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Abstract
Social media platforms deliver fresh personalized content

by performing a large number of reads from an online data
store. This store must be optimized for read efficiency, avail-
ability, and scalability. Multi-layer caches and asynchronous
replication can satisfy these goals, such as in Facebook’s
graph store TAO, but it is challenging for the resulting sys-
tem to provide a developer-friendly consistency model. TAO
originally provided read-your-writes (RYW) consistency via
write-through caching, but scaling challenges with this ap-
proach have led us to a new implementation.

This paper introduces FlightTracker, a family of APIs and
systems which now manage consistency for online access to
Facebook’s graph. FlightTracker implicitly provides RYW
and can be explicitly used to provide alternative consistency
guarantees for special use cases; it enables flexible commu-
nication patterns between caches, which we have found im-
portant as the number of datacenters increases; it extends the
same consistency guarantees to cross-shard indexes and mate-
rialized views, allowing us to transparently optimize queries;
and it provides a uniform primitive for clients to obtain de-
sired consistency guarantees across a variety of data stores.
FlightTracker delivers these advantages while preserving the
efficiency, latency, and availability benefits of asynchronous
replication for the underlying systems, managing consistency
for billions of users and more than 1015 queries per day.

1 Introduction

Social media platforms deliver fresh and customized aggre-
gation of content. This feature combination makes it ineffec-
tive to aggregate ahead of time; instead each application-level
web request at Facebook may issue hundreds or thousands
of queries to our graph store TAO [20] to render a single re-
sponse. This high query amplification means that data store
reads must be efficient, low-latency, and highly available. At
Facebook, we have addressed this challenge with an asyn-
chronously coupled federation of caches, database replicas,
and customized indexes that model social media data and
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Figure 1: Web request flow with FlightTracker.

metadata as a graph. While this read-optimized ecosystem
achieves high performance, it is challenging to provide an
intuitive and uniform consistency model to developers.

FlightTracker is our solution for managing RYW consis-
tency for online access to the social graph at Facebook. It
preserves the read efficiency, hot spot tolerance, and high
availability of eventual consistency while providing RYW
consistency. FlightTracker offers a uniform notion of an end
user session that spans many stateful services and can be
extended to new data stores without architecture changes.

FlightTracker consists of a family of APIs and a metadata
service. Building on write-set tracking techniques [28, 40,
41, 51] and CRDTs [18, 50], the FlightTracker service accu-
mulates the metadata of a user’s recent writes and exposes
the metadata as a data type we call a Ticket. Web requests
fetch the user’s Ticket once, as soon as the user is identified
(see Figure 1). This Ticket is automatically attached on all
subsequent queries to the social graph from the web request.

We use a variety of system-specific strategies to ensure
that every write identified by the Ticket is reflected in query
results. For example, our strategy for caches is to ignore cache
entries that may be stale compared to writes in the Ticket;
we refer to the resulting cache miss as a consistency miss.
Systems can propagate Tickets recursively when they need to
fetch data from another component while processing a query.
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FlightTracker has been in production since 2016. It pro-
vides RYW consistency for billions of users and 1015 data
store queries per day. For the majority of Facebook’s inter-
nal applications and developers, FlightTracker is automatic
and hidden. Some call sites and higher-layer infrastructure
components explicitly manipulate Tickets to strengthen the
consistency level. FlightTracker’s loosely coupled design has
allowed us to incrementally roll out support to two caching
systems, three indexing systems, and two databases. It pre-
serves the efficiency, latency, and availability that these data
stores would offer under eventual consistency.

Overall, this paper makes five contributions:

• We summarize challenges Facebook encountered when
relying on write-through caching for RYW in TAO, a read-
optimized geo-replicated graph store (§ 2).

• We present the Ticket abstraction, which encapsulates the
system-specific details of write sets in an extensible manner
across service boundaries (§ 4).

• We show how we store and exchange Tickets in the Flight-
Tracker service to provide RYW consistency (§ 3 and § 5)
or explicitly satisfy alternative consistency requirements
for select use cases (§ 7) while tolerating hot spots (§ 6.5).

• We explain a variety of strategies we used to implement
Ticket-inclusive reads in query-serving systems (§ 6), in-
cluding ones for simple caches and global indexes with
complex update pipelines (§ 6.3).

• We evaluate FlightTracker in our production environment,
demonstrating that it preserves the useful properties of the
underlying read-optimized stores (§ 8), and share some
lessons learned (§ 8.5).

2 Motivation

TAO is a read-optimized data store that provides access to
the social graph at Facebook [20]. It is implemented using two
layers of caches in front of a geo-replicated database. TAO
originally relied on write-through caching for consistency.
This technique provided RYW on top of eventual consistency,
while preserving the read efficiency and hot spot tolerance of
the system, since it allowed most queries to be served from a
nearby L1 cache server.

As Facebook grew, we found that we needed a better ap-
proach to consistency. TAO’s original write-through strategy
relied on the use of a fixed communication pattern: users were
made sticky to a single L1 cache cluster by the load balancers,
inter-cluster communication was limited to traversing a fixed
tree, and writes were proxied along the same tree traversal
chain that would be followed on a read miss. RYW would be
violated if any of the following were true: user requests were
routed to another cluster of web servers; the mapping from
web server cluster to L1 cache cluster was changed; queries
were failed over to a stale replica; cache contents were lost
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Figure 2: RYW via write-through caching excludes many
useful inter-cluster communication patterns.

before asynchronous replication occurred; or any query was
served by a data store other than TAO.

2.1 Scaling challenges
As TAO’s footprint grew, we found it increasingly problem-

atic to rely on a fixed communication topology. In fact, each of
the conditions required for write-through RYW became harder
to satisfy over time. As cross-cluster networking improved,
we moved away from pairing and collocating L1 caches with
web server clusters, reducing the number of L1 cache replicas
per region. This reduced the number of cached copies of data,
but it required fractional or dynamic assignment of web server
traffic to L1 cache clusters to get reasonable balance. Switch-
ing from cluster-sticky to region-sticky user routing improved
the load distribution of both the web server clusters and TAO.
As the number of geographic regions grew, we started to de-
ploy TAO in some datacenters without a local database replica,
routing cache misses to the closest neighboring region. If we
were restricted to a tree topology for miss routing and cache
invalidation streams, the outage of one database replica would
affect multiple regions. Figure 2 shows some of the desirable
communication patterns we encountered that break the write-
through consistency model. The dotted and dashed arrows
show read requests that potentially violate RYW consistency
without FlightTracker.

Another recurring issue was queries that needed cross-
cluster or global write visibility. TAO marks these queries
critical, routing them to the L2 cache in the region hold-
ing database primaries, near the base of the communication
tree [20]. This strategy has latency and availability drawbacks.
It is also not tolerant of spiky workloads.

2.2 Cross-system consistency
As we encountered challenges scaling TAO’s write-through

approach to consistency, the social graph ecosystem expanded.
Application developers moved from directly accessing TAO
to using a query language that makes it easy to express multi-
hop and attribute-filtering predicates over the graph. This
layer of indirection allowed us to build additional systems
tailored to a subset of the Facebook query workload.
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Some application queries involve many round trips when
mapped onto TAO’s simple API and transfer a lot of data that
the client immediately discards. Global secondary indexes can
optimize the communication pattern of these queries, but it is
only safe to transparently or retroactively optimize execution
using indexes if the index stores have the same semantics as
TAO [34]. Our indexing systems are loosely coupled, updated
by asynchronous pipelines that reshard, transform, and filter.
Loose coupling enables separate development and deploy-
ment, but it limits the consistency implementation strategies.
Most indexes are sharded differently than TAO, so even if
we used a more monolithic design, they could not participate
synchronously in the write path without reducing availability
and increasing tail latency [17, 54].

Another side effect of moving to the application-level query
language for the social graph was that it became easier to use
alternate database technologies as the system of record for
parts of the social graph, such as for data types that experi-
ence high write rates or limited lifetimes. These systems also
experience the same consistency challenges as TAO.

