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O. INTRODUCTION 

One of the main achievements of the 19th century Italian school of algebraic 
geometry was a complete understanding of the birational geometry of surfaces, 
including the construction of minimal models. During the past several years, a 
program has emerged to construct minimal models in higher dimensions using 
something called extremal rays. This paper completes the final step of that 
Minimal Model Program (MMP) in dimension 3 (cf. an excellent introduction 
[K02] for nonexperts). 

We should mention that, even in dimension 3, there are several things yet 
to be done in classification theory (e.g. [R3, §4J). 

Before formulating our main theorem (0.2.5), let us explain some corollaries 
and the background. 

We will work over the field <C of complex numbers. 
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(0.1) Corollaries to Minimal Model Program for 3-folds. Here are three im-
portant corollaries indicating that the canonical divisor K x of a 3-fold X has 
decisive information. 

(0.1.1) Theorem. For every nonsingular projective 3-fold X, the graded 
canonical ring EB!I~oHo(X,&'(vKx)) is finitely generated. 

This follows from MMP by virtue of the works of Fujita [Ft], Benveniste 
[Bl] and Kawamata [Kal], and it is considered to be a necessary step in the 
construction of moduli of 3-folds. 

(0.1.2) Theorem. A nonsingular projective 3-fold X is uniruled if and only if 
HO(X. &'(vK x)) = 0 for all v> 0, where an n-fold Z is uniruled if there is a 
dominating rational map JP" x Y --.. Z for some (n - I)-fold Y. 

This follows from MMP by virtue of the works of Miyaoka [Myl, My2, 
My3], and Miyaoka and Mori [MM]. Indeed some model X' birational to X 
is shown to have a finer structure (cf. (0.3)). 

(0.1.3) Theorem. Every birational morphism f: X -t Y between nonsingular 
projective 3-folds is a composition of divisorial contractions and directed flips 
(cf. (0.2)). 

This gives (in principle) a factorization of birational morphisms of 3-folds 
with mild singularities (cf. (0.3.11)), and generalizes the first half of Danilov's 
factorization [Da] of toric birational morphisms of 3-folds to arbitrary bira-
tional morphisms. 

We should point out that the development of the theory of extremal rays was 
originally motivated by Hironaka's approach [H] to the factorization problem 
using "cones" (although the techniques were based on Kleiman's criterion of 
ampleness [KID. 

Let us look at the Minimal Model Conjecture more closely. 

(0.2) The Minimal Model Conjecture. We will review the necessary material 
only briefly and more detailed treatment is given in [KMM, Mr4, Wi]. 

(0.2.1) Definition. We say that a Weil divisor D on a normal variety X is 
rfJ-Cartier if vD is Cartier for some v> O. We note that X with only canonical 
or terminal singularities has rfJ-Cartier K x ' leaving the technical definition to 
(1.0). We say that X has only rfJ-factorial singularities if every Weil divisor is 
rfJ-Cartier. 

Let X be a normal projective variety. Let p(X) denote the Picard number 
(E N), the rank of the Neron-Severi group NS(X) of X. We say that X is 
a canonical (resp. minimal) model if X has only canonical (resp. terminal) 
singularities and K x is ample (resp. nef), where a rfJ-Cartier divisor H is nef 
iff (H. C) ~ 0 for every irreducible curve C. 
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FLIP THEOREM AND MINIMAL MODELS FOR 3-FOLDS 119 

We say that X has a canonical (resp. minimal) model if there is a canonical 
(resp. minimal) model birational to X. We remark that such a canonical model 
is unique while a minimal model is not. 

(0.2.2) MMe, in short, claims that every variety X has a minimal model iff X 
is not uniruled. To make it more explicit, we will review the theory of extremal 
rays built by Benveniste, Kawamata, Kollar, Mori, Reid, Shokurov (cf. [KMM, 
Mr4, R3, or Wi]. To simplify the exposition, we treat the core of the theory as 
a black box; it implies the following. 

(0.2.3) Theorem. Let X be a projective variety with only «J.-Iactorial terminal 
singularities. II X is not a minimal model, then there is a surjective morphism 
I: X -+ Y to a normal projective variety Y with connected fibers such that 
p(X) = p(Y) + 1, -Kx is I-ample and one 01 the lollowing holds. 

(a) dimX>dimY (<<J.-Fanofibering). 
(b) I is birational and contracts a divisor (divisorial contraction). 
(c) I is birational and contracts no divisors (small contraction). 

(0.2.4) Let the notation and the assumptions be as in (0.2.3). If I is a divisorial 
contraction, it is easy to see that Y has only «J.-factorial terminal singularities. 
The case of a small contraction is treated by our main theorem if X is a 3-fold. 

(0.2.5) Main Theorem (Flip Theorem). Let I: X -+ Y be a birational mor-
phism between normal projective 3-lolds such that X has only «J.-Iactorial ter-
minal singularities, p(X) = p(Y) + 1, -Kx is I-ample and I contracts no 
divisors (to curves or points). Then there is a birational morphism r: X' -+ Y 
Irom a projective 3-lold X' with only «J.-Iactorial terminal singularities such that r contracts no divisors and K x' is r -ample. (Let us emphasize the change in 
the sign 01 the canonical divisor. ) 

The map X ---> X' is isomorphic in codimension 1 (Le. induces X - Z ~ 
X' - Z' for some closed subsets Z and Z' of codim ~ 2), p(X) = p(X') , 
and r (or X') is called the directed flip (or flip) of I. If dim X ~ 4, the 
existence of the directed flip is unknown. 

There are a couple of ways to put (0.2.3)-(0.2.5) together to state the Minimal 
Model Program. One of the formulations is the following. We note that (c) is 
conjectural if dim X ~ 4 . 

(0.2.6) Minimal Model Program (Reid [R2]: an observation based on [Mr2] 
and Francia [Fr]). Let X be a projective 3-fold with only «J.-factorial terminal 
singularities. If X is not a minimal model, then there is a morphism I: X -+ Y 
which is a «J.-Fano fibering, a divisorial contraction or a small contraction. We 
treat three cases. 

Case (a). No divisorial or small contractions exist: I is a «J.-Fano fibering. 
Case (b). I is a divisorial contraction: Since Y has only «J.-factorial terminal 

singularities (0.2.4), we may continue the program by replacing X with Y. We 
note p(Y) = p(X) - 1. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



120 SHIGEFUMI MORI 

Case (c). f is a small contraction: Since the directed flip X' of X -+ Y has 
only ~-factorial terminal singularities (0.2.5), we may continue by replacing X 
with X'. We note p(X') = p(X) . 

Since p(X) is a natural number, (b) does not occur infinitely many times, 
and the following theorem of Shokurov shows that (c) does not repeat infinitely 
many times either. 

(0.2.7) Theorem (Shokurov [Sh]). To each algebraic 3-fold with only terminal 
singularities is associated a nonnegative integer d(X) called the difficulty, and 
one has d(X') < d(X) for X and X' as in (0.2.6(c)). 

Though the existence of flip is unknown if dim X ~ 4, the termination of 
flips (0.2.7) is generalized to 4-folds X by Kawamata, Matsuda, and Matsuki 
[KMMJ. 

These can be put together into the flow chart for 3-folds. 

(0.2.8) 

p(X) 
drops 
by 1 

X is a minimal model 

~"'-'--" X has Q-Fano fibering 

p(X) stays the same 
d(X) strictly drops 

We will show how the results in (0.1) follow from the Minimal Model Pro-
gram for 3-folds and state some more corollaries. 

(0.3) Results in (0.1) and further corollaries. The Minimal Model Program is 
thus completed for 3-folds and 

(0.3.1) Theorem. Every 3-fold has a minimal model or a model with a ~-Fano 
jibering. 
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We recall that a nonsingular projective variety X is of general type if the 
rational mapping associated to HO(X,&'(vKx )) is birational for some v> 0, 
and that a Q-Cartier divisor D is semiample if vD is a Cartier divisor such 
that &'(vD) is generated by global sections for some v> O. 

We quote several results. 

(0.3.2) Theorem (Kawamata [Kal, KMM] and Benveniste [Bl]). Let X be a 
nonsingular projective variety of general type which has a minimal model (say, 
Y). Then Ky is semiample, and hence X has a canonical model and the 
canonical ring of X is finitely generated. 

This implies (0.1.1), since [Ft] settles (0.1.1) when X is a 3-fold which is 
not of general type. We will explain (0.1.2). 

(0.3.3) Theorem (Miyaoka [Myl, My2, My3]). If a nonsingular projective 
3-/01d X has a minimal model, then HO(X, &'(vK x)) f:. 0 for some v> O. 

We note that the generalization of (0.3.3) to the case of dim X 2': 4 is un-
known. 

Thus if we start from a nonsingular projective 3-fold X such that 

° H (X,&'(vKx)) =0 forallv>O, 

then we never get a minimal model and hence we get a model X' with a Q-Fano 
fibering. Then we apply the following to get (0.1.2). 

(0.3.4) Theorem (Miyaoka and Mori [MM]). If f: X ~ Y is a Q-Fano fiber-
ing, then X is uniruled. 

Most of the above results in the absolute cases have been generalized to the 
relative case based on Kollar's vanishing theorem [Kol]. For instance, (0.3.2) is 
a special case of the following (0.3.5), which is also a special case of Kawamata's 
relative Base Point Free Theorem. 

(0.3.5) Theorem (Kawamata [KMM, Theorem 3-3-1]). Let f: X ~ S be a 
projective morphism with connected fibers from a variety X with only terminal 
singularities to a variety S. If a general fiber of f is a variety of general type 
and K x is f-nef, then K x is f-semiample. 

(0.3.6) Remark. In the above, a divisor D on X is f-nef if (D·C) 2': 0 for all 
irreducible curves C on X such that f( C) is a point, and it is f-semiample 
if the natural map f· f.&'(nD) ~ &'(nD) is surjective for sufficiently divisible 
n > O. 

Unlike the absolute case, there are sometimes only trivial minimal models in 
the relative case. 
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(0.3.7) Proposition. Let g: Z ~ X be a birational projective morphism of 
normal varieties such that K z is ~-Cartier and X has only ~-factorial terminal 
singularities. If g is not an isomorphism, then Kz is not g-nef 

(0.3.8) Remark. This is proved for smooth projective 3-folds X and Z in 
[Mr2, (3.40)], whose proof works for (0.3.7) modulo trivial changes. 

(0.3.9) The Minimal Model Program works equally well for 3-folds with 
~-factorial terminal singularities which are projective over a fixed irreducible re-
duced algebraic variety S as mentioned after (0.3.4) because (0.2.5) is proved 
in a more general form (0.4.1). We state a theorem which is an immediate 
corollary to the Minimal Model Program for 3-folds in the relative setting. 

(0.3.10) Theorem. Let f: X ~ S be a projective morphism from a 3-fold X 
with only ~-factorial terminal singularities to a variety S. Then via a com-
position of divisorial contractions and directed flips, X is S -birational to an 
S -projective 3-fold /: X' ~ S such that X' has only ~-factorial terminal 
singularities and satisfies one of the following. 

(a) KXI is /-neJ, or 
(b) X' has a surjective S -morphism to an S -projective variety Z ~ S such 

that dim Z < dim X, - K x' is relatively ample over Z, and the relative Picard 
number p(X'/Z) of X' over Z is 1. 

(0.3.10.1) Remark. In the important special case where f is a semistable pro-
jective morphism onto a smooth curve, we note (i) "minimal" models (maybe 
nonalgebraic) over S were constructed by Kulikov [Ku] and Persson and Pink-
ham [PP] if the general fibers of f are surfaces with K ~ 0 (the first break-
through in this direction) and by Morrison [Mrr 1] if the general fibers of fare 
surfaces with 2K ~ 0 and K f 0 (they did not use extremal rays), (ii) Tsunoda 
[Mn, T], Shokurov and Mori independently proved (0.3.10) if the general fibers 
of f are minimal surfaces, and (iii) Kawamata [Ka2] proved (0.3.10) with no 
assumptions on the general fibers. 

By virtue of (0.3.7), the following holds. 

(0.3.11) Theorem. Every birational projective morphism f: X ~ S between 
3-folds with only ~-factorial terminal singularities is a product of divisorial con-
tractions and directed flips. 

We note that (0.1.3) is only a special case of (0.3.11). 
By (0.3.5) quoted earlier, we obtain 

(0.3.12) Theorem. Let S be a 3-fold. Then there exist projective birational 
morphisms f: X ~ Sand .g: Y ~ S such that 

(i) X has only ~-factorial terminal singularities and K X is f-semiample, 
and 

(ii) Y has only canonical singularities, Ky is f-ample, and there is an S-
morphism h: X ~ Y such that Kx = h*Ky. 
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We note that such Y is unique while such X is unique only in codimension 
1, and we call X a CQ-Jactorial terminal modification and Y the canonical 
modification of S . 

These results have two kinds of rather technical generalizations. 

(0.3.13) Remark. When S is the germ (S, s) of an analytic space at a point s 
or a compact analytic space, the results corresponding to (0.3.10)-(0.3.12) hold 
by Nakayama [N] because (0.2.5) is proved in the analytic space case (0.4.1), 
where an analytic space Z over S is said to have only CQ-Jactorial singularities 
if every global Weil divisor on Z is CQ-Cartier. 

(0.3.14) Remark. By virtue of the definition of the extremal ray, the results 
in (0.2) extend to G-threefolds in Manin's sense [Ma] (hence to 3-folds over 
any field k of characteristic 0) as indicated by [Mr2, Chapter 2, §3]. Let us 
take a finite group G for simplicity. The results in (0.2) hold true if we inter-
pret varieties (resp. subvarieties, morphisms) as varieties with regular G-action 
(resp. G-stable subvarieties, G-equivariant morphisms). Here, GCQ-Jactoriality 
(the modified CQ-factoriality) means that all the G-stable Weil divisors are 
CQ-Cartier, and Gp(X) (the modified p(X)) denotes the rank of the G-invariant 
part of NS(X). This way, (0.3.1), (0.3.10), (0.3.11), and (0.3.12) hold true for 
G-threefolds. 

Let us refine (0.3.1) (cf. [I, Ma, and K03, (3.6)]), where pG3ft is an abbrevi-
ation of "projective G-threefold with only GCQ-factorial terminal singularities." 

(0.3.14.1) Theorem. Any pG3ft is G-birational to either 
(i) a pG3ft X with neJ Kx (G-minimal model), or 

(ii) a pG3ft X with a surjective G-morphism J to a normal projective 
G-variety Y with connected fibers such that Gp(X) = Gp(Y) + 1, -Kx 
is J-ample and dim Y < dim X (GCQ-Fano fibering). 

Let us explain what is done in this paper to prove (0.2.5). 

(0.4) What is to be done to prove the Flip Theorem. Let us modify (0.2.5) to a 
statement which is formulated in both algebraic and analytic contexts without 
CQ-factoriality. 

(0.4.1) Flip Theorem. Let J: X -+ Y be a proper birational morphism oj nor-
mal algebraic (resp. analytic) 3-Jolds such that X has only terminal singu-
larities, J contracts no divisors, and - K x is J-ample. Then there is a proper 
birational morphism I: X' -+ Y Jrom an algebraic (resp. analytic) 3-Jold X' 
with only terminal singularities such that I contracts no divisors and K x' is 
I-ample. 

We note that X' is unique and its existence is equivalent to the finite gener-
ation of EBn>of.&'(nKx) as an &'x-algebra. The birational map X ---t X' is 
isomorphic in codimension 1 and I (or X') is called the directed flip (or flip) 
of J. 
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(0.4.1.1) Remark. (i) The conclusion of (0.4.1) holds even if X has canonical 
singularities. This can be proved by the arguments as in [Ka2, K03], or by 
applying the Minimal Model Program over Y, which are both based on the 
original (0.4.1), and 

(ii) the two versions of (0.4.1), the algebraic (0.4.1 )alg and the analytic 
(0.4.1 )an' are equivalent as in [Ka2, Proposition 8.4]. It is based on the ra-
tionality of the singularities of Y and Shokurov's termination of directed flips 
(0.2.7). . 

(0.4.2) It is easy to see (0.4.1 )alg => (0.2.5), and (0.4.1 )an is to be proved. The 
advantage is the following: The fundamental set 1: on Y for f- I is discrete 
and we may set X' - ;-11: = Y - 1:. Thus the problem is local at each point 
of 1: and we may assume Y is a germ (y, y) at a point. For f: X --+ (y, y) 
as in (0.4.1), we call the germ X :J f- I (y ) red of an analytic 3-fold X along 
f-I(Y)red an extremal nbd (as in (1.1)). 

By treating irreducible components of f- I (y) one by one [Ka2, Proposition 
8.4], one can reduce (0.4.1 )an to 

(0.4.3) Lemma. (0.4.1) an holds if we assume further that Y is the germ (y, y) 
at a point y and f- I (y) is irreducible. 

We should mention that f- I (y) ::::: jp'1 above. This follows from the ratio-
nali ty of the singularity of (y, y) (1. 3) . 

Kawamata's approach [Ka2] to the directed flip is as follows: 

(0.4.4) Take a double cover V of X with branch locus DE 1- 2Kxl. If V 
has only canonical singularities then so does the double cover W of Y with 
branch locus f(D) and one can use finite generation of ffin>o&'w(nKy) [Ka2, 
Theorem 6.1 '] (a simpler proof is given in [K03]) to get finite generation of its 
IZ2-invariant part ffin~o &'y(nKy) = ffin~o f.&'x(nK x) . 

Thus [Ka2, Proposition 8.7] reduces (0.4.3) to the following. 

(0.4.5) Theorem. Let X :J C ::::: jp'1 be an extremal nbd. Then one of the 
following on the linear system 1- aK xl (a = 1 or 2) holds. 

(i) 1- Kxl has a member D with only rational double points, or 
(ii) 1- 2K xl has a member D so thatthe double cover Z of X with branch 

locus D has only canonical singularities. 

Kawamata [Ka2] proved (0.4.5) in the case of I-parameter semistable family 
of surfaces to prove the result mentioned in (0.3.10.1 (iii». 

It is (0.4.5) that is actually proved in this paper (Theorems (7.3) and (9.10), 
cf. also Appendix B). The main information we use for the extremal nbd X :J 
C ::::: jp'1 is 

(0.4.6) 
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These conditions are similar to those in [Mr2, §9] (cf. (1.2.1), § 10), and so are 
some of our arguments. 

The following is the smooth case of (0.4.5). We will illustrate our approach 
by proving (0.4.7) via (0.4.6). We should emphasize that we are interested in 
the arguments not the results. The results show that the smooth X is the blow-
up of a smooth 3-fold (y, Q) along a smooth curve (Z, Q) and C is the 
fiber over Q, which means that extremal nbds must have singular points (cf. 
§10). 

(0.4.7) Proposition. Let X ::> C ~ Wi be a smooth extremal nbd. Then &e(K x) 
2 

~ &d- I), Ie/Ie ~ &e EB&e(1), and 1- Kxl has a smooth member, where 
leis the ideal sheaf of C in X. 

(0.4.8) Proof. We see (K x . C) = -I from (K x . C) < 0 and HI (&e(K x)) = 0 
(0.4.6). By the standard exact sequence 

2 I O-Ie/Ie -Qx®&e-&(Kd- O, 
one has a natural isomorphism 

(0.4.8.1) 0'1: A2(Ie /I/) ~ &(Kx) ®&e(-Ke), 

and degIe/I/ = (Kx ' C) - degKe = I. By the exact sequence 
2 2 O-Ie/Ie ®&e(-I)-&x/Ie ®&x(Kx)-&e(-I)-O 

and (0.4.6), we see HI (Ie/ I/ ®&e(-I)) = O. Whence IefI/ ®&e(-I) ~ 
&e EB&e ( -I) since it has degree 1-2 = -I . Hence follows the second assertion. 
Let x E C. Let (D, x) be a smooth divisor in the germ (X, x) intersecting 
transversally with (C, x), then (D, x) extends to a divisor D' of X since 
X is the germ along the curve C. Then (D'. C) = 1 = (-Kx ' C). Hence 
D' E 1- Kxl since PicX 3 L 1--+ (L· C) E.!Z induces Pic X ~.!Z by (0.4.6) (cf. 
(0.1.3)). 0 

(0.4.9) The arguments for singular extremal nbds X ::> C ~ Wi are more elab-
orate. We will indicate how the arguments in (0.4.8) are modified to obtain 
results similar to (0.4.7). 

We start with easy definitions. 

(0.4.9.1) Definition. For a coherent sheaf !T, let gr~(!T) =!T ®&e/T , where 
T (c!T ® &e) is the maximal sub sheaf of finite length. The sheaf gr~(!T) 
satisfies !T ® &e ~ gr~(!T) EB T. For n > 0, let Ie (n) be the nth symbolic 
power of Ie which is determined by 

&x/ Ie (n) = (&x/ Ie n)/(maximal subsheaf of finite length). 

(0.4.10) Analogues of"wx ®&e ~ &e(-I)." Let us look at gr~w 

(= gr~(wx))' Let m be a positive integer such that mKx is a Cartier divisor. 
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Since 

induces an injection 

(0.4.10.1) Po: (gr~w)®m <----+ &e(mKx) (2.2), 

we see deggr~ w < 0 by (K x . C) < O. Thus we see one analogue 
o (0.4.10.2) grew~&e(-I) (2.3.2) 

by HI(WX ®&e) = 0 (0.4.6), and another 

(0.4.10.3) (Kx ' C) = -1 + L wp(O) (2.3.2) 
p 

by Po: &(-m) <----+ &e(mKx), where wp(O) = (lenpCokerPo)/m (2: 0) for 
P E C " In particular, we have 

(0.4.11.1) -1:S (Kx ' C) < 0 (cf. [B2, Theoreme 0]). 
2 0 0 (0.4.11) Analogues of "I e/ Ie ~ &EB&( 1) ." Let us look at gre I (= gre(Ie)) . 

