
This paper is included in the Proceedings of the
25th USENIX Security Symposium

August 10–12, 2016 • Austin, TX

ISBN 978-1-931971-32-4

Open access to the Proceedings of the
25th USENIX Security Symposium

is sponsored by USENIX

Flip Feng Shui: Hammering a Needle
in the Software Stack

Kaveh Razavi, Ben Gras, and Erik Bosman, Vrije Universiteit Amsterdam;
Bart Preneel, Katholieke Universiteit Leuven; Cristiano Giuffrida and Herbert Bos,

Vrije Universiteit Amsterdam

 https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi

USENIX Association 25th USENIX Security Symposium 1

Flip Feng Shui: Hammering a Needle in the Software Stack

Kaveh Razavi∗

Vrije Universiteit
Amsterdam

Ben Gras∗

Vrije Universiteit
Amsterdam

Erik Bosman
Vrije Universiteit

Amsterdam

Bart Preneel
Katholieke Universiteit

Leuven

Cristiano Giuffrida
Vrije Universiteit

Amsterdam

Herbert Bos
Vrije Universiteit

Amsterdam

* Equal contribution joint first authors

Abstract

We introduce Flip Feng Shui (FFS), a new exploitation
vector which allows an attacker to induce bit flips over
arbitrary physical memory in a fully controlled way. FFS
relies on hardware bugs to induce bit flips over memory
and on the ability to surgically control the physical mem-
ory layout to corrupt attacker-targeted data anywhere in
the software stack. We show FFS is possible today with
very few constraints on the target data, by implement-
ing an instance using the Rowhammer bug and memory
deduplication (an OS feature widely deployed in pro-
duction). Memory deduplication allows an attacker to
reverse-map any physical page into a virtual page she
owns as long as the page’s contents are known. Rowham-
mer, in turn, allows an attacker to flip bits in controlled
(initially unknown) locations in the target page.

We show FFS is extremely powerful: a malicious
VM in a practical cloud setting can gain unauthorized
access to a co-hosted victim VM running OpenSSH.
Using FFS, we exemplify end-to-end attacks breaking
OpenSSH public-key authentication, and forging GPG
signatures from trusted keys, thereby compromising the
Ubuntu/Debian update mechanism. We conclude by dis-
cussing mitigations and future directions for FFS attacks.

1 Introduction

The demand for high-performance and low-cost comput-
ing translates to increasing complexity in hardware and
software. On the hardware side, the semiconductor in-
dustry packs more and more transistors into chips that
serve as a foundation for our modern computing infras-
tructure. On the software side, modern operating systems
are packed with complex features to support efficient
resource management in cloud and other performance-
sensitive settings.

Both trends come at the price of reliability and, in-
evitably, security. On the hardware side, components

are increasingly prone to failures. For example, a large
fraction of the DRAM chips produced in recent years
are prone to bit flips [34, 51], and hardware errors in
CPUs are expected to become mainstream in the near fu-
ture [10, 16, 37, 53]. On the software side, widespread
features such as memory or storage deduplication may
serve as side channels for attackers [8, 12, 31]. Re-
cent work analyzes some of the security implications
of both trends, but so far the attacks that abuse these
hardware/software features have been fairly limited—
probabilistic privilege escalation [51], in-browser ex-
ploitation [12, 30], and selective information disclo-
sure [8, 12, 31].

In this paper, we show that an attacker abusing mod-
ern hardware/software properties can mount much more
sophisticated and powerful attacks than previously be-
lieved possible. We describe Flip Feng Shui (FFS), a
new exploitation vector that allows an attacker to induce
bit flips over arbitrary physical memory in a fully con-
trolled way. FFS relies on two underlying primitives:
(i) the ability to induce bit flips in controlled (but not
predetermined) physical memory pages; (ii) the ability
to control the physical memory layout to reverse-map a
target physical page into a virtual memory address un-
der attacker control. While we believe the general vec-
tor will be increasingly common and relevant in the fu-
ture, we show that an instance of FFS, which we term
dFFS (i.e, deduplication-based FFS), can already be im-
plemented on today’s hardware/software platforms with
very few constraints. In particular, we show that by
abusing Linux’ memory deduplication system (KSM) [6]
which is very popular in production clouds [8], and the
widespread Rowhammer DRAM bug [34], an attacker
can reliably flip a single bit in any physical page in the
software stack with known contents.

Despite the complete absence of software vulnerabili-
ties, we show that a practical Flip Feng Shui attack can
have devastating consequences in a common cloud set-
ting. An attacker controlling a cloud VM can abuse

2 25th USENIX Security Symposium USENIX Association

memory deduplication to seize control of a target phys-
ical page in a co-hosted victim VM and then exploit
the Rowhammer bug to flip a particular bit in the target
page in a fully controlled and reliable way without writ-
ing to that bit. We use dFFS to mount end-to-end cor-
ruption attacks against OpenSSH public keys, and De-
bian/Ubuntu update URLs and trusted public keys, all re-
siding within the page cache of the victim VM. We find
that, while dFFS is surprisingly practical and effective,
existing cryptographic software is wholly unequipped to
counter it, given that “bit flipping is not part of their
threat model”. Our end-to-end attacks completely com-
promise widespread cryptographic primitives, allowing
an attacker to gain full control over the victim VM.

Summarizing, we make the following contributions:

• We present FFS, a new exploitation vector to induce
hardware bit flips over arbitrary physical memory in
a controlled fashion (Section 2).

• We present dFFS, an implementation instance of
FFS that exploits KSM and the Rowhammer bug
and we use it to bit-flip RSA public keys (Sec-
tion 3) and compromise authentication and update
systems of a co-hosted victim VM, granting the at-
tacker unauthorized access and privileged code ex-
ecution (Section 4).

• We use dFFS to evaluate the time requirements and
success rates of our proposed attacks (Section 5)
and discuss mitigations (Section 6).

The videos demonstrating dFFS attacks can be found
in the following URL:

https://vusec.net/projects/flip-feng-shui

2 Flip Feng Shui

To implement an FFS attack, an attacker requires a phys-
ical memory massaging primitive and a hardware vulner-
ability that allows her to flip bits on certain locations on
the medium that stores the users’ data. Physical mem-
ory massaging is analogous to virtual memory massag-
ing where attackers bring the virtual memory into an
exploitable state [23, 24, 55], but instead performed on
physical memory. Physical memory massaging (or sim-
ply memory massaging, hereafter) allows the attacker to
steer victim’s sensitive data towards those physical mem-
ory locations that are amenable to bit flips. Once the tar-
get data land on the intended vulnerable locations, the at-
tacker can trigger the hardware vulnerability and corrupt
the data via a controlled bit flip. The end-to-end attack
allows the attacker to flip a bit of choice in data of choice
anywhere in the software stack in a controlled fashion.

With some constraints, this is similar to a typical arbi-
trary memory write primitive used for software exploita-
tion [15], with two key differences: (i) the end-to-end
attack requires no software vulnerability; (ii) the attacker
can overwrite arbitrary physical (not just virtual) mem-
ory on the running system. In effect, FFS transforms an
underlying hardware vulnerability into a very powerful
software-like vulnerability via three fundamental steps:

1. Memory templating: identifying physical memory
locations in which an attacker can induce a bit flip
using a given hardware vulnerability.

2. Memory massaging: steering targeted sensitive data
towards the vulnerable physical memory locations.

3. Exploitation: triggering the hardware vulnerability
to corrupt the intended data for exploitation.

In the remainder of this section, we detail each of these
steps and outline FFS’s end-to-end attack strategy.

2.1 Memory Templating
The goal of the memory templating step is to finger-
print the hardware bit-flip patterns on the running sys-
tem. This is necessary, since the locations of hardware bit
flips are generally unknown in advance. This is specifi-
cally true in the case of Rowhammer; every (vulnerable)
DRAM module is unique in terms of physical memory
offsets with bit flips. In this step, the attacker triggers
the hardware-specific vulnerability to determine which
physical pages, and which offsets within those pages are
vulnerable to bit flips. We call the combination of a vul-
nerable page and the offset a template.

Probing for templates provides the attacker with
knowledge of usable bit flips. Thanks to Flip Feng Shui,
any template can potentially allow the attacker to exploit
the hardware vulnerability over physical memory in a
controlled way. The usefulness of such an exploit, how-
ever, depends on the direction of the bit flip (i.e., one-
to-zero or zero-to-one), the page offset, and the contents
of the target victim page. For each available template,
the attacker can only craft a Flip Feng Shui primitive
that corrupts the target data page with the given flip and
offset. Hence, to surgically target the victim’s sensitive
data of interest, the attacker needs to probe for match-
ing templates by repeatedly exploiting the hardware vul-
nerability over a controlled physical page (i.e., mapped
in her virtual address space). To perform this step effi-
ciently, our own dFFS implementation relies on a vari-
ant of double-sided Rowhammer [51]. Rowhammer al-
lows an attacker to induce bit flips in vulnerable memory
locations by repeatedly reading from memory pages lo-
cated in adjacent rows. We discuss the low-level details

2

USENIX Association 25th USENIX Security Symposium 3

Host Physical Memory
Victim VM Memory

Attacker VM Memory

Host Physical Memory
Victim VM Memory

Attacker VM Memory

Host Physical Memory
Victim VM Memory

Attacker VM Memory

(A) (B) (C)

Figure 1: Memory deduplication can provide an attacker control over the layout of physical memory.

of the Rowhammer vulnerability and our implementation
in Section 4.2.

2.2 Memory Massaging
To achieve bit flips over arbitrary contents of the victim’s
physical memory, FFS abuses modern memory manage-
ment patterns and features to craft a memory massaging
primitive. Memory massaging allows the attacker to map
a desired victim’s physical memory page into her own
virtual memory address space in a controllable way.

Given a set of templates and the memory massaging
primitive, an ideal version of FFS can corrupt any of the
victim’s memory pages at an offset determined by the
selected template.