Ajoux et al. [10] previously identified four fundamental
challenges to providing causal consistency in Facebook’s so-
cial media platform: integrating across many stateful services,
tolerating high query amplification, handling linchpin objects
(i.e., hot spots), and providing a net benefit for users. Our
experience has been that these challenges also arise when pro-
viding RYW consistency and that the most difficult hurdle is
producing a design that addresses all of them simultaneously.

2.3 Why read-your-writes?
Consistency models for data stores make guarantees about

what writes should be visible to a read. Application devel-
opers use these guarantees to reason about the correctness
of the entire system. Strong models like linearizability [32]
or causal consistency [9] generally provide a simpler experi-
ence and mental model for developers, but they constrain the
implementation.

Providing consistency guarantees for read-optimized sys-
tems boils down to implementing a staleness check to deter-
mine whether a cache or replica can serve a read query with
its local data. This staleness check must be: (1) local, avoiding
network communication in most cases; (2) highly granular,
so that few queries result in extra work due to false positives
from the checks; and (3) conducive to incremental repair, so
that the extra work to find fresh data can be reused for sub-
sequent queries. Importantly, staleness checks are needed for
single-replica reads even in systems that use synchronous
quorum writes. For example, Raft followers [43] or Paxos ac-
ceptors [38] might have no knowledge of a write committed
by the leader if they were not part of the commit quorum.

Logical and physical timestamps, such as Hybrid logical
clocks [36], Spanner’s TrueTime [26], and Occult’s com-
pressed vector clocks [41], provide a simple and scalable way
to check for staleness—the local data is sufficiently fresh if its

timestamp is higher than the desired read timestamp. Unfor-
tunately, these approaches are neither granular nor conducive
to incremental repair. If the local store is 10 seconds behind
the desired read timestamp, for example, it cannot service any
queries until it has processed all of the missing writes.

For our workload, it is important that we can serve most
queries locally, even if the local replicas are a few seconds
stale. This led us to reject consistency levels in which all
writes (linearizability) or most writes (causal consistency)
missing from a stale replica need to be visible. In contrast,
RYW allows us to utilize a stale replica by adding fresh
versions of only a limited set of writes ("your" writes). We
also rejected weaker models like bounded staleness that do
not guarantee that a user sees their own writes, which are
difficult to use correctly for an interactive application [54].1

Our experience at Facebook has been that the simple RYW
consistency model [51] is a reasonable default for application
developers and our end users, with an extension: we want to
extend the concept of a session to end users.

User-centric sessions: Our desire to implement user-
centric session RYW guarantees means that we experience
intra-session concurrency at several levels, as shown in Fig-
ure 1: a single web request issues TAO reads and writes in
parallel; a single browser or mobile app has many web re-
quests in flight at once; and a user may even be accessing
Facebook simultaneously from multiple devices.

The original definition of RYW session guarantees [51]
implies that reads and writes within a session are totally
ordered and that this intra-session order coincides with the
physical order of those operations, as in linearizability. As
a result, while the theoretical definition does not require a
single-threaded session, implementations limit sessions to a
single client, writer, session manager, or server [19,28,42,52].

However, our observation is that application developers do
not expect concurrent web requests to communicate with each
other. A common mental model is that concurrent requests
execute in a random order and possibly interleave with each
other, so visibility from one request to the next is only assured
if one request finishes before the other starts. An application
developer’s intuition is that the first moment data is guaran-
teed to be available is when the write acknowledgement is
received by the local program that issued the web request.

This observation led us to the following relaxation of the
RYW guarantee, which is what FlightTracker provides:

A read to the social graph will observe all writes done by
the same end user in previously completed web requests or in
the same web request.

This definition gives us much-needed flexibility for han-
dling intra-session concurrency. Note that as in the original
RYW definition, a read may “observe” a write by returning
an even newer version of the data.

1We think providing both RYW and bounded staleness is an interesting
and feasible model, even for our read-optimized environment.
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3 FlightTracker

The main idea of FlightTracker is to decompose the prob-
lem of RYW consistency into three parts: (1) the Ticket ab-
straction, a flexible and extensible way of representing write
sets across independently developed systems and APIs; (2)
the FlightTracker service, generic infrastructure queried once
per web request to get a user’s recent write metadata; and (3)
Ticket-inclusive reads, system-specific mechanisms to ensure
that the specified writes are reflected in query results.

Our goal for FlightTracker is to preserve the communica-
tion patterns that benefit eventually consistent read-optimized
stores. FlightTracker piggybacks on existing messages in
these data stores. Most read queries can be served by a sin-
gle local RPC, maintaining high efficiency and low latency.
FlightTracker does not restrict where data stores send read
RPCs, which allows them to leverage per-query retry and
failover for high availability. FlightTracker supports the ag-
gressive multi-level caching that data stores use to tolerate hot
spots. Most of the work to ensure writes become visible to
reads is handled by asynchronous pipelines, which retains the
desired isolation and loose coupling of the underlying data
stores. This piggybacking approach has also made it feasible
to incrementally add FlightTracker support to existing mature
systems with low overhead.

Figure 3 shows the API extensions a data store needs to im-
plement to integrate with FlightTracker. On a successful write,
a data store returns a Ticket identifying the write alongside
the result; read queries take a Ticket parameter and guarantee
any relevant writes in the Ticket will be reflected in the result.

3.1 An example
Consider a hypothetical social media product using TAO’s

graph model of versioned nodes and edges, with user nodes,
media nodes, edges when a user has enjoyed a particular me-
dia instance, and edges when a user trusts another’s tastes.
Let’s say Alice enjoys Mozart’s Requiem; Bob recently indi-
cated he trusts Alice’s taste in art and then expanded his trust
in Alice to include music. The resulting subgraph is shown in
Figure 5 and Bob’s recent writes to TAO would be:

WriteEdge(h17,TRUSTS,42i 7! {"art"}) (1)
WriteEdge(h42,TRUSTED_BY,17i 7! {"art"}) (2)
WriteEdge(h17,TRUSTS,42i 7! {"art","music"}) (3)
WriteEdge(h42,TRUSTED_BY,17i 7! {"art","m . . .}) (4)
To get RYW consistency, we simply need to ensure that

Bob’s subsequent data store queries include the effects of
these writes. We do this by computing Bob’s recent write set
once per web request, attaching it to all of his queries, and
then making sure the data stores reflect attached writes in the
query results.

3.2 Tickets
We store write metadata in a data type we call a Ticket.

Metadata to identify a write includes information like the

pair<Result, Ticket> write(...); // returns metadata
Result read(..., Ticket); // Ticket-inclusive read

Figure 3: API extensions data stores expose to participate in
the FlightTracker ecosystem.

void appendWrite(SessionId, Ticket); // FT write
Ticket getMergedWrites(SessionId); // FT read

Figure 4: The API of the FlightTracker service.
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Figure 5: Subgraph for a hypothetical application.

transaction ID and the resulting node or edge version but does
not include the data itself. If Wi is metadata that identifies
Bob’s i-th write above, we might have:

W3 = [key 7! h17,TRUSTS,42i,
op 7! WriteEdge, v 7! 2, txn_id 7! 8980]

W4 = [key 7! h42,TRUSTED_BY,17i, . . . , txn_id 7! 8985]

Bob’s Ticket would then be {W1 . . .W4}.
As write sets, Tickets can be joined via set union. Moreover,

Tickets are handled and passed around between many inde-
pendently deployed systems; therefore, they need to be encap-
sulated, extensible, and forward- and backward-compatible.
Inside a Ticket, writes can be enumerated or represented using
a low-water mark that implicitly includes all preceding writes.
§ 4 describes Ticket contents, semantics, and implementation.