(It is equal to gr~& = Ie/le(2) (2.2) in the text.) It is a locally free &e-module 
of rank 2. Instead of a I in (0.4.8.1), we have a natural injection 

2 0 0 (0.4.11.1) al: /\ greI<----+grew®&e(-Ke) ~&(1) (2.2.1). 

For P E C, let i p (l) = lenp Cokera l so that 

(0.4.11.2) deggr~I = 1- Lip(l) (2.3.2). 
p 

A local computation shows 

(0.4.11.3) Lemma (=(2.15)). IfP is a singular point of X then ip(I»O. 

Our proof for the existence of good members of 1- K x 1 or 1- 2K x 1 is based 
on two kinds of classifications of singularities of X ~ C, one local and the 
other global. 

Let us see several results without going into technical details. 

(0.4.12) Classification of germs (X, P) ~ (C, P). Using wp(O) and ip(l) 
and a similar invariant w; ( 1) , one can give a classification of (X, P) ~ (C, P) 
without too much trouble (it is done in §3 and (4.2), cf. Appendix A for results). 

Let P be a singular point on an extremal nbd X ~ C ~ jpll • We recall that 
the index of P is the smallest positive integer m such that mK x is Cartier 
at P. The index m is invariant under deformation and has a topological 
interpretation: 

lim 
+--

U: open nbd of P 

We say that P is ordinary (4.5) if (X, P) is an ordinary double point or a 
cyclic quotient terminal singularity. The classification has a simple but impor-
tant 
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(0.4.12.1) Corollary. An arbitrary singular point P of X ::J C has an open 
neighborhood U so that general deformations of the pair U::J C n U have only 
ordinary points. 

Any deformation of the pair U::J C n U can be extended to a deformation 
of the pair X::J C (§lb, §10). 

(0.4.12.2) Deformation Lemma. Arbitrary extremal nbds X::J C ~ WI deform 
to extremal nbds X' ::J C' with only ordinary points. 

To be rigorous, the lemma is wrong as it is: The deformation X' of X often 
contains finitely many compact curves other than C' but it is true that the germ 
X,o ::J C' of X' along C' is an extremal nbd. This is, however, a matter of 
technical details. 

(0.4.12.3) Remark. The strategy behind (0.4.12.2) is that, for certain problems 
on extremal nbds, it is enough to treat extremal nbds with only ordinary points. 
Though we cannot apply the strategy directly to the flip theorem, we can still 
apply it to various auxiliary problems (e.g. (0.4.13.1)). 

Here is an easy example to use in our introduction. 

(0.4.12.4) Example. Let Pm act on (xtt. ptt) = (C3 • 0) by 
a -I ,(x.y.z)=(,x., y.' z) ('Epm). 

where a is an integer prime to m such that 0 < a < m. Let d C xtt be the 
x-axis. Then (X.P) = (xtt.ptt)jPm::J (C.P) = (d.ptt)jPm is an example of 
an ordinary point of index m. 

We note that any ordinary (X. P) of index m> 1 is of the above form, but 
in general d is singular at ptt . 

The following are easy explicit computations. 
(i) &c ,P = C{xm} , 

(ii) gr~w = &c(xm-adx 1\ dy 1\ dz), 
&c(mK x) = &c(dx 1\ dy 1\ dzt near P, 

(iii) wp(O) = (m - a)jm, 
(iv) gr~I = &c(xm-ay) E9&c(xz) near P, and 
(v) ip (l) = 1. 

(0.4.13) Classification of extremal nbds X ::J C. This part is done in §6. Ar-
guments involving wp(O) , ip(l) and other higher order numerical invariants 
prove the following coarse classification of extremal nbds X ::J C (cf. Appendix 
B for the precise results). 

(0.4.13.1) Proposition. Let X::J C ~ WI be an extremal nbd. Then we have 
(i) X has at most one singular point with index 1 on C. 

(ii) X has at most two points with index> 1 on C, and 
(iii) if X has three singular points. one of them has index 2. 
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We present two arguments concerning (0.4.13.1). 

(0.4.13.2) Here, only to give the idea about our approach, let us prove that X 
has at most three singular points on C. The complex Icll / --+ &'xll/ --+ 

&'C --+ 0 induces an exact sequence 

° (2) 0--+ grcl --+ &'xfIc --+ &'c --+ o. 
Since HO(&'xl1c(2)) --+ HO(&,c) = <C is surjective, one has Hl(gr~I) = 0 by 
HI (&'xl Ie (2)) = 0 (0.4.6). Thus deggr~ 1 2': -2 and it is now immediate to see 
that X has at most three singular points on C by (0.4.11.2) and (0.4.11.3). 0 

(0.4.13.3) We sketch an easy topological proof of (ii) of (0.4.13.1). We will 
disprove the case of an extremal nbd X :J C :::; Wi with exactly three singular 
points P, Q, R, which are cyclic quotient singular points of indices a, b, C > 
1 . (The general case can be either reduced to this case by Deformation Lemma 
(0.4.12.2), or treated in a similar way using a certain nbd U for each P such 
that 7r I (U - P) :::; tz(index P) .) 

Here is a homotopical description of X - {P, Q, R}: In C - {P, Q, R} = 
S2 - {P, Q, R}, let P (resp. (J, r) be small loops around P (resp. Q, R) in 
S2. Embed p, (J, r into lens spaces in certain ways: p C S5 1 Pa ' (J C S5 1 Pb ' 
r C S5lpc . Then S2 - {P, Q, R}, S5 lpa , S5 IPb , S51pc glued together by 
p, (J, r become homotopically equivalent to X - {P, Q, R}. 

The (class of the) loop p need not generate 7r I (S5 1 Pa ). But the case 
7r 1(S5 Ipa ) =f. (p) (cf. (0.4.16)) can be reduced to the case 7r 1(S5 Ipa ) = (p) 
in an easy way (( 1.13) and (1.16)). Hence we may assume that 7r I (S5 1 P a) = 

5 (p), ... ,7r I (S IpJ = (r). Thus 

7r 1(X-{P,Q,R}):::;(p,(J,r)/{/=I, (Jb=l, r C =I, p(Jr=l} 

by Van Kampen's Theorem. This group is known to have a finite quotient group 
in which the image of p (resp. (J, r) is exactly of order a (resp. b, c). The 
associated covering space of X - {P, Q, R} is extended to a finite covering 
of X which is a smooth extremal nbd. This is impossible by the comment 
preceding (0.4.7). 0 

Based on these, our case-dependent arguments go as follows. 

(0.4.14) Local methods to find members E 1- K xl, 1 - 2K xl. This part is done 
in §7 and generalizes an argument in (0.4.8). For each P E C of index > 1 
(say m) of X, let D p be a local divisor defined by a local section of &' ( - K x) 
at P so that Dp n C = {P}. Then -K x - L-p Dp is a Cartier divisor and 

(0.4.14.1) I)Dp. C) == (-Kx . C) modulo tz. 
p 

If one can choose Dp's such that L-(Dp . C) :5 1, then L-(Dp . C) = (-K x· C) 
(0.4.10.4) and this shows that L-Dp E 1- Kxl. 
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Let us work on Example (0.4.12.4). 

(0.4.14.2) Local description. 

129 

(i) Let P be as in Example (0.4.12.4). Then &'( -Kx) near P is the invariant 
part of &'xu(dx 1\ dy 1\ dz)-I . Since (y - xa)/(dx 1\ dy 1\ dz) is Pm-invariant, 
it is a local section of &'(-Kx) and defines Dp = {y = xa}/pm. Then 

(Dp • C) = ~({y = xa}. (x-axis)) = ~ < 1. 

(ii) If P in (i) is the only point of X:J C with index> 1, then Dp E I-Kxl 
and Dp ~ (((:2, O)/pm with C(x, z) = (Cx, C l z). So Dp has a rational double 
point of type Am_I at P. 

(0.4.14.3) One can argue similarly with &,(-2Kx). These methods work when 
X has at most one point P with index > 2 on C. We should point out that 
the computation is needed only at P (note: -2Kx is Cartier on X - P) and 
it is similar to (0.4.14.2). 

(0.4.15) A global method to find members E 1- Kxl. This part is done in §9. 
In view of the classification (0.4.13.1) and the local methods (0.4.14.3), we only 
treat X :J C ~ Wi with exactly two singular points, which are of indices ~ 3 . 
In this case, an isomorphism 

o grcI ~&'E9&,(-I) 

is proved and the singularities of X :J C and the infinitesimal structure of X 
along C are further studied by the arguments (9.1 )-(9.8) which are similar to 
but more elaborate than (0.4.13.2). Let us concentrate on the ordinary case for 
simplicity. (The nonordinary case is treated similarly.) Here are the results. 

(0.4.15.1) Further classification. Let X :J C ~ Wi be an extremal nbd with 
two ordinary points of indices ~ 3. Then 

(i) X:J C at each ordinary point P is given by Example (0.4.12.4) for suit-
able a, and furthermore for suitable choices of coordinates in (0.4.12.4) 
at these points one has 

(ii) the (unique) direct summand 2' = &' c gr~ I ~ &' E9&'( -1) restricts to 
&'c(xz) c &'c(xm-ay) E9&'c(xz) at each P, and 

(iii) there is a direct summand L ~ &' ( -1) of gr~ I restricting to 
&'c(xm-ay) at each P. 

This might not sound strong enough to be called a classification. However, 
there is an explicit description of all the extremal nbds X :J C ~ Wi with two 
points of indices ~ 3 based on (0.4.15.1), which will be published elsewhere. 

We note that an explicit local description of this kind is the core of the 
i-structure introduced in §8. Out of this, one can pick up a homomorphism 
(J) x -+ gr~ I inducing an isomorphism gr~ (J) ~ L. Then we extend it to 
(J)x-+1c/1c(n) for all n>O in (9.9). 
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Let us illustrate the extension mechanism by arguing backward. From now 
on till the end of (0.4.15.5), the sheaves':? and L are chosen and fixed as in 
(0.4.15.1 ). 

(0.4.15.2) What is to be expected. Assume that a member D (:) C) of I-Kxl 
is the zero locus of a homomorphism w x -+ Ie extending w x -+ L c gr~ I 
above. Then, for suitable (formal) coordinates as in (0.4.15.1), D restricts to 
Dp = {y = O}IIJm near each P (an exercise using (0.4.15.1(iii))). This Dp 
has only rational double points as in (ii) of (0.4.14.2) and D is smooth outside 
the ordinary points. 

The Weil divisors nC of D (n > 0) are defined in X (not D) by ideals 
I n (c &'x)' For an ideal J c &'X ' we denote by FI J the kernel of the natural 
map J -+ gr~(J). We note that gr~(J) = JI FI J and FI J :) IeJ . 

By the construction, J2 is the ideal uniquely determined by Ie:) J2 :) Ie (2) 

and J21 Ie (2) = L c gr~ I , and the ideals 
J2 :) J3 :) ... :) I n :) ... 

enjoy the following properties (n ~ 2). 
(a)n gr~(Jn) = Jnl FI I n is a locally free &'e-module of rank 2, 
(b)n the inclusion I n C J2 induces a natural surjection 

o 0 An: gre(Jn) - L (c gre I) 
(An corresponds to Q n in (9.9.6)) fitting in the exact sequence 

En: 0 -+ Ker An -+ gr~(Jn) ~ L -+ 0, 

(c)n+1 I n :) I n+1 :) FI I n ' and I n+) FI I n is an invertible subsheaf Ln of 
gr~(Jn) giving a splitting of En' 

Remark. We note that degKerAn ~ 0 by (a)n' (b)n' (c)v (v ~ n). Indeed 
I n :) Ie n by (c)v's, and the multiplication ~!l(Ie) -+ I n induces a homomor-
phism Sn(gr~ I) -+ gr~(Jn) and an injection &' ~ ,:?n <---t KerAn (0.4.15.1). In 
particular, deg Ker An > degL = -1 hence En is split. 

Here is an explicit description at each ordinary point P. 

(0.4.15.3) Local description. There is a (formal) coordinate system (x, y, z) as 
in (0.4.15.1) with the following for all n: 

(d)n In is the invariant part of (y, zn) at P, and 
(e)n gr~(Jn) = &,dxm-aY)EB&'e(xn-m[n/ml zn) at P ,and An is the projection 

to the first factor L = &'e(xm-ay). 
We note that (e)n follows from (d)n easily. 

(0.4.15.4) The extension step. Now without D, we inductively construct In's 
from J2 with the properties (a)n' ... ,(d)n' If Jv with the properties (at, ... , 
(d)v are chosen (v ~ n) , then KerAn ~ 0 and En is split by the remark in 
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(0.4.15-2). Let ~ c gr~(Jn) be an arbitrary splitting sub module for En' and 
I n+ I as in (c) n+ I' Then (a) n+ I and (b) n+ I are satisfied. Hence to satisfy 
(d)n+l' we will choose a proper Ln using degKerAn ~ 0 above. 

(0.4.15.5) Local description. Let us illustrate this using the coordinates in 
(0.4.15.1). Let n ~ 2. Assume that (d)n holds. ((d)2 follows from (iii) 
of (0.4.15.1).) Via (e)n' we have 

Ln = &'e(xm- a y + cxn-m[n/m1 zn) near P 

for some c E <c{xm}. For (d)n+1 to hold, c has to satisfy certain conditions. 
Let us illustrate it when n == 0 (m) by treating the cases c = O. 1 to avoid 
inessential coordinate changes. 

Case c = O. One has Ln = &'e(xm- a . y) and I n+1 is the invariant part of 
(y. zn+l) = (y) + (y. z)(y. zn). 

Case c = 1 . One has Ln = &'e(xm- a y + zn) and In+1 is the invariant part 
of (i. yz. zn+1 .xm-ay + zn) = (xm-ay + zn) + (y. z)(y. zn). 

Thus (d)n+1 does not hold in the case c = 1 when n == 0 (m), and the 
choice of ~ should not be arbitrary. In general, one can see that (d)n+1 is 
satisfied if c(O) = O. Hence we can choose an ~ satisfying the two conditions 
(there are two points) because ~ depends on two parameters by degKerAn > 
degL=-I. 

Though we use these In's to compute the general sections of Wx * ® lei Ie (n) 
for n » 0 in (9.9.6)-(9.9.13), it is intuitively clearer to say that the good 
member D of 1- Kxl can be recovered (cf. (0.4.15.2)) as the formal Weil 
divisor ~ Cn of the completion X~ of X along C, where Cn is the closed 
subscheme defined by I n • 

(0.4.16) Comment on imprimitive points. A point P on an extremal nbd X :J 
C ::: Wi is imprimitive (1.7) if 

~ 1t 1(U n C - P)::: ~ -+ ~ 1t 1(U - P)::: ~/(index P) 

(cf. (0.4.12)) is not surjective. 
If X :J C ::: Wi has an imprimitive point P, then X:J C has a finite cover 

X' :J C' which is an extremal nbd primitive everywhere along any irreducible 
component of C' (C' is reducible). Therefore we may work on X' instead of 
X. Nevertheless we treat imprimitive points as extra cases and classify them. 
It is not just because we want to classify them. Our proof of the flip theorem 
needs them. Indeed if we do not flip the imprimitive X directly, we have to 
flip several curves on X' instead, since C' above is reducible. If the 3-fold 
picks up an imprimitive point after one flip, then one has to go up to a finite 
cover of the flipped 3-fold. Therefore, we need to disprove the possibility: 

(0.4.16.1) One has to go up to covers for infinitely many times and hence the 
processes do not stop. 
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The impossibility of (0.4.16.1) is not obvious to us. We can settle it, but our 
proof even uses the flip theorem. 

(0.4.17) The descriptions of the sections. Since §§6, 7, and 9 are described in 
(0.4.13), (0.4.14), and (0.4.15), let us now describe other sections. §I gives 
basic definitions and the corollaries to the vanishing (0.4.6). §.Ia reviews the 
necessary material on terminal singularities. The terminal lemma (la.6) in it 
is used all over in this paper and is the key in the number matching calcula-
tion mentioned above. § 1 b gives us some tools to deform extremal nbds (cf. 
(0.4.12.2)), and it says that being an extremal nbd is an open condition. §§2 
and 8 prepare basic formulas (cf. (0.4.10) and (0.4.11)) and terminology (e.g. 
I-structures mentioned in (0.4.15.1)), and §2 gives formulas covering all the 
cases while §8 gives carefully tuned formulas covering only the delicate case. 
§§3 and 4 classify the local structure of X J C at a singular point x of X into 
several cases (cf. (0.4.12) and Appendix A), and §5 gives practical formulas to 
work with in §§6 and 9. § 10 states a slight generalization of our main theorem 
(0.4.5) together with a short explanation and it also makes comments on (la.7). 

We put a diagram indicating logical dependence among sections: 
1 - la - Ib 

"" "" 2- 3 -

"" 8 
where X - ... - Y means that §Y depends on some results in §X. For instance, 
it does not mean that the results in § 1 b are quoted only in §4; they are also 
quoted in §9. 
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Conventions. A variety (or an algebraic variety) means an irreducible reduced 
separated scheme of finite type over C , the field of complex numbers. A curve in 
a variety means a I-dimensional closed subscheme. An analytic space is meant 
to be Hausdorff and have countable open bases. The word "bimeromorphic" is 
used interchangeably with "birational" by abuse of language. 

"Complex" and" O-sequence" are used interchangeably. 
The set of rational numbers is denoted by ~; the set of real numbers is 

denoted by ~; the set of integers is denoted by ;z,; the set of nonnegative 
integers {z E ;z, I z ~ O} is denoted by ;z,+; and the set of positive integers 
{z E ;z, I z> O} is denoted by ;z,++ and it is equal to H which denotes the set 
of natural numbers. 

For r E 3., [r] denotes the integer d such that d ~ r < d + I ,and r r 1 the 
integer u such that u - 1 < r ~ u. For i, j E ~, tJ;.j denotes Kronecker's tJ, 
i.e. 

tJ _ {I if i = j , 
;.j - 0 if i :f:. j . 

For mE fJ, we set ;z,m = ;z,/m;z, and I'm = {z E::: I zm = I}. 

List of notation and terminology. This list can be found at the end of the paper. 

1. PRELIMINARIES AND BASIC DEFINITIONS 

The main purpose of this section is to recall some known results and make 
basic definitions together with auxiliary results. 

(1.0) Definition (Reid [RI]). Let (X, P) be a germ of a normal analytic (or 
algebraic) variety. Let f: Y - (X, P) be a resolution, i.e. a proper bimeromor-
phic morphism from a complex manifold Y. We say that the singularity (X. P) 
is rational if R; f.&y = 0 for all i> 0 and all resolutions f: Y - (X, P). We 
say that (X, P) is a canonical (resp. terminal) singularity if 

(i) there is an integer r> 0 such that rK x is a Cartier divisor (the smallest 
such r is called the index of (X. P) ), and 

(ii) let f: Y - (X, P) be an arbitrary resolution, and let E1 , ••• ,En be 
all the exceptional divisors. Then one has rKy = j(rKx) + L-;a;E; 
with all a; ~ 0 (resp. a; > 0 ). 

Let us introduce the notion of an extremal nbd which we will study through-
out this paper. 

(1.1) Let X be an analytic 3-fold with at most terminal singularities and 
C C X a reduced connected curve, and we consider the germ of X along 
C. We say that X ::J C is an extremal nbd if there is a proper bimeromorphic 
morphism f: X - (y, Q) so that f.&'x = &'Y' f- 1 (Q) = C (as sets), fl x-c 
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is an isomorphism, and -K x is f-ample. We call f: X --4 (y, Q) the total con-
traction. (In case of reducible C, f contracts all the components of C , which 
is why we put the adjective "total.") We note that X is the blow-up of (y, Q) 
by a divisorial ideal f.&(-mKx) ~ ;r'an(w~m .&y) for sufficiently divisible 
mEN, because X --4 Y is an isomorphism in codimension 1. Since (y, Q) 
is an isolated singularity, it is algebraic by Artin [A2], hence so is f: X --4 Y. 
We note that our notion of total contraction of extremal nbd coincides with 
Kawamata's flipping singularity [Ka2, §8]. We quote his result [Ka2, §8] with 
the Grauert-Riemenshneider vanishing theorem [GR]. 

(1.2) Theorem. Rif.&x=Rif.wX=O U>O). 

(1.2.1) Remark. For an arbitrary ideal J such that Supp &x fJ C C , one sees 
1 1 1 H (&x/J) = H (wx/Jwx ) = H ((wx /Jwx )/.9Or) = 0 

by (1.2) because fibers of f have dimension :::; 1 , where .9Or denotes the largest 
submodule of wxfJwx of finite length. 

The following two corollaries are in [BS, §8, Ka2, §3]. We give the proofs for 
the readers' convenience. 

(1.3) Corollary. (i) C is a union of jp'I,S. whose configuration is a tree. 
(ii) If C is a union of r jp'I,S (r ~ 1), then 

Pic X ~ H 2(C, 7!.,) ~ 7!.,(fJr. 

Since (1.3(ii)) is used in this paper only to compare a finite number of divisors 
at a time, we simply shrink X ::) C if needed and we need not worry about the 
inductive limit. 

Proof. (i) follows from the exact sequence Rlf.&X --4 Hl(C.&d --4 O. From 
(1.2) and the exact sequence 

o --4 7!., X --4 &x --4 &x * --4 1. 

we have PicX ~ R2 f.7!.,x ~ H 2(C, 7!.,c) ~ 7!.,(fJr, since X is a germ along C 
[Go, Theoreme 4.11.1]. 0 

( 1.4) Corollary. If L is an invertible sheaf on X such that (L· C;) ~ 0 for all 
irreducible components Ci . then j f.L - Land Rl f.L = O. 

