1.867 ± 0.806 1.924 ± 0.975
Mq −0.537 −0.392 ± 0.201 −0.340 ± 0.233
Mδe −10.330 −10.759 ± 0.664 −10.341 ± 0.543
Mδc 4.324 4.694 ± 0.344 4.558 ± 0.222
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Figure D.58: Validation of the JAS 39 Gripen closed loop model parame-
ters for the medium process noise case, comparing Method A in blue with
Method C in black.
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Figure D.59: Estimation of the JAS 39 Gripen closed loop model param-
eters for the severe process noise case, comparing Method A in blue with
Method IV in green.

Table D.29: Estimation of the JAS 39 Gripen closed loop model parame-
ters at time 20 s for the severe process noise case, comparing Method A with
Method IV.

True Method A Method IV

Zα −0.679 −0.220 ± 1.855 36.323 ± 853.21
Zq 0.992 0.677 ± 0.458 −6.704 ± 161.11
Zδe −0.220 1.345 ± 1.607 −5.524 ± 89.879
Zδc −0.012 −0.891 ± 0.930 −3.024 ± 70.199
Mα 1.339 2.242 ± 1.251 5.464 ± 96.370
Mq −0.537 −0.318 ± 0.309 −0.657 ± 18.198
Mδe −10.330 −11.485 ± 1.084 −10.596 ± 10.150
Mδc 4.324 5.139 ± 0.627 4.583 ± 7.930
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Figure D.60: Validation of the JAS 39 Gripen closed loop model parame-
ters for the severe process noise case, comparing Method A in blue with
Method IV in green.
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Figure D.61: Estimation of the JAS 39 Gripen closed loop model param-
eters for the severe process noise case, comparing Method A in blue with
Method C in black.

Table D.30: Estimation of the JAS 39 Gripen closed loop model parame-
ters at time 20 s for the severe process noise case, comparing Method A with
Method C.

True Method A Method C

Zα −0.679 −0.220 ± 1.855 20.250 ± 339.71
Zq 0.992 0.677 ± 0.458 −3.649 ± 63.834
Zδe −0.220 1.345 ± 1.607 −3.867 ± 36.241
Zδc −0.012 −0.891 ± 0.930 −1.481 ± 24.395
Mα 1.339 2.242 ± 1.251 3.083 ± 46.639
Mq −0.537 −0.318 ± 0.309 −0.207 ± 8.791
Mδe −10.330 −11.485 ± 1.084 −10.352 ± 4.971
Mδc 4.324 5.139 ± 0.627 4.804 ± 3.547
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Figure D.62: Validation of the JAS 39 Gripen closed loop model parameters
for the severe process noise case, comparing Method A in blue with Method
C in black.



E
GFF test card

This appendix shows one of the test cards used in the GFF flight test campaign
as an example. The test card is useful since it gives a structured way of planning
and conducting the test and it also acts as a notebook for collecting comments
during the test campaign. These notes can be valuable when revisiting the test
data.
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Figure E.1: Test card front.
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F
Kalman filters

The present appendix provides basics needed to follow the Kalman filter calcula-
tions in the rest of the thesis. In the linear case, the Kalman filter [Kalman, 1960]
is optimal in the sense that it will minimize the mean of the squared error of the
predicted states if the noise is white and has a normal distribution. Also, the
filter has to be tuned, i.e., the relationship between the process noise covariance
(Q) and measurement noise covariance (R) has to be found and set correctly. In
this case the linear filter will converge and give the optimal predictions of the
states. For the nonlinear case used in this thesis, the Extended Kalman Filter and
the Unscented Kalman Filter have been implemented. There is no general proof
that these filters have any of the properties mentioned for the linear Kalman filter.
The following model is used

xk+1 = f (xk , uk ; θ) + wk ,

yk = h(xk , uk) + ek ,
(F.1)

where θ contains the unknown model parameters to be identified, ek and wk are
assumed to be white noise with zero mean and covariance matrix R and Q, xk is
a nx × 1 state vector, uk is an nu × 1 input vector and yk is an ny × 1 output vector.