While memory massaging may be nontrivial in the
general case, it is surprisingly easy to abuse widely de-
ployed memory deduplication features to craft practi-
cal FFS attacks that corrupt any of the victim’s mem-
ory pages with known contents (similar to our dFFS im-
plementation). Intuitively, since memory deduplication
merges system-wide physical memory pages with the
same contents, an attacker able to craft the contents of
any of the victim’s memory pages can obtain a memory
massaging primitive and map the target page into her ad-
dress space.

Figure 1 shows how an attacker can control the physi-
cal memory location of a victim VM’s memory page. At
first, the attacker needs to predict the contents of the vic-
tim VM’s page that she wants to control (Figure 1-A).
Once the target page is identified, the attacker VM cre-
ates a memory page with the same contents as the victim
VM’s memory page and waits for the memory dedupli-
cation system to scan both pages (Figure 1-B). Once the
two physical pages (i.e., the attacker’s and the victim’s
pages) are identified, the memory deduplication system
returns one of the two pages back to the system, and the
other physical page is used to back both the attacker and
the victim’s (virtual) pages. If the attacker’s page is used
to back the memory of the victim page, then, in effect,
the attacker controls the physical memory location of the
victim page (Figure 1-C).

There are additional details necessary to craft a mem-
ory massaging primitive using a real-world implementa-
tion of memory deduplication (e.g., KSM). Section 4.1
elaborates on such details and presents our implementa-
tion of memory massaging on Linux.

2.3 Exploitation
At this stage, FFS already provides the attacker with tem-
plated bit flips over the victim’s physical memory pages
with known (or predictable) contents. The exploitation
surface is only subject to the available templates and their
ability to reach interesting locations for the attacker. As
we will see, the options are abundant.

While corrupting the memory state of running soft-
ware of the victim is certainly possible, we have opted
for a more straightforward, yet extremely powerful ex-
ploitation strategy. We consider an attacker running in a
cloud VM and seeking to corrupt interesting contents in
the page cache of a co-hosted victim VM. In particular,
our dFFS implementation includes two exploits that cor-
rupt sensitive file contents in the page cache in complete
absence of software vulnerabilities:

1. Flipping SSH’s authorized_keys: assuming the
RSA public keys of the individuals accessing the
victim VM are known, an attacker can use dFFS to
induce an exploitable flip in their public keys, mak-
ing them prone to factorization and breaking the au-
thentication system.

2. Flipping apt’s sources.list and trusted.gpg:
Debian/Ubuntu’s apt package management system
relies on the sources.list file to operate daily up-
dates and on the trusted.gpg file to check the au-
thenticity of the updates via RSA public keys. Com-
promising these files allows an attacker to make a
victim VM download and install arbitrary attacker-
generated packages.

In preliminary experiments, we also attempted to craft
an exploit to bit-flip SSH’s moduli file containing Diffie-
Hellman group parameters and eavesdrop on the victim

3

4 25th USENIX Security Symposium USENIX Association

VM’s SSH traffic. The maximum group size on current
distributions of OpenSSH is 1536. When we realized that
an exploit targeting such 1536-bit parameters would re-
quire a nontrivial computational effort (see Appendix A
for a formal analysis), we turned our attention to the two
more practical and powerful exploits above.

In Section 3, we present a cryptanalysis of RSA mod-
uli with a bit flip as a result of our attacks. In Section 4,
we elaborate on the internals of the exploits, and finally,
in Section 5, we evaluate their success rate and time re-
quirements in a typical cloud setting.

3 Cryptanalysis of RSA with Bit Flips

RSA [49] is a public-key cryptosystem: the sender en-
crypts the message with the public key of the recipient
(consisting of an exponent e and a modulus n) and the re-
cipient decrypts the ciphertext with her private key (con-
sisting of an exponent d and a modulus n). This way
RSA can solve the key distribution problem that is inher-
ent to symmetric encryption. RSA can also be used to
digitally sign messages for data or user authentication:
the signing operation is performed using the private key,
while the verification operation employs the public key.

Public-key cryptography relies on the assumption that
it is computationally infeasible to derive the private key
from the public key. For RSA, computing the private ex-
ponent d from the public exponent e is believed to require
the factorization of the modulus n. If n is the product of
two large primes of approximately the same size, factor-
izing n is not feasible. Common sizes for n today are
1024 to 2048 bits.

In this paper we implement a fault attack on the modu-
lus n of the victim: we corrupt a single bit of n, resulting
in n′. We show that with high probability n′ will be easy
to factorize. We can then compute from e the correspond-
ing value of d′, the private key, that allows us to forge
signatures or to decrypt. We provide a detailed analysis
of the expected computational complexity of factorizing
n′ in the following1.

RSA perform computations modulo n, where t is the
bitlength of n (t = 1+ �log2 n�). Typical values of t lie
between 512 (export control) and 8192, with 1024 and
2048 the most common values. We denote the ith bit of
n with n[i] (0 ≤ i < t), with the least significant bit (LSB)
corresponding to n[0]. The unit vector is written as ei ,
that is ei[i] = 1 and ei[j] = 0, for j �= i. The operation of
flipping the ith bit of n results in n′, or n′ = n⊕ ei. Any
integer can be written as the product of primes, hence
n = ∏s

j=1 pγi
i , where pi are the prime factors of n, γi is

the multiplicity of pi and s is the number of distinct prime

1A similar analysis for Diffie-Hellman group parameters with bit
flips can be found in Appendix A.

factors. W.l.o.g. we assume that p1 > p2 > · · · ps.
In the RSA cryptosystem, the modulus n is the prod-

uct of two odd primes p1, p2 of approximate equal size,
hence s = 2, and γ1 = γ2 = 1. The encryption operation
is computed as c = me mod n, with e the public expo-
nent, and m,c ∈ [0,n− 1]) the plaintext respectively the
ciphertext. The private exponent d can be computed as
d = e−1 mod λ (n), with λ (n) the Carmichael function,
given by lcm(p1, p2). The best known algorithm to re-
cover the private key is to factorize n using the General
Number Field Sieve (GNFS) (see e.g. [42]), which has
complexity O(Ln[1/3,1.92]), with

Ln[a,b] = exp
(
(b+o(1))(lnn)a(ln lnn)1−a) .

For a 512-bit modulus n, Adrian et al. estimate that the
cost is about 1 core-year [3]. The current record is 768
bits [35], but it is clear that 1024 bits is within reach of
intelligence agencies [3].

If we flip the LSB of n, we obtain n′ = n−1, which is
even hence n′ = 2 · n′′ with n′′ a t − 1-bit integer. If we
flip the most significant bit of n, we obtain the odd t −1-
bit integer n′. In all the other cases we obtain an odd t-bit
integer n′. We conjecture that the integer n′′ (for the LSB
case) and the integers n′ (for the other cases) have the
same distribution of prime factors as a random odd inte-
ger. To simplify the notation, we omit in the following
the LSB case, but the equations apply with n′ replaced
by n′′.

Assume that an attacker can introduce a bit flip to
change n into n′ with as factorization n = ∏s′

j=1 p′ γ̃i
i .

Then c′ = m′e mod n′. The Carmichael function can be
computed as

λ (n′) = lcm
({

p′ γ̃i−1
i · (p′i −1)

})
.

If gcd(e,λ (n′)) = 1, the private exponent d′ can be found
as d′ = e−1 mod λ (n′). For prime exponents e, the prob-
ability that gcd(e,λ (n′)) > 1 equals 1/e. For e = 3, this
means that 1 in 3 attacks fails, but for the widely used
value e = 216 +1, this is not a concern. With the private
exponent d′ we can decrypt or sign any message. Hence
the question remains how to factorize n′. As it is very
likely that n′ is not the product of two primes of almost
equal size, we can expect that factorizing n′ is much eas-
ier than factorizing n.

Our conjecture implies that with probability 2/ lnn′, n′

is prime and in that case the factorization is trivial. If n′

is composite, the best approach is to find small factors
(say up to 16 bits) using a greatest common divisor oper-
ation with the product of the first primes. The next step
is to use Pollard’s ρ algorithm (or Brent’s variant) [42]:
this algorithm can easily find factors up to 40. . . 60 bits.
A third step consist of Lenstra’s Elliptic Curve factor-
ization Method (ECM) [38]: ECM can quickly find fac-
tors up to 60. . . 128 bits (the record is a factor of about

4

USENIX Association 25th USENIX Security Symposium 5

270 bits2). Its complexity to find the smallest prime fac-
tor p′s is equal to O(Lp′s [1/2,

√
2]). While ECM is asymp-

totically less efficient than GNFS (because of the param-
eter 1/2 rather than 1/3), the complexity of ECM depends
on the size of the smallest prime factor p′s rather than on
the size of the integer n′ to factorize. Once a prime fac-
tor p′i is found, n′ is divided by it, the result is tested for
primality and if the result is composite, ECM is restarted
with as argument n′/p′i.

The complexity analysis of ECM depends on the num-
ber of prime factors and the distribution of the size of
the second largest prime factor p′2: it is known that its
expected valued is 0.210 · t [36]. The Erdös–Kac theo-
rem [22] states that the number ω(n′) of distinct prime
factors of n′ is normally distributed with mean and vari-
ance ln lnn′: for t = 1024 the mean is about 6.56, with
standard deviation 2.56. Hence it is unlikely that we have
exactly two prime factors (probability 3.5%), and even
less likely that they are of approximate equal size. The
probability that n′ is prime is equal to 0.28%. The ex-
pected size of the second largest prime factor p′2 is 215
bits and the probability that it has less than 128 bits is
0.26 [36]. In this case ECM should be very efficient. For
t = 2048, the probability that n′ is prime equals 0.14%.
The expected size of the second largest prime factor p′2
is 430 bits; the probability that p′2 has less than 228 bits
is 0.22 and the probability that it has less than 128 bits
is about 0.12. Similarly, for t = 4096, the expected size
of the second largest prime factor p′2 is 860 bits. The
probability that p′2 has less than 455 bits is 0.22.