3.3 The FlightTracker service
Bob’s logical user session spans many web requests, so

we need to store metadata for his recent writes elsewhere.
To that end, we built the FlightTracker service with an API
resembling a hash map of user IDs to recent writes (Figure 4).
For example, Bob’s entry will be 17 7! {W1,W2,W3,W4}. The
client library calls appendWrite immediately after a success-
ful write to the data store before acknowledging success to
the application; getMergedWrites returns the recent writes
for a particular user.

Figure 1 shows an RPC pattern that might occur as Bob
browses the music portion of the site. As soon as the web re-
quest identifies Bob as the logged-in user, it fetches his RYW
Ticket from FlightTracker by calling getMergedWrites(17)
and puts it into the web request context. When Bob performs
a write, the client library joins its metadata into the Ticket in
the web request context and also uses appendWrite to imme-
diately send the write metadata to FlightTracker. The client
library implicitly attaches the Ticket from the web request
context to every read query. A single web request performs
many such queries, offering ample opportunity to amortize the
initial Ticket fetch. Most developers do not explicitly observe
or manipulate Tickets.
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3.4 Ticket-inclusive reads
It is the responsibility of the data store clients to attach a

Ticket that ensures RYW to each query, and it is the responsi-
bility of each query-serving component to ensure that all of
the writes in the Ticket are included in a query result.

Our applications do not expect to have exclusive access to
the social graph or to read from snapshots; reads are always
allowed to return data that is fresher than expected. In Ticket-
inclusive reads, a Ticket specifies a lower bound on writes that
should be visible. A Ticket that encodes a superset of another
can always be safely substituted at read time, as anything
made visible by the superset Ticket might have been visible
anyway as part of normal asynchronous replication.

Cache queries: After getting his RYW Ticket, Bob’s web
request performs two queries to TAO’s cache. The sim-
plicity of the TAO API makes it straightforward for the
cache to validate the freshness of its cache content—a TAO
replica compares the versions of the data in question against
the versions specified in the Ticket. For example, if the re-
quest is reading a list of all of the users that Bob trusts
(GetEdges(h17,TRUSTS,⇤i)), then W3 implies the edge to Al-
ice must be present with version � 2.

In Figure 1, the first TAO query was a cache hit unaffected
by the Ticket. This is the common case. The second TAO
query shows a consistency miss, where the local cache con-
tents are stale. In this case, the cache goes upstream and
merges the fresh edge into the local list before responding.
Note that the upstream query has the same Ticket attached,
which recursively ensures visibility of Bob’s recent writes.

Index queries: If Bob is browsing the song with ID 55, we
would like to display Bob’s trusted users who also enjoy it.
This involves finding all x where h17,TRUSTS["music"],xi^
h55,ENJOYED_BY,xi. This two-hop query is not well suited
to TAO, because both the TRUSTS and ENJOYED_BY edge lists
may be too large to fully cache. We can optimize this type
of query by materializing a global secondary index. Specifi-
cally, we might use a list-intersection index with edge lists for
TRUSTS edges that include "music" and ENJOYED_BY edges
from "music" MEDIA nodes.

An index leaf (read server) does not have enough informa-
tion to accurately identify missing writes, because writes that
are filtered by the update pipeline will never arrive. For ex-
ample, W1 can be filtered upstream because it is not a TRUSTS
edge that includes "music" and thus does not change any
materialized lists. Without extra information, an index leaf
will consider W1 missing forever. Any such index leaf cannot
satisfy a Ticket-inclusive read with Bob’s Ticket with W1 in
it. We solve this problem by tracking the delivery informa-
tion of recent writes, including the recent routing and filtering
choices of the update pipeline as well as the delivery status
to the index leaves. This FlightTracker-ReverseIndex (FT-RI)
component builds an index of recent writes to the actions
taken by the index update pipeline (§ 6.3). Queryable using

the metadata present in Tickets, the delivery information is
used by the index client library to determine whether an index
read result is fresh enough. If stale, the client library uses
strategies such as read repair or retry to obtain a fresh result.

§ 6 describes our full range of strategies to ensure results
of Ticket-inclusive reads reflect all writes in a Ticket.

4 Ticket details

A Ticket is a set of write metadata. We use Tickets to iden-
tify writes to the social graph regardless of where the writes
are committed. Tickets allow generic infrastructure to track
and identify writes across many independently deployed sys-
tems, while letting databases convey system-specific details.
For clarity, we refer to the systems that persist the normalized
data and generate the write metadata as “databases,” as op-
posed to other data stores such as caches and indexes which
mostly serve reads and proxy writes.

A Ticket is implemented as a union of custom per-database
representations. On a write, a single-database Ticket is minted
with only metadata for the newly committed write (Figure 3).
It can then be joined with other Tickets or otherwise used
by FlightTracker and custom applications, producing Tickets
that may contain writes from multiple databases.

The encapsulation of Tickets and the semantics of Ticket-
inclusive reads together give us great flexibility in the Ticket
implementation. Since Ticket-inclusive reads interpret Tickets
as lower bounds, read results containing additional writes or
fresher writes than exactly encoded in the Ticket are unsurpris-
ing to the applications. Furthermore, thanks to encapsulation,
applications cannot examine the exact content or representa-
tion of a Ticket, which means we can always safely include
additional writes inside a Ticket. We leverage this flexibility
in Ticket compaction (§ 4.2) and Ticket replication in the
FlightTracker service (§ 5).

4.1 Identifying a set of writes
The naive strategy of identifying writes by globally unique

IDs is easy to implement but difficult to use—read-serving
data stores must keep track of all write IDs to determine
whether the local replica is sufficiently up-to-date. Assigning
a total write order allows systems to identify writes by their
ordinal positions. However, ordering implies synchronization
via communication or via timed-wait [26]. To preserve the ef-
ficiency benefits of asynchronous replication, databases often
opt for limited-scope ordering. In our experiences, there are
three natural scopes:

• Per-key: Any strictly monotonically increasing value can
be combined with a key to identify a particular change to
that row or object. This version need not be contiguous—a
monotonically increasing timestamp would also suffice.

• Per-shard: Many databases totally order all writes to a par-
ticular shard, but give no order guarantees between shards.
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• Global: Some systems [26,53] offer total order of all writes
globally. HLCs or known-accuracy clocks can also order
writes across shards and database types.
All of the databases supported by FlightTracker have the

following properties which allow us to further simplify our
assumptions. Our databases expose a versioned key-object
model. They are sharded and maintain a total order for all
writes within a shard; furthermore, writes in a single shard are
replicated in the same order. The commit-time information
(such as commit timestamps or transaction IDs) can thus
specify a contiguous prefix of that shard and serve as a low-
water mark to determine the replication state of a data store.

Most fields in a Ticket can be and are empty. When new
Tickets are minted, they can include any information known
at commit time, such as per-key versions, commit timestamps,
or transaction IDs. While not necessary, including more meta-
data allows flexibility in interpreting and using the Ticket. Fig-
ure 6 shows an example Ticket structure with two databases.

For a data store or client to determine whether a read result
is sufficiently up-to-date, this metadata needs to be accessible
on reads, which means that it should be stored alongside the
data. While this overhead appears non-trivial (e.g., up to 8-
bytes per key), our databases already persist these versioning
primitives, so the additional cost is negligible.

Although we describe the Ticket abstraction in the context
of databases at Facebook, it is applicable and extensible to
other databases. Many natively support and store per-key
versioning primitives, such as the rowversion of Azure SQL
Database [13]. Per-shard or global-scope ordering also often
underlies modern databases, where writes can be identified by
sequence numbers or timestamps stored alongside the client
data (e.g., zxid for ZooKeeper [33], hlc in CockroachDB [2],
offset in Kafka [35], LSN in LogDevice [4]).

4.2 Ticket joining and compaction
Two important operations on Tickets are joining and com-

paction: joining combines Tickets and compaction reduces
their space footprint. Both are local operations with no need
for RPCs or information outside the input Tickets.