A predictor for (F.1) can be written as

x̂k+1(θ) = f (x̂k(θ), uk ; θ) + Kk(θ)εk(θ),

ŷk(θ) = h(x̂k(θ), uk),

εk(θ) = yk − ŷk(θ)

(F.2)

Here, the prediction error ε(θ) is also called the innovation and represents the
part of yk that cannot be predicted from past measurements. The Kalman filter
is often implemented in a way that first predicts the states in a time update using
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278 F Kalman filters

the dynamic model x̂k|k−1 = f (x̂k−1(θ), uk−1; θ) and then make a correction based
on the innovation x̂k = x̂k|k−1 +Kk(θ)(yk − h(x̂k|k−1(θ), uk−1)) in a measurement up-
date where the information from the predicted states and the measurements are
fused to give a new and more accurate prediction of the states, i.e., the predicted
state covariance Pk(θ) is reduced.

F.1 Extended Kalman filter (EKF)

The EKF is an extension of the Kalman Filter to nonlinear systems. The main idea
is to compute the Kalman gain Kk(θ) at each time step using a linearized model.
This linearization is performed by computing the partial derivatives of f with
respect to x and u evaluated for x̂k and uk , giving the matrices Ak(θ) and Bk(θ),
respectively. Similarly, matrices Ck(θ) and Dk(θ) can be obtained by linearizing
h. This gives the linearized model

xk+1,lin = Ak(θ)xk,lin + Bk(θ)uk
yk,lin = Ck(θ)xk,lin + Dk(θ)uk + ek

(F.3)

Using (F.3) and (F.1) both without any direct input-output relation (Dk(θ) = 0)
gives the following EKF algorithm [Khalil, 2002]

Initialization (k = 0):
x̂1|0(θ) =x0,

P1|0(θ) =P0
(F.4)

Measurement update:
Correction by fusion of prediction and measurements for (k)

Kk(θ) =[Pk|k−1(θ)CTk (θ)][Ck(θ)Pk|k−1(θ)CTk (θ) + R]−1

x̂k =x̂k|k−1(θ) + Kk(θ)(yk − Ck x̂k|k−1(θ))

Pk(θ) =Pk|k−1(θ) − Kk(θ)CTk (θ)Pk|k−1(θ)

(F.5)

Time update:
Prediction of states for (k + 1) given predictions for (k)

x̂k+1|k(θ) =f (x̂k(θ), uk ; θ)

Pk+1|k(θ) =Ak(θ)Pk(θ)ATk (θ) + Q
(F.6)

The measurement and time update are then iterated as k increases.



F.2 Unscented Kalman filter (UKF) 279

Another way to do the iterations is to make the measurement and time updates
at the same time in a single recursion

Kk(θ) =[Ak(θ)Pk(θ)CTk (θ)][Ck(θ)Pk(θ)CTk (θ) + R]−1

Pk+1(θ) =Ak(θ)Pk(θ)ATk (θ) + Q − Kk(θ)[Ck(θ)Pk(θ)CTk (θ) + R]KTk (θ)

x̂k+1(θ) =f (x̂k(θ), uk ; θ) + Kk(θ)εk(θ)

ŷk(θ) =h(x̂k(θ), uk ; θ)

(F.7)

The initialization has to be done as previously. This is the way the EKF has been
implemented in this thesis.

F.2 Unscented Kalman filter (UKF)

When the system is highly nonlinear, the EKF method suffers from the fact that
the covariance are propagated through a linearization of the system instead of
the actual nonlinear system. The UKF uses an unscented transformation that
samples the covariance and propagates it through the actual nonlinearities.

The unscented transformation of x, z = g(x), uses so called sigma points

xi =


x̂ − (

√
(nx + λ)P )i if i < 0

x̂ if i = 0
x̂ + (

√
(nx + λ)P )i if i > 0

(F.8)

To represent the mean and covariance

E(z) ≈ 1
2

−1∑
i=−nx

λ
nx + λ

zi +
λ

nx + λ
z0 +

1
2

nx∑
i=1

λ
nx + λ

zi (F.9)

P (z) ≈1
2

−1∑
i=−nx

1
nx + λ

(zi − E(z))(zi − E(z))+

(
λ

nx + λ
+ (1 − α2 + β))(z0 − E(z))(z0 − E(z))+

1
2

nx∑
i=1

1
nx + λ

(zi − E(z))(zi − E(z))

(F.10)

