

Flight Trials of CDA with Time-Based Metering at Atlanta International Airport

John-Paul Clarke, James Brooks, Liling Ren, Gaurav Nagle, and Evan McClain Georgia Institute of Technology

> Grady Boyce Delta Air Lines

James Allerdice, Tim Chambers, and Dennis Zondervan Federal Aviation Administration

Presented by: Jim Brooks

JPDO Operations Panel – NASA Ames

Agenda

- □ Background
- Operational Concept
- □ Time-Based Separation Analysis
- □ Time-Based Metering
- □ KATL KIRMT RNAV CDA Design
- □ KATL CDA Spacing Matrix
- □ KATL CDA Initial Benefit Results
- □ KATL CDA Merging and Spacing

Benefits of CDA

Environment

- Higher trajectory and reduced thrust over much of the arrival and approach results in reduced noise impact
- Less time spent below "mixing height" and reduced thrust results in reduced emissions

Fuel burn

 Fuel savings due to less vectoring and less time flying low and slow with flaps extended

□ Flight time

 Time to complete arrival and approach reduced due to less vectoring and less time flying low and slow

Lower controller and pilot workload

Operational Concept

- Intermediate metering point connects descent from cruise, to final
- Target spacing (or time interval) recommended at metering point
 - Uninterrupted operation at a desired probability, but not absolute
- Key is to determine the recommended value of target spacing or time interval and establish these values in real world operations
 - Modeling and managing trajectory variation and uncertainty

Minimum Feasible Time Interval

Separation Analysis Methodology

Conditional Probability for Given Target Time Interval

Integral of minimum feasible interval pdf from zero to the target interval

Sequence Specific Metering for Better Throughput

Time-Based Metering

Achieving target time interval through minor speed adjustments

- Speed adjustment given during en route
- Rely on accurate estimation of time of arrival at the metering point
 - Routing, vertical profile, speed profile, winds
- Speed adjustment optimized for system wide efficiency
 - Total fuel burn, total flight time
 - Subject to flight schedule and other operational constraints

More complex objective function with multiple operators

Next steps

Time-Based Metering

□ Use minor speed adjustments

- Act early, adapt to uncertainty
- Within ATC permitted speed deviation range (±0.02 Mach) if possible
- Minimum deviation from optimum speed

Example Narrow Body Jet

Example Wide Body Jet

Time-Based Metering

□ Change in RTA vs. Speed Adjustment

Cruise at FL360 or above, ground speed at TOD = 500 kt

KATL KERMT RNAV CDA Design

- □ Unrestricted CDA from cruise altitude
 - Idle descent from cruise altitude to base leg
- Designed for overnight arrivals from the west of US
- Overlaid on current traffic pattern
- Designed for multiple aircraft types
 - B737-800, B757-200, B767-300, B767-400
- □ RMG selected as the metering point
 - 55 nm to runway 09R; 66 nm to runway 26R; 16,000 ~ 20,000 ft

□ Merging occurs at RMG

KSDF 2004 flight test merging occurred at cruise altitude

□ Most challenging task:

Efficiently managing spacing/timing at metering point

Typical Vertical Profiles

Typical Target Time Intervals

CDA to Runway 26R, Wind: 270/70 kt at 37,000 ft

Target Time	e Interval at	Trailing Aircraft			
RMG, s	seconds	B738	B764		
	B738	72.8	71.8		
Leading Aircraft	B752	134.8	131.1		
	B764	137.6	107.2		

Initial Benefit Results

CDA	B757-200	Simulation d	ata	24-Apr-07				
Cruise altitude	FL390							
Wind	281 deg, 74k	t, at FL370						
Aircraft Weight	179,700 (Delta average)							
	Fuel, TOD	to runway	Time, RMG	to runway				
	Fuel, TOD	to runway gal	Time, RMG sec	to runway minute				
CDA09R	Fuel, TOD lb 783.80	to runway gal 116.99	Time, RMG sec 773.00	to runway minute 12.88				