The join operation, which is essentially set union, produces
a Ticket that is a superset of all the inputs. It is the primary API
for Tickets. For example, data store clients can join Tickets to
combine metadata from multiple shards or multiple databases;
the FlightTracker service joins Tickets to accumulate per-user
recent writes (§ 5); select applications join Tickets to express
additional constraints for their reads (§ 7).

Compaction helps Tickets overcome the scaling limit of
write set tracking techniques. The idea is straightforward.
Tickets represent writes that should be visible, i.e., a kind
of lower bound; we can raise the lower bound in exchange
for a more compact representation. Intuitively, doing Ticket-
inclusive reads with the resulting Ticket makes their con-
straints equally or more stringent.

Formally, Tickets are CRDTs [50] and the compaction

struct RepForDatabaseA {
map<WriteKey, tuple<Version, TxnId, Timestamp>> perKeyMap;
map<ShardId, pair<TxnId, Timestamp>> perShardMap;

};
struct RepForDatabaseB {
map<WriteKey, tuple<Version, Hlc>> perKeyMap;
map<ShardId, Hlc> perShardMap;

};
struct Ticket {
RepForDatabaseA repA;
RepForDatabaseB repB;
Timestamp globalTs;

};

Figure 6: Tickets represent the union of the writes identified
by each field.

techniques we use are CRDT inflation operations [18]: the
per-scope ordering and subset-superset relation define the 
partial order. Ticket inflation produces a Ticket that is � the
input Ticket according to this order. The resulting Ticket may
need fewer bytes to represent. Not all inflation reduces Ticket
size but the three types of inflation we use below do:

Per-scope compaction: Keeping the highest version for
each key and the highest transaction ID for each shard lets us
discard metadata with older versions or transaction IDs. This
compaction is performed during every join.

Cross-scope compaction: Some databases have static
shard assignments and include both per-key versions and
per-shard transaction IDs in the Tickets (such as DatabaseA
in Figure 6). Replacing per-key metadata with a per-shard
transaction ID can greatly reduce the Ticket size, espe-
cially for shards with many individual writes. Suppose the
edges from the example in § 3.1 among many other writes
are all on shard X . We can then compact a Ticket T1 =
{W3,W4, . . . ,W100} to T2 = {shardX : txn_id 7! 8985}.

Cross-scope compaction offers us a tradeoff between the
Ticket size and the cost of serving the Ticket-inclusive read.
Since a compacted Ticket semantically encodes more writes,
the read is less likely to be served locally. E.g., T2 requires
all writes on shard X with txn_id  8985 to be replicated.
Thus, this type of compaction is performed heuristically and
sparingly in the FlightTracker service.

Global compaction: We can inflate a Ticket into a global-
scope timestamp to represent all writes that have earlier times-
tamps. Global compaction only happens in the FlightTracker
service for writes older than 60 seconds, since we assume the
replication lag of our data stores plus clock skews are much
smaller. Given the long threshold, global compaction does
not have to be exact—older writes do not need to be removed
from a Ticket immediately since they purely reduce Ticket
size. Thus, the timestamps used for compaction could either
be the logical commit timestamp generated by the database or
the physical timestamp generated by the data store after the
write completes. Global compaction lets FlightTracker store
only 60s of data, which greatly reduces its working set.

Additionally, we define a Ticket-inclusive read with an
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empty Ticket as implicitly encoding the constraint of return-
ing data no more than 60 seconds stale relative to the current
physical timestamp of the replica serving the read. This way,
in most cases, we avoid the need to pass around Tickets con-
taining only a single old global timestamp.

4.3 Physical representation
As a cross-system primitive, Ticket presents a number of

interesting software-engineering challenges. Ticket-handling
code runs inside systems with widely varying deployment
frequencies, so Ticket must be both forward- and backward-
compatible. Ticket encapsulates implementation-specific
details from multiple systems, but because clients can join
Tickets, it cannot leave encoding and decoding up to the data
stores. Ticket must be extensible and loosely coupled, allow-
ing metadata for new systems to be added without affecting
existing systems. Ticket must also be efficient enough to use
on each query in our read-heavy environment.

We address some of the above challenges by using
Thrift [8], a serialization format originally designed for effi-
cient and portable RPC. We define the Ticket data structure
using the Thrift interface definition language (IDL).

Compatibility: Thrift handles the majority of forward- and
backward-compatibility issues, as unknown fields from future
versions are silently skipped. Care must still be taken as we in-
troduce new metadata fields to existing systems in the Ticket.
For example, if two writes with the same key and timestamp
are differentiated by a transaction ID, older code unaware of
transaction IDs may be surprised to see a duplicated write.

Serialization: We currently support two serialization
formats, identified by the prefix. The default is an LZ4-
compression [25] of the Thrift Compact encoding. This is
used across all RPC boundaries, making it easy to tunnel
Tickets through other systems. The second is the Thrift JSON
encoding for readability in debugging and logging.

Encapsulation: A Ticket’s internal struct is accessible to
systems that mint new Tickets or perform Ticket-inclusive
reads. Clients that need not inspect Tickets can treat them
as opaque tokens. We provide language bindings and utility
functions for code that needs to examine the Ticket internals.
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Figure 7: Web request flow with the FlightTracker service.

We chose the name Ticket to minimize assumptions devel-
opers would make about its semantics. Infrastructure engi-
neers often conflate a visibility guarantee on a specific write
(Transaction 8980) with a guarantee on a contiguous prefix
(Transactions 1. . . 8980); a new name reduces this tendency.

Extensibility and loose coupling: As shown in Figure 6,
each database can customize its own representation. Extend-
ing the Ticket structure to support an additional database boils
down to adding a field in the main struct and updating the
join function. Loose coupling between databases is provided
by using different fields for each.

5 FlightTracker service implementation

The API of the stateful FlightTracker service (Figure 4) is
extremely simple, consisting of just two operations. As shown
in Figure 7, a web request calls getMergedWrites(user) at
the beginning to get the user session’s RYW Ticket; the client
library call appendWrite(user, ticket) after a database
write with the newly minted Ticket and only acknowledge
the write to the application if both the data store write and
appendWrite succeed. To reduce ambiguity, we use “data
writes” to refer to data store operations and use “metadata
writes” to refer to FlightTracker operations.

FlightTracker has the following requirements:

• High throughput: FlightTracker is subject to the full write
throughput of all the underlying data stores, since every
data write results in a metadata write to FlightTracker. Its
effective replication factor is lower than a globally repli-
cated store like TAO, because most writes are only stored in
the writing user’s region. Its read throughput is proportional
to the number of web requests.

• Low latency: Data writes are not acknowledged until their
metadata is recorded in FlightTracker, so FlightTracker
adds to application-visible write latency.

• High availability: Unavailability of FlightTracker implies
loss of availability or loss of RYW consistency for clients.
The decoupled nature of FlightTracker allows us to let some
use cases fail open (available but inconsistent) while others
fail closed (unavailable).

• Durability: A Ticket passed to appendWrite should be in-
cluded in getMergedWrites even when there are machine
failures. FlightTracker uses a single-round quorum proto-
col that does not provide atomicity because it is okay for a
failed or in-progress appendWrite call to be visible.

The working set of FlightTracker is relatively small, as
FlightTracker compacts Tickets as it merges them (§ 4.2). Put
more practically, if queries are only routed to replicas that are
at most 60s stale, then write metadata older than 60s are safe
to compact away. Our data stores track the staleness of their
own replication streams and a vast majority (>99.99%) of the
servers are no more than 60s stale.
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5.1 Replication

We implement FlightTracker as a quorum-based store. We
statically determine the number of replicas N; the Flight-
Tracker client broadcasts an appendWrite to all replicas and
considers it successful when W replicas acknowledge the
write; a getMergedWrites query contacts R replicas and
joins the retrieved Tickets.