Here, the scaling parameter λ is defined as λ = α2(nx + κ) − nx. The parameters
in this expression are α, which controls the sigma point spread, β incorporates
information of the distribution and κ is a secondary parameter. The standard
values often used for these parameters are 10−3, 2 and 0 respectively.
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This gives
g(x) ∼ N (E(z), P (z)) (F.11)

The UKF algorithm then becomes as follows

Initialization (k = 0):
x̂1|0(θ) =x0,

P1|0(θ) =P0
(F.12)

Measurement update:
Correction by fusion of prediction and measurements for (k)

x̄ =
(
x̂k
ek

)
∼ N

((
x̂k|k−1

0

)
,

(
Pk|k−1 0

0 R

))
(F.13)

z =
(
xk
yk

)
=

(
xk

h(xk , uk , ek)

)
(F.14)

Using the unscented transformation gives

z ∼ N
( x̂k|k−1

ŷk|k−1

)
,

 P xxk|k−1 P
xy
k|k−1

P
yx
k|k−1 P

yy
k|k−1

 (F.15)

The update is then given by

Kk = P
xy
k|k−1(P yyk|k−1)−1 (F.16)

x̂k = x̂k|k−1 + Kk(yk − ŷk|k−1) (F.17)

P xxk = P xxk|k−1 − KkP
yy
k|k−1K

T
k (F.18)

Time update:
Prediction of states for (k + 1) given predictions for (k)

x̄ =
(
x̂k
vk

)
∼ N

((
x̂k
0

)
,

(
Pk 0
0 Q

))
(F.19)

z = xk+1|k = f (xk , uk , vk) (F.20)

Using the unscented transformation gives

z ∼ N (x̂k+1|k , Pk+1|k) (F.21)

The measurement and time update are then iterated as k increases. The time and
measurement update structure has been kept in the used implementation.



G
Complementary results to the

identification of unstable nonlinear
systems

In this appendix complementary results to Chapter 8 are presented. To be able
to understand the results, it is recommended that Section 8.2 is read. In that
section, the simulation model and maneuvers for estimation and verification are
described. The methods are denoted with PO (Parametrized Observer), EKF (Ex-
tended Kalman Filter), UKF (Unscented Kalman Filter), AUG (AUGmented state
estimation) and CLM (Constrained Levenberg-Marquardt). Two types of investi-
gations have been made. The first concerning SNR (Signal-to-Noise Ratio) and
the second concerning θ0 (initial model parameter offset). For these the model
fit is given. In addition to this the results for SNR105, 106 and 107, which were
left out in Section 8.2, are given. One aspect of the comparison was to look at the
influence of tuning parameters for the different methods. For the methods using
some version of the Kalman filter, a fixed value of the process noise tuning pa-
rameter Q = 10−5 was used. The other tuning parameter settings used are given
in Table G.1. This is by no means an exhaustive investigation looking for optimal
settings, but gives some indication of possible problems.

Table G.1: Investigated tuning parameters.
PO, EKF, UKF, AUG R1 R2 R3 R4 R5

10−9 10−7 10−5 10−3 10−1

CLM λ1 λ2 λ3 λ4 λ5
0.01 0.1 1 10 100

AUG W1 W2 W3 W4 W5
10−9 10−7 10−5 10−3 10−1
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G.1 Tuning results from the noise (SNR) sensitivity
study

The parameter estimation in the SNR investigation is based on 100 MC (Monte
Carlo) simulations for each method, SNR and tuning parameter setting. The out-
come has then been validated on separate data sets. The mean of the Model fit
is shown in Table G.2. As can be seen, there five different SNR settings have
been investigated. As mentioned in Chapter 8, SNR 104 is a assumed to be the
worst case using data direct from flight test for the investigated maneuvers. After
post-processing data SNR 106 or SNR 107 are more likely signal-to-noise ratios.
SNR 103 has been added to get a feeling for how the methods work on other pos-
sible types of maneuvers with lower level of excitation.

In general, the results are more robust for higher SNR, which is not surprising.
All methods except AUG seem to be insensitive to the tuning for SNR greater than
105. Looking into the table the best results for the different methods and SNR set-
tings are given in bold font. For all methods except the CLM, i.e., those methods
that use some version of the Kalman filter, the results show that a tuning with
higher R (R → R5), that is those putting more weight on using the information
in the dynamic model, seems to give better results.