The main conclusion is that if n has 1024-2048 bits,
we can expect to factorize n′ efficiently with a probability
of 12− 22% for an arbitrary bit flip, but larger moduli
should also be feasible. As we show in Section 5, given a
few dozen templates, we can easily factorize any 1024 bit
to 4096 bit modulus with one (or more) of the available
templates.

4 Implementation

To implement dFFS reliably on Linux, we need to un-
derstand the internals of two kernel subsystems, ker-
nel same-page merging [6] (KSM) and transparent huge
pages [5], and the way they interact with each other.
After discussing them and our implementation of the
Rowhammer exploit (Sections 4.1, 4.2, and 4.3), we
show how we factorized corrupted RSA moduli in Sec-
tion 4.4 before summarizing our end-to-end attacks in
Section 4.5.

2https://en.wikipedia.org/wiki/Lenstra_elliptic_
curve_factorization

4.1 Kernel Same-page Merging

KSM, the Linux implementation of memory deduplica-
tion, uses a kernel thread that periodically scans memory
to find memory pages with the same contents that are
candidates for merging. It then keeps a single physical
copy of a set of candidate pages, marks it read-only, and
updates the page-table entries of all the other copies to
point to it before releasing their physical pages to the
system.

KSM keeps two red-black trees, termed “stable” and
“unstable”, to keep track of the merged and candidate
pages. The merged pages reside in the stable tree while
the candidate contents that are not yet merged are in the
unstable tree. KSM keeps a list of memory areas that are
registered for deduplication and goes through the pages
in these areas in the order in which they were registered.
For each page that it scans, it checks if the stable tree
already contains a page with the same contents. If so,
it updates the page-table entry for that page to have it
point to the physical page in the stable tree and releases
the backing physical page to the system. Otherwise, it
searches the unstable tree for a match and if it finds one,
promotes the page to the stable tree and updates the page-
table entry of the match to make it point to this page. If
no match is found in either one of the trees, the page is
added to the unstable tree. After going through all mem-
ory areas, KSM dumps the unstable tree before starting
again. Further details on the internals of KSM can be
found in [6].

In the current implementation of KSM, during a
merge, the physical page in either the stable tree or the
unstable tree is always preferred. This means that during
a merge with a page in the stable tree, the physical loca-
tion of the page in the stable tree is chosen. Similarly, the
physical memory of the page in the unstable tree is cho-
sen to back both pages. KSM scans the memory of the
VMs in order that they have been registered (i.e., their
starting time). This means that to control the location of
the target data on physical memory using the unstable
tree the attacker VM should have been started before the
victim VM. Hence, the longer the attacker VM waits, the
larger the chance of physical memory massaging through
the unstable tree.

The better physical memory massaging possibility is
through the stable tree. An attacker VM can upgrade a
desired physical memory location to the stable tree by
creating two copies of the target data and placing one
copy in the desired physical memory location and an-
other copy in a different memory location. By ensuring
that the other copy comes after the desired physical mem-
ory location in the physical address-space, KSM merges
the two pages and creates a stable tree node using the de-
sired physical memory location. At this point, any other

5

6 25th USENIX Security Symposium USENIX Association

Figure 2: A SO-DIMM with its memory chips.

page with the same contents will assume the same phys-
ical memory location desired by the attacker VM. For
this to work, however, the attacker needs to control when
the memory page with the target contents is created in
the victim VM. In the case of our OpenSSH attack, for
example, the attacker can control when the target page is
created in the victim VM by starting an SSH connection
using an invalid key with the target username.

For simplicity, the current version of dFFS implements
the memory massaging using the unstable tree by assum-
ing that the attacker VM has started first, but it is trivial
to add support for memory massaging with stable tree.
Using either the stable or unstable KSM trees for mem-
ory massaging, all dFFS needs to do is crafting a page
with the same contents as the victim page and place it at
the desired physical memory page; KSM will then per-
form the necessary page-table updates on dFFS’s behalf!
In other words, KSM inadvertently provides us with ex-
actly the kind of memory massaging we need for suc-
cessful Flip Feng Shui.

4.2 Rowhammer inside KVM
Internally, DRAM is organized in rows. Each row pro-
vides a number of physical cells that store memory bits.
For example, in an x86 machine with a single DIMM,
each row contains 1,048,576 cells that can store 128 kB
of data. Each row is internally mapped to a number of
chips on the DIMM as shown in Figure 2.

Figure 3 shows a simple organization of a DRAM
chip. When the processor reads a physical memory lo-
cation, the address is translated to an offset on row i of
the DRAM. Depending on the offset, the DRAM selects
the proper chip. The selected chip then copies the con-
tents of its row i to the row buffer. The contents at the
correct offset within the row buffer is then sent on the
bus to the processor. The row buffer acts as a cache: if
the selected row is already in the row buffer, there is no
need to read from the row again.

Each DRAM cell is built using a transistor and a ca-
pacitor. The transistor controls whether the contents of
the cell is accessible, while the capacitor can hold a
charge which signifies whether the stored content is a

Row i - 1

Row i

Row i + 1

Row Buffer

Figure 3: DRAM’s internal organization.

high or low bit. Since capacitors leak charge over time,
the processor sends refresh commands to DIMM rows
in order to recharge their contents. On top of the refresh
commands, every time a row is read by the processor, the
chip also recharges its cells.

As DRAM components have become smaller, they
keep a smaller charge to signify stored contents. With a
smaller charge, the error margin for identifying whether
the capacitor is charged (i.e., the stored value) is also
smaller. Kim et al. [34] showed that the smaller er-
ror margin, in combination with unexpected charge ex-
change between cells of different rows, can result in the
cell to “lose” its content. To trigger this DRAM relia-
bility issue, an attacker needs fast activations of DRAM
rows which causes a cell in adjacent rows to lose enough
charge so that its content is cleared. Note that due to the
row buffer, at least two rows need to activate one after
the other in a tight loop for Rowhammer to trigger. If
only one row is read from, the reads can be satisfied con-
tinually from the row buffer, without affecting the row
charges in the DRAM cells.

Double-sided Rowhammer. Previous work [51] re-
ported that if these two “aggressor” rows are selected in
a way that they are one row apart (e.g., row i− 1 and
i+ 1 in Figure 3), the chances of charge interaction be-
tween these rows and the row in the middle (i.e., row i)
increases, resulting in potential bit flips in that row. This
variant of Rowhammer is named double-sided Rowham-
mer. Apart from additional speed for achieving bit flips,
it provides additional reliability by isolating the location
of most bit flips to a certain (victim) row.

To perform double-sided Rowhammer inside KVM,
we need to know the host physical addresses inside the
VM. This information is, however, not available in the
guest: guest physical addresses are mapped to host vir-
tual addresses which can be mapped to any physical page
by the Linux kernel. Similar to [30], we rely on transpar-
ent huge pages [5] (THP). THP is a Linux kernel feature

6

USENIX Association 25th USENIX Security Symposium 7

that runs in the background and merges virtually contigu-
ous normal pages (i.e., 4 kB pages) into huge pages (i.e.,
2 MB pages) that rely on contiguous pieces of physical
memory. THP greatly reduces the number of page-table
entries in suitable processes, resulting in fewer TLB3 en-
tries. This improves performance for some workloads.

THP is another (weak) form of memory massaging:
it transparently allows the attacker control over how the
system maps guest physical memory to host physical
memory. Once the VM is started and a certain amount of
time has passed, THP will transform most of the VM’s
memory into huge pages. Our current implementation of
dFFS runs entirely in the userspace of the guest and re-
lies on the default-on THP feature of both the host and
the guest. As soon as the guest boots, dFFS allocates a
large buffer with (almost) the same size as the available
memory in the guest. The THP in the host then converts
guest physical addresses into huge pages and the THP
in the guest turns the guest virtual pages backing dFFS’s
buffer into huge pages as well. As a result, dFFS’s buffer
will largely be backed by huge pages all the way down
to host physical memory.

To make sure that the dFFS’s buffer is backed by huge
pages, we request the guest kernel to align the buffer at a
2 MB boundary. This ensures that if the buffer is backed
by huge pages, it starts with one: on the x86_64 architec-
ture, the virtual and physical huge pages share the lowest
20 bits, which are zero. The same applies when transi-
tioning from the guest physical addresses to host phys-
ical addresses. With this knowledge, dFFS can assume
that the start of the allocated buffer is the start of a mem-
ory row, and since multiple rows fit into a huge page, it
can successively perform double-sided Rowhammer on
these rows. To speed up our search for bit flips during
double-sided Rowhammer on each two rows, we rely on
the row-conflict side channel for picking the hammering
addresses within each row [44]. We further employed
multiple threads to amplify the Rowhammer effect.

While THP provides us with the ability to efficiently
and reliably induce Rowhammer bit flips, it has unex-
pected interactions with KSM that we will explore in the
next section.

4.3 Memory Massaging with KSM

In Section 2.2, we discussed the operational semantics
of KSM. Here we detail some of its implementation fea-
tures that are important for dFFS.

3TLB or translation lookaside buffer is a general term for processor
caches for page-table entries to speed up the virtual to physical memory
translation

4.3.1 Interaction with THP

As we discussed earlier, KSM deduplicates memory
pages with the same contents as soon as it finds them.
KSM currently does not support deduplication of huge
pages, but what happens when KSM finds matching con-
tents within huge pages?

A careful study of the KSM shows that KSM al-
ways prefers reducing memory footprint over reducing
TLB entries; that is, KSM breaks down huge pages into
smaller pages if there is a small page inside with similar
contents to another page.

This specific feature is important for an efficient and
reliable implementation of dFFS, but has to be treated
with care. More specifically, we can use huge pages as
we discussed in the previous section for efficient and re-
liable double-sided Rowhammer, while retaining control
over which victim page we should map in the middle of
our target (vulnerable) huge page.