Proof. For each i, choose Pi E Ci so that Pi ¢ Cj for all j =f. i, and a 
Cartier divisor Hi of X such that Hi' Ci = Pi and Hi n Cj = 0 for all 
j =f. i (note that X is a germ along curve C). Then L ~ &('Ei(L. Ci)H;) by 
(1.3). By choosing different P;'s, one obtains a surjection &x (fJ2 - L and hence 
j f.L - L. Since dimf- 1 (Q) = 1, one has 0 = Rl f.&x (fJ2 _ Rl f.L. 0 

(1.5) Corollary. If C' is a curve contained in C, then the germ of X along C' 
is an extremal nbd. 
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Proof. Under the notation of proof of (1.4), the morphism associated to the 
base-point-free linear system I EiEI Hil contracts components of C' only, 
where I = {i E I I Ci ¢. C'} . 0 

We want to study the subgroup of the divisor class group CI X consisting of 
Weil divisor classes D which are CQ-Cartier (i.e. nD is Cartier for some n EN). 
We call this the semi-Cartier divisor class group and denote it by ClsC X . Then 
we quote 

(1.6) Proposition (Reid, Ue [Ka2, Lemma 5.1]). If (V, P) is a 3-fold terminal 
singularity of index m, then Clsc(V, P) :::= 7J.,/(m) and it is generated by the 
class [wv ] of W v . 

We note that (1.6) implies that if P is a terminal singular point of index 
m of an algebraic (or even formal) 3-fold V then 7J.,/(m)[wv ] is equal to the 
torsion part of CI &' v ,P • 

(1.7) Corollary-Definition. Under the notation and assumptions of (1.6), let 
(W, P) be a smooth curve c (V, P). Then 

(i) for an arbitrary e E CIsc(V, P), there exists an effective divisor D (3 P) 
such that [D] = e and D n W = {P}. 

(ii) e 1-+ (mD . C)/m induces a well-defined homomorphism 

cl(W, P): CIsc(V, P) -+ ~7J.,/7J., c CQ/7J.,. 

We say that V:::> W is locally primitive at P (and P is a primitive point) if 
cl(W, P) is an isomorphism and that an extremal nbd X :::> C :::= jp'1 is locally 
primitive if it is so at each point of C A point PEW is called imprimitive if 
V :::> W is not primitive at P, and 

(iii) let 
n: (Vu,pu) -+ (V,P) 

be the canonical cover (cf. [R2]) and W U = n -I (W)red. Then W U has exactly 
IKer cl( W , P) I irreducible components. In particular, V:::> W is locally primitive 
iff W U is irreducible. We call IKercl(W, P)I (resp. m/IKercl(W, P)I) the 
splitting degree (resp. subindex) of V :::> W at P (or simply of P) . 

Proof. Let I c &'v,p be a divisorial ideal representing -e. Let ¢ be an 
element of Kt:YR(I '&'v) which does not vanish along any irreducible components 
of (W, P). Then the divisor D defined by ¢I satisfies the conditions in (i). 
Let D be an effective Weil divisor with class [w v ] such that D n W = {P} 
as in (i). Let ¢ E &'v,p be such that (¢) = mD and n = (mD· W). Then 
¢I w = tn for some coordinate t of (W, P), and IKercl(W, P)I = (m, n). 
One sees that &'wu,pu :::> &'w,p[z]/(zm - ¢I w) = C{t}[z]/(zm - tn ) is birational 
because VU -+ {( v . z) E V x C I zm = ¢} is isomorphic above general points of 
W. Thus WU has (m. n) irreducible components. 0 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



136 SHIGEFUMI MORI 

(1.8) Let X ~ C ~ jp'! be an extremal nbd. Let H be an effective Cartier 
divisor on X such that (H· C) = 1 and H n C is a smooth point of X. Let 
p!' ...• Pn E C be all the points of X of indices> 1 (say, m! . ...• m n) and 
D! . .... Dn effective ~-Cartier divisors such that D j n C = {P) and [Dj] is 
a generator of CIsc(X. Pj) for all i (1.7). Then these imply that the following 
natural O-sequence is an exact sequence 
(1.8.1) 0 --+ Pic X --+ CIsc X --+ EB CIsc(X. Pj) --+ O. 

and one has 

(1.9) Corollary. CIsc(X) is generated by [Dd ..... [Dn] and [HJ, and 
mj[Dj] - (mpj' C)[H] = 0 (1:::; i:::; n) are the generating relations. and 

(1.10) Corollary. Under the notation and assumptions of (1.8). the following 
are equivalent. 

(i) (D· C) = 11m! ... mn for some DE CIsC(X). 
(ii) CIsc(X) ~ Z::. 

(iii) CIsc(X) is torsion-free. 
(iv) X ~ C is locally primitive (i.e. (m j . (mpj . C)) = 1 for all i) and 

(m j . m) = 1 for all i and j such that i =f. j. 

Proof of (1.10). By [CIsc(X): Pic X] = m 1 ... m n , (i) implies (ii), and (ii) => 
(iii) is obvious. It remains to prove (iii) => (iv) and (iv) => (i). By (1.9), it is 
clear that (m j . (mpj . C)) = 1 for all i if CIsc(X) is torsion-free. Thus we 
may assume (m j . (mjDj . C)) = 1 for all i, to prove (iii) => (iv) and (iv) => (i). 
Let k j • nj E Z:: be such that mjkj + (mpj . C)nj = 1 . Then t5j = nj[Dj] + kj[H] 
(i E [1, n)) and [H) form a set of generators of CIsc(X) such that mA = [H), 
whence we see that the generating relations are ma t5a =. [H) (1 :::; a :::; n). 
Then (iii) => (iv) is obvious by mA = mij' If m 1 , ... ,mn are pairwise 
prime, then na = TIj;o!a mj (a E [1, n)) generate the unit ideal Z:: and hence 
(TI m j)t5a = naHa (a E [1, n)) generate Pic X , whence (iv) => (i). 0 

(1.11) Proposition-Definition. Let X be a normal analytic space, D a Weil 
divisor and dEN such that dD is a principal divisor (</J) for some meromorphic 
function </J on X. Let n: X' --+ X be the normalization of &'x[z]/(zd - </J) on 
X. which is a finite Galois I'd-morphism. We call it the I'[cover associated to 
[D. </J] and denote it by n[D, d, </J]: X[D. d. </J] --+ X (we may use the divisor 
class of D instead of D and may omit </J in the expression if there is no danger 
of confusion). One has 

(i) n[DI u' d .11'1 v] = n[D. d .11'] x x U for open sets U of X . 
(ii) the pull back of D by the finite morphism n[D. d) is the principal divisor 

(z) , 
(iii) if X is connected and if the exponential map t ..... e t induces a surjection 

exp: HO (&'x) - HO (&' x·), then the number of connected components of 
X[D. d) is exactly dl( order of [D) in CI X) • and 
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(iv) the morphism n[D, d] is etale in codim 1. Furthermore, the ramifica-
tion index of n[D ,d] at points above P E X is the order of the class 
(D, P) E Cl(X, P) induced by D. 

Proof. (i) and (ii) are obvious. For (iii), let n be the order of [D] in Cl X and 
c be the number of connected components of X[D, d]. By the hypothesis, the 
dlnth root of </> is a meromorphic function on X because nD is a principal 
divisor. Hence zd - </> has at least din prime factors, and it is clear that c ~ 
din. Let Y be a connected component of X[D, d]. Then Y -+ X is a Galois 
"'d/e-morphism and the norm Ny/x(z) of Z for YIX satisfies (Ny/x(z)) = 
(dlc)D, whence die ~ n. Thus c = din and (iii) is done. (iv) follows from 
(iii) applied to a small contractible nbd of P. 0 

(1.12) Corollary. Let X :J C be an extremal nbd, f: X -+ (y, Q) the to-
tal contraction, and D E Cl X be of order d. Then XU = X[D, d] :J d = 
n[D, d]-I (C\ed is an extremal nbd and I: X[D, d] -+ (yU, QU) = Y[f.D, d] 
is the total contraction. Using the notation of (1.8), we consider nU = n[D ,d]: 
XU -+ X in two special cases when C ~ jp'1 (cf (1.10)). 

(1.12.1) Case d = (rna' (maDa . C)) > 1 for some a E [1, n] and D = 
(maDa - (maDa' C)H)ld. In this case, Pa is an imprimitive point of splitting 
degree d, subindex m = maid, nU is etale over X - {Pa}, nU-I(Pa) is one 
point P: of index m, d is a union of d jp'1,S meeting only at P:, and each 
irreducible component is locally primitive at P: . In this case, we call the extremal 
nbd XU :J d the splitting cover of X :J C associated to Pa , and 

(1.12.2) Case X:J C is locally primitive, d = (rna' mb) > 1 for some distinct 
a,b E [1, n], and D = aDa + PDb + yH, where a, p, y E ~ satisfy (a, rna) = 
maid and (P, mb) = mbld (cf proof of (1.10), (iii) ~ (iv)). In this case, nU 
is eta Ie over X-{Pa,Pb}, nU-I(Pa) (resp. nU-I(pb)) is one point P: (resp. 
pt) of index maid (resp. mbld ) , and d ~ jp'1 • 

(1.12.3) Remark. In (1.12), it is easy to see that one can choose D and d as 
in (1.12.1) or (1.12.2) if Clsc(X) has a nonzero torsion (cf. (1.10)). 

Proof. We note that exp: HO(&x) = HO(&y) -+ HO(&/) = HO(&/) is surjec-
tive since (y, Q) is a germ. Since D and f.D are of order d, XU and y U 
are connected by (1.11(iii)), whence there is only one point QU E y U over Q. 
By construction, I is bimeromorphic and etale over y U - {QU} , whence I is 
isomorphic outside d = I-I (QU). Since (yU, QU) is normal, d is connected 
(ZMT). Since nU is etale in codimension 1, one sees nU* K x = K xu , whence 
XU :J CU is an extremal nbd and I is the total contraction. 

In (1.12.1), D is Cartier outside {Pa }, and of order d at Pa • Thus 
(1.11 (iv)) implies the first part and n I (C - Pa ) = 0 implies the second part. The 
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last assertion follows because (X#. P~) and (X. Pa) have isomorphic canonical 
covers. 

In (1.12.2), the proof is the same except for the assertion d::= Wi . If d is 
reducible, then each irreducible component meets some component at Pa and 
some others at Ph' because 1l# is Galois. Then d contains a cycle of Wi 's, 
whence HI(&ca) '" 0, which contradicts (1.3(i)). Thus d::= Wi (1.3(i)). 0 

(1.13) Corollary. Let X :::J C ::= Wi be an extremal nbd. Then X :::J C does not 
have more than one imprimitive point. If it has an imprimitive point p. then 
the splitting cover X# :::J d of X :::J C associated to P is locally primitive along 
an arbitrary irreducible component of d . 
Proof. Assume that X :::J C has two imprimitive points P, P' (P '" P') with 
splitting degrees d, d' (> 1), respectively. Let D (resp. D') be the divisor 
as given in (1.12.1) for P (resp. P'). Let X# :::J d (resp. x P :::J d) be the 
extremal nbd obtained from D (resp. D') as in (1.12). Let 1l# = 1l[D. d]: X# -+ 

X . Since D' has order d' globally and also at p', 1l#* D' has order d' on X# 
because 1lU is etale over X - {P} (1.12.1). Hence xt = XU [1lU* D'. d'] = XU x x 
xP :::J C t = d x x d is an extremal nbd. By (1.12.1), C t is a Galois lid x lid/-

cover of Wi with dd' irreducible components such that each component meets 
d - 1 (resp. d' - 1) other components at every point above P (resp. P'). 
Thus C t contains a cycle of Wi,S and HI(&ct) '" 0, which contradicts (1.3(i)). 
Hence X :::J C. has at most 1 imprimitive point, and the last assertion follows 
from (1.12.1). 0 

Let X :::J C be an extremal nbd and D (c C) an arbitrary reduced curve. 
Let gr~ w be Wx ® &D modulo the maximal subsheaf of finite length (which 
is compatible with the definition in (2.2)). 

(1.14) Proposition. Let X :::J C be an extremal nbd. Then 
(i) gr~ w::= &D(-I) for each irreducible component D (::= Wi) of C, and 

(ii) if C (1) ..... C (r) are the irreducible components of C , then 
o ffi 0 grc w::= W grq ;) w. 

19~r 

Proof. (i) Let mEN be such that mKx is a Cartier divisor. Then w~m -+ 

&(mKx) ® &D induces (wx ® &D/i!Jm -+ (gr~ w)®m <--+ &D(mKX)' Thus 
010 deggrD w < 0 by (Kx ' D) < O. On the other hand, one has H (grD w) = 0 by 

o (1.2.1), whence grD w::= &D(-I). 
(ii) By construction, we have an injection 

o ffi 0 grc w -+ W grq ;) w 
I~;~r 
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whose cokernel F is of finite length. Since HI (gr~ w) = 0 (1.2.1), we have 
o ~ x(gr~ w) = -length(F) by (i). Thus F = O. 0 

By (1. 14(ii)), we have 

(1.15) Corollary. Let X ~ C be an extremal nbd such that two irreducible 
components of C meet at P. Then P has index > 1 . 

(1.16) Corollary. Let X ~ C ::::::]lDI be an extremal nbd and P an imprimitive 
point. Then P has subindex > 1 . 

Indeed, we immediately see (1.16) by applying (1.15) to the splitting cover 
of X ~ C associated to P. 

la (ApPENDIX la). RESULTS ON 3-FOLD TERMINAL SINGULARITIES 

In Appendix 1 a, we list only some of the necessary results and definitions on 
3-fold terminal singularities for convenience of quotation. We refer the reader 
to [Mr3], or [R4] for more polished treatments. 

We start by quoting a general 

(la.l) Theorem ([Fl, E12, SBD. Canonical (hence terminal) singularities are 
rational in all dimensions. 

Let (X, P) be a 3-fold terminal singularity of index m ~ 1, and let 
nU: (XU, pU) -> (X, P) be the canonical cover, which is a Galois Pm -cover. 
Then (XU ,pU) is a 3-fold terminal singularity of index 1 [Rl, (3.1)], and the 
Pm-action on XU - {pU} is free because the singularity of (X, P) is isolated. 
We will fix the meaning of these symbols. 

The essential result is 

(la.2) Definition-Theorem (Reid [RID. A 3-fold hypersurface singularity 
(Y, Q) is a cDV point if a general hyperplane section H through Q has at 
most a rational double point at Q. Depending on the type of H, (y, Q) is said 
to be of type cA, cD, or cE. Then 

(i) the canonical cover (Xu, pU) introduced above is an isolated cDV point. 
Depending on the type of (yU, pU), (X, P) is said to be of type cA, 
cD , or cE, and 

(ii) a cDV point (y, Q) is a canonical singularity, and ifit is isolated then 
it is a terminal singularity. 

We note that (X, P) is of cA type iff (XU, pU) is smooth (cAo type) or the 
quadratic part of the defining equation of the normal hypersurface singularity 
(XU, pU) has rank ~ 2 as a quadratic form. 

From now on we assume that m > I. Then the Pm-action on (XU, pU) is 
to be analyzed. We fix a character X generating X(Pm) = Hom(Pm, C*) = Zm . 
For a Pm-semi-invariant v, we write as wt v == a (mod m) if g(v) = X(gt . v 
for all g E Pm' For a sequence of semi-invariants v = (VI' .•. ,vr ), we write as 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



140 SHIGEFUMI MORI 

wt v == (aI' ... ,a,) (mod m) if wt vi == ai (mod m) for all i. (We note that 
X will be chosen to be an i-character (2.5) in the text.) 

The combinatorially hardest cAo-singularity is analyzed by 

(la.3) Theorem (Danilov [Da], Morrison and Stevens [MS]). If (X:, P:) is 
smooth, it is I'm -isomorphic to (x-space, 0) such that 

wtx == (a, b, - a) (modm) 

for some a, b E ;z, prime to m. Conversely (x-space, 0)/ I'm for every such 
action is terminal. 

Other cases are combinatorially easier, though one has to take the defining 
equation into account. 

(la.4) .Theorem ([Mr3, Theorems 12,23,25]). If (X:,p:) is singular, it is 
I'm-isomorphic to a hypersurface ¢ = 0 in (x-space, 0) such that 

(i) wt(x,¢) == (a,b, -a,O,O) (modm) , or 
(ii) m = 4, and wt(x,¢) == (a,b, - a,2,2) (modm) for some a,b E;z, 

prime to m. 

We introduce the following notion to give a unified treatment of these three 
cases in (la.3) and (la.4). 

(la.5) Definition-Corollary. Let us consider I'm-equivariant embeddings 

ex: (X:, P=) ...::... {¢ = O} c (x-space, 0) = C::, 0) 

such that x = (Xl' •.• ,x4 ) and ¢ are I'm-semi-invariants and wtxi == 0 
(mod m) for some i if (X=, P=) is smooth. We call such x an i-coordinate 
system and ¢ E :::{x} an i-equation of (X, P). For an i-coordinate system 
x, we call the set of points in :::! at which the I'm -action is not free the fixed 
axis and denote it by Fx. Then 

(i) given an i-coordinate system x, Fx is the xi-axis for some i. Thus 
the name of fixed axis is justified, and 

(ii) given two i-coordinate systems x and y, there exists a I'm -isomorphism 

Cx,y: (:::;,0)"'::'" (::::,0) 

such that c x ,y 0 e y = ex and hence c x) Fy) = Fx. Thus the fixed axis 
may be denoted simply by F without causing confusion, whence 

(iii) given an i-coordinate system x and an i-equation ¢, the multiplicity 
of 0 in the equation ¢I F = 0 makes sense and is independent of choice 
of x and ¢. We call it the axial mUltiplicity of (X, P) . 

We note that this axial multiplicity coincides with Morrison's weight [Mrr2] 
when the singularity is not "exceptional," that is if we are not in case (la.4(ii)). 
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Proof. Indeed (i) follows from (la.3) and (la.4) because there exists exactly one 
i such that wtxi is not prime to m, and (iii) immediately follows from (i) and 
(ii). Let x and y be two i-coordinate systems. Then modulo permutation of 
y;'s, we may assume that wtx == wt y (mod m) and that wtx4 == wt Y4 == 0 
(mod m) if (X~, pU) is smooth. We treat two cases for (ii). 

(la.5.1) Case (X', pt) is smooth. We see by (la.3) that &x: .p: = :::{x'} = 
C{YI 'Y2' Y3}' and there exist semi-invariant functions f = U;,···, h,) E 
::2{x'} such that J;(x')+6i .4X4 = Yi , where x' = (x l ,x2,x3), and 6a .b is 
Kronecker's delta. Then we set c r x(x) = f(x') + (0,0,0, x 4 ). Since wt h, == 0 
(mod m) and (wtxi , m) = I fo~ ~ll i E [1,3], we see h, E (x')2 by m> I. 
Since au; ,J;,J;)/ax'(O):f:. 0, we see that cJ"x is a JIm-isomorphism. 

(la.5.2) Case (X= ,P~) is singular. Both x and yare minimal sets of generators 
of the maximal ideal of &x: .p: . Thus there exist semi-invariant functions f = 
U;, ... ,h,) E ::2{x} such that J;(x) = Yi in &x:.p:' Then detaf/ax(O):f:. 0, 
and we set cy.x(x) = f(x). It is clear that this is a 
JIm-isomorphism. 0 

By (la.3) and [Mr3, Theorems 12,23, 25], we have 

(la.6) Theorem. Let x and ¢ be an i-coordinate system and an i-equation 
of (X, P). Then modulo permutation of x;'s we may assume that 

(*) (wtxi,m) = I (iE[1,3]), wtx IX3 ==0, wt¢==wtx4 (m), 

and we have two cases: (i) wt¢ == 0 (m), or (ii) m = 4 and wt¢ == 2 (4). 
Assuming ¢ E (X)2, we have one of the following. 

(i) Case wt¢ == 0 (m). 
(i.a) P is a cA-point, and up to JIm-change of i-coordinate system and mul-

tiplication of ¢ by invariant units, we have 

¢ = XI X3 + f(x2 m, x4 ). 

(i.b) m=3, P isacD-point, wtx==±(I,I,2,0) (mod 3) modulopermu-
tation, and x/ and x/ must appear in ¢ (i.e. a 2¢/ax/(0):f:. 0 and 
a 3¢/ax/(0):f:. 0). 

(i.c) m = 2, P is a cA, cD, or cE6-point, wtx == (1, 1, 1, 0) (mod 2) (cf 
[Mr3, Theorems 23, 25] for details) . 

(ii) Case m = 4 and wt¢ == 2 (4). P is a cA-point, wtx == ±(I, 1,3,2) 
(mod 4) modulo permutation of x;'s, and then x/ must appear in ¢ 
(i.e. a 2¢/ax/(0):f:. 0). 

We note that (la.6) is only a necessary condition. Sufficient conditions are 
found in [Mr3, Remarks 12.1,23.1,25.1] and [KSB]. We Quote only what we 
need (cf. (10.7)-(10.9)). 
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(la.7) Theorem. Let Pm act diagonally on x-space with x = (XI' ••• ,x4) and 
ifJ E (X)2 a pm-semi-invariant so that (wtx i , m) = 1 for i E [1,3] and wtx4 == 
wtifJ(m). Let (X,P) = ({ifJ = O},O)/pm· Then 

(i) ([KSB, (6.7)], cf. also (10.7) - (10.9)) if wtx4 == ° (m) and the 
quadratic part g of ifJ(x l , X 2 ' X 3 ' 0) has rank ~ 2 as a quadratic form 
and if (X, P) has an isolated singularity, then (X, P) is terminal and 
of index m, and 

(ii) ([Mr3, Remark 12.1]) if m = 4 and wt(x, ifJ) == ±(1, 1,3,2,2) mod 4 
and if ifJ = X I X 2 + X3 2 + X42n+1 (n E N), then (X, P) is a terminal 
singularity of index 4 as in (la.6(ii)). 