This plain single-round quorum protocol with R+W > N
is sufficient to provide the desired correctness guarantee for
FlightTracker. A previously appended Ticket will be returned
by at least one replica in R, since R +W > N guarantees
overlap between the read and write quorums. Merging the
read results via join() from all R replicas ensures durability:
the Ticket will be included in the final read result.

FlightTracker does not need to guarantee atomicity. Recall
that given Ticket encapsulation and how Tickets are used as
lower bounds, we can safely include additional write meta-
data in Tickets without violating the overall RYW consistency
(§ 4). If a metadata write fails to reach W FlightTracker repli-
cas or is still in progress, FlightTracker can safely include it
in the result of getMergedWrites. Moreover, if a data write
succeeds but its metadata write to FlightTracker fails, we con-
sider this write an “unacknowledged success,” i.e., the data
store client errors out the data write to the application. Ap-
plication developers do not expect to see failed data writes
but know how to handle them if they do show up. Since many
of Facebook’s applications are built on eventually consistent
stores, applications are used to reading fresher writes (e.g.,
from other applications). Thus, unacknowledged successes
are acceptable as long as they are infrequent.

For example, suppose we have a FlightTracker deployment
with N =W = 3 and R = 1; data writes for W5 and W6 com-
pleted, but the metadata write for W5 failed and the metadata
write for W6 is in progress. The state of the three FlightTracker
replicas is {W5,W6},{W6},{}. A first metadata read could re-
turn a Ticket of {W5,W6} and a subsequent metadata read
could return {}. This is permitted: W6 has not completed so
RYW does not apply yet; W5, while written in the database,
has returned an error to the application, thus the application
should have no expectation of visibility either way.

FlightTracker’s default setup is a region-local quorum, as
Facebook pins logged-in users to a region. We leverage the
regional placement to ensure low latency for FlightTracker
accesses. Since FlightTracker has a small working set, we
choose to store everything in memory and adjust N for redun-
dancy. Empirically, we’ve found N = 3 offers a good trade-off
between low latency and sufficient redundancy (§ 8).

We statically map user IDs onto logical shards, which are
dynamically placed within each FlightTracker replica. Shard
placement is aware of load-balancing and covers failure de-
tection. Some use cases use non-user session IDs and cross-
region quorums (§ 7.3).

5.2 Failure tolerance
Machine failure is the most common failure that must be

handled. Our strategy for this also handles network issues and
gaps in coverage during shard movements. We leverage the
global compaction bound to restore resiliency after a Flight-
Tracker machine gets a new shard assignment or dynamic
shard movement. FlightTracker “warms up” in the first 60
seconds after a shard comes online by accepting all writes but
not serving reads. Rejected reads are retried on warm replicas.

5.3 Fail closed vs. fail open
One of the challenges identified by Ajoux et al. [10] was

ensuring consistency mechanisms provide a net user benefit.
Some applications would prefer to continue a web request
even if getMergedWrites fails, for example. Given that we
have the option to cleanly fail open on a per-query basis, it
is difficult to argue for a uniform fail-closed policy. If Flight-
Tracker is completely reliable, there will be vanishingly few
inconsistencies even with a fail-open policy, so there is no
benefit to fail-closed; on the other hand, if FlightTracker is
not completely reliable, then use cases that prefer availabil-
ity will be harmed by fail-closed. A future option would be
to rate-limit fail-closed for those use cases and escalate all
fail-open potential RYW violations to an engineer.

Since an error is reported to the application when a data
write succeeds but the corresponding appendWrite fails,
FlightTracker write availability caps the data store availability.
FlightTracker is in-memory and region-local, so it has much
higher write availability (§ 8) than our underlying persistent
data stores; it has a minimal impact on application-visible
write availability. Although less important now, the option to
fail open was crucial to reducing risk during early rollout.

6 Ticket-inclusive reads

Once FlightTracker has attached a Ticket to a query, it is
the responsibility of the data store to ensure that every write
identified by the Ticket is reflected in the query result.

The general pattern for implementing Ticket-inclusive
reads is that the data store (client or server) filters the writes in
the Ticket for relevancy, then checks against its local state to
see if they have already been applied. Frequently, the writes
in a Ticket are irrelevant to the read (e.g., a write to a MEDIA
node is irrelevant to reading Alice’s TRUSTED users) or have
been replicated and included locally, in which case the Ticket
does not change the result and the read can be served locally.

In the uncommon case that some writes are possibly rele-
vant but missing, i.e., the local data is possibly stale, the data
store uses a more expensive non-local action to fix the query
result. The specific strategies for each of those steps depend
on query semantics, the way in which writes are encoded in
the Ticket, and what information is locally available.
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6.1 Filtering by relevance
Filtering works best for the most granular write representa-

tions such as per-key versions. In contrast, timestamps define
a write set that includes a contiguous prefix of the history of
all data systems at Facebook, which can never be filtered.

For database-specific encodings, a coarse level of filter-
ing happens when the data store ignores writes from other
databases in the Ticket. It is also fast and easy to filter by
static information in the Ticket or in data store configs, such
as TAO object types (e.g., USER or ENJOYS) or database tables.
For Ticket representations that contain keys, we can further
filter writes based on query parameters such as the desired
node ID. This is highly effective for point queries and simple
range queries like TAO’s and works for some indexes.

Type and query parameter filtering can be done on the
client, which avoids the need to even include a Ticket on
most queries. We refer to this operation as cropping and have
integrated it in the client libraries of all data stores we support.

6.2 Checking inclusion
The systems that incorporate FlightTracker provide even-

tual consistency on their own, mostly using asynchronous
replication. The large majority of writes are delivered with
low latency, so most writes are included at the check time.

For database replicas and caches sharded by key, we repli-
cate in write order (i.e., in per-shard txn_id order). The repli-
cation stream pointer is a compact way of identifying the
set of writes included in the local store. If the latest repli-
cated record was 8983, for example, then the write W3 with
txn_id 7! 8980 is included but W4 with txn_id 7! 8985 is not.

Cache misses can fetch values from ahead of the replica-
tion pointer, so a single low-water mark is not sufficient for
high-granularity inclusion checks. TAO maintains a key !
txn_idsafe mapping that identifies when a particular cache en-
try is known to include writes newer than the local low-water
mark. txn_idsafe records the replication position of the up-
stream source when it serviced the cache miss, not necessarily
the transaction at which the key was updated. For example,
if a cache with low-water mark 8983 took a cache miss and
fetched the edge in W4 from a database replicated up to 9000,
it will have a cache entry with txn_idsafe 7! 9000 for the edge;
the cache is now able to serve point reads to the edge locally
if the Ticket has W4 or even {shardX : txn_id 7! 9000}. This
exception map is essential to ensuring that Ticket-inclusive
queries can still be cache hits.

6.3 Relevance and inclusion for global indexes
Both relevance and inclusion checking are much more chal-

lenging for global indexes. An index that lets us find media
nodes by their name, for example, will be partitioned using a
mutable data attribute rather than by the node’s key.

While in this case it would be feasible to include the in-
dexed attribute in the Ticket, we avoid this approach. It bloats
the Ticket without solving the problem for all indexes, be-
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Figure 9: Web request flow with FT-ReverseIndex.

cause the indexed attributes might be from adjacent nodes
or edges in the graph. It requires writers to be aware of all
index schemas and cannot scale to handle fan-in cases, where
a single write affects a large number of index rows. In the
example in § 3.4 where we want to answer queries such as
“return a list of trusted users who also enjoy a particular song,”
the graph indexing system materializes an ordered list of
huser.id, media.id, list(trusted_user.id)i tuples. Checking
whether a write like W3 (which expands the TRUSTS edge to
include "music" between Bob and Alice) is relevant or locally
applied to an index server requires the list of MEDIA nodes that
Alice ENJOYS. This list could easily bloat the Ticket should
we take this approach.