KSM, however, can have undesired interactions with
THP from dFFS’s point of view. If KSM finds pages in
the attacker VM’s memory that have matching contents,
it merges them with each other or with a page from a
previously started VM. In these situations, KSM breaks
THP by releasing one of its smaller pages to the sys-
tem. To avoid this, dFFS uses a technique to avoid KSM
during its templating phase. KSM takes a few tens of
seconds to mark the pages of dFFS’s VM as candidates
for deduplication. This gives dFFS enough time to allo-
cate a large buffer with the same size as VM’s available
memory (as mentioned earlier) and write unique integers
at a pre-determined location within each (small) page of
this buffer as soon as its VM boots. The entropy present
within dFFS’s pages then prohibits KSM to merge these
pages which in turn avoids breaking THP.

4.3.2 On dFFS Chaining

Initially, we planned on chaining memory massaging
primitive and FFS to induce an arbitrary number of bit
flips at many desired locations of the victim’s memory
page. After using the first template for the first bit flip,
the attacker can write to the merged memory page to trig-
ger a copy-on-write event that ultimately unmerges the
two pages (i.e., the attacker page from the victim page).
At this stage, the attacker can use dFFS again with a new
template to induce another bit flip.

However, the implementation of KSM does not allow
this to happen. During the copy-on-write event, the vic-
tim’s page remains in the stable tree, even if it is the only
remaining page. This means that subsequent attempts for
memory massaging results in the victim page to control
the location of physical memory, disabling the attacker’s
ability for chaining FFS attacks.

7

8 25th USENIX Security Symposium USENIX Association

Even so, based on our single bit flip cryptanalysis on
public keys and our evaluation in Section 5, chaining is
not necessary for performing successful end-to-end at-
tacks with dFFS.

4.4 Attacking Weakened RSA

For the two attacks in this paper, we generate RSA pri-
vate keys, i.e., the private exponents d′ corresponding to
corrupted moduli n′ (as described in Section 3). We use
d′ to compromise two applications: OpenSSH and GPG.

Although the specifics of the applications are very dif-
ferent, the pattern to demonstrate each attack is the same
and as follows:

1. Obtain the file containing the RSA public key (n,e).
This is application-specific, but due to the nature
of public key cryptosystems, generally unprotected.
We call this the input file.

2. Using the memory templating step of Section 2.1
we obtain a list of templates that we are able to flip
within a physical page. We flip bits according to the
target templates to obtain corrupted keys. For ev-
ery single bitflip, we save a new file. We call these
files the corrupted files. According to the templat-
ing step, dFFS has the ability to create any of these
corrupted files in the victim by flipping a bit in the
page cache.

3. One by one, we now read the (corrupted) public
keys for each corrupted file. If the corrupted file
is parsed correctly and the public key has a changed
modulus n′ �= n and the same e, this n′ is a candidate
for factorization.

4. We start factorizations of all n′ candidates found in
the previous step. As we described in Section 3,
the best known algorithm for our scenario is ECM
that finds increasingly large factor in an iterative
fashion. We use the Sage [19] implementation of
ECM for factorizing n′. We invoke an instance of
ECM per available core for each corrupted key with
a 1 hour timeout (all available implementations of
ECM run with a single thread).

5. For all successful factorizations, we compute the
private exponent d′ corresponding to (n′,e) and
generate the corresponding private key to the cor-
rupted public key. How to compute d′ based on the
factorization of n′ is described in Section 3. We can
then use the private key with the unmodified appli-
cation. This step is application-specific and we will
discuss it for our case studies shortly.

We now describe our end-to-end attacks that put all
the pieces of dFFS together using two target applications:
OpenSSH and GPG.

4.5 End-to-end Attacks

Attacker model. The attacker owns a VM co-hosted
with a victim VM on a host with DIMMs susceptible
to Rowhammer. We further assume that memory dedu-
plication is turned on—as is common practice in public
cloud settings [8]. The attacker has the ability to use the
memory deduplication side-channel to fingerprint low-
entropy information, such as the IP address of the victim
VM, OS/library versions, and the usernames on the sys-
tem (e.g., through /etc/passwd file in the page cache)
as shown by previous work [32, 43, 56]. The attacker’s
goal is to compromise the victim VM without relying on
any software vulnerability. We now describe how this
model applies with dFFS in two important and widely
popular applications.

4.5.1 OpenSSH

One of the most commonly used authentication mecha-
nisms allowed by the OpenSSH daemon is an RSA pub-
lic key. By adding a user’s RSA public key to the SSH
authorized_keys file, the corresponding private key
will allow login of that user without any other authentica-
tion (such as a password) in a default setting. The public
key by default includes a 2048 bit modulus n. The com-
plete key is a 372-byte long base64 encoding of (n,e).

The attacker can initiate an SSH connection to the vic-
tim with a correct victim username and an arbitrary pri-
vate key. This interaction forces OpenSSH to read the
authorized_keys file, resulting in this file’s contents
getting copied into the page cache at the right time as we
discussed in Section 4.1. Public key cryptosystems by
definition do not require public keys to be secret, there-
fore we assume an attacker can obtain a victim public
key. For instance, GitHub makes the users’ submitted
SSH public keys publicly available [27].

With the victim’s public key known and in the page
cache, we can initiate dFFS for inducing a bit flip. We
cannot flip just any bit in the memory page caching
the authorized_keys; some templates will break the
base64 encoding, resulting in a corrupted file that
OpenSSH does not recognize. Some flips, however, de-
code to a valid (n′,e) key that we can factorize. We re-
port in Section 5 how many templates are available on
average for a target public key.

Next, we use a script with the PyCrypto RSA cryp-
tographic library [39] to operate on the corrupted public
keys. This library is able to read and parse OpenSSH
public key files, and extract the RSA parameters (n,e).

8

USENIX Association 25th USENIX Security Symposium 9

It can also generate RSA keys with specific parameters
and export them as OpenSSH public (n′,e) and private
(n′,d′) keys again. All the attacker needs to do is factor-
ize n′ as we discussed in Section 4.4.

Once we know the factors of n′, we generate the pri-
vate key (n′,d′) that can be used to login to the victim
VM using an unmodified OpenSSH client.

4.5.2 GPG

The GNU Privacy Guard, or GPG, is a sophisticated im-
plementation of, among others, the RSA cryptosystem.
It has many applications in security, one of which is the
verification of software distributions by verifying signa-
tures using trusted public keys. This is the larger appli-
cation we intend to subvert with this attack.

Specifically, we target the apt package distribution
system employed by Debian and Ubuntu distribution for
software installation and updates. apt verifies package
signatures after download using GPG and trusted pub-
lic keys stored in trusted.gpg. It fetches the package
index from sources in sources.list.

Our attack first steers the victim to our malicious
repository. The attacker can use dFFS to achieve
this goal by inducing a bit flip in the sources.list
file that is present in the page cache after an update.
sources.list holds the URL of the repositories that
are used for package installation and update. By using
a correct template, the attacker can flip a bit that results
in a URL that she controls. Now, the victim will seek
the package index and packages at an attacker-controlled
repository.

Next, we use our exploit to target the GPG trusted keys
database. As this file is part of the software distribu-
tion, the stock contents of this file is well-known and we
assume this file is unchanged or we can guess the new
changes. (Only the pages containing the keys we depend
on need be either unchanged or guessed.) This file re-
sides in the page cache every time the system tries to
update as a result of a daily cron job, so in this attack, no
direct interaction with the victim is necessary for bring-
ing the file in the page cache. Our implicit assumption is
that this file remains in the page cache for the next update
iteration.

Similar to OpenSSH, we apply bit flip mutations in lo-
cations where we can induce bit flips according to the
memory templating step. As a result, we obtain the cor-
rupted versions of this file, and each time check whether
GPG will still accept this file as a valid keyring and that
one of the RSA key moduli has changed as a result of
our bit flip. Extracting the key data is done with the GPG
--list-keys --with-key-data options.

For every bitflip location corresponding to a corrupted
modulus that we can factorize, we pick one of these

mutations and generate the corresponding (n′,d′) RSA
private key, again using PyCrypto. We export this pri-
vate key using PyCrypto as PEM formatted key and use
pem2openpgp [26] to convert this PEM private key to
the GPG format. Here we specify the usage flags to in-
clude signing and the same generation timestamp as the
original public key. We can then import this private key
for use for signing using an unmodified GPG.

It is important that the Key ID in the private keyring
match with the Key ID in the trusted.gpg file. This
Key ID is not static but is based on a hash computed from
the public key data, a key generation timestamp, and sev-
eral other fields. In order for the Key ID in the private
keyring to match with the Key ID in the public keyring,
these fields have to be identical and so the setting of the
creation timestamp is significant.

One significant remark about the Key ID changing (as
a result of a bit flip) is that this caused the self-signature
on the public keyring to be ignored by GPG! The signa-
ture contains the original Key ID, but it is now attached
to a key with a different ID due to the public key mu-
tation. As a result, GPG ignores the attached signature
as an integrity check of the bit-flipped public key and the
self-signing mechanism fails to catch our bit flip. The
only side-effect is harmless to our attack – GPG reports
that the trusted key is not signed. apt ignores this with-
out even showing a warning. After factorizing the cor-
rupted public key modulus, we successfully verified that
the corresponding private key can generate a signature
that verifies against the bit-flipped public key stored in
the original trusted.gpg.

We can now sign our malicious package with the new
private key and the victim will download and install the
new package without a warning.

5 Evaluation

We evaluated dFFS to answer the following three key
questions:

• What is the success probability of the dFFS attack?

• How long does the dFFS attack take?

• How much computation power is necessary for a
successful dFFS attack?

We used the following methodology for our evalua-
tion. We first used a Rowhammer testbed to measure
how many templates are available in a given segment of
memory and how long it takes us to find a certain tem-
plate. We then executed the end-to-end attacks discussed
in Section 4.5 and report on their success rate and their
start-to-finish execution time. We then performed an an-
alytical large-scale study of the factorization time, suc-
cess probability, and computation requirements of 200

9

10 25th USENIX Security Symposium USENIX Association

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5000 10000 15000 20000 25000 30000
 0

 10

 20

 30

 40

 50

 60
Ph

ys
ic

al
 m

em
or

y
us

ed
 (M

B)

Ti
m

e
sp

en
t (

h)

Unique templates discovered

Physical memory
Time spent

Figure 4: Required time and memory for templating.