Idea of proof. Since (ii) is stated in [Mr3, Remark 12.11], we only comment on 
how to reduce (i) to a result in [KSB, (6.7)]. 

Firs! we show, modulo permutation of XI' x 2 ' and X3 and Pm -change of 
x l x 2x 3-space, g(xi ,x2 ,0,0) = X I X 2 in two cases. 

Case 1. m = 2: Since wt Xi == 1 (2) for i E [1 , 3], we may assume g = 
X I x 2 + A.X 32 for some A. E <C modulo a linear change of X I ' x 2 ' and X3 ' which 
is a Pm -change of coordinates. 

Case 2. m> 2: Since (wtx j , m) = 1 for i E [1,3], we see no x/ appear 
in g and that at most two of X 1X 2 ' X2X 3 ' and X 3X I appear in g. Modulo a 
permutation of XI' x 2 ' and x 3 ' we may write g = !1'xIX2 + vXI X 3 (p, v E <C, 
P =f; 0). We note that wtx2 == wtx3 if v =f; 0. Thus (XI' x 2 ' x 3) 1--+ (XI' x2 , x 3) 

with x 2 = pX2 + VX3 is a Pm-change of coordinates, and g(x) = X I X2 • 

Then one can show that one can write 

ifJ(x l , x 2 ' x 3 ' x4 ) = x I X 2 + f(x3 m, x4 ) 

modulo a Pm -change of coordinates by approximation for some convergent 
power series f [AI]. Now [KSB, (6.7)] shows that (X, P) is a terminal singu-
larity of index m. 0 

1 b (ApPENDIX 1 b ). DEFORMATION OF EXTREMAL NBDS 

In Appendix 1 b, we will study how to construct a small deformation of an 
extremal nbd and obtain a nearby extremal nbd from it in three steps: local 
process, local-to-global process, and global process. We should note that only 
the local description (1 b.3) is needed for many arguments in the text but the 
explicit construction in (1 b.8.I) is also needed for some delicate arguments (e.g. 
in §9). The formal scheme case is treated by [Wa]. 

(1 b.I) Let X :::> C :::: jp'1 be an extremal nbd. Let P E C be a point of 
X of index m and llu: (Xu, pU) --> (X, P) the canonical cover and d = 
llU- I (C)red. Fix an embedding (X,P) c (<cN,P) and a pm-equivariant em-
bedding (XU, pU) C (<c4 , 0) . 
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The following are the three steps to construct a small deformation of extremal 
nbd X:::> C ~]p>1 with parameter A. 

(L) Construct a small embedded Pm-equivariant deformation of the germs 

(X# ,P#) :::> (en, p#) 

in (CC4 , P) which, if m> I, satisfies (lb.3(i)) and one of (lb.3(ii)), (lb.5(ii')) 
or (lb.5(ii")). 

As the Pm -quotients, one has a small embedded deformation X p ,'" :::> C p ,;. 

of (X, P) :::> C in (CC N , P) = (CC4 , P)/ Pm with only terminal singularities, by 
(lb.3) and (lb.5) if m> I, and by Elkik's Theorem [Ell] if m = I. Then 

(LG) extend the deformation X p , ... :::> C p ,;. of the germs (X, P) :::> (C, P) to 
a deformation X;. :::> C;. of X :::> C , which is trivial outside a small nbd of P 
(lb.8). 

If X;. :::> C;. is a small deformation of X:::> C ~]p>1 , then 
(G) X;. is a modification of some Stein variety if 0 < IAI « I by Grauert's 

theorem [Gra]. Thus we have a proper bimeromorphic morphism f;.: X ... --+ Y;. 
so that C... is a part of the exceptional set E;., and f;. is the total contraction 
of the extremal nbd X;.:::> E ... by (lb.IO). Thus by (1.5), the germ X;:::> C ... of 
X ... :::> C... along C... is an extremal nbd if 0 < IAI « I . 

We call such an extremal nbd a nearby extremal nbd of X :::> C . 

(lb.2) Let (X, 0) be a 3-fold terminal singularity of index m> I, and (X#, 0) 
the Pm-canonical cover. Let (x) (XI' ••. ,x4 ) and ¢ be an 
i-coordinate system and an i-equation of (X, P), and let F# C x-space be 
the fixed axis (I a. 5) . 

(1b.3) Proposition. Let 'II be a semi-invariant E (x)CC{x} such that wt'll == 
wt¢ (m) and {¢='II=O} isasurJace. Let X! = {¢+A'II =O}, (X ... ' 0) = 
(X!,O)/Pm (A E q, S# = Sing{¢ = '11= O}, and let S, F;. c X;. the images oj 
S# , F# n X!, respectively. Assume that 

(i) S# n F# c {O} , and 
(ii) (X;., 0) is terminal if 0 < IAI « I . 

For e > 0 and A E CC such that 1 :» e :» IAI ' let 

XL = {(x) E X! II x; I < e Vi} and X;',e = XL/Pm' 
Then X;. ,e has only terminal singularities; X;. ,e - (S U F;.) is smooth; X;. ,e n 
S - F;. are Gorenstein points; X;',e n F;. - (S U {O}) consists oj cyclic quotient 
singular points oj the same index m' which is a Jactor oj m; 0 is a point oj 
index m. 

We note that m' =I- m in (lb.3) only if (X, P) is exceptional, i.e. in case 
(la.6(ii)), where m = 4 and m' = 2. 

Remark (1 b.3.1). Under the notation and assumptions of (1 b.3), let (en, 0) c 
(X#,O) be a Pm-stable reduced curve such that (C, 0) = (en, O)/Pm is smooth 
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and (d, 0) Pm-equivariantly deforms with (X~, 0) in CC4 so that C1 c X1. 
Then for e« 1 and P). E C).,e = (C1nXL)/Pm , X).,e::) C).,e islocallyprimitive 
at P). iff (C1, pl) is irreducible, where pl E C1 is a point above P).' 

Indeed this follows from (1.7(iii)), because (XL, pl) -+ (X).,e' P).) is the 
canonical cover and (Cr pl) is the preimage of C).' 

We recall a special case of Bertini's Theorem. 

(lb.4) Lemma (Bertini). Let ¢ and IfI be convergent power series in XI' ... , 
x n ' which are prime to each other. Then {¢ + Alfl = O} n Be is smooth outside 
the singular locus of {¢ = IfI = O} n Be if 0 < IAI «e « 1, where Be = {(X) I 
IXi I < e (Vi)} . 

Proof. Let (X,A) = (X(t),A(t)) (It I « 1) be a parametrized curve with pa-
rameter t such that (X(O) , A(O)) = 0 and x( t) is a singular point of ¢ + 
A(t)1fI = 0 and A(t) :t O. It is enough to show that x(t) is a singular point of 
{¢ = IfI = O} for all t. By the hypothesis, one has 

(*) !;(X(t)) + A(t) ;;(X(t)) = 0 (i E [1, nJ). 
I I 

From ¢(x(t)) + A(t)IfI(x(t)) = 0, one has 

" (a¢ + A alfl) dXi + dA = 0, 
~ aXi aXi dt dt IfI 

I 

whence (dA/dt)lfI(x(t)) = 0 and lfI(x(t)) = 0 by A(t) :t const. Thus one has 
¢(x(t)) = IfI(X(t)) = 0, and ( * ) above implies 

rank(a(¢, 1fI)1 ) ~ 1 
ax x=x(t) 

which means that x(t) is a singular point of {¢ = IfI = O} by Jacobian crite-
rion. 0 

Proof of (lb.3). We may assume wtx4 =wt¢, wtx l X2 =0 (m), (wtx4,m) 
=I 1, and wtxl , wtx2 , wtx3 are prime to m (modulo a permutation of 
XI' ... ,x4 ), so that F~ = x4-axis (la.6). Since the Pm-action on X~ - {O} is 
free, ¢I FI :t O. By (lb.4), one sees that (¢ + AIfI)1 FI = 0 has no multiple 
roots x4 such that 0 < IX41 « 1 if IAI « 1. Let e E lE. be small enough and 
Be = {(XI' .. , ,x4) Ilxll, ... , IX41 < e}. Then 

(1) XL = X1 n Be is smooth in Be - S~ , 
(2) XL has only isolated rational singularities, and 
(3) XL intersects transversally with F~ in Be - {O}, 

if IAI «e « 1 , where (1) follows from (lb.4), and (2) follows from [Ell]. Let 
1l'!: XL -+ X).,e be the quotient map. Let Q~ E XL - {O} for A such that 
IAI « e. If Q~ ¢ F" , then 1l'! is etale at Q" and X).,e is smooth at 1l'!(Q") 
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by (1) if Q# ¢ F# U S# , and has Gorenstein terminal singularity at 7t!(Q#) by 
(2) if Q# E S# - F#. If Q# E F# - {O}, then Xl (Q#) = x2(Q#) = x3(Q#) = 0 
and Xl' X2 ' x3 form a GQ~-semi-invariant coordinate system for (XL, Q#) 
by (3),where GQ~ (cPm ) is the stabilizer at Q# and IGQ~I=(wtx4,m). Since 
wtx1x2 == 0 (m) and wtxl , wtx2 , wtx3 are prime to m, X)..e has at most 
a terminal cyclic quotient singularity at 7t!(Q#) by (la.3). 0 

(lb.5) Corollary. In (1b.3) above, (ii) follows from either one of the following: 
(ii') (¢, I/f) rt. (Xl' ... ,X4)2 , 
(ii") (¢,I/f)c(xl , ... ,x4)2, wtx4 ==0(m), (¢+AI/f)(Xl ,X2,X3,0) has a 

quadratic part of rank ~ 2 in Xl' X2 ' X3 if 0 < IAI « 1 . 

Proof. By (la.3), (ii') implies (ii). Let us assume (ii"). By (la.4(i)), (wtxj , m) 
= 1 for i E [1,3]. Since (X, 0) has an isolated singularity, (X)., 0) has an 
isolated singularity if IAI « 1 . Then such (X)., 0) is terminal by (la. 7(i)). 0 

(1 b.6) Proposition. Let J¥ :::> W be analytic subspaces of germ (C N x cl, P x 0) 
flat over (Cl, 0) such that C = W n (C N x 0) C CN is a smooth curve. Then 
there is a biholomorphic automorphism a of (C N x cl, P x 0) over (Cl, 0) such 
that 

allCNxo = id and a(W) = C x c1. 
Proof. We choose coordinates (Xl' ... ,xN) of (CN , P) such that x(P) = 0 
and C = xl-axis. Then by flatness W C CN xCl is defined by Xj-A!;(X ,A) = 0 
(i E [2, ND for some convergent power series !;. We set 

a(x,A) = (Xl 'X2 -Ai;, ... ,xN -AfN,A). 0 

Let y = (Yl' ... ,YN), and let (X, P) C (ty-space, 0) ~ (CN +l ,0) be the 
germ of a pure r-dimensional analytic subspace such that X :::> C = t-axis 
and (SingX) nee {P}. Then Ic.pllc./ is a rank (r - l)&'c.p-module, 
where Ic.p C &'x.P is the defining ideal of C in (X,P). Let (J¥,P x 0) C 

(tYA-space, 0) ~ (CN+2 ,0) be the germ of an analytic subspace defined by ideal 
J c C{ t , Y , A} such that the projection f: (J¥, P x 0) - (A-line, 0) is flat, 
X = f-I(O) , and J¥ :::> W = lA-plane. Then 

(y) (y) + (A) 2 
--~-;2:--- ....::::... 2 ~ I c pi I c p (isomorphism theorem). 
A(Y)+(Y) +J (A)+(Y) +J . . 

Here and in (lb.7), ideals (e.g. (y)) mean ideals in C{t, y,A} unless otherwise 
denoted. 
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(1 b. 7) Proposition. Under the above notation and assumptions, let u = 
(u 1' ... , ur_ l ) be elements of the ideal (y) such that Ie.p/Ie./ + (u)&'x.P 
is of finite length. Then for small enough a > P > 0, the natural map 

2'( I x y ~ 0) = { I~~':/)I~I~~} -+ w( I x 0 x 0) = { (tl~~~).]; } 
u < lui < 0, 1).1 < 0 u lui, 1).1 < 0 

is biholomorphic for all y, 0 E ~ such that 0 < 0 « y « p, where lyl = 
MaxilYil, lui = Max)u jl, and I is the interval (P, a). 

Proof. By the natural isomorphisms 

J+).(y)+(y)2 ~Ker( Y -+ (y) + (A) ) 
).(y) + (y)2 - A(Y) + (y)2 (A) + (y)2 + J 

~ Ker( E9 &'e,pYi -+ Ie,p/Ic ./) , 
l~i~N 

one sees that J+A(y)+(y)2/A(y) + (y)2 is a free &'c,p-moduleofrank N-
r + 1. Thus it is generated by images of some f = (I" ... ,fN) E J. Let 
hij E C{t, y, A} (i, j E [I, ND be such that ui = Lj hijYj (i < r) and 
1;. = Lj hijYj (i ~ r). Since (Y)/A(Y) + (y)2 + (u) + (f) is of finite length, 
det( hi) (t , 0, 0) is not identically zero. For arbitrary small enough a > P > 0, 
one sees (0 (u, f)/oy)(t, Y, A) =I 0 if a ~ It I ~ P and lyl, IAI « p, because 

o(u,f) 
oy (t,0,0) =det(hi)(t,O,O). 

By the Implicit Function Theorem, Y j 's are expressed as convergent power 
series Yj = yj(u, f) in (u) and (f) such that yj(O, 0) = 0 depending holo-
morphicallyon t and A such that a > It I > P and 0> IAI if 0 < 0 « p. In 
other words, (t, u, f, A) forms a coordinate system for the open set {(t, Y , A) I 
p < It I < a, lyl < y, IAI < o} of CN+1 if 0 < 0 « y « p. Imposing extra 
conditions f = 0 and lui < 0 and making 0 smaller, we see (lb.7). 0 

(1 b. 8) Definition. Let X ~ C be the germ of a normal analytic space X along 
a smooth irreducible compact curve C such that C rt Sing X. Let P E C and 
(X, P) c (ty-space, 0) ~ (CN +1 ,0) an embedding of a germ so that (C, P) is 
the t-axis, where Y = (Y1 ' ••• ,yN ). Let X). ~ C). be a deformation of pair 
X ~ C of germs at P. By (lb.6), we may embed X). ~ C). as (CN+1 X cl, 
P x 0) ~ 2' ~ ~ = tA-plane which are flat over (Cl, 0) . 

Let u = (u 1' ... , ur_ l ) be elements of (y)C{t, y,A} such that 

(1 b.8.1) Ie/I/ + (u)&'x is of finite length at P, 

where Ie is the sheaf of defining ideals of C in X. Let u(·,c) = (u1(·,c), ... , 
ur_I(·,c)) EC{t,y} be the restrictions of u to A=C. 
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Then applying (lb.7) to both 2" and the trivial deformation (Xxre~, PxO) c 
(tYA-space, 0) , we see that 

p: 2"((P,a) x y x <» :::;(X x rel)((P,a) x y x <» 
u<<> "u(.,O)<<> 

such that 

p*ul,O)=ui (iE[1,r-I]), 

by the identification 

pI7&' = id: Cfl -+ tA-plane 

'tI ( (P , a) x y x <» = 'tI ( (P , a) x y x <> ) if I » a > P » y » <> > O. 
u u(·,O) 

Thus if I » a' > a > P » y » <> > 0, one may patch 

2"([O,a)x y x<» and (xxrel)((P,a')xyx<» 
u < <> " u(· ,0) < <> 

via the above isomorphism to get a deformation of X (~:~~l~J) which is trivial 
on x((P,a/)x y) where 

U(',O)<o ' 

X(/xY)={(t,Y)E(X,P)lltIE/, lyl<y, Ivl<<>} 
v<<> 

for an interval/ . Thus replacing X with a smaller nbd of C, we can extend 
this deformation to the deformation X" :J C" = C of X :J C. For simplicity 
of notation, we set (omitting a, p, y, <» 

:ze (u) = X x {AIIAI < <>} - (X X rei) ([0, Pl x y x <» :J Cfl (u) 
out A u(.,O)<<> out' 

,27 (u) =2" ([o,a) x y x <» :J rtl (u), 
m u<<> m 

2"mid(u) = ~ut(u) n ~n (u) :J Cflmid (u), and 
2',;1I(U) = ~ut(u) u~n(u) :J ~II(U), 

where ~ut(u), ... '~II(U) are defined in the obvious way. 
We note that X A :J CA = C is obtained by patching 

X - X ([o,a) x y ) 
",in- A U(.,A)<<> 

and X = X _ X ( [0, Pl x y ) 
A ,out U(" 0) < <> 

vla 
p : X ( (P, a) x y ) ~ X ( (P, a) x y) 

A U(.,A) < <> u(.,O) < <> 
such that pA*ui(·,O) = Ul,A) (i E [1,r -1]), on XA,mid" = "XA,innxA,out' 
and C" ,in' ... , CA ,mid are defined similarly. 

We call 2',;1I(U) :J ~II(U) (or XA :J C,,) the twisted extension of 2" :J 'd? (or 
(XA,P):J (CA,P)) by u. 
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(1 b.8.2) Corollary. Let X ::J C be the germ of a normal analytic space along 
a complete smooth irreducible curve such that C ¢.. Sing X. Let P E C. Then 
every deformation of germs (X, P) ::J (C, P) can be extended to a deformation 
of X ::J C so that the deformation is trivial outside some small nbd of P . 

(1 b. 8. 3) Proposition. Let the notation and assumptions be as in (1 b. 8.1). Let 
I (resp. I)) be the sheaf of defining ideals of C (resp. C).) in X (resp. X;), 
and let 1(2) be the symbolic square of I. Then 

(i) the closed subscheme of X defined by 1(2) deforms in a flat family as 
subschemes defined by (1(2\, iff X (/)./(1;)(2)) = x(I/I(2)) for each A> 0 such 
that IAI « 1. If so, then (1(2\ = (/).)(2) (hence denoted by IF)) and 1)./ IF) 
is a flat family of locally free sheaves on C). over (C 1 ' 0), and 

(ii) assume that the closed subscheme defined by 1(2) deforms and that 1/1(2) 
contains an invertible subsheaf L such that Lp is generated by (the image 
of) u\ (·,0). Then L deforms as invertible subsheaf L). of I)./IF) and L). is 
generated at P). (= P) by u\ (" A). 

Proof. (i) The only-if part is the invariance of X in a flat family. Assume that 
X(/)./(/).)(2)) = X(//I(2)) if 0 < IAI « 1. Let J be the sheaf of defining ideals 
of ~II(U) in ~II(U). Then J&x = I, J(2)&x is a sub sheaf of 1(2) such that 
len 1(2) jJ(2)&X < 00, and 

J&x>. = I). and J(2)&x>. = (/).)(2) if 0 < IAI « 1. 

Then F = JjJ(2) is flat over (C1, 0) and F). = F ® &x>. = 1)./(/).)(2) if 0 < 
IAI« 1, and we have a surjection Fo - 1/1(2). By X(/)./(/).)(2)) = X(I/I(2)) , we 
see that Ker[Fo -+ 1/1(2)] is a sheaf supported on a finite set such that 

X (Ker[Fo -+ 1/1(2)]) = X(Fo) - X (//1(2)) = X(F).) - X(/)./(/).)(2)) = 0, 

whence Fo ~ 1/1(2) , J(2)&x = 1(2) , and (i) is proved. 
(ii) Since Land &u\ (.,0) patch on some X (~:~)~~) , the trivial extension 

of L on ~ut(u) and &u\ on .2in(u) patch on .2"mid(u) because p"ut(-.O) = 
u\. 0 

(lb.9) Proposition. Let X be an analytic space and C a compact subvariety 
which is a smooth irreducible curve. Then there is an open neighborhood V of 
C in X and an effective Cartier divisor E on V such that every irreducible 
compact subvariety C' in V with dimension > 0 is a curve and (C' . E) > 0 . 

Proof. Let e > 0 > O. For each P E C, let Up be a neighborhood of P 
in X such that Up is identified with an analytic set of De X DeN such that 
Cp = Up n C and P are equal to De X 0 and 0 X 0, respectively, where 

- N De = {z E C I I zl < e}. Let Up = Up n De X D 6 and C p = D 6 X 0 C Up n C . 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FLIP THEOREM AND MINIMAL MODELS FOR 3-FOLDS 149 

Since C = Up Cp and C is compact, there are finitely many Cp's covering C. 
We use the notation Vi' Ui' Ci , Ci , Pi U= I, ... ,r) forthese(cf.(lb.9.1)). 

N - - -N N In De X De containing Ui , the closed set C i x (Dt5 -Dt5/2 ) is compact and 
disjoint from Ci . Hence in U Vi' U C i x (D: - D~2) is compact and disjoint 
from C. Thus there is an open neighborhood V c U Ui of C such that V is 

. . . - -N N . - - N - N d1sJolDtfrom UCi x(Dt5 -Dt5/2 ). In partIcular (VnUi)nCi xDt5 c C i xDt5/2 

for all i. Since Dt5// cc D/, (V n Ui) n iCi x D/) is compact for all i. 
We note that the first projections 1;: Ui - Ci are not necessarily compatible 
with each other. 