Another option we rejected was to ignore relevance check-
ing for indexes and focus only on inclusion. This would re-
quire plumbing information about the replication water marks
of all shards through the index update pipeline, perhaps us-
ing a compressed vector clock scheme like Occult [41] to
avoid the need to deterministically merge across millions of
replication streams. To distinguish lack of new updates from
staleness in replication, each stream needs heartbeats, which
results in a lot of overhead for cold shards and small indexes.

Our solution is to build an inverted index from writes to
the actions taken by the index update pipeline. We store this
in a stateful component named FlightTracker-ReverseIndex
(FT-RI). We describe the interactions between the index up-
date pipeline and FT-RI shown in Figure 8 with the example
of W3 and the intersection index. Based on W3’s type and index
schemas, FT-RI determines the indexes W3 could affect and
initially assumes it could affect every row in those indexes. As
W3 goes through the update pipeline, each stage of the pipeline
informs FT-RI when it is about to filter out W3 for some or

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    415



all indexes. We also require the update pipeline to propagate
W3’s metadata all the way to the index leaf servers unless W3
is filtered out entirely. The update pipeline determines that W3
matters only for index rows of the form h17, media.id, 42i
in the intersection index and informs FT-RI. When a leaf ap-
plies the index row updates generated due to W3, it informs
FT-RI of its server identifier and the part of the index state
was updated. This way, FT-RI narrows down the scope of the
indexes and read queries W3 might affect.

As shown in Figure 9, to perform both relevance filtering
and inclusion checking for a Ticket-inclusive index read, the
client library first sends the query and the Ticket to FT-RI.
FT-RI then returns the subset of writes that might be relevant
(since they have not been reported as filtered) and not yet
included (since they are still missing from the index leaves).

The client consults FT-RI before the query is sent to the
index, so the set of missing writes may include false positives.
False negatives would lead to RYW violations, so they must
be avoided. To minimize the false positive rate without intro-
ducing any false negatives, FT-RI returns a map from writes
to the physical servers where it may be missing. The client
checks this information against the query execution plan, in
case the stale server was not actually consulted. It can also be
used to make intelligent replica choices and to retry only the
stale portion of a query.

FT-RI accumulates a set of irrefutable facts about writes, so
its internal state is a CRDT. It exploits the same single-round
quorum protocol as FlightTracker (§ 5) for replication. FT-RI
also shares much of the same infrastructure and is deployed
as a RAM-only regional service.

6.4 Strategies to handle local staleness
This section describes ways to get the correct result when

a potentially relevant write might be missing from the local
data store. Our approaches fall into two categories: when
the Ticket enumerates individual writes, the data store can
request the data from upstream and cache the result for the
next reader; if the Ticket contains a contiguous prefix, such
as after compaction, we generally only reevaluate the query
(on a different replica or at a later time), as it is expensive or
impossible to request the contiguous prefix. In production,
we use every strategy below but index repair.

Delay and retry: When we realize a data store is stale,
a simple option is to just try again later. This strategy is not
sufficient on its own, but it can be used as a first try to reduce
the frequency of a more costly strategy.

Replica selection: Data stores are replicated for read avail-
ability. When one replica is stale, we can contact another
replica that is up-to-date, especially if it is nearby. This strat-
egy can lead to correlated failures such as thundering herd, so
we only use it for low-volume workloads or behind a cache.

Consistency miss: When a Ticket identifies individual
writes by key, caches that keep per-key versions (§ 4.1) can
easily determine which data items are stale. They can use their

normal miss-handling logic to pull data about the missing
writes from their upstream source, passing on the Ticket to
recursively ensure visibility.

Even client-side hot object caches can similarly take con-
sistency misses, which otherwise rely on TTLs to get fresh
data. This is integral to our tolerance of read hot spots (§ 6.5).

Index bypass (re-materialization): Indexing systems
have the option to fall back to the source of normalized data
to answer a read query, though this is an expensive option.
Quite a few of our indexes are materialized on-demand, so
this fallback functionality is already regularly exercised.

Read repair: Read repair looks for possible matches to
components of an index predicate among the writes in a
Ticket, uses point queries to a non-index store like TAO
to evaluate the full predicate, and then fixes the index re-
sult accordingly. Read repair can reduce complexity and la-
tency. Consider the example in § 3.4 where we want to find
Bob’s trusted users who also enjoy Song 55. If W3 on edge
h17,TRUSTS,42i is in the Ticket and the read repair library
sees that node 42 (Alice) ENJOYS Song 55 from TAO, it adds
node 42 into the result set.

Index read repair does not completely avoid extra commu-
nication on following queries, like consistency misses in a
cache, but it avoids the need for future cross-region calls.

FT-RI filters out writes we do not need to repair. As shown
in Figure 9, the client library queries FT-RI to find which
of Bob’s relevant writes have not yet been applied before
querying the index and read repair. We initially tested read
repair without FT-RI, treating every write a user had made in
the last 60 seconds as undetermined. FT-RI for list intersection
indexes has only a modest effect on the average number of
edges to be checked for read repair, but it provides a dramatic
reduction for the worst cases.

Read repair has its limitations. Firstly, certain indexes with
aggregation cannot be read repaired. For example, if an in-
dex query only returns the size of the intersection, the read
repair library would not know which writes have been applied
in the result. Fortunately, the vast majority of our online in-
dex usage returns set results that can be repaired. Secondly,
client-side read repair for complex indexes, such as ones that
require traversing 3+ hops in the graph or those with large
fan-outs, could duplicate the transform and processing logic
of the update pipeline and index leaves, resulting in extra com-
plexity. The above challenges are akin to those encountered
in deferred incremental view maintenance in the database
community [23, 24, 47, 58].

Index repair: Repairing the index by synchronously in-
voking the index update logic is more complex, but avoids
many of the limitations of client-side read repair. We have not
yet explored this option.

6.5 Handling hot spots
Handling linchpin objects is one of the major challenges of

a social networking workload [10]. Read hot spots are a much
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bigger concern than write hot spots in our read-heavy work-
load. Caches like TAO handle read hot spots by storing more
local copies of the data, including on the client-side. Ticket-
inclusive reads for cache queries are cache-able, preserving
this hot spot tolerance. We cannot always cache post-repair
index results, but the data fetched to perform repair is always
locally cacheable.

Aside from hot objects for the overall system, FlightTracker
has its own hot spots: since FlightTracker is sharded by
session_id, it has different hot spot patterns from the under-
lying data stores. These hot spots are more likely due to user-
triggered actions such as batch processing or from custom
sessions (§ 7.3). To alleviate write hot spots, FlightTracker’s
client library batches metadata writes without concerns for
sacrificing write availability, since all FlightTracker writes
are conflict-free. On the FlightTracker server side, we proac-
tively detect sessions that are frequently accessed. For a hot
session that spawns many web requests and thus results in
many metadata reads, we coalesce these metadata reads into
short time buckets, and respond to all reads in a bucket with
the same response. These strategies have eliminated hot spots
as a significant error source for FlightTracker (§ 8).

7 Beyond RYW: Explicit write visibility

Certain applications need visibility guarantees beyond a sin-
gle end user or across regions, where our default user-centric
RYW consistency falls short. To obtain desired visibility guar-
antees, we enable them to explicitly manipulate Tickets or
customize FlightTracker session IDs. These applications are
responsible for explicitly identifying the writes and preventing
the Tickets from growing too large.

7.1 Embedding Tickets in notifications
Facebook’s notification infrastructure for GraphQL Sub-

scriptions [48] fans out to all subscribers when a publisher
event occurs. To render personalized notifications for each
subscriber, GraphQL queries TAO in the subscriber regions.
This pub-sub system races with TAO replication. To ensure
that the query sees all of the writes associated with the event,
we include and pass along the original publisher’s Ticket.
When rendering the notification, GraphQL transiently joins it
with the subscriber’s Ticket to query TAO. This is all hidden
in the product infrastructure layer from product developers.