RSA public keys for each of the 1024, 2048 and 4096-bit
moduli with 50 bit flips at random locations (i.e., 30,000
bit flipped public keys in total).

We used the following hardware for our Rowhammer
testbed and for the cluster that we used to conduct our
factorization study:

Rowhammer testbed. Intel Haswell i7-4790 4-core
processor on an Asus H97-Pro mainboard with 8 GB of
DDR3 memory.

Factorization cluster. Up to 60 nodes, each with two
Intel Xeon E5-2630 8-core processors with 64 GB of
memory.

5.1 dFFS on the Rowhammer Testbed

Memory templating. Our current implementation of
Rowhammer takes an average of 10.58 seconds to com-
plete double-sided Rowhammer for each target row. Fig-
ure 4 shows the amount of time and physical memory
that is necessary for discovering a certain number of tem-
plates. Note that, in our testbed, we could discover tem-
plates for almost any bit offset (i.e., 29,524 out of 32,768
possible templates). Later, we will show that we only
need a very small fraction of these templates to success-
fully exploit our two target programs.

Memory massaging. dFFS needs to wait for a certain
amount of time for KSM to merge memory pages. KSM
scans a certain number of pages in each waking period.
On the default version of Ubuntu, for example, KSM
scans 100 pages every 20 milliseconds (i.e., 20 MB). Re-
cent work [12] shows that it is possible to easily detect
when a deduplication pass happens, hence dFFS needs
to wait at most the sum of memory allocated to each co-
hosted VM. For example, in our experiments with one

 0

 5

 10

 15

 20

 25

 30

 200 400 600 800 1000 1200 1400 1600 1800 2000

Fr
eq

ue
nc

y

Number of usable 1->0 bit flips

1024-bit Moduli
2048-bit Moduli
4096-bit Moduli

Figure 5: Number of usable 1-to-0 bit flips usable in the
SSH authorized_keys file for various modulus sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

CD
F

Attack time (mins)

successful attacks

Figure 6: CDF of successful automatic SSH attacks.

attacker VM and one victim VM each with 2 GB of mem-
ory, KSM takes at most around 200 seconds for a com-
plete pass.

5.2 The SSH Public Key Attack
Figure 5 shows the number of possible templates to per-
form the dFFS attack on the SSH authorized_keys
file with a single randomly selected RSA public key, for
1024, 2048 and 4096-bit public keys. For this experi-
ment, we assumed 1-to-0 bit flips since they are more
common in our testbed. For DRAM chips that are sus-
ceptible to frequent 0-to-1 bit flips, these numbers dou-
ble. For our experiment we focused on 2048-bit public
keys as they are the default length as generated by the
ssh-keygen command.

To demonstrate the working end-to-end attack, mea-
sure its reliability, and measure the elapsed time distri-
bution, we automatically performed the SSH attack 300
times from an attacker VM on a victim VM, creating the
keys and VM’s from scratch each time. Figure 6 shows
the CDF of successful attacks with respect to the time
they took. In 29 cases (9.6%), the Rowhammer opera-
tion did not change the modulus at all (the attacker needs

10

USENIX Association 25th USENIX Security Symposium 11

Table 1: Examples of domains that are one bit flip away
from ubuntu.com that we purchased.

ubuftu.com ubunt5.com ubunte.com
ubunuu.com ubunvu.com ubunpu.com
ubun4u.com ubuntw.com ubuntt.com

to retry). In 19 cases (6.3%), the Rowhammer operation
changed the modulus other than planned. The remaining
252 (84.1%) were successful the first time. All the at-
tacks finished within 12.6 minutes with a median of 5.3
minutes.

5.3 The Ubuntu/Debian Update Attack

We tried factorizing the two bit-flipped 4096 bit Ubuntu
Archive Automatic Signing RSA keys found in the
trusted.gpg file. Out of the 8,192 trials (we tried
both 1-to-0 and 0-to-1 flips), we could factorize 344 tem-
plates. We also need to find a bit flip in the URL of the
Ubuntu or Debian update servers (depending on the tar-
get VM’s distribution) in the page cache entry for apt’s
sources.list file. For ubuntu.com, 29 templates re-
sult in a valid domain name, and for debian.org, 26
templates result in a valid domain name. Table 5.2 shows
examples of domains that are one bit flip away from
ubuntu.com.

Performing the update attack on our Rowhammer
testbed, we could trigger a bit flip in the page cache
entry of sources sources.list in 212 seconds, con-
verting ubuntu.com to ubunvu.com, a domain which
we control. Further, we could trigger a bit flip in the
page cache entry of trusted.gpg that changed one of
the RSA public keys to one that we had pre-computed
a factorization in 352 seconds. At this point, we man-
ually sign the malicious package with our GPG private
key that corresponds to the mutated public key. When
the victim then updates the package database and up-
grades the packages, the malicious package is down-
loaded and installed without warning. Since the cur-
rent version of dFFS runs these steps sequentially, the
entire end-to-end attack took 566 seconds. We have
prepared a video of this attack which is available at:
https://vusec.net/projects/flip-feng-shui

Growingly concerned about the impact of such practi-
cal attacks, we conservatively registered all the possible
domains from our Ubuntu/Debian list.

5.4 RSA Modulus Factorization

Figure 7 shows the average probability of successful fac-
torizations based on the amount of available compute

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

Su
cc

es
s

Pr
ob

ab
ili

ty

Compute hours available

timeout 1 sec
timeout 10 sec
timeout 1 min
timeout 5 min

timeout 60 min

Figure 7: Compute power and factorization timeout
tradeoff for 2048-bit RSA keys.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

Fa
ct

or
iza

tio
n

Su
cc

es
s P

ro
ba

bi
lit

y

Available Templates

1024-bit Moduli
2048-bit Moduli
4096-bit Moduli

Figure 8: CDF of success rate with increasing templates.

hours. We generated this graph using 200 randomly gen-
erated 2048-bit RSA keys, each with a bit flip in 50 dis-
tinct trials (i.e., 10,000 keys, each with a bit flip). For this
experiment, we relied on the ECM factorization tool, dis-
cussed in Section 3, and varied its user-controlled time-
out parameter between one second and one hour. For
example, with a timeout of one second for a key with a
bit flip, we either timeout or the factorization succeeds
immediately. In both cases, we move on to the next trial
of the same key with a different bit flip.

This graph shows that, with 50 bit flips, the average
factorization success probability is between 0.76 for a
timeout of one second and 0.93 for a timeout of one hour.
Note that, for example, with a timeout of one second,
we can try 50 templates in less than 50 seconds, while
achieving a successful factorization in as many as 76%
of the public keys. A timeout of one minute provides
a reasonable tradeoff and can achieve a success rate of
91% for 2048-bit RSA keys.

Figure 8 shows the cumulative success probability of
factorization as more templates become available for
1024-bit, 2048-bit and 4096-bit keys. For 4096-bit keys,
we need around 50 templates to be able to factorize a
key with high probability (0.85) with a 1-hour timeout.

11

12 25th USENIX Security Symposium USENIX Association

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fr
eq

ue
nc

y
of

 S
uc

ce
ss

fu
l F

ac
to

riz
at

io
n

Single-flip Success Probability

1024-bit Moduli
2048-bit Moduli
4096-bit Moduli

Figure 9: Probability mass function of successful factor-
izations with one flip.

With bit-flipped 2048-bit RSA public keys, with only
48 templates, we achieved a success probability of 0.99
with a 1 hour timeout. This proves that for 2048-bit keys
(ssh-keygen’s default), only a very small fraction of the
templates from our testbed is necessary for a successful
factorization. For 1024-bit keys, we found a successful
factorization for all keys after just 32 templates.

Some DRAM modules may only have a small number
of bit flips [34], so an interesting question is: what is the
chance of achieving a factorization using only a single
template? Figure 9 answers this question for 1024-bit,
2048-bit and 4096-bit moduli separately. To interpret the
figure, fix a point on the horizontal axis: this is the prob-
ability of a successful factorization using a single bit flip
within 1 hour. Now read the corresponding value on the
vertical axis, which shows the probability that a public
key follows this success rate. For example, on average,
15% of 2048-bit RSA public keys can be factored using
only a single bit flip with probability 0.1. As is expected,
the probability to factor 4096-bit keys with the same 1-
hour timeout is lower, and for 1024-bit keys higher. The
fact that the distributions are centered around roughly
0.22, 0.11, and 0.055 are consistent with our analytical
results in 3, which predict the factorization cost is linear
in the bitlength of the modulus.

6 Mitigations

Mitigating Flip Feng Shui is not straightforward as hard-
ware reliability bugs become prevalent. While there
is obviously need for new testing methods and certi-
fication on the hardware manufacturer’s side [4], soft-
ware needs to adapt to fit Flip Feng Shui in its threat
model. In this section, we first discuss concrete miti-
gations against dFFS before suggesting how to improve
software to counter FFS attacks.

Table 2: Memory savings with different dedup strategies.
Strategy Required memory Savings

No dedup 506 GB 0%
Zero-page dedup 271 GB 46%

Full dedup 108 GB 79%

6.1 Defending against dFFS

We discuss both hardware and software solutions for de-
fending against dFFS.

6.1.1 In Hardware

We recommend DRAM consumers perform extensive
Rowhammer testing [2] to identify vulnerable DRAM
modules. These DRAM modules should be replaced,
but if this is not possible, reducing DRAM refresh in-
tervals (e.g., by half) may be sufficient to protect against
Rowhammer [51]. However, this also reduces DRAM
performance and consumes additional power.