Conventional	B757-200	24-Apr-07							
Cruise altitude	FL390								
Wind	281 deg, 74k	281 deg, 74kt, at FL370							
Aircraft Weight	180,550	(Average of	two flights)						
	Fuel, TOD	to runway	Time, RMG to runway						
	lb	gal	sec	minute					
STD09R									
STD26R	1850.00	1110.00	18.50						

CDA	B767-300	Simulation da	ata	24-Apr-07				
Cruise altitude	FL370							
Wind	281 deg, 74	281 deg, 74kt, at FL370						
Aircraft Weight	265,800 (Delta avergage)							
	Fuel, TOD	to runway	Time, RMC	G to runway				
	Fuel, TOD	to runway gal	Time, RMC sec	G to runway minute				
CDA09R	Fuel, TOD lb 1122.07	to runway gal 167.47	Time, RMC sec 771.75	B to runway minute 12.86				

Conventional	B767-300	24-Apr-07							
Cruise altitude	FL370	FL370							
Wind	281 deg, 74	281 deg, 74kt, at FL370							
Aircraft Weight	264,150 (Average of two flights)								
	Fuel, TOD	to runway	Time, RMC	G to runway					
	Fuel, TOD	to runway gal	Time, RMC sec	G to runway minute					
STD09R	Fuel, TOD Ib	to runway gal	Time, RMC sec	G to runway minute					

Est. Reduction	B757-200			24-Apr-07	Est. Reduction	B767-300		
	Fuel, TOD to runway			Time, RMG to runway			Fuel, TOD	to runway
	lb	lb gal		sec minute			lb	gal
CDA09R						CDA09R		
CDA26R	1019.62	152.18	217.00	3.62		CDA26R	1327.26	198.′

Note:

1. All data based on 24-Apr-2007 wether environment and equipment assignment

2. Simulation data obtained using Georgia Tech fast time simulation tool, aircraft weight based on Delta average over a month

3. Aircraft estimated fuel data obtained from flight plan.

4. Aircraft estimated time data obtained from crew reports. These numbers were reported before CDA was loaded, thus considered conventional (STD)

5. Runway 09R estimated data not available

24-Apr-07

4.13

minute

Time, RMG to runway

sec

247.75

.10

Operations at Delta OCC

Clayton Tino and Heinrich Souza (Georgia Tech) processing CDA profiles and wind data, Marcus Lowther participated on other days 20-24 May 2007, Denver, CO

Merging and Spacing Task (GFF)

20-24 May 2007, Denver, CO

Forecast Winds (Flight Plan Tool)

Estimated Time of Arrival (Attila[™])