(lb.9.1) 

By replacing V with a smaller open neighborhood of C, one may assume 
that V C UI;-I(Ci ), and that Ei = I;-I(PJ n V is closed in V and hence 
an effective Cartier divisor. Let E = EI + ., . + E r • Let C' be an irreducible 
compact subvariety in V. Then (C' n Ui ) n 1;-1 (C J is closed in the compact 
set (V n Ui ) n (C i X D 15 N) hence is compact. Thus the induced map .r:: C; - Ci 

is proper for all i, where C; = (C' n Ui ) n 1;-1 (Ci ). Since fibers of .r: lie in 
D 15// and compact, .r: must be finite. Thus dim C' = 1 and (C'. E i ) 2: 0 
by C' = U C; and .r: is open and proper. Let j be such that C~ f 0. Then 
f ' ') f-I( , j(C) = Cj by connectedness of Cj and (Ej . C = (j P). C) > O. Hence 
(E· C') 2: (E j • C') > O. 0 

(1 b.lO) Corollary. Under the notation and assumptions of (1 b. 9), assume that 
there is a line bundle L on X such that (L· C) > O. Then there is an open 
neighborhood W of C in X such that every irreducible compact subvariety C' 
in W with dimension> 0 is a curve and (L· C') > O. 

Proof. Let V and E be as in (lb.9). By [Go, Theoreme 4.11.1], one has 

lim H2(U, 7l,u) ~ H 2(C, 7l,c) ~ 7l,. 
V open :J C 

Thus on a sufficiently small neighborhood W of C, (L· C)Ew and Lw ®(E'C) 

induce the same class in H2 (W , 7l,w) , where E wand Lw are restrictions of E 
and L to W, respectively. Hence for C' C W, one has (Lw'C') = (L·C') > 0 
from (Ew ' C') = (E· C') > O. 0 
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2. NUMERICAL INVARIANTS ip(n), wp(O) , AND w;(n) 

The main purpose of this section is to introduce numerical invariants which 
will be the main tools of our study. 

We will use the results and definitions in §la on 3-fold terminal singularities. 

(2.1) Let X be an analytic normal Cohen-Macaulay 3-fold and C c X a 
reduced curve such that K x is ~-Cartier and no irreducible component of C 
is contained in the singular locus of X. 

(2.2) Definition. For coherent &'x-modules !7 ~ !T, we say that !T is sat-
urated in !7 (or, !7-saturated) iff !7 j!T has no &'x-submodule of finite 
length > O. For each !T c !7, there is a smallest !7 -saturated submod-
ule r containing !T, and one sees that Supp(r j!T) is O-dimensional and 
lenp r j!T < 00 at all P EX. We call such r the !7-saturation of !T and 
denote it by Saty!T. 

Let Ie (resp. I~) ) be the sheaf of ideals defining C in X (resp. the symbolic 
nth power of Ie' that is Satl9' len) . For a coherent &'x-module !7 , let F n!7 = 
Satyle n!7 = Saty/~)!7 (n ~ 0) and gr~(!7) = F n!7jFn+1!7. Let gr~&' = 
gr~(&'x) and gr~ W = gr~(wx). We note that gr·&' = ffin~o gr~&' is naturally 
a graded &'e-algebra and gr~(!7) = ffin>o gr~(!7) is naturally a graded gr·&'-
module, and one has a natural homomorphism 

(n ~ 1), 

where Sn (gr~ &') denotes the symmetric nth power of gr~ &' . 
It is easy to see the following 

(2.2. 1) Lemma. Via the natural map n~ -+ W x' there is a map 
1 1 1 3 0 gre&' x gre&' x ne -+ Ox ®&'e -+ grew, 

x x y x zdu 1-+ zdx 1\ dy 1\ du 

which induces a homomorphism 1\ 2 (gr~ &') ® n~ -+ gr~ W . 

Thus one can define homomorphisms 
2 1 1 0 Cl'1: 1\ (gre&') -+~tml9'o(ne,grew), 

n n 1 A!?) n A!? Cl'n=Ye(&'x):S (gre(7 -+gre(7 (n~2). 

We denote by ip(n) the length lenp CokerCl'n of CokerCl'n at P E C. We 
note that ip(n) E Z+ (P E C) and that ip(n) = 0 if X and C are smooth at 
P. 

Let mEN be such that mK x is a Cartier divisor, and let 
o ®m (m) A!? Po: (gre w) -+ Wx ® (7e' 

(n ~ 1) 
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be the natural homomorphisms, where (jAm) is the double dual of w~m . 
We denote by wp(n) for n ~ 1 (resp. wp(O)) lenp Coker Pn 

(resp. (lenp Coker po)/m E ~) , and define 

w;(n) = (n; 1) ip(l) - wp(n) for n ~ 1. 

We note that wp(n) E Z+, w;(n) E Z (P E C), and wp(n) = w;(n) = 0 
(n ~ 1) if X and C are smooth at P. We also note that wp(O) is independent 
of the choice of m if C is smooth at P. 

(2.3) From the above constructions, one can see 

(2.3.1) (Formulae) If C::::: jp'1 , then 

deggr~& = 2 + deggr~ w - L i p (l), 
p 

deggr~& = !n(n + 1) deggr~& + L ip(n) 
p 

(wx · C) = deggr~ w + L wp(O) , and 
p 

(n ~ 2), 

deggr~ w = !(n + l)(n + 2) deggr~ w + n(n + 1) - L w;(n) 
p 

(n ~ 1). 

(2.3.2) (Formulae) If X :) C ::::: jp'1 is an extremal nbd, then gr~ w ::::: &c( -1) , 
and 

deggr~& = 1 - L ip (l), 
p 

deggr~& = !n(n + 1) deggr~& + L ip(n) (n ~ 2), 
p 

(wx · C) = -1 + LWp(O), and 
p 

deggr~ w = !(n + l)(n - 2) - L w;(n) (n ~ 1). 
p 

(2.3.3) (Necessary conditions) If X:) C ::::: jp'1 is an extremal nbd, then 

L wp(O) < 1, 
p 

L deggr~&~- L (i+1) forallnEN, 

L deg gr~ w ~ - L (i + 1) for all n EN, 

and when n = 1 , these reduce to 

L ip (l) :::; 3 and 
p 
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Proof of (2.3). Indeed (2.3.1) follows immediately from the constructions of 
0'" O'n' PO' and Pn . By (1.14{i)), we have gr~ w :::::: &'e{ -1) , hence the asser-
tions in (2.3.2) follow. For (2.3.3), one has HI~&'xII~n+I)) = HI (wxIFn+lwx) 

= 0 by (1.2.1). Then HI(/eII~n+I)) = 0 from the exact sequence 

o --+ IeII~n+l) --+ &'xIIbn+l) --+ &'e --+ 0 

and HO(&'xII~n+I)) - HO{&'e) = CC. Then from the exact sequences: 

o --+ gr~ &' --+ lei I~+I) --+ lei I~) --+ 0 (n ~ 1), 
O n I n+1 I n 0 --+ grew --+ Wx F Wx --+ Wx F Wx --+ (n ~ 0), 

one has 
n n 

X(/eIIbn+I )) = Lx(gr~&') and X(wxIFn+lwx) = Lx(gr~w). 
;=1 ;=0 

Now (2.3.3) follows from these. 0 

(2.3.4) Remark. Let n E ~+. The proof shows that if deggr~ &' ~ -d -
1 (resp. deggr~w ~ -d - 1) for d E [l,n], then gr~&' :::::: &'e(-I)E9(d+l) 

(resp. gr~ w :::::: &'e( -1 )E9(d+I)) for d E [1, n] and HI (gr~+1 &') = 0 (resp. 
HI (gr~+1 w) = 0). 

(2.4) In the remainder of this section, we assume that (X, P) is a germ of a 
3-fold analytic terminal singularity of index m and C c (X, P) is a smooth 
curve such that P has subindex m and splitting degree s (1.7). We note 
that m = m . s. Let (XU, pU) --+ (X, P) be the canonical Pm-cover and d = 
(C x x XU\ed C (XU, p U). Then (d, pU) has s irreducible components (1.7), 
and d is not contained in the singular locus of Xu. 

(2.5) Definition. Let (C t , pt) be an irreducible component of the normaliza-
tion of one of the irreducible components CU(i) (i E [I, s]) of (d ,pu) . Then 
Pm naturally acts on (Xu, pU) and (CU, pU) , and so does Pm on (C t , pt) (1.7), 
and let 

r: &'XI.PI --+ &'et .pt 

be the natural map. Since (X, P) and (C, P) are normal, one has 

&'x.P = {&'xI .PI )"m, and &'e.p = (&'et .pt )" .... 

Since Pm acts freely on XU - {pU}, so does it on d - {pU} and so does Pm on 
C t - {pt}. Hence &'et .pt has a uniformizing parameter t (i.e. &'et .pt = CC{t} ) 
such that t is a pm-semi-invariant, and let X be a generator of X(pm) = 
Hom(pm , CC*) = ~m such that the restriction X of X to Pm is the character 
associated to t. Hence &'e.p = CC{ tm} , and we call such t an i-coordinate of 
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(C, P) , and X an f-character of (C, P). We note that X == X mod m ~m is 
determined independent of choice of f -coordinate t. 

For a semi-invariant v '" 0 , let d -wt v (or simply wt v if there is no danger 
of confusion) be n E ~m such that nx (or Xn if written multiplicatively) is the 
character associated to v. We note that changing f-character X to ax (a E ~m 

is a unit such that a == 1 mod m) changes d-wt v to a-Id-wt v. 
If C t dominates d(i), then for z E &xu ,pU , let 

d(i)-ord(z) = sup{n E ~+ I r(z) E tnC{t}} , 

If z is a Pm-semi-invariant, then d(i)-ord(z) = dU)-ord(z) for alii, j, 
since Pm acts transitively on d(i)'s. In this case, we may write dU)-ord(z) 
as d-ord(z) or even as ord(z), if it does not cause confusion. 

For a Pm-semi-invariant z E &xu ,pu , we define d-ow(z) (or ow(z)) as 
ow(z) = (ord(z), wt(z)) E (~+ U {oo}) X ~m' We note that ord(z) == wt(z) 
(mod m) if ord(z) < 00. We define semigroups 

ord(d) = {ord(w) I WE &cu,pu - Icu,pu} c ~+, and 

ow(d) = {ow(w) I WE &cu,pu - Icu,pu} c tZ+ x ~m' 

Assume that Pm acts on a ((:-algebra R via C-algebra automorphisms, and 
that M is a Pm- R-module. Let n E ~m' Let qn] be the I-dimensional 
C-vector space on which Pm acts by nx, where X is an f-character of (C, P), 
and let M[n] = M ®((; qn] be the R-module with the naturally induced 
Pm -action. Let 

M{n} = Hompm (qn], M) 

= {x E M I y(x) = X(y)nx for all y E Pm}' 

Then M{n} = M[-n]{O} is an R{O}-module. 

(2,6) Definition. Let (x) be an f-coordinate system for (X, P) (la.5). We 
note that wt(x) up to permutation does not depend on choice of (x). Let 
a j = ord(x) (i E [1,4], 0 < a j ::; 00). We say that (x) is minimal if a j 
is the smallest positive integer such that (aj , wtxj) E ow(C") (in particular 
aj < 00) for all i. Thus ord(x) and ow(x) up to permutation do not depend 
on choice of minimal (x). We say that (x) and an f-coordinate t of (C, P) 
are normalized f-coordinates if (x) is minimal and r(xj) = tai for all i (cf. 
(2.7(iv))). Then we have 

(2.7) Lemma. Let (X, P) :J C be as in (2.4), and X an f-character. Then 
(i) if (x) and t are an f-coordinate system of (X, P) and an f-coordinate 

of (C, P), then there exists an f-coordinate system (y) of (X, P) such that 

oW(Yj) = oW(Xj) and r(yj) = tai for all i, 
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(ii) for (y) and t as in (i), let A = {i I ord(Yi) #- co}. Then Yi (i E A) 
give an embedding (d, pU) c (<cA , 0) such that the images of s irreducible 
components are parametrized by t as 

( ( ) Wl(y;)tord(y;)) 
X g iEA 

ow induces an isomorphism of semigroups 

. {jUnctions #- 0 on (d , pU) which are } ~ (Cu) ow . ---+ ow , 
y monomials in Y with coefficients 1 

(iii) (m,O) Eow(d), and (u,v) Eow(d) for all large enough UEN and 
all v E Zm such that u == v (mod m), and 

(iv) (X, P) ~ C have normalized i-coordinates. 

Proof. Since r is Pm-equivariant, we have r(xi) = ta; gi for some units gi E 
<C{tm}. Since 

Im(&'x,p ---+ &'c t ,pt) = Im(&'c,p ---+ &'c t ,Pt) = <C{tm}, 

we can choose units hi E &'X ,P such that r(hi) = gi for all i. Then it is enough 
to take Yi = xihi -I for (i). Since Pm acts transitively on irreducible compo-
nents of d, the first assertion of (ii) follows easily. Whence ow y is injective, 
and we see that, for each Pm -semi-invariant u, there exists a monomial v in Y 
such that ow(u) = ow(v). Hence follows (ii). As for (iii), (m, 0) E ow(d) fol-
lows from &'c,p .....::::.... <C{tm} , and we see (wtyi , m) = 1 for some i E A given 

in (ii) because the Pm -action on d - {pU} is free. Whence the second assertion 
follows because Z+(m, 0) + Z+ ow(yJ contains (u, v) given in (iii). For (iv), 
let (x) and t be as in (i). For each i, let J; E <c{x} be a Pm-semi-invariant 
with wt(J;) == wt(xi) (m), minimizing ord(J;). For some suitable e E <C, 
(x#) = (XI + efl ' ... , x4 + ehJ is an i-coordinate system such that ord(x#) is 
the smallest. Then (i) gives normalized i-coordinates. 0 

(2.8) Definition. Under the notation and assumptions of (2.4), let z = (x, w) E 
Z+ x Zm be such that x == w (mod m). 

(i) We define U(z), R(w) E Z as 

U(z) = min{k E Z I k(m, 0) - z E ow(dn 
= 1 +max{k E Z I k(m,O) - z ¢ ow(dn, and 

R(w) = min{u E Z+ I (u, - w) E ow(dn, 

We may write R(w) as R(z). These are well defined since second projection 
ow( d) ---+ Zm is surjective and the equality for U (z) follows by (m, 0) E 
ow(d) (2.7(iii)). For a Pm-semi-invariant v, we denote (R(wtv), -wtv) E 
ow(d) by d-ow*(v) (or ow*(v)) , 
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(ii) we see m· U(z) = x + R(z) and U(z + (m. 0)) = U(z) + 1. We may 
write U(x. x mod m) as U(x) for x E ;Z;. In particular, 

(iii) if P is a primitive point, then s = 1 and m = m, whence U(z) and 
R(z) reduce to 

U(x) = min{k E;Z; I mk - x E ord(d)} 

= 1 + max{k E;Z; I mk - x ¢ ord(d)}. 

R(x) = R(x mod m) = min{u E ord(d) I u == -x (m)}. 

with the properties m· U(x) = x + R(x), U(x + m) = U(x) + 1 . 

(2.9) Lemma. One has 
(n) (n) d n n 

Ie = (lea ){O} an F Wx = (F wxa){O}' 

whence 

gr~(&x) = gr~a(&xa){O} and gr~(wx) = gr~a(wxa){O}' 
P if S· (I(n)) Air I(n) h (I(n)) . . 'd 1 roo. mce e a {oJ = C7 X ,P n e a , one sees t at e a {OJ IS a pnmary 1 ea 
associated to C. Since X~ is etale over X at general points of d, Ii;) = 

(lb~)){o} at general points of d ,whence Ii;) = (lb~)){o} . Since Wx = (wxa){O} 
(via the trace map), the exact sequence 

O Fn n 0 ---. W xa ---. W xa ---. gr ea W xa ---. 

gives the exact sequence 

0---. (Fnwxa){O} ---. Wx ---. (gr~a wxa){O} ---. O. 

Since X~ is etale over X at general points of d, one has Ibn)wx = (Fnwxa){O} 
at general points of C. Since wx/(Fnwxa){O} is torsion-free, one has Fnwx = 

(Fnwxa){O}' 0 

Let x be an i-coordinate system and </J an i-equation (la.5). 

(2.10) Corollary. One has wxa ®&ea ~ &ea[k], and wp(O) = R(k)/m, where 
k = d-wt(X1X2X3X4!</J). 
Proof· By the residue formula, wxa ®&ea is an invertible &ea ,pa-module whose 
generator is the image w of 

dX1 "dx2 " dx3 " dX4 Resxa </J 

which has d-wt == k, whence wxa ® &ea ~ &ca[k]. We see that gr~(w) = 
uCC{ tm}w for some semi-invariant u E &xa ,pa with the minimal ord u under 
the condition that wt u + k == 0 (m). Hence wp(O) = R(k)/m by definition 
of R(k). 0 
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(2.11) We introduce the following construction to compute ip(1) and w;(1) 
for the terminal singularity (X, P) in (2.4). 

Let x and ¢> be an i-coordinate system and an i-equation at (X, P) (la.5), 
and t an i-coordinate of (C, P) (2.5). We will use the symbols introduced in 
(2.5) and (2.6). Let hj(t) = r(xj) E C{t} and ¢>j = 8¢>/8xj (i E [1,4]). By 
symmetry among x,, ... ,x4 ' we will assume that h4 (t) =I- O. 

Let (X#, p#) C (Z#, p#) = (x,x2x3x4-space,0) be an embedding by the i-
coordinate system x. Let (Ct,pt) C (zt,pt) = (Y'Y2Y3Y4-space,0) be the 
embedding (t) ...... (h,(t),h2(t),h3(t),t). Then (Y) ...... (Y"Y2'Y3,h4(y4)) de-
fines a morphism (zt, pt) ...... (Z# ,P#) fitting in the commutative diagram 

zt :) xt :) C t 

1 1 1 z# :) X# :) d 
where xt c zt is defined by 'II(y) == ¢>(Y, ' Y2' Y3 ' h4 (y 4)) = 0 . 

We note that 11m naturally acts on zt, X t , C t , and that C t is not con-
tained in the singular locus of xt because xt --+ X# is etale outside {Y4 = O} 
and C t = {:v, = Y2 = Y3 = A}, where Y j = Yj - hj(y4) for i = 1, 2,3. 

Let J# (resp. J t ) be the ideal defining C# in Z# (resp. C t in zt). Let 
J#(n) and Jt(n) be the symbolic nth power of J# and Jt , respectively. Then 
Jt = (Y, 'Y2' Y3) , and 

Jt jJt(2) ~ C{t}y, EEl C{t}Y2 EEl C{t}Y3 

(we identify Y4 = t in &'ct ,pt ) and let 

a: J# --+ Jt jJt(2) 

be the natural map. For g" g2' g3 E Jt jJt(2) , let [g" g2' g3] E IZ+ U {oo} be 
the length of 

(J t jJt(2))/C{t}g, + C{t}g2 + C{t}g3' 

and for subsets A, B, C c Jt / J t (2) , let 

[A, B, C] = inf{[a, b ,c] I a E A, b E B, c E C}. 

By abuse of notation, one may denote [ ... ,aa, ... ] by [ ... ,a, ... ] when a E 
J# (resp. [ ... ,aA, ... ] by [ ... ,A, ... ] when AcJ#). We note that [*,*,*] 
has semiadditivity 

[g, ' g2' g3 + g~] ~ min{[g, ' g2' g3] , [g, ' g2' g~]} 

because [g" g2 ' g3] = ord g, /I. g2 /I. g3 . 

(2.12) Proposition. Under the notation oj (2.11), one has 

ip( 1) = m -, . (m - R(k) - ord(x4) + [¢>,J# {O} ,J# {O}]) and 

w;(1) = m-'· (m - 3R(k) - ord(x4 ) + [¢>,J:_ k } ,J:-k}]) 

iJ ord(x4) < 00, where k = d-wt(x,x2x 3X 4/¢». 
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Proof. By symmetry among XI' X2 , X3 ' one may assume 

r(¢>2) , r(¢>3) E r(¢>I)C{t}. 

157 

In this proof, we denote tensor products over &x (resp. &xu, &xt ) by ® (resp. 
®U, ®t). 

We put Q I and PI in the commutative diagrams of natural homomorphisms 

(/\2gr~&) ®wc ®&ct "'1®l9'ct 0 , grcw®&ct 

1 (/\ 2 ft)®t h lfa 
( 2 I ) t 14 Wxt ®t &ct /\ grct & ® Wct ---+ 

and 
o I PI®l9'ct I (grc w) ® (grc&) ®&ct , (grc w) ®&ct 

1 g2®t II 1 gl 

U I ~ I U Wxu ® grct& ---+ grct (Wxu ® &ct) 

where 
I I It: grc& ®&ct ~ grct &, 

f 2 : Wc ®&ct ~ Wct' 
o U #i? g2: (grc w) ®&ct ~ Wxu ® (7ct , 

and ~ is defined similarly to Q I . Thus 

and 

m . i p ( 1) = L len Coker .t; - len Coker.t; , 
i=I.2.4 

m· wp (l) = 2 . len Coker g2 + len Coker It -len Coker gl' 
because (Ct , pt) ~ (C, P) is of degree m. We note 

t(2) 
u(¢»=¢>(YI 'Y2'Y3,h4(Y4)) modJ 

= ¢>(h l + Y I , h2 + Y2' h3 + Y3, h4) mod J t (2) 

= r(¢>I)YI + r(¢>2)Y2 + r(¢>3)Y3' 

Since cU rt. SingXU (2.4), one has u(¢» =f:. O. Hence r(¢>I) =f:. 0, and u(¢»/r(¢>I) 
is a part of a free basis of Jt / J t (2) • Then we claim 

(2.12.1) gr~t(&xt) ~ (J t jJt(2))/C{t}u(¢»/r(¢>I)' 

Indeed, since u(¢» = (u(¢»/r(¢>I)) . r(¢>I) E Jt jJt(2) is sent to 0 in gr~t (&xt) 
and r(¢>I) =f:. 0 in &ct' one sees that u(¢»/r(¢>I) is also sent to O. Thus it 
induces a surjective homomorphism 

(Jt jJt(2))/C{t}u(¢»/r(¢>I) - gr~t (&xt), 
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which is an isomorphism because both are free of rank 2, and (2.12.1) is 
checked. Since we have &'c-module surjections 

'...,. '...,. " grcD' ~ (grCID'){O} -J {OJ 

and , , ...,. " ( , ...,.) " grcw~ (grclD' ® WX1){O} ~ grclD' {-k} -J{_k} 

by (2.9) and (2.10), we can use (2.12.1) to calculate the cokernels of 1; and g, 
as 

and 
Coker g, ~ (Jt pt(2))/C{t}a(J~ -k}) + C{t}(a(</»/T(</>,)). 