Another option is to rely on memory with error-
correcting codes (ECC) to protect against single bit flips.
Unfortunately, we have observed that Rowhammer can
occasionally induce multiple flips in a single 64-bit word
confirming the findings of the original Rowhammer pa-
per [34]. These multi-flips can cause corruption even in
presence of ECC. More expensive multi-ECC DIMMs
can protect against multiple bit flips, but it is still unclear
whether they can completely mitigate Rowhammer.

A more promising technology is directed row re-
fresh, which is implemented in low-power DDR4 [7]
(LPDDR4) and some DDR4 implementations. LPDDR4
counts the number of activations of each row and,
when this number grows beyond a particular threshold,
it refreshes the adjunct rows, preventing cell charges
from falling below the error margin. Newer Intel pro-
cessors support a similar feature for DDR3, but re-
quire compliant DIMMs. While these fixes mitigate
Rowhammer, replacing most of current DDR3 deploy-
ments with LPDDR4 or secure DDR4 DIMMs (some
DDR4 DIMMs are reported to be vulnerable to Rowham-
mer [1]), is not economically feasible as it requires com-
patible mainboards and processors. As a result, a soft-
ware solution is necessary for mitigating Rowhammer in
current deployments.

6.1.2 In Software

The most obvious mitigation against dFFS is disabling
memory deduplication. In fact, this is what we rec-
ommend in security-sensitive environments. Disabling
memory deduplication completely, however, wastes a

12

USENIX Association 25th USENIX Security Symposium 13

substantial amount of physical memory that can be saved
otherwise [6, 46, 54].

Previous work [12] showed that deduplicating zero
pages alone can retain between 84% and 93% of the
benefits of full deduplication in a browser setting. Lim-
iting deduplication to zero pages and isolating their
Rowhammer-prone surrounding rows was our first mit-
igation attempt. To understand whether zero-page dedu-
plication retains sufficient memory saving benefits in a
cloud setting, we performed a large-scale memory dedu-
plication study using 1,011 memory snapshots of dif-
ferent VMs from community VM images of Windows
Azure [48]. Table 2 presents our results. Unfortunately,
zero-page deduplication only saves 46% of the poten-
tial 79%. This suggests that deduplicating zero pages
alone is insufficient to eradicate the wasteful redundancy
in current cloud deployments. Hence, we need a bet-
ter strategy that can retain the benefits of full memory
deduplication without resulting in a memory massaging
primitive for the attackers.

A strawman design A possible solution is to rely on
a deduplication design that, for every merge operation,
randomly allocates a new physical page to back the ex-
isting duplicate pages. When merge operations with ex-
isting shared pages occur, such design would need to
randomly select a new physical page and update all the
page-table mappings for all the sharing parties.

This strawman design eliminates the memory massag-
ing primitive that is necessary for dFFS under normal cir-
cumstances. However, this may be insufficient if an at-
tacker can find different primitives to control the physical
memory layout. For example, the attacker’s VM can cor-
ner the kernel’s page allocator into allocating pages with
predictable patterns if it can force the host kernel into an
out-of-memory (OOM) situation. This is not difficult if
the host relies on over-committed memory to pack more
VMs than available RAM, a practice which is common
in cloud settings and naturally enabled by memory dedu-
plication. For example, the attacker can trigger a massive
number of unmerge operations and cause the host kernel
to approach an OOM situation. At this point, the attacker
can release vulnerable memory pages to the allocator,
craft a page with the same contents as the victim page,
and wait for a merge operation. Due to the near-OOM
situation, the merge operation happens almost instantly,
forcing the host kernel to predictably pick one of the
previously released vulnerable memory pages (i.e., tem-
plates) to back the existing duplicate pages (the crafted
page and the victim page). At this stage, the attacker has
again, in effect, a memory massaging primitive.

A better design To improve on the strawman design,
the host needs to ensure enough memory is available not

to get cornered into predictable physical memory reuse
patterns. Given a desired level of entropy h, and the num-
ber of merged pages mi for for the ith VM, the host needs
to ensure A = 2h + Max(mi) memory pages are avail-
able or can easily become available (e.g., page cache)
to the kernel’s page allocator at all times. With an ad-
equate choice of h, it may become difficult for an at-
tacker to control the behavior of the memory dedupli-
cation system. We have left the study of the right pa-
rameters for h and the projected A for real systems to
future work. We also note that balancing entropy, mem-
ory, and performance when supporting a truly random
and deduplication-enabled physical memory allocator is
challenging, and a promising direction for future work.

6.2 Mitigating FFS at the Software Layer

The attacks presented in this paper provide worrisome
evidence that even the most security-sensitive software
packages used in production account for no attacker-
controlled bit flips as part of their threat model. While
there is certainly room for further research in this direc-
tion, based on our experience, we formulate a number of
suggestions to improve current practices:

• Security-sensitive information needs to be checked
for integrity in software right before use to ensure
the window of corruption is small. In all the cases
we analyzed, such integrity checks would be placed
on a slow path with essentially no application per-
formance impact.

Certificate chain formats such as X.509 are auto-
matically integrity checked as certificates are al-
ways signed [17]. This is a significant side benefit
of a certification chain with self-signatures.

• The file system, due to the presence of the page
cache, should not be trusted. Sensitive information
on stable storage should include integrity or authen-
ticity information (i.e., a security signature) for veri-
fication purposes. In fact, this simple defense mech-
anism would stop the two dFFS attacks that we pre-
sented in this paper.

• Low-level operating system optimizations should
be included with extra care. Much recent work [11,
12, 29, 40, 58] shows that benign kernel opti-
mizations such as transparent huge pages, vsyscall
pages, and memory deduplication can become dan-
gerous tools in the hands of a capable attacker. In
the case of FFS, any feature that allows an untrusted
entity to control the layout or reuse of data in physi-
cal memory may provide an attacker with a memory
massaging primitive to mount our attacks.

13

14 25th USENIX Security Symposium USENIX Association

7 Related Work

We categorize related work into three distinct groups dis-
cussed below.

7.1 Rowhammer Exploitation

Pioneering work on the Rowhammer bug already warned
about its potential security implications [34]. One year
later, Seaborn published the first two concrete Rowham-
mer exploits, in the form of escaping the Google Native
Client (NaCl) sandbox and escalating local privileges on
Linux [51]. Interestingly, Seaborn’s privilege escalation
exploit relies on a weak form of memory massaging by
probabilistically forcing a OOMing kernel to reuse phys-
ical pages released from user space. dFFS, in contrast,
relies on a deterministic memory massaging primitive to
map pages from co-hosted VMs and mount fully reliable
attacks. In addition, while mapping pages from kernel
space for local privilege escalation is possible, dFFS en-
ables a much broader range of attacks over nearly arbi-
trary physical memory.

Furthermore, Seaborn’s exploits relied on Intel x86’s
CLFLUSH instruction to evict a cache line from the CPU
caches in order to read directly from DRAM. For mit-
igation purposes, CLFLUSH was disabled in NaCl and
the same solution was suggested for native CPUs via
a microcode update. In response to the local priv-
ilege exploit, Linux disabled unprivileged access to
virtual-to-physical memory mapping information (i.e.,
/proc/self/pagemap) used in the exploit to perform
double-sided Rowhammer. Gruss et al. [30], how-
ever, showed that it is possible to perform double-sided
Rowhammer from the browser, without CLFLUSH, and
without pagemap, using cache eviction sets and transpar-
ent huge pages (THP). dFFS relies on nested THP (both
in the host and in the guest) for reliable double-sided
Rowhammer. In our previous work [12], we took the next
step and implemented the first reliable Rowhammer ex-
ploit in the Microsoft Edge browser. Our exploit induces
a bit flip in the control structure of a JavaScript object for
pivoting to an attacker-controlled counterfeit object. The
counterfeit object provides the attackers with arbitrary
memory read and write primitives inside the browser.

All the attacks mentioned above rely on one key as-
sumption: the attacker already owns the physical mem-
ory of the victim to make Rowhammer exploitation pos-
sible. In this paper, we demonstrated that, by abus-
ing modern memory management features, it is possi-
ble to completely lift this assumption with alarming con-
sequences. Using FFS, an attacker can seize control of
nearly arbitrary physical memory in the software stack,
for example compromising co-hosted VMs in complete
absence of software vulnerabilities.

7.2 Memory Massaging

Sotirov [55] demonstrates the power of controlling vir-
tual memory allocations in JavaScript, bypassing many
protections against memory errors with a technique
called Heap Feng Shui. Mandt [41] demonstrates that
it is possible to control reuse patterns in the Windows 7
kernel heap allocator in order to bypass the default mem-
ory protections against heap-based attacks in the kernel.
Inspired by these techniques, our Flip Feng Shui demon-
strates that an attacker abusing benign and widespread
memory management mechanisms allows a single bit flip
to become a surprisingly dangerous attack primitive over
physical memory.

Memory spraying techniques [25, 33, 47, 50] allocate
a large number of objects in order to make the layout of
memory predictable for exploitation purposes, similar, in
spirit, to FFS. Govindavajhala and Appel [28] sprayed
the entire memory of a machine with specially-crafted
Java objects and showed that 70% of the bit flips caused
by rare events cosmic rays and such will allow them to
escape the Java sandbox. This attack is by its nature
probabilistic and, unlike FFS, does not allow for fully
controllable exploitation.

Memory deduplication side channels have been pre-
viously abused to craft increasingly sophisticated infor-
mation disclosure attacks [8, 12, 29, 32, 43, 56]. In
this paper, we demonstrate that memory deduplication
has even stronger security implications than previously
shown. FFS can abuse memory deduplication to perform
attacker-controlled page-table updates and craft a mem-
ory massaging primitive for reliable hardware bit flip ex-
ploitation.

7.3 Breaking Weakened Cryptosystems

Fault attacks have been introduced in cryptography by
Boneh et al. [9]; their attack was highly effective against
implementations of RSA that use the Chinese Remain-
der Theorem. Since then, many variants of fault at-
tacks against cryptographic implementations have been
described as well as countermeasures against these at-
tacks. Seifert was the first to consider attacks in which
faults were introduced in the RSA modulus [52]; his goal
was limited to forging signatures. Brier et al. [14] have
extended his work to sophisticated methods to recover
the private key; they consider a setting of uncontrollable
faults and require many hundreds to even tens of thou-
sands of faults. In our attack setting, the attacker can
choose the location and observe the modulus, which re-
duces the overhead substantially.