📛 Attila Fla	igellus Dei	(ver 2.06)									
File View C	ptions										
			11 (211)								
Scheduled	I/USR [CS	R]									
								*			
Estim <mark>ate</mark> ,	CER	* * * * * *			* * * * *		4 0 8 8 9	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	S 76 38		
15			08:30			0	8:45			09:00	09:15
4				1							•
(Airport Or	peration		Arrival	Fixes		(Optimizer			
ID	Dep	Dep Time	Schedule	Qued Est	Att Est	Fix	Est@Fix	AtteFix	Dt		
			CSR	CQR	CRR		CEK(KEK)	UAK			NOpt: 755
TRS539	PHX	06:49:00		09:55:00	09:55:00						
DAL153	LLBG	20:25:00	09:33:00	09:14:00	09:14:00	FLCON	08:53:38				NArr: 754
DAL27	EDDF	07:56:00	17:43:00	17:23:17	17:23:17	FLCON	17:02:41				
DAL25	EDDL	08:06:00	17:23:00	17:25:20	17:25:20	FLCON	17:04:44				
DAL146	SCEL	08:26:00	10:18:00	17:34:21	17:34:21	LGC	17:18:33				DSav: 244
0AE720	LAS	04:58:00		08:21:30	08:21:30	RHG	08:10:10				
FF1428	DEN	06:19:00		08:53:00	08:53:00	RHG	08:37:57				SSav: -1021
TK5770	LAS	05:35:00	00.19.00	09:09:00	09:09:00	RHG	08:54:13				55av1021
DAL 788	LAS	05:58:00	09:10:00	09-22-30	09-22-00	PHG	09-07-31				
TRS52	SEO	05:07:00	USILUIUU	09:23:00	09:23:00	RMG	09:08:11				TSav: 1509
DAL636	DEN	07:01:00	09:30:00	09:31:00	09:30:00	RMG	09:16:05				
DAL1002	SMF	05:30:00	09:35:00	09:39:00	09:38:00	RMG	09:24:24				
DAL752	PHX	06:28:00	09:36:00	09:42:00	09:41:00	RMG	09:27:01				
DAL780	SAN	05:54:00	09:29:00	09:42:30	09:42:00	RMG	09:27:49				
AWE611	LAS	06:20:00		09:49:00	09:49:00	RMG	09:34:16				
DAL1282	PHNL	01:35:00	10:02:00	09:51:30	09:51:00	RMG	09:36:27				
DAL716	ONT	06:10:00	09:53:00	10:01:00	09:59:30	RMG	09:45:58				
DAL1642	SEA	05:42:00	10:02:00	10:02:30	10:01:30	RHG	09:47:49				
DAL1076	PUX	05:46:00	09:46:00	10:05:30	10:05:30	RHG	09:50:52				
DAL 480		06:15:00	09-55-00	10:08:00	10:08:00	PHC	09:55:14				
DAI 1478	SEO	06:05:00	09:55:00	10-21-30	10:20:30	PMG	10:06:46				
DAL714	LAS	07:13:00	10:34:00	10:48:28	10:48:28	RMG	10:33:40				
DAL806	LAX	07:09:00	10:53:00	11:01:15	11:01:15	RMG	10:46:27				
NKS231	LAS	07:46:00		11:16:28	11:16:28	RMG	11:01:40		1		
DAL898	SFO	07:11:00	11:09:00	11:19:30	11:19:30	RMG	11:04:42				
DAL816	SEA	07:09:00	11:18:00	11:32:24	11:32:24	RMG	11:17:36				
DAL850	PHNL	03:40:00	12:15:00	11:57:58	11:57:58	RMG	11:43:10				
DAI 620	LAY	08-06-00	11-51-00	12-08-44	12-08-44	REG	11053056				
Auto	Numb	er of flights: 33	1 Time	: 08:18	120.0 slots pe	r hour	Errors: 00	0	08:15 < t	ime < 11:17	1

Example Speed Adjustments

Speed adjustment up-linked via ACARS by way of dispatcher

- **For DAL1002, DAL0752, DAL0780**
 - 8:14:51, DAL1002, M0.789, CHANGE TO M0.800
 - 8:46:50, DAL0752, M0.802, CHANGE TO M0.820
 - 9:03:24, DAL1002, M0.805, CHANGE TO M0.820
 - Resume normal speed of M0.780 prior to TOD
 - Speed increase selected because all three flights are behind schedule. Slowdown of trailing aircraft are used otherwise to save more fuel

Properly Spaced Arrival Flow

Properly Spaced Arrival Flow

20-24 May 2007, Denver, CO

Properly Spaced Arrival Flow

Challenges

□ Modeling of CDA trajectory variations

- Assure accurate spacing matrix
- TASAT verified by ATL and previous flight tests

Optimization algorithm

- Systems approach, multiple objectives
- Schedule and other operational constraints
- Dynamic, may change over time

□ En route trajectory prediction

- Winds, winds, winds: forecast, wind mix, use of ACARS report
- Aircraft routing uncertainty: convective weather a major factor
- Aircraft operational uncertainty: speed change by crew
- Ground based or air based?
 - Attila[™] ETA more consistent and stable than aircraft report