Hence .we have 

and 
len (Coker g,) = [</>,J~_k} ,J~-k}] - ord T(</>,). 

because a(</»/T(</>,) is a part of a free basis of Jt pt(2) . 
It is clear that len Coker 1; = m - 1 , because Ct --t C is given by t 1-+ tm . 

One sees that the cokernel of 

o " t ~: grcw®&'ct --t wxu ® &'ct --t wxt ® &'ct 

has length R(k) + a4 - 1 because the cokernel of g2: gr~w ®&'ct --t wxu ®" &'ct 
has length R(k) by the proof of (2.10) and 

u...,. _...,. dX2 /\ dX3 /\ dX4 
W X1 ® D'ct - D'ct </>, 

ar'...,. dY2 /\ dY3 /\ dy 4 a4-' t ...,. = t D' c t = t W x t ® D' c t . 
'II, 

One sees that len Coker ~ = ord( T</>,) because we have 

Im~ = &'CtdY2/\ dY3/\ dY4 = 'II,Wxt ®t &'ct = T</>,Wxt ®t &'ct 

by gr~t&'=&'ctY2EB&'ctY3 (2.12.1). Thus one has 

m· i p (l) = m - R(k) - a4 + [</>,J~O} ,J~O}]· 

Since len Coker g2 = R (k) as above, one also has 

- k" U U" m· wp(l) = 2· R( ) + [</>,J{O} ,J{O}] - [</>,J{_k} ,J{_k}]. 

whence 
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(2.13) Definition. For b E z,+ 4 , let 
b bI b2 b3 b4 

X = XI x 2 x3 x 4 ' where b = (b l ,b2 , b3, b4)· 

For normalized i-coordinates (x) and t, we define 

(2.13.1) for b, c E z,/ such that ow(xb ) = ow(xc), let P(b, c) x b -

xc, IIP(b, c)1I = ord(xb ) E z,+ if b i c (00 if b = c), and let us define 
ex4(P(b, c)) E 1::,3 by ex4(P(b, C))i = bi -ci (i E [1, 3]). Then all such P(b, c) 
generate the ideal JU, and 

(2.13.2) 

(2.13.3) 

P(b, c) = P(b, d) - P(c, d), 

I I b' I I C P(b+b ,c+c)=P(b,c)x -P(b ,c)x 

if b, c, d, b' , c' E z,/ satisfy ow(xb ) = ow(xc) = ow(xd ) and ow(xb') 
c' ow(x ). 

The following allows us to calculate [*, *, *] in (2.11). 

(2.14) Proposition. Assume that (x) and t are normalized and let us use the 
notation of (2.11). Then for P as in (2.13.1), one has 

3 
a(P) = t11P11 L eX4(P)i Yi 

i=1 

and hence 

{ 
00 ifex4(PI) , ex4(P2) , ex4(P3) are dependent, 

[PI' P2 , P3] = L IlPill- L ai otherwise, 
i=1.2,3 i=I,2.3 

for such PI' P2 , P3 as in (2.13.1). 

Proof. One sees 

i=1 i=1 

== t llPIl (g(l + y/. -g(l + Yf·) 

3 3 

== t llPIl L(bi - Ci)Yi = t llPll L eX4(P)i Yi' 0 
i=1 i=1 

(2.15) Corollary. Under the notation and assumptions of (2.4), assume that 
(X,P) is singular. Then ip (l) ~ 1. 

Proof. If m = 1, then cU ~ C is smooth and the assertion follows from (2.16). 
Let us assume m > 1 and choose normalized i-coordinates (x) and t (2.7) 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



160 SHIGEFUMI MORI 

and an i-equation ¢ (la.5) so that wtx4 == wt¢ and wtx l x 2 == 0 (m) by 
the classification of terminal singularities (la.5), and we will follow (2.11). By 
(la.6), we see that wtxI ' wtx2 , wtx3 are prime to m, and treat two cases. 

Case where d-wt¢ == 0 (m). One has a4 = m since (x) and tare 
normalized and (m,O) E ow(d). One has 

(2.15.1) m· i p (l) ~ [J~O} ,J~O} ,J~O}] - R(wtx3) 

by (2.12). Hence we see m· i p (l) ~ [PI' P2' P3] - R(wtx3) for suitable invari-
ant PI' P2 ' P3 in (2.13.1). Hence wt(Pj ) == 0 (mod m) for all i. Since 
ex4(PI ). ••• ,ex4(P3) are independent, one sees that there is a permutation 
y E 6 3 such that eX4(PY(i))j =I 0 for all i E [1,3] by expanding the deter-
minant. Thus one has monomials Vj in x such that ow(vjxJ = (IIPY(i) II ,0) , 
and we have Vj =I 1 by wtxj :t 0 (m) for all i E [1,3]. Hence IIPy(i)1I > aj 
for i = 1,2 and IIPy(3)II ~ a3 + R(wtx3) (2.8). By (2.14), one has 

m· ip (l) ~ L {llPy(i)II- aJ + IIPY(3)1I- a3 - R(wtx3) > O. 
j=I.2 

Case where m = 4 and d-wt ¢ == 2 (4). Then (4,0) E ow( d) by (2.7(iii)), 
and (4,0) E (ow(d) - {O}) + (ow(d) - {O}) by (2.7(ii)) because no Xj has 
wt==O (4), whence (1,±1), (2,0),or (2,2) Eow(d) by m=2,4 (1.16). If 
(2,0) E ow( d) , then we can repeat the same argument to get (1, ± 1) E ow( d) . 
If (1, ± 1) E ow(d) , then we have (2,2) = 2 (1, ± 1) E ow(d). Thus we 
have (2,2) E ow(d) anyway, and hence a4 = ordx4 = 2 by normalizedness. 
Since x4¢ E J~O}' (2.12) implies the same formula as (2.15.1): 

m· i p (l) ~ m - R(wtx3) - a4 + [J~O}' J~O}' J~O}] - a4 

= [J~O}' J~O}' J~O}] - R(wtx3), 

where we used that m = 4 = 2a4 • The rest is the same as the previous case. 0 

(2.16) Lemma. Assume that (d, pU) is smno I-coordinate system (x) and as-
sumptions of (2.4). Then there exists notation and assumptions of (2.4). Then 
there exists an I-coordinate system (x) and an i-equation ¢ (la.5) of (X, P) 
such that d is the x 4-axis and ¢ == x 4' XI mod (XI' x 2' X3)2 (r ~ 0). Further-
more we have 

(i) lenpl ICI (2) IlCI 2 = r, 
(ii) if wt¢ == 0 (m) then 

() {r ifm = 1, 
ip 1 = [rim] + 1 ifm> 1 

and 
(iii) if m = 4 and wt¢ == 2 (4) then ip (l) = [(r + 6)/4]. 
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Proof. We note that s = 1 and m = m by smoothness of d. The first 
assertion is obvious, and (i) follows from Ic/2) /Ic/ ::: (&cu/(x/)) . XI ::: 

C{x4 }/(x/). From (2.12) and the definition of [*, *, *] follows 

. 1 {(~ ) [r R(wtX2) R(wtX3)] } Ip(l)= m m-R ~wtXj-wt¢ -1+ X4 XI ,X4 X2 ,X4 X3 

= ~ {t.R(wtXj) + r - R(wtx l ) - R (t. wtxj - wt¢) }. 

If m = 1, then we are done because R(z) = 0 for z E;::Z. Assume that m> 1 
and wt¢=O (m). By (Ia.6),thereexists aE6 4 such that R(wtxU(I)) =0, 
R(wtxU(2)) + R(wtxU(3)) = m, whence 

I: R(wtxj) - R (I: wtxj - wt¢) = m, 
l~j~4 l~j~4 

and 
ip(I) = ~{m + r - R(wtx l )} = [rim] + I, 

because R(wtx l ) E [0, m). This proves (ii). Assume that m = 4 and wt¢ == 2 
(4). By (Ia.6), there exists a E 6 4 such that R(wtxu(I)) = 2, R(wtxu(2)) + 
R(wtxu(3)) = 4, whence EI~j~4R(wtXj) - R(EI~j~4 wtxj - wt¢) = 6, and 

ip(l) = !{r + 6 - R(wtx l )} = [(r + 6)/4]. 

because R(wtx l ) E [0,4). 0 

3. EMBEDDING DIMENSION OF (d, p#) 

The main purpose of this section is to prove that the pull back d (2.4) of 
C by the canonical cover (XU, pU) --+ (X, P) has only planar singularities if 
X :::> C :::!p1 is an extremal nbd. We treat primitive points and imprimitive 
points separately. 

Part I. Primitive point P. The following is the main theorem. 

(3.1) Theorem. If X:::> C:::!p1 is an extremal nbd and P a primitive point of 
index m, then emb dim pu d ~ 2, where (d, pU) is the pull back of C to the 
canonical cover (Xu, p U). 

(3.2) Under the above notation and assumptions, let us choose normalized 
i-coordinates (x) and t (2.7), and an i-equation ¢ so that d-wt¢ == 
d-wtx4, d-wtx2x3 == 0 (m) (Ia.S). (We note that we may permute x 2 
and x3 .) 

We note that embdimpu d ~ 2 is equivalent to "the semigroup ord(d) is 
generated by two elements (2.7)." It is clear that ord(d) is generated by 2 and 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



162 SHIGEFUMI MORI 

the smallest odd number if 2 E ord( d). So we assume that m, at ' ... ,a4 ~ 3 
and use the notation of §2 in Part I of this section. 

First we treat the exceptional terminal singularities (1 a. 6). 

(3.3) Lemma. If m = 4 and d-wt(¢» == 2 (4), then one has embdimpu d 
~ 2. 
Proof· One has a4 == 2 (4). Then at, a2 , a3 , a4 ¢. 0 (4) and 

4 E (ord(d) - {O}) + (ord(d) - {O}) (2.7). 

Whence 2 E ord(d), and we are done by the remark in (3.2). 0 

(3.4) Lemma. Assume that wp(O) < 1, ip(l) ~ 3, and embdimpu d ~ 3. 
Then ip (l) = 3, at > m, a2 = 3, a4 = m, R(at ) = 3n for some integer 
n E [1, m/3) modulo permutation of X 2 and x 3 . 

Proof. By normalizedness of (x) and t, one has a4 = m and (at a2a3 , m) = 
1. Since m· wp(O) = R(at ) (2.10), one has R(a t ) < m by (2.3.3). From 
R(at ) E ord(d), one has R(at ) E :Z:+at +:Z:+aa (a = 2 or 3), because a2 +a3 , 

a4 ==0 (m). 

(3.4.1) We claim that at > m and thus R(at ) E :z:aa' To see this, let us assume 
at ~ m. Then at < m by (at, m) = 1. Thus m = at + R(at ) by R(a t ), 
at < m, and at + R(at ) == 0 (m). Whence mE :Z:++at + :Z:+aa' Since at > 1 
and (m, at) = 1 , one sees m ¢ :Z:+a t and hence a4 = m E :Z:++a t +:Z:++aa' Thus 
a2 + a3 E :Z:++at + :Z:++aa by a2 + a3 == 0 (m), whence as-a E :Z:++at + :Z:+aa' 
Thus at and aa generate ord(d), which is a contradiction, and (3.4.1) is 
proved. 

(3.4.2) We claim that m ~ 4, and that a2 or a3 = 3 implies (3.4) if ip( 1) = 3. 
First by a remark in (3.2), m > R(a t ) ~ 3, which implies m ~ 4. If one has 
a3 ~ a2 = 3 modulo permutation, then 2a3 ~ a2 + a3 ~ m, whence R(a t ) = a3 
(a = 3) or R(at ) E 3:Z:+ (a = 2). If R(a t ) = a3 , then a3 < m. Thus one 
sees a3 = m - 3, at == 3 (m), and hence at, a4 E :Z:+a2 + :Z:+a3 • This is a 
contradiction, and R(at ) E 3:Z:+. Thus (3.4.2) is proved. 

(3.4.3) Let S be the set of b = (b t , b2 , b3 ) E :z:/ - {O} such that at bt + 
a2b2 + a3b3 == 0 (m). We say that b E S is reduced if b ¢ S + S. Let 
IIbll = at bt + a2b2 + a3b3 • 

Let A. = (0, 1 , 1). We note that b = A. if b E S is reduced and satisfies 
b2 , b3 > O. For b = (b t ,b2 , b3) E S, let 

Q(b) = P((bt ,b2 , b3 , 0), (0,0,0, Ilbll/m)), 

with the notation of (2.13.1). Then ex4 (Q(b)) = band IIQ(b)1I = IIbli. One 
sees that J~O} is generated by Q(b) (b E S) by (2.13.2) and that by Q(b)'s 
such that bE S is reduced because (2.13.3) reduces to 

Q(b + b' ) = Q(b)xb' - Q(b')x~b"/m (b, b' E S). 
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By subadditivity of [*, *, *] (2.11), (2.12) implies 

3m ~ m· i p (l) = -R(a,) + [if>, J~O} ,J~O}] 

~ -R(a,) + [Q(b'), Q(b 2 ), Q(b3 )] 

for some reduced b' ,b2 , b3 E S . Throughout Part I of this section, b i denotes 
such a vector not a power of b. By (2.14), one has 

3 
(3.4.4) 3m ~ ~:)lIbill_ ai ) - R(a,) 

i=' 
and that b' , b2 , b3 are independent. Let bi = (bJ). We note 

(3.4.5) IIb i ll ~ (b: - l)m + a, + R(a,) if b: ~ 1. 

Indeed one sees IIb i li ~ (b: - l)a, + a, ~ (b: - l)m + a, by (3.4.1), whence 
IIb ill- (b: - l)m ~ a, . Thus Ilbill- (b: - l)m ~ a, + R(a,) because Ilbill == 0 
(m) and a, + R(a,) = m· r a,/ml by R(a,) < m. 

(3.4.6) We treat three cases. 

FIGURE (3.4.A) FIGURE (3.4.B) FIGURE (3.4.C) 

bi is the ith row. 
+ at (i, j) means b; > O. 

Case (A). None of b', b2 , b3 is A. We will derive a contradiction in this 
case. Expanding det(bJ), one sees that there is a a E 6 3 such that b/1 (i) =I 0 
for all i. Since bU (') =I A, one has b~W = 0 for some r E 6 3 fixing 1 (3.4.3). 
Modulo such permutations a 0 r (resp. r) of bi,S (resp. x2 and x3 ), one may 
assume that b: =I 0 for all i and b~ = O. Since b2 and b3 are reduced and 
b2 , b3 =I A, one sees that b; = bi = 0 (3.4.3). Now (b;) is as in Figure (3.4.A) 
above. 

By (3.4.5), we rewrite (3.4.4) as 
, 2 3 

3m ~ (lib 11- a, - R(a,)) + (lib II - a2 ) + (lib II - a3 ) 
, 2 3 

~ (b, - l)m + (lib II - a2 ) + (lib 11- a3 )· 
(3.4.6.1 ) 

Let i E [2,3]. If b: = 0, then b: = m by b; = bi = 0, whence Ilbill-
ai = (m - l)ai ~ 3(m - 1) > 2m by ai ~ 3 and m ~ 4. If b: ~ 1, then 
iii 2 3 lib 11- ai ~ b,a, > b,m. Hence from (3.4.6.1), one has b, = b, = 1. Then 

(3.4.6.1) implies 3m > (b,' - l)m + 2m , and one has b,' = 1. Since b I and 
b2 are reduced and b: = b~ = 1 , one has b~. b; E [0. m - 1]. By b I • b2 E S 

b ' b2 I 2 I 2 I 2 and I = I = 1 and b3 = b3 = 0, one has b2 == b2 (m), whence b2 = b2 

and b l = b2 , whence b l , b2 , b3 are dependent. This is a contradiction. 
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Case (B). b3 = A. and b: ,b~ > 0 modulo permutation of b l , b2 , b3 • We 
will also derive a contradiction in this case. Modulo permutation of b l and b2 

one may assume IIb l li :5 IIb2 11 , and modulo further permutation of x2 and X3 

one may also assume b~ = 0 because b l is reduced and b l :f. A. (3.4.3). Now 
(bJ) is as in (3.4.B). 

Since a l > m, one has 2m :5 a l + R(a l ), whence m ~ 3m - a l - R(a l ). 

Then (3.4.4) gives 

m ~ 3m - (a l + R(a l » ~ I: {libill- (a l + R(a l »}· 
i=I.2 

. I I 
Since 1ib'1I- (a l +R(a l » E m;f.+ (3.4.5), one has lib II = al +R(a l ) by lib II :5 
IIb211. Then the inequality gives IIb2 11 :5 3m. Hence one has b: = 1, b~ = 1,2 
by (3.4.5). Since b: = 1 and b~ = 0, one has b~ > O. Since IIb l li = a l +R(a l ) , 

one has b~ = R(a1)/a2 < m/3. Since b~ = 1 or 2 and since b2 is reduced, 
. b2 b2 b2 b I b2 2 I b2 b2 one easlly sees = ( I' I' 2,0) or ( 1,0, m - bl . b2 ) by 2' 3 = 0 and 

o < b~. b~ < m. We have the second case since b2 is independent of b I . Then 
22 21 2 21 lib II = bl • a l + (m - bl • b2 )a3 ~ bl . a l + 3(m - bl • b2 ) 

2 I = 3m+b1(a l - 3b2 ) > 3m, 

because a l > m > 3b~ . This contradicts IIb2 11 :5 3m obtained above. 
Case (C). b3 = A., b: > 0, and b~ = 0 modulo permutation of b l , b2 , b3 • 

Modulo permutation of x2 and x3 ' one may further assume bi = O. Now (bJ) 
is as in (3.4.C). Then b2 = (0, m, 0) since it is reduced. By (3.4.5) applied to 
b l and (3.4.4), one has 3m ~ (b: - l)m + a2m. Thus a2 = 3 and ip (l) = 3 
from the inequality. Thus the proof of (3.4) is finished. 0 

(3.5) We now prove (3.1). We will derive a contradiction assuming that there 
is a point P E C at which embdimpu d ~ 3. By (2.3.3), one sees wp(O) < 1 
and ip(l) :5 3, since wQ(O) ~ 0 and iQ(1) ~ 0 for all Q E C. By (3.4), one 
has ip (l) = 3. One has EQ#P iQ(l) = 0 by (2.3.3), whence P is the only 
singular point of X on C by (2.15). Thus by (2.3.3), one has w;(1) :5 1. We 
will work at P using the notation of (3.2), and estimate w;(1) by an argument 
similar to (3.4). By (3.4), one has a2 = 3, a4 = m, R(a l ) = 3n for some 
n E [1, m/3) , and a l > m. By x2 n</> E Jf3n} , one sees from (2.12) that 

. "" m ~ m· wp (l) = -9n + [</>.J{3n} .J{3n}1 

(3.5.1) n A." " = -12n + [x2 'f'.J{3n} .J{3n} 1 
" " " 2 ~ [J{3n} ,J{3n}' J{3n}1 - 1 n. 

Let v = (O,n,O) and, following (3.4.3), let T be the set of bE;f./ - {v} 
such that IIbll == 3n (m). We say that bET is reduced if b ¢ T + S (3.4.3). 
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For b = (b l .b2.b3) E T, let 

Q(b) = P((bl.b2.b3.O).(0.n.0.(llbll- 3n)/m)). 

Then eX4(Q(b)) = b - v and IIQ(b)1I = IIbli. One sees that Jt3n} is generated 
by Q(b) (b E T) by (2.13.2) because 3n < m, and that by Q(b)'s such that 
bET is reduced, because (2.13.3) reduces to 

Q(b + b' ) = Q(b)Xbl - Q(b' + v)x~lIbll-3n)/m (b E T. b' E S). 

By subadditivity of [*. *. *] (2.11), (2.14) and (3.5.1) imply 
3 

(3.5.2) m ~ ~)lIbjll - a j ) - 12n 
j=1 

for some reduced b l • b2• b3 E T such that b l - v, b2 - v, b3 - v are inde-
pendent. Let b j = (b~) . As in case (A) of (3.4.6), we may assume (b j -v)j =j:. 0 
for all i. 

(3.5.3) We note that an integer Z E (0. m) belongs to ord(d) iff Z = a3 = m-3 
or Z E 3;Z+, and there is only one way to express such Z as sum of ai' a2, 
a3 , a4 • 

(3.5.4) We claim IIblli ~ a l +6n. One sees 6n-m ~ ord(d) by (3.5.3), because 
6n - m < m by m > 3n, 6n - m to (3) by (3. m) = 1, and 6n - m =j:. m - 3. 
On the other hand, one sees that Ilblll- a l = 6n - m (m) by Ilblli = 3n (m), 
and that IIblll-al E ord(d) by (bl-v)1 = b: > O. Thus Ilblll-al ~ 6n (cf. 
(2.8)), which is (3.5.4). 

(3.5.5) We claim IIb 3 11 ~ a3 + 3 + 3n and that the equality holds only when 
b3 = (O.n + 1,1). Let us see that aiz i +a2z2 +a3z3 = 3+ 3n (z E ;Z/) has 
a unique solution Z = (0, n + 1,0). We claim 

(3.5.5.1 ) (i = 1, 2). 