In the case of Diffie-Hellman, the risk of using it with
moduli that are not strong primes or hard-to-factor inte-
gers was well understood and debated extensively dur-

14

USENIX Association 25th USENIX Security Symposium 15

ing the RSA versus DSA controversy in the early 1990s
(e.g., in a panel at Eurocrypt’92 [18]). Van Oorschot and
Wiener showed how a group order with small factors can
interact badly with the use of small Diffie-Hellman expo-
nents [57]. In 2015, the Logjam attack [3] raised new in-
terest in the potential weaknesses of Diffie-Hellman pa-
rameters.

In this paper, we performed a formal cryptanalysis of
RSA public keys in the presence of bit flips. Our evalua-
tion of dFFS with bit-flipped default 2048-bit RSA pub-
lic keys confirmed our theoretical results. dFFS can in-
duce bit flips in RSA public keys and factorize 99% of
the resulting 2048-bit keys given enough Rowhammer-
induced bit flips. We further showed that we could factor
4.2% of the two 4096 bit Ubuntu Archive Automatic
Signing Keys with a bit flip. This allowed us to gener-
ate enough templates to successfully trick a victim VM
into installing our packages. For completeness, we also
included a formal cryptanalysis of Diffie-Hellman expo-
nents in the presence of bit flips in Appendix A.

8 Conclusions

Hardware bit flips are commonly perceived as a vehicle
of production software failures with limited exploitation
power in practice. In this paper, we challenged com-
mon belief and demonstrated that an attacker armed with
Flip Feng Shui (FFS) primitives can mount devastat-
ingly powerful end-to-end attacks even in complete ab-
sence of software vulnerabilities. Our FFS implementa-
tion (dFFS) combines hardware bit flips with novel mem-
ory templating and massaging primitives, allowing an at-
tacker to controllably seize control of arbitrary physical
memory with very few practical constraints.

We used dFFS to mount practical attacks against
widely used cryptographic systems in production clouds.
Our attacks allow an attacker to completely compromise
co-hosted cloud VMs with relatively little effort. Even
more worryingly, we believe Flip Feng Shui can be used
in several more forms and applications pervasively in the
software stack, urging the systems security community
to devote immediate attention to this emerging threat.

Disclosure

We have cooperated with the National Cyber Security
Centre in the Netherlands to coordinate disclosure of the
vulnerabilities to the relevant parties.

Acknowledgements

We would like to thank our anonymous reviewers
for their valuable feedback. This work was sup-

ported by Netherlands Organisation for Scientific Re-
search through the NWO 639.023.309 VICI “Dowsing”
project, Research Council KU Leuven under project
C16/15/058, the FWO grant G.0130.13N, and by the
European Commission through projects H2020 ICT-32-
2014 “SHARCS” under Grant Agreement No. 644571
and H2020 ICT-2014-645622 “PQCRYPTO”.

References

[1] DDR4 Rowhammer mitigation. http:
//www.passmark.com/forum/showthread.
php?5301-Rowhammer-mitigation&p=19553.
Accessed on 17.2.2016.

[2] Troubleshooting Memory Errors –
MemTest86. http://www.memtest86.com/
troubleshooting.htm. Accessed on 17.2.2016.

[3] David Adrian, Karthikeyan Bhargavan, Zakir Du-
rumeric, Pierrick Gaudry, Matthew Green, J. Alex
Halderman, Nadia Heninger, Drew Springall, Em-
manuel Thomé, Luke Valenta, Benjamin Vander-
Sloot, Eric Wustrow, Santiago Zanella Béguelin,
and Paul Zimmermann. Imperfect Forward Se-
crecy: How Diffie-Hellman Fails in Practice.
CCS’15, 2015.

[4] Barbara P. Aichinger. DDR Compliance Testing -
Its time has come! In JEDEC’s Server Memory
Forum, 2014.

[5] Andrea Arcangeli. Transparent hugepage support.
KVM Forum, 2010.

[6] Andrea Arcangeli, Izik Eidus, and Chris Wright.
Increasing memory density by using KSM.
OLS’09, 2009.

[7] JEDEC Solid State Technology Association. Low
Power Double Data 4 (LPDDR4). JESD209-4A,
Nov 2015.

[8] Antonio Barresi, Kaveh Razavi, Mathias Payer, and
Thomas R. Gross. CAIN: Silently Breaking ASLR
in the Cloud. WOOT’15, 2015.

[9] Dan Boneh, Richard A. DeMillo, and Richard J.
Lipton. On the importance of eliminating errors in
cryptographic computations. J. Cryptology, 14(2),
2001.

[10] Shekhar Borkar. Designing Reliable Systems from
Unreliable Components: The Challenges of Tran-
sistor Variability and Degradation. IEEE Micro,
25(6), 2005.

15

16 25th USENIX Security Symposium USENIX Association

[11] Erik Bosman and Herbert Bos. Framing signals—a
return to portable shellcode. SP’14.

[12] Erik Bosman, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. Dedup Est Machina: Memory
Deduplication as an Advanced Exploitation Vector.
SP’16, 2016.

[13] Cyril Bouvier, Pierrick Gaudry, Laurent Im-
bert, Hamza Jeljeli, and Emmanuel Thomé.
Discrete logarithms in GF(p) – 180 digits.
https://listserv.nodak.edu/cgi-bin/wa.
exe?A2=ind1406&L=NMBRTHRY&F=&S=&P=3161.
June 2014.

[14] Eric Brier, Benoît Chevallier-Mames, Mathieu
Ciet, and Christophe Clavier. Why one should also
secure RSA public key elements. CHES’06, 2006.

[15] Nicolas Carlini, Antonio Barresi, Mathias Payer,
David Wagner, and Thomas R. Gross. Control-flow
Bending: On the Effectiveness of Control-flow In-
tegrity. SEC’15, 2015.

[16] Cristian Constantinescu. Trends and Challenges in
VLSI Circuit Reliability. IEEE Micro, 23(4), 2003.

[17] D. Cooper, S. Santesson, S. Farrell, S. Boeyen,
R. Housley, and W. Polk. RFC 5280 - Inter-
net X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. Techni-
cal report, May 2008.

[18] Yvo Desmedt, Peter Landrock, Arjen K. Lenstra,
Kevin S. McCurley, Andrew M. Odlyzko,
Rainer A. Rueppel, and Miles E. Smid. The Eu-
rocrypt ’92 Controversial Issue: Trapdoor Primes
and Moduli (Panel). Eurocrypt’92, 1992.

[19] The Sage Developers. Sage Mathematics Soft-
ware (Version). http://www.sagemath.org. Ac-
cessed on 17.2.2016.

[20] Karl Dickman. On the frequency of numbers con-
taining prime factors of a certain relative magni-
tude. Arkiv forr Matematik, Astronomi och Fysik,
1930.

[21] Whitfield Diffie and Martin E. Hellman. New di-
rections in cryptography. IEEE Transactions on In-
formation Theory, 22(6), 1976.

[22] Paul Erdös and Mark Kac. The Gaussian Law of
Errors in the Theory of Additive Number Theo-
retic Functions. American Journal of Mathematics,
62(1), 1940.

[23] Chris Evans. The poisoned NUL
byte, 2014 edition). http://
googleprojectzero.blogspot.nl/2014/
08/the-poisoned-nul-byte-2014-edition.
html. Accessed on 17.2.2016.

[24] Justin N. Ferguson. Understanding the heap by
breaking it. In Black Hat USA, 2007.

[25] Francesco Gadaleta, Yves Younan, and Wouter
Joosen. ESSoS’10, 2010.

[26] Daniel Kahn Gillmor. pem2openpgp - translate
PEM-encoded RSA keys to OpenPGP certificates.
Accessed on 17.2.2016.

[27] GitHub Developer – Public Keys. https://
developer.github.com/v3/users/keys/. Ac-
cessed on 17.2.2016.

[28] Sudhakar Govindavajhala and Andrew W. Appel.
Using Memory Errors to Attack a Virtual Machine.
SP ’03, 2003.

[29] Daniel Gruss, David Bidner, and Stefan Mangard.
Practical Memory Deduplication Attacks in Sand-
boxed Javascript. ESORICS’15. 2015.

[30] Daniel Gruss, Clementine Maurice, and Stefan
Mangard. Rowhammer.js: A Remote Software-
Induced Fault Attack in JavaScript. DIMVA’16,
2016.

[31] Danny Harnik, Benny Pinkas, and Alexandra
Shulman-Peleg. Side Channels in Cloud Services:
Deduplication in Cloud Storage. IEEE Security and
Privacy Magazine, special issue of Cloud Security,
8, 2010.

[32] Gorka Irazoqui, Mehmet Sinan IncI, Thomas
Eisenbarth, and Berk Sunar. Know Thy Neigh-
bor: Crypto Library Detection in Cloud. PETS’15,
2015.

[33] Vasileios P. Kemerlis, Michalis Polychronakis, and
Angelos D. Keromytis. Ret2Dir: Rethinking Ker-
nel Isolation. SEC’14, 2014.

[34] Yoongu Kim, Ross Daly, Jeremie Kim, Chris
Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilker-
son, Konrad Lai, and Onur Mutlu. Flipping Bits in
Memory Without Accessing Them: An Experimen-
tal Study of DRAM Disturbance Errors. ISCA’14,
2014.

[35] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke,
Arjen K. Lenstra, Emmanuel Thomé, Joppe W.
Bos, Pierrick Gaudry, Alexander Kruppa, Pe-
ter L. Montgomery, Dag Arne Osvik, Herman

16

USENIX Association 25th USENIX Security Symposium 17

J. J. te Riele, Andrey Timofeev, and Paul Zimmer-
mann. Factorization of a 768-bit RSA modulus.
CRYPTO’10, 2010.

[36] Donald E. Knuth and Luis Trabb-Pardo. Analysis
of a Simple Factorization Algorithm. Theoretical
Computer Science, 3(3), 1976.