Subscriptions with a high subscribers fanout could result
in a storm of consistency misses. Though TAO would only
go cross-region once for this data, many requests would be
stalled waiting for the result. Thus, we prefetch data in the
Ticket into the local region’s TAO before notification fanout.

7.2 Data-derived additional sessions
When a user performs a write that includes another person’s

User ID, such as when Bob created a TRUSTS edge to Alice,
the write is naturally associated with the other user’s Flight-

Tracker session. For some edge types, we act on this by having
the client library perform extra appendWrites calls, pushing
the write to both the normal RYW session and the session
identified by the destination node. These additional writes are
sent to every region. We do not push the entire writing user’s
Ticket into the data-derived additional sessions; only the user-
terminated edge write gets strengthened visibility guarantees.
As users are highly connected [7], this conservative choice
avoids the potential for super-linear growth of write sets.

7.3 Explicit global sessions
Some applications need visibility guarantees beyond a sin-

gle end user or across region. We allow them to customize
their session IDs and configure quorum and compaction in
FlightTracker on a per-use-case basis.

Facebook’s async job scheduling framework, similar to
Celery or Resque [1, 5], enables web requests to schedule
followup jobs such as sending email invites or long running
migrations. These jobs may run in any region, but all of the
writes from the original user session must be visible. To pro-
vide this guarantee, we use job_id as the session ID, which
is the same for all tasks that are part of a job. Given the rel-
ative read-write ratio, we require a write to be replicated to
most replicas in all regions and a read to be read from a few
(usually region-local) replicas. We provide a utility function
for the job framework to collect the writes the web request
has done and send to FlightTracker under the appropriate job
ID. When a job starts, it fetches a Ticket from FlightTracker
using its job ID and uses Ticket-inclusive reads thereafter.

We also use global sessions for some TAO objects as an
alternative to TAO’s critical reads. Critical reads ensure write
visibility by proxying reads to the region of the object’s
database primary, at the expense of increased latency, reduced
efficiency, and reduced availability. If we record all writes to
this object in a global session using its ID, we can replace
the critical read: querying region-local FlightTracker to get a
Ticket for this session and querying that object with a Ticket-
inclusive read will return the latest successful (or newer) write.
This approach shifts the cross-region latency to write time
and increases read availability.

8 Evaluation

FlightTracker allows Facebook to get the read efficiency,
hot spot tolerance, and high availability of eventual consis-
tency while providing RYW consistency with a rich notion of
user sessions that spans many stateful services.

8.1 Environment
Facebook serves millions of user requests per second.

These user requests amplify to more than ten billion read
queries per second to our online graph data stores, which also
process tens of millions of writes per second.

Each of our stateful data stores, such as TAO and its indexes,
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Figure 10: The size distribution of FlightTracker read re-
sponses in our production environment for different global
compaction thresholds.

are deployed across over ten datacenter regions. Cache and
indexing systems maintain asynchronously updated replicas
in every region, while database replicas are present only in
some regions. More than 99% of cache and index queries are
served without any cross-region communication.

8.2 FlightTracker operational characteristics
FlightTracker has been in production for over four years.

It manages RYW consistency for two database technologies,
two cache types (including TAO), and three indexing systems.
FlightTracker serves more than 100 million Ticket reads and
20 million Ticket writes per second.

We measured FlightTracker’s availability as observed by
the client over 30 days. Measuring errors from the client side
offers an end-to-end picture, because it includes unavailabil-
ity due to misconfiguration, networking issues, and collateral
damage from other problems. FlightTracker’s overall read
error rate was 1.1⇥10�7. When examining the availability
data for 15-minute buckets, all but 8 buckets over the month
of data indicated at least 99.9999% of read availability. Flight-
Tracker’s write availability was an order of magnitude higher
than the write availability of the underlying databases.

8.3 FlightTracker overheads
Request and response sizes: The bane of explicit write-

tracking techniques is handling large write sets. The Tickets
fetched from FlightTracker contain all recent writes for a user
that are not globally compacted (§ 4.2), so they tend to be the
largest explicit write sets passed around in our systems. Fig-
ure 10 shows the size distribution of metadata read responses
in production for different global compaction thresholds, mea-
sured in the number of writes in the returned Ticket. In pro-
duction, we use 60s as the default, but as shown, extending it
to 2 minutes does not significantly bend the curve.

Ticket serialization includes compression using LZ4 [25].
Figure 11 shows that this provides a useful benefit for Tickets
with more individual writes, improving encoding efficiency
by up to a factor of three. Table 1 shows that cropping in the
client is effective; Ticket sizes attached to read queries are

Operation Avg P50 P99
FlightTracker metadata read response 250 0 2805
FlightTracker metadata write request 156 129 447
Ticket-inclusive read from cache 110 0 450
Ticket-inclusive read from indexes 225 152 607

Table 1: Serialized sizes of Tickets attached on various re-
quests and responses, in bytes.

Operation Avg P50 P99
FlightTracker read 288 µs 226 µs 1.4 ms
FlightTracker write 376 µs 326 µs 1.5 ms
FT-ReverseIndex read 304 µs 236 µs 1.5 ms
FT-ReverseIndex update 428 µs 311 µs 1.2 ms

Table 2: Client-measured latency of FlightTracker and FT-RI.

Service CPU RAM
Application (web) servers 0.7% 0.06%
TAO L1 and L2 cache 0.8% 0.01%
Indexes and materialized views 0.98% 2.6%

Table 3: Relative CPU and memory costs of all code paths
related to Ticket, FlightTracker, or FT-ReverseIndex.

much smaller than the full write set pulled from FlightTracker.
Latency: FlightTracker and FT-RI have low latency for

both reads and writes, as shown in Table 2. Both of these
services are RAM-only and process all of their reads and
writes from the local datacenter region. Queries for custom
use cases (§ 7.3) are excluded in the table.

Footprint: The footprint of FlightTracker includes extra
work and data in client libraries, extra work and space inside
the data stores to enable Ticket-inclusive reads, and servers
devoted exclusively to running the FlightTracker and FT-RI
services. Table 3 shows that FlightTracker-related code paths
consume only a small amount of the CPU and memory in
clients and Ticket-enabled query-serving systems. The Flight-
Tracker and FT-RI services use less than 2% as many servers
as TAO and its indexes.

Extensibility: The Ticket abstraction is designed to be
extended to handle new databases and new ways of encoding
write metadata for the benefit of new projections. Since it was
deployed to production, we have changed the Ticket Thrift
schema 22 times, and we have made changes to the core
Ticket join logic 50 times. Extending the Ticket abstraction
to cover a new database does not increase the serialized size,
but it does increase the heap footprint of the deserialized C++
objects. FlightTracker’s RAM consumption increased by 5%
when we added support for a second type of database.

8.4 FlightTracker effectiveness
RYW for caches: FlightTracker enabled our caches to no

longer rely on fixed communication topology to provide RYW
consistency. It provided an opportunity to apply additional
techniques to improve efficiency and reliability for our caches.
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Figure 11: LZ4 improves serialized encoding efficiency by
up to a factor of three for Tickets with more individual writes.

Today, 0.2% of the TAO reads have a non-empty Ticket
attached, and 3% of those reads are for updates that have not
yet been replicated via the per-shard replication stream. We
allocate around 40MB per TAO instance for caching the result
of Ticket-inclusive reads, resulting in a hit rate between 30%
and 80% depending on the type of query. This hit rate is not
evenly distributed: frequently read hot objects account for the
bulk of hits. Fewer than 3% of TAO reads that end up going
across regions are due to consistency misses.

Ticket-inclusive reads reduce cross-region traffic when
they replace primary-DB-only queries for use cases that need
stronger consistency guarantees. In one extreme use case
where the cache only tracked per-shard replication progress,
Ticket-inclusive reads reduced the percentage of queries going
upstream from 20-40% to near 0%.

RYW for indexes: FlightTracker identifies that between
0.01% to 0.4% of indexing reads can benefit from read repair
or other staleness handling strategies.