An important conclusion is that having more tuning parameters can possible lead
to better results, but at the cost that the user has to have a very good knowledge
of how to set these parameters. Otherwise the results can be corrupted. It is in-
teresting to see that the PO method, which has no tuning parameters, is robust
against the investigated SNR settings. The EKF rhas a similar behavior, but mak-
ing the wrong tuning for noisy data decrease the accuracy in the results. The
UKF gives less robust results for the more noisy data (SNR lower than 104), but
has otherwise similar results as both PO and EKF. The CLM method seems almost
as robust against different SNR settings as the PO method and the results are best
for the largest regularization parameter tuning used (λLM = λ5 = 100). A strange
result is that the model fit seems to have an unmotivated dip for λLM = λ4 = 10.
No reason for this behavior have been found so far. The AUG method has the
highest number of tuning parameters. When using the best settings a model fit
above 90% can be obtained for most SNR values, but the variation in the results
for different tuning parameters is too big to be robust from a user perspective.

An interesting aspect that will be left to future work is when the results are good
enough. For example, when is it possible to use the results for a control law
design. Would it for example be possible to use some kind of figures of merit for
the estimated model that help in the control law design.
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Table G.2: Model fit for different SNR.
Met. Tuning SNR = 103 SNR = 104 SNR = 105 SNR = 106 SNR = 107

PO − 84.84 ± 1.33 86.88 ± 0.43 86.63 ± 0.12 86.54 ± 0.04 86.50 ± 0.01

EKF

R1 < 0 71.88 ± 0.35 85.42 ± 0.12 86.43 ± 0.04 86.48 ± 0.01
R2 < 0 72.09 ± 0.35 85.44 ± 0.12 86.43 ± 0.04 86.48 ± 0.01
R3 10.38 ± 0.61 81.64 ± 0.41 86.14 ± 0.12 86.46 ± 0.04 86.47 ± 0.01
R4 86.89 ± 1.25 86.90 ± 0.43 86.55 ± 0.12 86.52 ± 0.04 86.51 ± 0.01
R5 85.93 ± 1.30 86.64 ± 0.43 86.58 ± 0.12 86.59 ± 0.04 86.84 ± 0.01

UKF

R1 < 0 68.86 ± 0.27 86.93 ± 0.12 87.47 ± 0.04 88.69 ± 0.01
R2 < 0 68.87 ± 0.27 86.85 ± 0.12 87.57 ± 0.04 88.63 ± 0.01
R3 < 0 69.82 ± 0.27 86.83 ± 0.12 87.54 ± 0.04 88.82 ± 0.01
R4 < 0 71.76 ± 0.29 86.18 ± 0.11 85.25 ± 0.04 79.52 ± 0.01
R5 18.60 ± 0.46 64.78 ± 0.31 83.80 ± 0.11 79.59 ± 0.03 84.40 ± 0.01

CLM

λ1 28.34 ± 0.59 86.36 ± 0.43 86.55 ± 0.12 86.60 ± 0.04 86.60 ± 0.01
λ2 87.41 ± 1.16 86.84 ± 0.43 86.59 ± 0.12 86.60 ± 0.04 86.60 ± 0.01
λ3 87.52 ± 1.12 86.79 ± 0.43 86.72 ± 0.12 86.75 ± 0.04 86.75 ± 0.01
λ4 81.12 ± 1.07 82.50 ± 0.33 83.13 ± 0.10 82.28 ± 0.03 82.19 ± 0.01
λ5 87.52 ± 1.12 91.37 ± 0.37 91.53 ± 0.11 91.29 ± 0.03 91.23 ± 0.01

AUG

W1

R1 < 0 < 0 72.73 ± 24.4 86.33 ± 0.04 86.50 ± 0.01
R2 < 0 < 0 84.57 ± 23.3 86.32 ± 0.04 86.50 ± 0.01
R3 < 0 71.54 ± 26.6 87.16 ± 0.12 86.56 ± 0.04 86.51 ± 0.01
R4 < 0 < 0 85.30 ± 0.12 85.30 ± 0.04 85.44 ± 0.01
R5 86.87 ± 1.26 87.60 ± 0.43 87.55 ± 0.12 87.58 ± 0.04 87.58 ± 0.01