Indeed 3n + 3 = a l or ta3 implies 2n + 1 or n + 1 + t = 0 (m) because 
a l = -3n, ia3 = -3i (m) and (3, m) = 1. By m > 3n, one sees that this 
is possible only when i = 2, m = 4, n = 1, whence a3 = 6/2 = 3, which 
implies a contradiction a2 + a3 t 0 (m). Hence (3.5.5.1) is proved. Thus 
one sees 3 + 3n - a l ~ ord( d) because 3 + 3n - a l :5 1 by a l > m > 3n. 
Hence ZI = O. If z2 > 0, then (3.5.3) implies Z = (0, n + 1,0), because 
a2(z2 - 1) + a3z3 = 3n < m. Hence we may assume z2 = O. Then z3 ~ 3 by 
(3.5.5.1). Hence by a3 > m/2 (a3 ~ 3, a3 + 3 ~ m, and (a3, m) = 1), one 
sees that z3a3> 3m/2 ~ m + 2 ~ 3 + 3n. Thus Z = (0, n + 1,0) is the only 
solution. Let us prove (3.5.5). Since (b 3 -vh = bi ~ 1, IIb 311- a3 E ord(d). 
From IIb 311- a3 = 3 + 3n and 3 + 3n - m ~ ord(d) (3 + 3n - m :5 2), one 
sees IIb 311- a3 ~ 3 + 3n. The rest follows from the above. 
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(3.5.6) We claim that IIb2 11 ;::: m + 3n, and that the equality holds only if 
b2 = (0, n + 1 , 1). By a l + 6n > m + 3n and a3 + 3 + 3n ;::: m + 3n, one 
may reduce (3.5.6) to (3.5.4) or (3.5.5) if b~ or bi > O. Hence we assume 
b~ = bi = O. Then by b2 i= 1/, one sees b; ;::: n + m and IIb2 11 ;::: 3n + 3m, 
which proves (3.5.6). 

(3.5.7) From (3.5.4)-(3.5.6), one sees 
3 

z)lIbjll- a j ) ;::: m + 12n 
j=1 

and that the equality holds only if b2 = b3 = (0, n + 1, 1). This contradicts 
(3.5.2). Thus (3.1) is proved. 0 

Part II. Imprimitive point P. The main result is (3.8). 

(3.6) Let X ::> C :::: pI be an extremal nbd with an imprimitive point P of 
index m, subindex m (> 1), and splitting degree s. Let X~ ::> d = d (1) U 
... U cP(s) :3 P~ be the splitting cover of X::> C associated to P (1.12). We 
denote by X~ (i) ::> d (i) :3 P~ (i) the extremal nbd obtained from X~ ::> d ::> P~ 
by restriction to a small nbd of dU). Let (X~, P~) ::> d = d(l) u··· u d(s) 
be the canonical cover of (X, P) and the irreducible components of the pull 
back d of C (with reduced structure) such that dU) dominates dU) for 
each i. We note that (X~, P~) --+ (X~, P~) is a Pm-canonical cover. Let (x) 
and t be normalized i-coordinates for X ::> C at P and </J an i-equation 
such that wtx l + wtx3 == 0 and wtx4 == wt</J (m). By (1.14) and (2.9), we 
have 

where w is a Pm -semi-invariant generator of w XI at P~. 
Hence we have P;n-semi-invariants uj E &XI,PI for i E [1, s] such that 

ujl CIU) = 0 for j E [1 ,s]\{i} and (ujl CI(i))W is a generator of gr~.(i) w. We 
also have a Pm-semi-invariant U E &XI,PI such that uw is a generator of gr~w 
at P. It is easy to see that we may further assume that U is a monomial in 
x with coefficient 1. For each i, we note that m· Wp.(i) (0) , m· wp(O) are 
nonnegative integers such that m.wp.U/O) == m·wp(O) (mod m) by (2.10) and 
m· Wp.(i) (0) , m· wp(O) < m by (2.3.3). Whence we have 

(3.7) Proposition. wp.(i)(O) = wp(O) for all i, 

Hence we see dU)-ord(uJ = ord(u) = m· wp(O) < m (2.10). Thus if we 
consider the induced map 

<1>: (&CI,PIW)"m - EB gr~.(i)w ® qP~ (i)) = EB qP~)UjW, 
j j 

we see <I>(vw) = 0 for Pm-semi-invariants v with ord(v) > m· wp(O). 
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(3.8) Proposition. Modulo permutations oj XI' ... ,x4 and modulo changes oj 
i-character X (2.5), we have 

ow(d) = IZ+ ow(xI ) + IZ+ ow(x2) 

( in particular (d, pU) is a planar singularity (2.7)) and one oj the Jollowing 
holds: 

(3.8.1) wt¢>==O (m), wtx l +wtx3 ==0 (m), oW(X4 ) = (m,O), (m,O)E 
IZ++ ow(x l ) + IZ++ ow(x2) , and w p (0) ~ 1/2, 

(3.8.2) wt¢> == 0 (m), s = 2, m is an even integer ~ 4, and a list oj wt and 
ord Jor (x): 

XI x2 X3 x4 
wt 1 -1 0 m+ 1 modm, 
ord m-l m m+ 1 

(3.8.3) s = m = 2, wt¢> == 2 (4), and 

XI x2 x3 x4 
wt 1 3 3 2 mod 4 . 
ord 1 2 

ProoJ. We treat three cases. 

(3.8.4) Case wt¢> == 0 (m) and ordx2 < m. Then we claim that u is not 
a power of x2 . Indeed if u = x20/ for some a, then d-wtx20/+1 == 0 (m), 
whence a + 1 ~ m ~ 2m by (wtx2, m) = 1 (la.5), and ordu ~ m. This is a 
contradiction. Thus up to a permutation of XI and x3 ' we may assume u = XI V 

for some monomial v. Then wtx2u == 0 (m), whence ordx2u == 0 (m) and 
ordx2u < 2m. Hence ordx2u = m, i.e. ow(x2u) = (m,O). By normalized-
ness, ow(x4 ) = ow(x2u). We also see wtx2v == wtx2u - wtxI == wtx3 (m) 
and ordx2v < ordx2u = m, whence oW(X2v) = ow(x3) by normalizedness. 
Thus we have ow(XU) = IZ+ ow(x l ) + IZ+ ow(x2). 

We claim (m, 0) E IZ++ ow(x l ) + IZ++ ow(x2). Indeed if otherwise, we have 
(m,O) = a· ow(x l ) (a E IZ) up to permutation of XI and x2' whence a == 0 
(m) by (wtx l , m) = 1, which contradicts m = a· ordx l and m> m. Thus 
the claim is proved. 

We also claim that wp(O) ~ 1/2. Indeed if otherwise, we have m/2 > 
m.wp(O) = ordu. Hence ordx2 = m-ordu > m·wp(O) and ordx3 ~ 

m - ordx l ~ m - ordu > m· wp(O) , because XI I u. Thus <I> factors through 

(&'ca.paW/(X lm, x2 ,x3 ,x4 ))"'m ::: qpb)x/"w 

for a unique A. E (0, m) such that A. wtxI == -wt w (m). This contradicts the 
surjectivityof <I> and s ~ 2. Thus wp(O) ~ 1/2 as claimed, and we have case 
(3.8.1 ). 

(3.8.5) Case ordx2 ~ m and wt¢> == 0 (m). We note first that ordx2 > m by 
(ordx2' m) = (wtx2, m) = 1 and m> 1. We may assume ordxl ~ ordx3 up 
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to a permutation of XI and x 3 ' whence ord(x/) ~ m. Since x/n, x 2 ' XIX3' 
X32 , x4 have ord ~ m, we see that «I> factors through 

(&ca,paw/(X/n, XIX3' x/' x 2' x 4 ))"'m :::::: qP~)x/w E9 (qP~)X3W)"'m 

fora unique A E (0, m) such that AwtXI+wtw == 0 (m). Hencebysurjectivity 
of «1>, we have s = 2 and wtx3 +wtw == 0 (m). Since wtxl == -wtx3 (m), 
we see A == -1 (m), whence A = m - 1 and ordxl = 1 by ordx/ < m. Thus 
ordx3 = m - 1 by wtx3 == -1 and ordx3 < m because «I>(X3) =f. O. Hence 
ow(xl ) + ow(x3) = (m, 0), whence it is equal to ow(x4 ) by the normalizedness 
as before. Since «I> factors through <Cxl m-I w E9 <Cx3w, w~ see that u = XI m-I 
or x3 • 

We claim that u = XI m-I . Indeed if u = x 3 ' then wtx2 + wtx3 == 0 (m), 
and wt x 2 == wt X I (m) which contradicts normalizedness by ord x 2 > 1 and 

m-I ordxl = 1 . Hence u = XI . 
Thus we have wtx2 == -(m-l) wtxl == (m+ 1) wtxl (m). Since ordx2 > m 

and ordxl m+1 = m + 1 , we have ow(x2) = (m + 1) ow(xl ) by normalizedness, 
whence ow(CU) = Z+ow(xl ) + Z+ow(x3). By (wtx2,m) = 
((m + 1) wtxl . m) = 1, we see m == 0 (2). By changing i-character X with 
(l+m)x if necessary, we may assume ow(xl ) = (1. 1), ow(x2) = (m+l. m+l), 
ow(x4 ) = (m.O). Since ow(x3) ¢ Z+ow(xl ) (otherwise (d.pU) is smooth 
(2.7)), we have ow(x3) = (m - I, - 1). We note that if m = 2, then permut-
ing x2 and x3 ' we have case (3.8.1). Hence we may assume m ~ 4, and by 
permuting x/s, we have case (3.8.2). 

(3.8.6) Case m = 4. m = s = 2. wt<p == 2 (4). Then we have wtx == 
(1.3.3.2) mod 4 up to permutation of XI' .... x4 and a choice of i-character 
X (la.S). Then we have wtu == 1 (4) and ordu = 1. Hence u = XI and 
ordxl = 1, whence ow(x4 ) = oW(XI2) . Since m.wp(O) = 1, «I> factors through 
<Cxlw + <Cx2w + <Cx3w. Thus ordx2 = 1 or ordx3 = 1 by surjectivity of «1>, 
and ordx2 = ordx3 = 1 by normalizedness. Hence ow(d) = Z+ ow(xl ) + 
Z+ ow(x2) , and we have case (3.8.3). 0 

4. CLASSIFICATION OF X:::> C AT P INTO CASES 

After classifying X :::> C :3 P into several cases, we will study the deformation 
processes using results in §§ 1 a and 1 b. These processes allow us to treat fewer 
cases with only ordinary singular points (4.S). 

(4.1) Let X:::> C :::::: jp'1 be an extremal nbd, and P E C a singular point of X 
of index m ~ 1 , subindex m, splitting degree s. We note that m = m . sand 
that s = 1 iff P is primitive. We consider the germs (X. P) :::> (C. P), and 
use the notation in §2 like I'm-cover (XU. pU) :::> (Cu. pU) of X :::> C, etc. One 
has embdimpu d $ 2 by (3.1) and (3.8). So, let (x) = (XI' ... • x 4) and t be 
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normalized i-coordinates (2_6) and ¢ an i-equation of X ::J C 3 P (la.5) such 
that XI and x 2 form coordinates for (c". p U). Then (a l • WI) and (a2. w2) 
generate ow(c"),where owj=(aj.wj)=ow(xj) (iE[1.4]). 

We note that U(s· a l a2) = U(sa l • OW2 ) = U(sa2 . OWl) (cf. (2.8)) depends 
only on ow( c") and m. Indeed if ow( c") ~ Z+, then al or a2 = 1 and 
a l .a2 :5 m, and U(a l a2) = 1; if ow(c") ¢ Z+, then 

{owl' OW2} = (ow(d) - {O} )\((ow(d) - {O}) + (ow(d) - {O})) 

and U(s· a l a2) depends only on ow(c") and m. 

(4.1.1) Definition. We call U(s· a l a2) the size of X::J C 3 P (or simpiy size 
of P) and denote it by sizp (cf. (4.10)). 

(4.2) Proposition-Definition. Modulo permutations of x/s (and changes of 
i-characters in case ofimprimitive points) which preserve the condition 

ow(d) = Z+ oWl + Z+ OW2 • 

exactly one of the following cases holds. This division is independent of the choice 
of normalized i-coordinates (x) and t. 

( Primitive point P) 
Case (I) m> I, c"-wt¢:= 0 (m), 
(IA) a l +a3 := 0 (m), a4 = m, mE Z++a l +Z++a2, 

where we may still permute XI and X3 if a2 = 1, 
(IB) a l + a3 := 0 (m), a2 = m, 2:5 a l ' 

(IC) a l + a2 = a3 = m, a4 ~ ai' a2, 2:5 a l < a2 . 
Case (II) m=4, c"-wt¢:=2 (4), ¢E(X)2, 
(IIA) (a l , ••• , a4 ) = (1.1. 3.2), 
(lIB) (a l , •••• a4 ) = (3.2,5.5). and 
Case (III) m = 1. In this case, X" = X and c" = C. 
(Imprimitive point P) 
Case (Iv) m, s> 1, C"-wt¢:= 0 (m), 
(IA v) WI +w3 := 0 (m). ow(x4 ) = (m, 0) E Z++ OWl +Z++ OW2 ' and wp(O) ~ 

1/2, 
(lev) s = 2, m is an even integer ~ 4. and 

XI x 2 X3 x4 
wt 1 -1 0 m+ 1 modm. 
ord m -1 m m+ 1 

Case (IIv) s = m = 2, wt ¢ := 2 (4), ¢ E (X)2 . and 

XI x 2 x3 x4 
wt 1 3 3 2 mod 4 . 
ord 2 
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Depending on the case occurring, we say that X :J C 3 P (or X :J C at P, 
or simply P (if there is no danger of confusion)) is of type (IA), ... , (III) , 
(IAv), ... , (IIv). 

Proof. The case of imprimitive points was treated in (3.8). Now assume that 
P is primitive. First we show that one of cases (IA), ... , (III) occurs. 

In case (I), one has ai + aj == 0 (m), ak = m for some distinct i, j, k E 

[1,4] by normalizedness of (x) and t and (la.6). If ord(d) = ::f.+, then 
(a l1(I)' ••• ,al1(4))=(1,b,m-l,m) or (b,l,m-b,m) for some bE[1,m-l] 
and a E 6 4 , where ::f.+a l1(l) +::f.+al1 (2) =::f.+ is maintained. Thus we may assume 
ai' a2 ~ 2, and treat three cases modulo (12) and (34) E 6 4 • 

(4.2.1) Case a l +a3 == 0, a2 or a4 = m. If a4 = m, then m ~ ::f.+a l U::f.+a2 
by (m,a l a2) = 1, and we have (IA). Otherwise, we have (IB). 

(4.2.2) Case a l + a2 == 0, a3 = m, and 2 ~ a l ~ a2 • If a4 == a l or a2 , 

this belongs to (4.2.1) modulo (34) E 6 4 • Otherwise, we have (IC), because 
a l #a2 by (m,a l )=1 and mE(a l ,a2 ). 

(4.2.3) Case a3 + a4 == 0, a2 = m. Since a2 = m and a l t:. 0 (m), we have 
R(a l ) E ::f.++a l • By (2.3.3) and (2.10), one has R(a l ) = m .wp(O) < m, whence 
a l < m. Thus a l +R(a l ) = m, because a l +R(a l ) « 2m) belongs to ::f.+m. 
Hence mE ::f.+a l , which contradicts (m,a l ) = 1. Thus (4.2.3) does not occur, 
and case (I) is finished. 

(4.2.4) Incase (II), one has ai' ... ,a4 t:. 0 (4) (la.6) and 4 E (ord(d)-{O})+ 
(ord(d) - {O}), whence 2 E ord(d). Since 4wp(0) (E N) is prime to 4 and 
4wp(0) < 4 by (2.3.3) and (2.10), one has 3 E ord(d). Thus ord(d) = ::f.+ 
or ::f.+-{I}. Hence by d-wt(x) == (1,2,3,1), (1,2,3,3)mod4 and mod-
ulo permutation, one has d-ord(x) = (1, 2,3,1), (3,2,5,5), (1, 2,3,3), or 
(3,2,5,3) modulo permutation. The last case is impossible by (2.3.3), because 
one has wp(O) = 5/4 > 1 by (2.10). In the third case, one sees that X l 2 must 
appear in the power series expansion of </J by (la.6) and wtx1 t:. wtx3, wtx4 

(4) . Thus by </J E (X2 - X12, x3 - x 13 , x4 - X 13) , one has o</J/ox2(0) # 0, which 
contradicts the assumption </J E (X)2 of case (II). From the first two cases, one 
has (IIA) or (lIB). 
(4.2.5) We will show that there are no overlaps in cases and the division does 
not depend on choice of (x) and t. By normalizedness, ai' ... , a4 (modulo 
permutation) is independent of choice of (x) and t (2.6). In case (II), we 
have (IIA) iff ord( d) = ::f.+. We only need to consider case (I). If ord( d) = 
::f.+, then we have (IA), and we are done. Assume that ord(C tt ) # ::f.+, where 
ord( d) needs exactly two generators a l and a2 • One has (IB) iff m is one 
of the generators. In case (IC), there is exactly one solution (i, j) = (1 ,2) for 
ai + aj == 0 (m) (1 ~ i < j ~ 4), and it is given by the generators a l and a2 • 

Therefore (IA) and (IC) do not occur at the same time. 0 
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(4.3) Let 1; and h, be monomials in XI and x 2 such that 

Xj = J;(XI ,x2) on d (i = 3,4). 

Then 
F sa2 sal F f. F r 

2 = XI - X2 ' 3 = X3 - 3' 4 = X4 - J4 

generate the defining ideal JU of (d, pU) in (C4 , 0). Then 

¢ = g2 . F2 + g3 . F3 + g4 . F4 
for some semi-invariant g/SE C{x} with wtgj == wt¢ - wtFj . 

(4.4) Lemma. Under the notation of (4.2), one has 
(i) (XU, pU) is smooth and JU = (F2' F4, ¢) if P is of type (IC) or (ICv), 

and 
(ii) JU = (F3' F4, ¢) if P is of type (lIB) or (IIv). 

Proof· (i) One sees that 1; must be X I X2 ' and 

¢ = g2· (XI sa2 - x2sal ) + g3 . (X3 - XIX2) + g4 . (X4 - h,). 
Since P is of type (IC) or (ICv ), one sees that m = s(al + a2 ) > 4, and 
g2 E (x), and that g4' h, E (X)2 by wtx4 ¢: 0, ±wtx l , ±wtx2 (m). Since 
m ~ 5, one sees that XI x2 or x3 must appear in the power series expansion of 
¢ (la.5). By sal' sa2 ~ 2, this is only possible if g3 is a unit. Thus (XU, pU) 
is smooth and (F2' F3, F4) = (F2' F3, ¢) . 

(ii) By (la.6), X I 2 must appear in the power series expansion of ¢, since 
wtxl ¢: wtx2, wtx3, wtx4 (4). One sees that 1; and h, must be x IX2 if 
p is of type (lIB) (resp. 1; = x2 and h, E (X)2 if P is of type (IIv)). Thus 
similarly in 

¢ = g2 . (X12 - x/al ) + g3 . (X3 - 1;) + g4 . (X4 - h,L 
we see that g4 E (x) by ¢ E (X)2, and hence that g2 is a unit, whence 
(~,~,~)=(~,~,~. 0 

(4.5) Definition. Let X ~ C ::= jp'1 be an extremal nbd, and PEe be a 
singular point of X. 

(i) We say X ~ C is ordinary at P (or P is an ordinary point) if (X, P) 
is an ordinary double point or a cyclic quotient singularity (i.e. the 
canonical cover (XU, pU) is smooth), and 

(ii) We say that P is almost ordinary iff P is of type (IB) and (d, pU) is 
a complete intersection in (XU, pU) . 

(4.5.1) Remark. (i) P is an ordinary point iff either 
(a) P is of type (IA) or (IA v), and (X, P) is a cyclic quotient singularity 

(# JU = (¢, F2 , F3 ) # (d ,pU) is a complete intersection in (XU, pU) ), 
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(b) P is of type (IC) or (ICv), or 
(c) P is of type (III), and (X, P) is an ordinary double point (i.e. (X, P) ::::> 

C is given as ({xy = zu}, 0) ::::> x-axis for suitable coordinates 
(x, y, z, u) ), 

(ii) a type (IB) point P is almost ordinary iff J~ = (¢,F3 ,F4 ). 

Proof. We treat (i) first. If P is of type (IA) or (IA v), then F4 = x4 - ~(XI ,x2) 
and wt¢ '¥- wtF2, wtF3 (m). Therefore the equivalence in case (a) is clear. 
If P is of type (IB), then ¢ E (X)2 by ¢ E (F2' F3, F4), F2 E (X)2 and 
wt¢ '¥- wtF3, wtF4 (m). Thus P is not ordinary. (4.4(i)) treats points 
of type (IC), (ICv). Points of type (IIA), (lIB), (IIv) are never ordinary by 
¢ E (X)2. (ii) follows from wt¢ '¥- wtF3, wtF4 (m). 0 

Points of type (IA) or (IA v) require delicate analysis. For these, we state 
the following technical lemma to be used in §9. 

(4.5.2) Lemma. If P is an ordinary point of type (IA) or (IAv) such that 
sizp = 1 and (d, P~) is singular, then {F2' F3} is a free basis for gr~1 &' at 
pU such that ow'"(F2) = (m, 0) - sal· ow2' ow'"(F3) = oWl (2.8), R(wtF2) > 
R(wtF3) , and 

ow'" (F2) - ow'" (F3) ,(m, 0) + ow'" (F3) - ow'" (F2) E ow(d). 