Explicit use cases: In the event delivery use case (§ 7.1),
3% of the subscribers’ reads are for publishers’ recent writes.
0.5% of these reads would have returned stale data without the
publisher’s Ticket. Six use cases benefit from global sessions
(§ 7.3), totaling 46k writes and 700k reads per second. They
often set large write quorums to optimize for read availability
and latency.

8.5 Experience and lessons learned
An early lesson was that identifying the appropriate user

for a web request was much more difficult than we originally
expected. Request endpoints may be invoked before login
or after logout; internal applications may track user contexts
using bespoke mechanisms; and applications may involve
multiple identities, such as when a user manages a business
account. Getting high query coverage involved a lot of manual
work to discover alternate user contexts and identify endpoints
that are not expected to be associated with a user.

Global sessions tend to be used for metadata stored in TAO,
such as for product flows modeled as state machines. The
addition of global sessions to a code base is often done fairly
late in the product development cycle, to fix issues neglected
in the initial design. Our ability to strengthen write visibility

for such call sites, without data migrations or schema changes,
is an important part of making RYW a reasonable default.

The applications that cause the most challenge opera-
tionally need RYW consistency the least. These tend to be
internal applications that perform batch processing or involve
massive fan-out. They often cause write hot spots in the data
stores but rarely read what they wrote afterwards.

Closing consistency loopholes with FlightTracker revealed
the underlying systems were not actually eventually consis-
tent. We have found low-probability bugs that cause perma-
nent inconsistencies in TAO, graph indexes, and even database
replication. These bugs were previously difficult to notice, as
they were outnumbered by transient inconsistencies. Ticket-
inclusive reads should never return old data, so now that we
have FlightTracker even a single occurrence of a stale result
is actionable. Bugs leading to permanent inconsistencies in-
cluded protocol flaws, incorrect handling of error conditions,
and relying on data invariants that were not honored by all
historical data.

9 Limitations and future work

Our approach still relies on region-sticky user routing. We
could avoid this limitation by always using global quorums
like in § 7.3, but this would increase latency. We plan to
eventually make user RYW sessions global by maintaining a
map from user to region in FlightTracker, rehoming sessions
when the mapping changes.

The relative efficiency of our solution depends on amortiz-
ing the cost of the metadata reads across many TAO queries,
and depends on the set of writes being relatively small. En-
vironments with fewer reads have a different set of tradeoffs.
This limitation is less applicable to index queries, because
those tend to do more work per operation.

FlightTracker does not provide consistency for “unacknowl-
edged successes.” As described previously in § 5.3, unac-
knowledged successes happen when a data write has a client
error like a timeout or if the metadata write fails. We have not
seen this to be a problem in practice, probably because the
issue exists even without FlightTracker.

Some queries are difficult to repair: TAO top-N queries
for large edge lists result in unnecessary consistency misses;
index queries to a materialized aggregation (such as counts)
can be detected as stale by FT-RI, but the stale result cannot
be fixed with read repair; and list intersection queries that
involve more than two lists are also difficult to repair.

The FlightTracker service compacts Tickets into a times-
tamp bound, so that we will take a consistency miss if replica-
tion exceeds the global compaction bound of 60s (§ 4.2). The
global compaction bound is not fully rolled out as of publi-
cation time, so tail latency events in the replication pipeline
can result in RYW violations. This has not been a big issue in
practice because it requires that the first read of a write occurs
after the global compaction interval but before replication.
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Although some of our motivations are specific to Face-
book’s workload, our desire to provide user-centric sessions
is widely shared [42,55], as is our desire to extend consistency
guarantees to global indexes [3,12,30,34]. Cache invalidation
is also a perennial challenge for systems at all scales.

Our FlightTracker approach is generalizable: designed for
heterogeneous data stores, Tickets can easily be extended to
other data stores without much overhead (§ 4.1); the API
extensions data stores need to implement (Figure 3) do not
require core replication protocol changes and have relatively
small overhead (§ 8.3); the client library where a lot of the
FlightTracker logic lives can be implemented and rolled out
gradually. Our approach is especially beneficial when trying
to retrofit indexing systems, because it allows us to separate
the reverse metadata index into its own component.

10 Related Work

Stronger consistency atop eventually consistent stores:
Many eventually consistent systems offer options to opt for
stronger consistency levels. Systems such as Cassandra [37],
Riak [6], and RedBlue [39] provide strong consistency ei-
ther by routing read requests to the leader or by adjusting
their commit protocols. To provide bounded staleness, Azure
CosmosDB [21] could backpressure writes. In contrast, Flight-
Tracker serves most reads from a single local replica.

Index consistency: Most of these systems, including Ama-
zon’s DynamoDB [11, 12] and Google AppEngine Datas-
tore [31], do not extend the stronger consistency levels to
global secondary indexes. Twitter’s Manhattan [49] extends
RYW to global secondary indexes by including them in a
cross-shard transactional write, doubling latency [34, 55].
Couchbase [3] supports RYW for reads to its global indexes
using a timestamp in the client session. It accomplishes this
by deterministically merging updates to all shards, limiting
scalability in the number of shards.

Bailis et al. [15] proved that index consistency can be imple-
mented with better availability characteristics than approaches
that include indexes in general-purpose transactions.

Implementing RYW sessions: Session RYW [51] is
intuitive and implementable with low overhead [14, 27].
Bayou [28] and Pileus [52] provide session guarantees that
span multiple servers by managing the session state in their
client libraries. Bermbach et al. [19] similarly observed that
client-centric consistency should focus on end users; their
approach nonetheless assumes that a session is sticky to a
single application server. PathStore [42] address the same
challenge where clients interact with multiple data store repli-
cas by using a session migration protocol on every replica
switch. In contrast, FlightTracker manages session state in an
intermediate layer between the client and the data servers.

Write-set tracking for stronger consistency: Systems
like COPS [40] and SwiftCloud [56] track dependent
write sets to provide causal consistency. They also provide

client contexts that are similar to FlightTracker sessions.
BoltOn [16] layers causal consistency guarantees via a shim
over eventually consistent stores. Its design shares similar
principles as FlightTracker, aiming to retain the desirable
properties of eventually consistent stores. For these systems,
the dependency sets need to be stored in the database and
cached on the client-side.

TxCache [46] provides transactional (but possibly stale)
consistency for application-level caching and uses the terms
staleness miss and consistency miss (both of which are in-
cluded in our use of the term consistency miss). Its design
focuses on single datacenter and treats materialized views
as cacheable results from user-specified functions, which is
insufficient for our applications.

To reduce the metadata size, systems like Occult [41] and
Wukong+S [57] use structural or temporal properties to com-
press write sets and vector timestamps. FlightTracker uses
CRDT inflation to compact Tickets and trims irrelevant writes
to reduce network overhead, but mainly avoids metadata size
explosion by providing a weaker consistency level.

Tradeoff between cache hit rate and consistency: Zanz-
ibar [44] is built on top of Google’s linearizable Spanner [26],
but chooses to expose a weaker consistency model to clients to
improve its read efficiency and latency. Its zookies play a sim-
ilar role to FlightTracker Tickets, encapsulating consistency
information, but they are used only by Zanzibar itself.

CRDT quorum protocols: The single-round Flight-
Tracker protocol is at its core CRDT [50] using quorum repli-
cation [29]. Gryff [22] and CURP [45] similarly leverage
commutativity of writes. Because FlightTracker does not need
atomicity, a single round suffices.

11 Conclusion

This paper introduces FlightTracker, our approach for pro-
viding RYW consistency for Facebook’s social graph. Flight-
Tracker operates in a read-optimized ecosystem of asyn-
chronously replicated caches, database replicas, and indexes.
It preserves the read efficiency, hot spot tolerance, and loose
coupling benefits of eventual consistency, and it has allowed
us to circumvent the scaling challenges we encountered when
using write-through caching for consistency.
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