[37] Dmitrii Kuvaiskii, Rasha Faqeh, Pramod Bhato-
tia, Pascal Felber, and Christof Fetzer. HAFT:
Hardware-assisted Fault Tolerance. EuroSys’16,
2016.

[38] Hendrik W. Lenstra. Factoring Integers with Ellip-
tic Curves. Annals of Mathematics, 126, 1987.

[39] Dwayne Litzenberger. PyCrypto - The
Python Cryptography Toolkit). https:
//www.dlitz.net/software/pycrypto/.
Accessed on 17.2.2016.

[40] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B. Lee. Last-level cache side-channel at-
tacks are practical. SP’15, 2015.

[41] Tarjei Mandt. Kernel Pool Exploitation on Win-
dows 7. In Black Hat Europe, 2011.

[42] Alfred Menezes, Paul C. van Oorschot, and
Scott A. Vanstone. Handbook of Applied Cryptog-
raphy. 1996.

[43] R. Owens and Weichao Wang. Non-interactive
OS fingerprinting through memory de-duplication
technique in virtual machines. IPCCC’11, 2011.

[44] Peter Pessl, Daniel Gruss, Clementine Maurice,
Michael Schwarz, and Stefan Mangard. DRAMA:
Exploiting DRAM Addressing for Cross-CPU At-
tacks. SEC’16, 2016.

[45] Stephen C. Pohlig and Martin E. Hellman. An
improved algorithm for computing logarithms over
GF(p) and its cryptographic significance (cor-
resp.). IEEE Transactions on Information Theory,
24(1), 1978.

[46] Shashank Rachamalla, Dabadatta Mishra, and Pu-
rushottam Kulkarni. Share-o-meter: An empirical
analysis of KSM based memory sharing in virtual-
ized systems. HiPC’13, 2013.

[47] Paruj Ratanaworabhan, Benjamin Livshits, and
Benjamin Zorn. NOZZLE: A Defense Against
Heap-spraying Code Injection Attacks. SEC’09,
2009.

[48] Kaveh Razavi, Gerrit van der Kolk, and Thilo Kiel-
mann. Prebaked uVMs: Scalable, Instant VM
Startup for IaaS Clouds. ICDCS ’15, 2015.

[49] Ronald L. Rivest, Adi Shamir, and Leonard M.
Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM,
21(2), 1978.

[50] Jurgen Schmidt. JIT Spraying: Exploits to beat
DEP and ASLR. In Black Hat Europe, 2010.

[51] Mark Seaborn. Exploiting the DRAM Rowhammer
Bug to Gain Kernel Privileges. In Black Hat USA,
2015.

[52] Jean-Pierre Seifert. On authenticated computing
and RSA-based authentication. CCS’05, 2005.

[53] Noam Shalev, Eran Harpaz, Hagar Porat, Idit Kei-
dar, and Yaron Weinsberg. CSR: Core Surprise
Removal in Commodity Operating Systems. AS-
PLOS’16, 2016.

[54] Prateek Sharma and Purushottam Kulkarni. Sin-
gleton: System-wide Page Deduplication in Virtual
Environments. HPDC’12, 2012.

[55] Alexander Sotirov. Heap Feng Shui in JavaScript.
In Black Hat Europe, 2007.

[56] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and
Cyrille Artho. Memory Deduplication As a Threat
to the Guest OS. EUROSEC’11, 2011.

[57] Paul C. van Oorschot and Michael J. Wiener. On
Diffie-Hellman key agreement with short expo-
nents. Eurocrypt’96, 1996.

[58] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-Channel Attacks: Deterministic Side-
Channels for Untrusted Operating Systems. SP’15,
2015.

Appendix A Cryptanalysis of Diffie-
Hellman with Bit Flips

This section describes how one can break Diffie-Hellman
by flipping a bit in the modulus. Similar to RSA, Diffie-
Hellman cryptosystem performs computations modulo
n. In the Diffie-Hellman key agreement scheme [21],
however, the modulus n is prime or s = γ1 = 1. It is
very common to choose strong primes, which means that
q = (n − 1)/2 is also prime; this is also the approach
taken by OpenSSH. Subsequently a generator g is cho-
sen of order q. In the Diffie-Hellman protocol the client

17

18 25th USENIX Security Symposium USENIX Association

chooses a random x ∈ [1,n− 1] and computes gx mod n
and the server chooses a random y ∈ [1,n−1] and com-
putes gy mod n. After exchanging these values, both par-
ties can compute the shared secret gxy mod n. The best
known algorithm to recover the shared secret is to solve
the discrete logarithm problem to find x or y using the
GNFS, which has complexity O(Ln[1/3,1.92]). For a
512-bit modulus n, the pre-computation cost is estimated
to be about 10 core-years; individual discrete logarithms
mod n can subsequently be found in 10 minutes [3]. The
current record is 596 bits [13]; again 1024 bits seems to
be within reach of intelligence agencies [3].

By flipping a single bit of n, the parties compute
gx mod n′ and gy mod n′. It is likely that recovering x or
y is now much easier. If we flip the LSB, n′ = n−1 = 2q
with q prime and g will be a generator. In the other cases
n′ is a t-bit or (t −1)-bit odd integer; we conjecture that
its factorization has the same form as that of a random
odd integer of the same size. It is not necessarily the case
the g is a generator mod n′, but with very high probabil-
ity g has large multiplicative order.

The algorithm to compute a discrete logarithm in Zn′

to recover x from y = gx mod n′ requires two steps.

1. Step 1 is to compute the factorization of n′. This
is the same problem as the one considered in Sec-
tion 3.

2. Step 2 consists in computing the discrete logarithm
of gx mod n′: this can be done efficiently by com-
puting the discrete logarithms modulo gx mod p′ γ̃i

i
and by combining the result using the Chinese re-
mainder theorem. Note that except for the small
primes, the γ̃i are expected to be equal to 1 with
high probability. Discrete logarithms mod p′ γ̃i

i can
in turn be computed starting from discrete loga-
rithms mod p′i (γ̃i steps are required). If p′i − 1 is

smooth (that is, it is of the form p′i = ∏r
j=1 q

δ j
j with

q j small), the Pohlig-Hellman algorithm [45] can

solve this problem in time O
(

∑r
j=1 δ j

√q j

)
. If n′

has prime factors p′i for which p′i −1 is not smooth,
we have to use for those primes GNFS with com-
plexity O(Lp′i

[1/3,1.92]).

The analysis is very similar to that of Section 3, with as
difference that for RSA we can use ECM to find all small
prime factors up to the second largest one p′2. With a
simple primality test we verify that the remaining integer
is prime and if so the factorization is complete. How-
ever, in the case of the discrete logarithm algorithm we
have to perform in Step 2 discrete logarithm computa-
tions modulo the largest prime p′1. This means that if
n′ would prime (or a small multiple of a prime), Step 1
would be easy but we have not gained anything with the

bit flip operation. It is known that the expected bitlength
of the largest prime factor p′1 of n′ is 0.624 · t [36] (0.624
is known as the Golomb–Dickman constant). A second
number theoretic result by Dickman shows that the prob-
ability that all the prime factors p′i of an integer n′ are
smaller than n′1/u has asymptotic probability u−u [20].

For t = 1024, the expected size of the largest prime
factor p′1 of n′ is 639 bits and in turn the largest prime
factor of p′1−1 is expected to be 399 bits (1024 ·0.6242).
Note that p′1 − 1 can be factored efficiently using ECM
as in the RSA case. If p′1 − 1 has 639 bits, the proba-
bility that it is smooth (say has factors less than 80 bits)
is 8−8 = 2−24, hence Pohlig-Hellman cannot be applied.
We have to revert to GNFS for a 399-bit integer. How-
ever, with probability 2−2 = 1/4 all the factors of n′ are
smaller than 512 bits: in that case the largest prime fac-
tor of p′1 − 1 is expected to be 319 bits, but again with
probability 1/4 all prime factors are smaller than 256 bits.
Hence with probability 1/16 GNFS could solve the dis-
crete logarithm in less than 1 core hour.

For t = 2048, the expected size of the largest prime
factor p′1 of n′ is 1278 bits and the largest prime factor
of p′1 −1 is expected to be 797 bits – this is well beyond
the current GNFS record. However, with probability 3 ·
10−3 = 0.037 all prime factors of n′ are smaller than 638
bits. Factoring p′1 − 1 is feasible using ECM, given that
the its second largest prime factor is expected to be 134
bits. The largest prime factor of p′1 − 1 is expected to
be 398 bits. The discrete logarithm problem modulo the
largest factor can be solved using GNFS in about 1 core-
month. With probability 4 · 10−4 = 3.9 · 10−3 all prime
factors of n′ are smaller than 512 bits, and in that case the
largest prime factor of p′1 −1 is expected to be 319 bits,
which means that GNFS would require a few core-hours.

Even if it would not be feasible to compute the com-
plete discrete logarithm there are special cases: if x or
y have substantially fewer than t bits, it is sufficient to
recover only some of the discrete logarithms mod p′i and
the hardest discrete logarithm p1 can perhaps be skipped;
for more details, see [3, 57].

The main conclusion is that breaking discrete loga-
rithms with the bit flip attack is more difficult than factor-
izing, but for 1024 bits an inexpensive attack is feasible,
while for 2048 bits the attack would require a moderate
computational effort, the results of which are widely ap-
plicable. It is worth noting that this analysis is applicable
to the DH key agreement algorithm in use by OpenSSH,
defaulting to 1536-bit DH group moduli in the current
OpenSSH (7.2), bitflipped variants of which can be pre-
computed by a moderately equipped attacker, and ap-
plied to all OpenSSH server installations. The conse-
quences of such an attack are decryption of a session,
including the password if used, adding another attractive
facet to attacks already demonstrated in this paper.

18