W2

R1 < 0 < 0 < 0 85.91 ± 0.04 86.42 ± 0.01
R2 < 0 < 0 < 0 85.88 ± 0.04 86.42 ± 0.01
R3 < 0 < 0 85.54 ± 0.12 86.41 ± 0.04 86.45 ± 0.01
R4 < 0 < 0 86.72 ± 0.12 86.55 ± 0.04 86.52 ± 0.01
R5 86.76 ± 1.26 87.66 ± 0.43 87.64 ± 0.12 87.65 ± 0.04 87.66 ± 0.01

W3

R1 < 0 < 0 < 0 78.93 ± 11.3 87.28 ± 0.01
R2 < 0 < 0 < 0 84.02 ± 8.49 87.27 ± 0.01
R3 < 0 < 0 70.89 ± 10.2 86.45 ± 0.04 87.15 ± 0.01
R4 42.52 ± 10.8 93.43 ± 0.27 87.92 ± 0.12 87.14 ± 0.04 87.06 ± 0.01
R5 87.78 ± 1.19 88.24 ± 0.43 87.92 ± 0.12 87.94 ± 0.04 87.95 ± 0.01

W4

R1 < 0 < 0 < 0 < 0 < 0
R2 < 0 < 0 < 0 < 0 < 0
R3 < 0 < 0 < 0 79.72 ± 0.04 90.99 ± 0.01
R4 < 0 41.69 ± 0.15 90.17 ± 0.09 90.44 ± 0.04 89.91 ± 0.01
R5 75.55 ± 0.85 93.12 ± 0.41 90.21 ± 0.12 90.07 ± 0.04 90.10 ± 0.01

W5

R1 < 0 < 0 < 0 < 0 87.57 ± 0.01
R2 < 0 < 0 < 0 < 0 87.70 ± 0.01
R3 < 0 < 0 < 0 < 0 90.70 ± 0.01
R4 < 0 < 0 29.26 ± 0.05 83.34 ± 0.04 92.20 ± 0.01
R5 < 0 48.15 ± 0.16 93.64 ± 0.10 90.69 ± 0.04 90.83 ± 0.01
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G.2 Complementary results for the SNR sensitivity
study

The results given in this section, for SNR 107, 106 and 105, has been left out of
the main part of this thesis because the outcome is similar to that of the noise-
free case using the best tuning parameters. As mentioned in the previous section
most methods seem to be insensitive to the tuning for these SNRs. The results of
the estimated models are given in Figures G.1, G.3 and G.5 together with Tables
G.3, G.5 and G.7. As can be seen, all model estimates are fairly close to the true
system. For the nonlinear part, CLM is the method that is least smooth, but it is
still close to the true system. Both CLM and AUG give the best estimates of the
linear parameters Zα and Mδe . These are important parameters that have a large
influence on the simulation results. This can be seen in the validation shown in
Figures G.2, G.4 and G.6 together with Tables G.4, G.6 and G.8. Here, CLM and
AUG have a model fit above 90%. The other methods are not much worse with
a modelfit above 86%. All-in-all, the results seem to be usable. The parameter
that possibly is harder to estimate is Zδc . Some of the methods have problems
in estimating the correct sign, but this parameter is less important and do not
influence the simulation much.

G.3 Tuning results from the initial offset (θ0)
sensitivity study

To investigate how sensitive the methods are to the initiation of the model param-
eters 100 MC (Monte Carlo) simulations have been made for each method, tuning
parameter setting and different initial offset. The five used offsets can be seen in
Figure G.7 and Table G.9. The parameters and the nonlinearities are disturbed
up to 10% from the true value. This is corresponds to possible model deviations
of the current aerodynamic database for JAS 39 Gripen, which would be used for
determining the initial parameters in an identification using real flight test data.
A SNR of 104 has been used for the simulations.

As in the SNR investigation the PO method seems to be robust against initial pa-
rameter offsets. This is indeed an interesting result. The EKF follow this pattern
but for R = R5 = 10−1, i.e., when the method puts more weight on the dynamic
model. Here, the results seem to depend on the initial offset. The same is true for
the UKF method. This seems to be natural for the methods that use some version
of the Kalman filter since if the initial model is uncertain then if the method puts
weight on using the information in the dynamic model then the result gets less
robust. For the CLM method the results are robust for λLM ≤ 1. Above this level
the resulting model fit change about 10% depending on the initial parameters.
Again, the AUG method gives a kind of mixed result. If the tuning parameters
are set as well as possible, the result can be excellent, but if not the results can be
really bad.



G.3 Tuning results from the initial offset (θ0) sensitivity study 285

0 2 4 6 8 10 12 14
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

α (deg)

f(
α)

 

 
True Model
PO
EKF
UKF
AUG
CLM

Figure G.1: Estimated and true aerodynamic derivatives for noisy data with
SNR 107.

Table G.3: Estimated and true aerodynamic derivatives for noisy data with
SNR 107.

True PO EKF UKF AUG CLM

Zα 0.9804 0.9814 0.9813 0.9815 0.9809 0.9800
Zq 0.0163 0.0158 0.0159 0.0157 0.0162 0.0165
Mq 0.9790 0.9769 0.9771 0.9787 0.9780 0.9777
Zδe −0.0051 −0.0087 −0.0082 −0.0095 −0.0093 −0.0048
Zδc −0.0005 0.0003 0.0012 −0.0023 −0.0093 −0.0048
Mδe −0.5182 −0.5011 −0.5026 −0.5338 −0.5185 −0.5188
Mδc 0.1376 0.1336 0.1330 0.1404 0.1377 0.1379
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Figure G.2: Simulated noisy validation data for SNR 107.

Table G.4: Model fit and tuning for noisy data with SNR 107.
Method Tuning Model Fit val. Model Fit est.

PO none 86.50 ± 0.02% 85.39 ± 0.03%
EKF R = 1 · 10−1 86.84 ± 0.02% 85.79 ± 0.03%
UKF R = 1 · 10−5 88.82 ± 0.02% 86.08 ± 0.03%
AUG R = 1 · 10−3, wk = 1 · 10−1 92.20 ± 0.02% 82.79 ± 0.02%
CLM λLM = 100 91.23 ± 0.02% 89.97 ± 0.02%



G.3 Tuning results from the initial offset (θ0) sensitivity study 287

0 2 4 6 8 10 12 14
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

α (deg)

f(
α)

 

 
True Model
PO
EKF
UKF
AUG
CLM

Figure G.3: Estimated and true aerodynamic derivatives for noisy data with
SNR 106.

Table G.5: Estimated and true aerodynamic derivatives for noisy data with
SNR 106.

True PO EKF UKF AUG CLM

Zα 0.9804 0.9812 0.9813 0.9814 0.9803 0.9796
Zq 0.0163 0.0160 0.0159 0.0158 0.0165 0.0167
Mq 0.9790 0.9769 0.9769 0.9773 0.9789 0.9795
Zδe −0.0051 −0.0075 −0.0084 −0.0088 −0.0071 −0.0030
Zδc −0.0005 0.0051 0.0013 0.0004 0.0000 −0.0011
Mδe −0.5182 −0.5016 −0.5015 −0.5154 −0.5184 −0.5180
Mδc 0.1376 0.1319 0.1336 0.1360 0.1377 0.1377
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Figure G.4: Simulated and true angle-of-attack and pitch angular velocity
for noisy validation data with SNR 106.

Table G.6: Model fit and tuning for noisy data with SNR 106

Method Tuning Model Fit val. Model Fit est.

PO none 86.54 ± 0.08% 85.69 ± 0.08%
EKF R = 1 · 10−1 86.59 ± 0.08% 85.84 ± 0.08%
UKF R = 1 · 10−7 87.57 ± 0.08% 86.07 ± 0.09%
AUG R = 1 · 10−1, wk = 1 · 10−1 90.69 ± 0.07% 86.08 ± 0.07%
CLM λLM = 100 91.29 ± 0.06% 91.15 ± 0.07%
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Figure G.5: Estimated and true aerodynamic derivatives for noisy data with
SNR 105.

Table G.7: Estimated and true aerodynamic derivatives for noisy data with
SNR 105.

True PO EKF UKF AUG CLM

Zα 0.9804 0.9813 0.9817 0.9821 0.9794 0.9805
Zq 0.0163 0.0159 0.0153 0.0155 0.0178 0.0163
Mq 0.9790 0.9770 0.9769 0.9762 0.9794 0.9822
Zδe −0.0051 −0.0086 −0.0124 −0.0177 −0.0128 −0.0060
Zδc −0.0005 0.0005 −0.0154 0.0013 0.0013 −0.0004
Mδe −0.5182 −0.5017 −0.5021 −0.5318 −0.5215 −0.5211
Mδc 0.1376 0.1344 0.1320 0.1403 0.1384 0.1385
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Figure G.6: Simulated and true angle-of-attack and pitch angular velocity
for noisy validation data with SNR 105.

Table G.8: Model fit and tuning for noisy data with SNR 105.
Method Tuning Model Fit val. Model Fit est.

PO none 86.63 ± 0.24% 86.27 ± 0.22%
EKF R = 1 · 10−1 86.58 ± 0.24% 86.11 ± 0.22%
UKF R = 1 · 10−9 86.93 ± 0.24% 84.66 ± 0.17%
AUG R = 1 · 10−1, wk = 1 · 10−1 93.64 ± 0.21% 81.30 ± 0.24%
CLM λLM = 100 91.53 ± 0.22% 89.87 ± 0.21%
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Figure G.7: True pitching moment and initial offset in θ0.

Table G.9: True aerodynamic derivatives and initial offset in θ0.
True θ0,1 θ0,2 θ0,3 θ0,4 θ0,5

Zα 0.9804 0.9824 0.9797 0.9821 0.9787 0.9819
Zq 0.0163 0.0179 0.0151 0.0172 0.0160 0.0155
Mq 0.9790 0.9811 0.9753 0.9834 0.9815 0.9778
Zδe −0.0051 −0.0046 −0.0052 −0.0055 −0.0051 −0.0052
Zδc −0.0005 −0.0004 −0.0005 −0.0004 −0.0005 −0.0005
Mδe −0.5182 −0.4664 −0.5728 −0.4520 −0.4555 −0.5734
Mδc 0.1376 0.1238 0.1657 0.1520 0.1460 0.1539
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Table G.10: Model fit for different θ0.
Met. Tuning θ0,1 θ0,2 θ0,3 θ0,4 θ0,5

PO − 86.53 ± 0.43 86.84 ± 0.43 86.52 ± 0.43 86.50 ± 0.43 86.51 ± 0.43

EKF

R1 71.83 ± 0.35 71.76 ± 0.35 71.73 ± 0.35 71.78 ± 0.35 71.70 ± 0.35
R2 72.08 ± 0.35 72.00 ± 0.35 72.01 ± 0.35 71.99 ± 0.35 72.16 ± 0.35
R3 81.61 ± 0.41 81.59 ± 0.41 81.55 ± 0.41 81.61 ± 0.41 81.68 ± 0.41
R4 86.90 ± 0.43 86.91 ± 0.43 86.90 ± 0.43 86.90 ± 0.43 86.91 ± 0.43
R5 87.31 ± 0.43 86.63 ± 0.43 59.42 ± 0.19 83.99 ± 0.38 86.63 ± 0.43

UKF

R1 69.18 ± 0.25 69.08 ± 0.24 69.63 ± 0.25 69.05 ± 0.24 69.67 ± 0.24
R2 68.96 ± 0.24 69.66 ± 0.24 69.08 ± 0.24 69.07 ± 0.24 69.45 ± 0.24
R3 69.29 ± 0.25 71.27 ± 0.25 69.86 ± 0.25 69.45 ± 0.25 69.60 ± 0.24
R4 70.04 ± 0.27 72.46 ± 0.26 72.19 ± 0.27 70.68 ± 0.28 71.39 ± 0.26
R5 83.23 ± 0.33 69.15 ± 0.26 88.74 ± 0.21 69.13 ± 0.33 83.47 ± 0.35

CLM

λ1 86.35 ± 0.43 86.56 ± 0.43 86.34 ± 0.43 86.42 ± 0.43 86.45 ± 0.43
λ2 86.89 ± 0.43 86.92 ± 0.43 86.91 ± 0.43 86.80 ± 0.43 86.83 ± 0.43
λ3 86.56 ± 0.43 86.80 ± 0.43 86.57 ± 0.43 86.57 ± 0.43 86.79 ± 0.43
λ4 76.69 ± 0.32 86.72 ± 0.33 76.36 ± 0.31 77.92 ± 0.32 86.84 ± 0.33
λ5 81.57 ± 0.29 87.32 ± 0.28 79.66 ± 0.28 84.39 ± 0.30 86.68 ± 0.29

AUG

W1

R1 < 0 < 0 < 0 < 0 < 0
R2 < 0 < 0 < 0 < 0 < 0
R3 < 0 < 0 < 0 < 0 74.16 ± 0.01
R4 < 0 < 0 < 0 57.13 ± 0.03 87.52 ± 0.01
R5 82.99 ± 1.33 89.28 ± 0.40 83.84 ± 0.12 84.33 ± 0.04 89.55 ± 0.01

W2

R1 < 0 < 0 < 0 < 0 < 0
R2 < 0 < 0 < 0 < 0 < 0
R3 < 0 < 0 < 0 < 0 22.06 ± 0.00
R4 < 0 < 0 < 0 < 0 < 0
R5 82.82 ± 1.33 89.64 ± 0.39 83.63 ± 0.12 84.12 ± 0.04 89.89 ± 0.01

W3

R1 < 0 < 0 < 0 < 0 < 0
R2 < 0 < 0 < 0 < 0 < 0
R3 17.08 ± 0.22 < 0 < 0 < 0 < 0
R4 < 0 95.24 ± 0.20 94.51 ± 0.11 94.32 ± 0.03 54.09 ± 0.01
R5 82.57 ± 1.34 90.73 ± 0.36 83.00 ± 0.12 83.69 ± 0.04 90.54 ± 0.01

W4

R1 < 0 < 0 < 0 < 0 < 0
R2 < 0 < 0 < 0 < 0 < 0
R3 < 0 < 0 < 0 < 0 < 0
R4 37.52 ± 0.44 41.48 ± 0.15 42.08 ± 0.05 41.83 ± 0.02 41.66 ± 0.00
R5 85.21 ± 1.37 95.55 ± 0.26 85.54 ± 0.13 88.44 ± 0.04 95.17 ± 0.01

W5

R1 < 0 < 0 < 0 < 0 < 0
R2 < 0 < 0 < 0 < 0 < 0
R3 < 0 < 0 < 0 < 0 < 0
R4 < 0 < 0 < 0 < 0 < 0
R5 49.02 ± 0.53 47.52 ± 0.16 48.84 ± 0.05 47.65 ± 0.02 48.40 ± 0.00
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Figure G.8: Estimated and true pitching moment for initial offset in θ0,4.

Table G.11: Estimated and true aerodynamic derivatives for the initial offset
in θ0,4.

True PO EKF UKF AUG CLM

Nα 0.9804 0.9813 0.9833 0.9881 0.9800 0.9785
Nq 0.0163 0.0159 0.0134 0.0127 0.0170 0.0194
Mq 0.9790 0.9776 0.9778 0.9829 0.9770 0.9813
Nδe −0.0051 −0.0084 −0.0265 −0.0369 −0.0087 0.0174
Nδc −0.0005 0.0012 −0.0732 0.0003 0.0019 0.1084
Mδe −0.5182 −0.4955 −0.5032 −0.6285 −0.5397 −0.4731
Mδc 0.1376 0.1560 0.1455 0.2305 0.1637 0.2600
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Figure G.9: Estimated and true pitching moment for initial offset in θ0,5.

Table G.12: Estimated and true aerodynamic derivatives for the initial offset
in θ0,5.

True PO EKF UKF AUG CLM

Nα 0.9804 0.9812 0.9854 0.9730 0.9802 0.9811
Nq 0.0163 0.0160 0.0107 0.0251 0.0168 0.0160
Mq 0.9790 0.9769 0.9742 1.0304 0.9790 0.9657
Nδe −0.0051 −0.0073 −0.0467 0.0537 −0.0088 −0.0084
Nδc −0.0005 0.0058 −0.1569 0.2451 0.0003 −0.0008
Mδe −0.5182 −0.5021 −0.5296 −0.0848 −0.5718 −0.5523
Mδc 0.1376 0.1314 0.0364 1.5136 0.1535 0.1481
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