Proof. By wtF2 =sala2 and wtF3=-wtxl (m),wesee ow'" (F2) = (m,O)-
sa l ·ow2 and ow'"(F3) = OWl by sizp = U(sa l ·ow2) = 1 and al < m. 
We have ow'"(F2) E Z+ oWl + Z+ OW2 (2.8), and claim further that ow'"(F2) E 
Z++ OWl + Z++ ow2. Indeed if otherwise, we have (m, 0) = a· oW j for some 
a E Z+, i E [1,2], whence a = 0 (m) by (wtxl , m) = (wtx2, m) = 1 
and thus m = m and a j = 1 by m = aa j , which implies that P is a type 
(IA) point and (d, P~) is smooth. This contradicts our original assumption. 
Thus we have ow'"(F2) E Z++ OWl + Z++ ow2 ' hence R(wtF2) - R(wtF3) > 0, 
and ow'"(F2) - ow'"(F3) E ow(d). Then it is obvious that (m,O) + ow'" (F3) -
ow'"(F2) = sal· oW2 + OWl E ow(d). 0 

(4.6) Let X::::> C ~ jp'1 be an extremal nbd with a singular point PEe of X 
of index m, and let PI ' ... ,P, be all the other singular points of X on C. Let 
(X~, pU) ::::> (d, pU) be the Pm-canonical cover of (X, P) and the preimage of 
C. Let x = (XI' ... ,x4 ) and t be normalized i-coordinates giving embedding 
(XU, pU) C (<c4 , 0) such that a j = d- ord(xj) (i E [1,4]) are as in (4.2). Let 
¢ E <c{x} be an i-equation of (X, P), and J~ c <C{x} the ideal defining d 
in (e, 0), and let F2 , F3, F4 be as in (4.3). The following is the deformation 
process. 

Let () = x2 if P is an almost ordinary type (IB) point or a type (lIB) point, 
and () = 0 otherwise. Let cl C (<c4 , 0) be defined by F2 +).() = F3 = F4 = 0 
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for A E C. Then we follow step (L) in § 1 b. We will choose semi-invariant 
'1/ E (x)C{x} with wt'l/ == wt</> (m) such that </>J.. = </>+A'I/ induces 0 on C! 
and such that XJ...e (3 P = 0) has only terminal singularities if IAI « e « 1 , 

where we introduce Be = {(x) Ilxil < e (Vi)}, XL = X!nBe , XJ...e = XL/Pm' 
cL = C! n Be' CJ...e = CL/ Pm (this part will be studied more closely case by 
case later in the proof). Then step (LG) embeds the deformation XJ...e ::> CJ...e 3 

P to a deformation XJ.. ::> CJ.. ~ Wi which is trivial outside XJ...e for IAI « e « 1 
(lb.7). Thus by (G) in §lb, one has nearby extremal nbds X; ::> CJ.. ~ Wi such 
that X; C XJ.. for IAI « 1 . 

(4.7) Proposition-Definition. For suitable choice of '1/, each nearby extremal 
nbd X; ::> CJ.. ~ Wi (IAI« e « 1) contains P, PI ' ... ,P, in the natural way 
mentioned above so that (X;, Pi) ::> (CJ..' Pi) is naturally isomorphic to (X, Pi) ::> 
(C, Pi) for i E [1, r] and XJ...e ::> CJ...e contains all the singularities (E CJ..) of 
XJ.. ::> CJ.. other than PI' ... ,P,. If P is a primitive (resp. an imprimitive) 
point, then XJ...e ::> CJ...e is locally primitive (resp. P is an imprimitive point 
of XJ...e ::> CJ...e with the same subindex and splitting degree as X ::> C 3 P). 
Depending on the type of X ::> C 3 P , one has 

Type (IA) (resp. (IB) but not almost ordinary, (IA v)). P is the only sin-
gularity of XJ...e on CJ...e' and it is an ordinary type (IA) (resp. an almost 
ordinary type (IB), an ordinary type (IA v)) point, and one can use the same 
(x), t, ow;'s, F/s, except for the i-equation which is </>J.. = 0, whence size, 
w(O) remain the same. 

Type (IIA) (resp. (IIv)). P is the only singularity of XJ...e on CJ...e' and it 
is an ordinary type (IA) (resp. (IA v)) point, with the same index, size, and 
w(O) as X ::> C at P. 

Type (IB) and almost ordinary. XJ...e has exactly a l singular points (includ-
ing P) on CJ...e' which are ordinary points of type (IA) with index m, and the 
invariant w(O) for XJ...e ::> CJ...e takes the same value for thesea l points. 

Type (lIB). XJ...e has exactly two singular points P and Q on CJ...e' which 
are ordinary points of type (IA), with indices 4 and 2, respectively, and 

Type (III). XJ...e has exactly n singular points, and they are on CJ...e and of 
type (III), where n is the invariant ip (l) for X::> C at P. If n = 1, then the 
singular point on CJ...e is ordinary. 

We call all these processes (or X; ::> CJ..' by abuse of language) L-deforma-
tions at P. The L-deformation at a type (III) point P is also called a separating 
L-deformation. 

In case of type (III), one can also make XJ...e smooth when 0 < IAI « e « 1 
by choosing some other suitable '1/. We call this process an L-smoothing at P. 
(L-deformation will mean separating L-deformation for type (III) points unless 
otherwise mentioned. ) 
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Proof. First we note that, if P is an almost ordinary point of type (IB) or a 
point of type (lIB), F2 + AX2 is semi-invariant and C! is smooth in a small 
enough nbd of (C4 , 0) when 0 < IAI « 1 (lb.4). Thus the assertion on local 
primitiveness (or imprimitiveness) follows from (1 b.3.1) if other parts are done. 
We treat several cases depending on the type of P. 

(4.7.1) (IA), (IIA), (IA v), (IIv) (resp. (IB) but not almost ordinary). We choose 
semi-invariant general '1/ E F4 + C{X}F2 + C{x}F3 (resp. F2 + 
(C*X I +(x)2C{x})F3+C{x}F4) with wt'l/==wt¢ (m). We note that {¢= 
'1/ = O} is a normal surface by Bertini's Theorem because ((x)2J a)",m . C{x} 
defines a closed subscheme c (C4 , 0) which is equal to d except at a finite 
number of points. Thus (lb.3(i)) is satisfied, and (lb.5(ii')) (resp. (lb.5(ii")) 
is satisfied by the choice of '1/. Thus X)..e has only terminal singularities and 
these come from points in XL n xa-axis for a = 4 (resp. a = 2) (lb.3). Since 
d n xa-axis = {O}, P is the only singular point of X)..e lying on C. We note 
JU = (¢)., F2, F3) (resp. Ja = (¢)., F3, F4)) . The assertions on size, w(O) follow 
from definition and (2.10). 

(4.7.2) Almost ordinary and (IB), or (lIB). We write ¢ as ¢ = g2 F2 + g3F3 + 
g4F4' where g2' g3' g4 are semi-invariants such that wt gi == wt ¢ - wt Fi . 
We note that g2 is a unit by the hypothesis or (4.4(ii)). We choose semi-
invariant general '1/ E g2x2 + C{X}F3 + C{X}F4 with wt'l/ == wt¢ (m). Thus 
¢). E g2(F2+AX2)+C{x}F3+C{x}F4 , and ¢). == 0 on C!. Then '1/ fJ. (X)2 since 
g2 is a unit. One can check (lb.3(i)) similarly to the previous case. By (lb.3) 
and '1/ fJ. (X)2 , X)..e has only terminal cyclic quotient singularities and they are 
images of X!.e n x2-axis. If P is of type (IB), C! n x2-axis = {(O, C; , 0,0) I 
c;a1 = AC;} and XI ' x3 ' x4 form coordinates for X! at all these a l points by 
o¢)./ox2 =f O. Since XI is a uniformizant for C! at all these points, Pm is the 
stabilizer of each point, and wt(x) are the same at these points, one sees that 
they have index m and the same w(O) by (2.10). If P is of type (lIB), one has 
C! n x2-axis = (0) or (0, ±.JX, 0,0). Stabilizer of (0) is P4' and stabilizers 
of the conjugate (0, ±.JX, 0,0) are P2' SO we have two points with indices 4 
and 2. 

(4.7.3) (III). In this case, we choose coordinates (zl'"'' z4) so that C is 
zl-axis and ¢ == zInz2 (z2,z3,z4)2 (2.16). Then n = ip (l) by (2.16). Let 
'1/ E Z I z2 + (Z2' z3' Z4)2 be general enough so that ({ '1/ = O} , 0) is an ordinary 
double point and {¢ = '1/ = O} is a surface smooth outside Z I-axis by Bertini's 
Theorem. Let ¢). = ¢ + A'I/, X)..e = {(z) I ¢).(z) = 0, Izil < e (Vi)} and 
C)..e = X)..e n C when IAI« e « I. By (lb.4), X)..£ has singularities only on 
C)..e if IAI « e « I. Since ¢). == (zi n-I + A)ZI z2 (z2' z3' Z4)2 , one sees that 
X)..e has exactly n singular points {(C;, 0,0,0) I C +AC; = O} in C)..£ by solving 
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O¢;./OZ2 = 0 on xI-axis. Again by ¢;. == (zr l +A)zl z2 (z2' z3' z4)2 , X;',e has 
cA-points at these points, whence terminal (la.2(ii)). If n = 1, then (X;',e' 0) 
is an ordinary double point if 0 < IAI « 1 because so is ({ IfI = O}, 0) . 

(4.7.4) To construct an L-smoothing for type (III) P, one may choose general 
IfI E z3 + (z2' z3' Z4)2 with the notation of (4.7.3), and the rest is similar to 
(4.7.3). 0 

By using L-deformation (4.7), we can reduce many problems on extremal 
nbds to the ones on extremal nbds with only ordinary singularities. To derive 
formulae for ordinary singularities, we need an easy 

(4,8) Lemma. Under the notation of (4,1), assume that 
2 

ledleu =&euvi EB&eUv2 and wxu ®&eu =&euQ 

near p U, where leu is the defining ideal of cU in Xu, and VI' v2 and Q are 
semi-invariants with CU-wts bl , b2, k, Then 

i ,j?O, i+ j=d 
d ffi mY tR(ib1+jb2+k) i jn grew = Q7 (7e VI V2 u' 

i ,j?O, i+ j=d 

ip(d) = 1 L {iR(b l ) + jR(b2) - RUbl + jb2)} m 
i ,J?O, i+ j=d 

(d ~ 2), and 

1 wp(d)=m L {iR(b l )+jR(b2)+R(k)-RUbl +jb2+k)} (d~I), 
i,j?O, i+j=d 

.r' ~ d Proo} , By the assumptlOns, one has leu = (VI' v2)· Hence leu = (VI' v2) , 
d i j d i j greu & ~ ffi&eu VI v2 ,and greu W ~ ffi&eu VI v2 n. The lemma follows from 

(2.8) and (2.9). 0 

Then we have 

(4,9) Theorem. Let X ~ C ~ Wi be an extremal nbd, and let PEe be a 
singular point of X of index m ~ I , subindex m, and splitting degree s, Let 
(x) and t be normalized i-coordinates as in (4,2), a i = ord(xi ), oWi = ow(xJ 
(i E [I, 4]), Then 

(i) the value of wp(O) is given depending on type of P : 

type (IA) , (IA v) (IB), (1C), (leV) (IIA) , (lIB) (IIV) (III) 
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(ii) if P is ordinary, then depending on type of P, one has 
Type (IA): 

ip(l) = U(a la2), wp(O) = (m - a2)/m, 

ip(d) = L {iU(ala2)-U(iala2-jal)} (d~2), 
i ,j?O, i+ j=d 

w;(d) = L U(ia l a2 - ja l + a2) - (d + I) (d ~ I), 
i ,j?O, i+ j=d 

Type (IAv): 
ip(l) = U(s· a la2), wp(O) = (m - a2)/m, 

ip(d) = L {iU(sa2 · oWl) - U(isa2 . OWl - j. OWl)} (d ~ 2), 
i,j?O, i+j=d 

(d ~ I), 
i ,j?O, i+ j=d 

Type (IC) or (ICv ): 

ip(l) = U(sa la2) , wp(O) = R(a4)/m, 

ip(d) = L {iU(sa l a2) + jU(a4 ) - U(isa la2 + ja4 )} (d ~ 2), 
i ,j?O, i+ j=d 

(d ~ I), 
i ,j?O, i+ j=d 

and 
Type (III): ip(l) = I, wp(O) = 0, 

ip(d) = [d2/4] (d ~ 2), 

w;(d) = [(d + 1)2/4] (d ~ I). 
Proof. We omit the proof of (i) since it follows immediately from (2.10) for the 
case of type (IA) (resp. (IA v) ), where R(a2) = m - a2 by (m, 0) E LZ.++ OWl + 
LZ.++ OW2 • We assume that P is ordinary, and consider type (I) or (I v) case 
first. Let F2 , F3 , F4 , ," be as in (4.3) (hence as in (2.11)). We use the 
notation of §2. We note d-wt(Fi ) == IlFill (mod m) (i E [2,4]) (cf. (2.13)). 
Since ¢J is a part of basis for ,"/,"2 , one has 

[¢J, ,to} "to}] = [,to}' ,to} "to}] 
= [tR(wtF2 ) F2 , l(wtF3) F3 , l(wtF4 ) F4] 

4 3 

= m L U(llFill, wtFJ - Lai 
i=2 i=l 

by (2.8(ii)) and (2.14). Whence by (2.12), one has I 

. 4 I { 4} Ip(l) = I + ~ U(llFill, wtFi) - m R(k) + -E ai ' 
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where k = wtx2 (resp. wtx4) if P is of type (IA) or (IA v) (resp. (IC) or 
(lev)). 

If P is of type (IA) or (IA v), we have U(IJF2 11, wtF2) = U(sa2 . OWl) = 
U(sa la2) , U(IIF411, wtF4) = U(m, 0) = 1, and U(IIF311, wtF3) = U(owx3) = 
(a l +a3)/m by wtxl +wtx3 ==0 (m) and al <m. Since (m,O) EZ++OW I + 
Z++ ow2 ' we have (m, 0) - oW2 E ow(d) , and one has R(k) + a2 = U(ow2) = 
m, and thus ip(l) = U(sa la2). The rest follows from (4.8) (VI = F2, v2 = F3) 
because R(z) = U(z)m - x (z = (x, y) E ow(d)) (2.8). 

If P is of type (IC) or (lev), we have U(IIF211,wtF2) = U(sa la2) , 
U(IJF3 11, wtF3) = U(m,O) = 1, and U(IJF4 11, wtF4) = U(a4) (we note a4 == 
wtx4 (mod m) for type (Ie v) points). Whence we have ip(l) = U(sala2). 
The rest follows similarly from (4.8) and Ie = (F2 , F4) (4.4(i)). 

We consider type (III). Since (X, P) is Gorenstein, wp(l) = ° and wp(d) = 
ip(d) (d:;::: 2), whence w;(l) = ip(l) and w;(d) = (d!1 )ip(l) - ip(d) 
(d :;::: 2). We see ip(l) = 1 (2.16), and we need to calculate ip(d) (d:;::: 2). We 
may choose coordinates (zl' ... ,Z4) so that C is zl-axis and X = {Zl z2 = 
z3z4} in (C4 ,0). Then &x,p=C{z}/(zlz2-z3z4),andlet I e =(z2,z3,z4)' 
and Ie (d) the symbolic dth power of Ie' We note z2 E Ie (2) by zl z2 = z3Z4 E 
Ie 2 . Let Jd (d E N) be the ideal generated by z2 i z/ z4 k for i, j, k E Z+ such 
that 2i + j + k :;::: d. Then IeJd c Jd+ l , and Jd C Ie(d) by Z2 E I e(2). By 
z3z4 = Zlz2' one sees that vjk := z~in{j,k}z~-min{j,k}z:-min{j,k} E &x,p sat-

isfies z~z: = z~in{j,k}Vjk for j,k E Z+. Thus one easily sees that Jd = 

(vd,O,Vd_I,I'''' ,vO,d) and 

EB &e,pvi,d-i - Jd/Jd+ l · 
09~d 

Since JI = Ie' we will see Jd = Ie (d) by induction on d. Indeed if Jd = Ie (d) , 
then 

d 

( * ) EB &e ,P vi ,d-i - (I~d) fJd+1 - I~) ///+1) =) gr~ & 
i=O 

is a surjection between free &e ,p-modules of the same rank d + 1 , and hence 
it is an isomorphism and Jd+1 = Ii!+I) . By (*), one has 

d 
d A'9/ d I A'9 ffi(A'9 /( min{i ,d-i})) gre(7 S gre (7 ~ W (7e,p Zl • vi,d-i 

i=O 
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b lAir Air Air d i d-i min{i.d-i} H y gre C7 = C7e .P Z3 Ej7C7e .P Z4 an z3 Z4 = ZI vi .d - i • ence one sees 
ip(d) = [d2/4] and w;(d) = [(d + 1)2/4] (d? 2) by I (d-I)/2 

d 2 L i = (d2 - I) /4 if dodd, 

ip(d) = '" min{i, d - i} = 1=0 L.t d/2 
1=0 2 L i - d/2 = d2/4 if d even. 

1=0 

We note that the formula for w;(d) works for d = 1 as well. 0 

(4.10) Remark. We note that ip(l) = sizp for ordinary P by (4.9(ii)) (cf. 
(4.1.1)). 

We can consider two slightly more delicate deformations than in (4.7). 

(4.11) Lemma. Under the notation of (4.2), assume that (X, P) is a cD-type 
terminal singularity of index 3 (la.2) and that P is a type (IA) point. Then 
(aI' ... ,a4) = (1, 1,2,3) or (2,1, 1,3) and wp(O) = 2/3. Thus modulo per-
mutation of XI and x2 (4.2), we "may" assume (aI' ... , a4) = (I, 1,2,3) . 

Proof. By m = 3 E Z++a l + Z++a2 ' we see al = 1 or a2 = 1 . If a2 = 1 , then 
a1+a3 = m = 3 by ord(d) = Z+ and normalizedness, whence (aI' a3) = (1,2) 
or (2, I). We can also see a2 = 1 ,2 and that (aI' a2) = (I , 2) if al = 1 . Thus 
it is enough to disprove (a) = (1,2,2,3). Indeed it means that xII e u = t, 

2 3 2 2 x21eu = x31eu = t , and x410 = t . By (la.6), ¢ E (x4) +X4(X I ,X2,X3) + 
(X I ,x2,x3)3 and x I3 appears in ¢ because wtxI :;Ewtx2 , wtx3. Hence ¢Ieu 
is of order 3, which is a contradiction. Thus (a) = (I, 1,2,3) or (2, I, 1,3) , 
whence wp(O) = 2/3 by (4.9(i)). 0 

(4.12) Under the notation and assumptions of (4.2), assume that P is a type 
(IA) point with a l = 1 or a type (IIA) point. Then there exists an l'-coordinate 
system (z) = (z I' ... , z4) for (X, P) and an l'-coordinate for (C, P) such 
that C~ is the zl-axis, wtz i == ai (i E [1,4]), and ¢ == ZlnZq (z2,z3,Z4)2, 
where n = lenpu leu (2)/Ie / ? 0 and q E [2,4] (2.16). 

We note that if P is of type (IA) and n ? 2, then wt z2z3 == 0 (m). Because 
otherwise, we see that m ? 3 and ¢ E Cz42 + (z)3 , hence (X, P) is a cD-type 
terminal singularity of index 3 (la.6) and wt z2z3 == 0 by (4.11), which is a 
contradiction. Thus we have 

(4.12.1) Sublemma. IfP isatype (IA) point with al = 1 andlenpuIo(2)/Ie/ 
? 2, then a2 = 1 . 

If P is of type (IA) and n ? m (resp. P is of type (IIA)), then we can 
choose a general semi-invariant 
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such that {¢ = 'II = O} is a surface which is smooth outside z ,-axis by Bertini's 
Theorem. Then as in (4.6) and (4.7), ¢). = ¢ + A'll induces a deformation 
X). ,e ::J C). ,e 3 P of nbd of P in X ::J C such that X). ,e ::J C). ,e is locally 
primitive, and nearby extremal nbds X; ::J C). . 

(4.12.2) Proposition-Definition. (i) If P is a type (IA) point with a, = I and 
n = lenp# Ic/2) I Ic/ ~ m, then X)..e ::J C)..e has a type (IA) point with index 
m and at least one type (III) point, and 

(ii) if P is of type (IIA) , then X). ::J C). 3 P has an i-coordinate system 
(y) (depending on A) such that wt y i == ai (i E [I, 4]), C1 is the y,-axis, 
¢). = y, Y 2 + Y 32 + Y 43 for each small enough A > 0 . 

We call all these processes (or X; ::J C)., by abuse of language) L'-deform-
at ions at P. 

Proof. Since SU = Sing{¢ = 'II = O} is contained in z,-axis, SU n FU c {O}, 
where F U is the fixed axis, i.e. z4-axis (la.5). 

(i) Since z2z3 appears in'll, the conditions in (lb.3) are satisfied by (lb.5), 
and (I b.3) applies. The argument is similar to (4.7), and we only show existence 
of an extra type (III) point. By 

A.. _ ( n-(m-a.) ') m-aq d ( )2 'I').=Z, +I1.Z, Zq mo Z2,z3,Z4' 

we see a moving singular point by n - (m - aq ) > O. This gives a type (III) 
point since it is not on the fixed axis (lb.3). 

(ii) By (la.5), z/ appears in ¢, whence the quadratic part of ¢). is of the 
form o:z,z2+PZ/+Yz/ (o:,P,YEC, o:y#O). Thus using the Weierstrass 
Preparation Theorem, one can easily obtain an i-coordinate system (y) such 
that wtYi == ai (i E [1.4]), C1 is the y,-axis, ¢). = Y,Y2 + Y/ + y/r+' 
(r ~ I). By construction of'll, ¢I FU has exactly a triple root at the origin, 
and we note that F U = Y4-axis in terms of the coordinates y. Thus r = I 
(la.5(iii)). By (la.7(ii)), ({¢). = O}.O)II-'m is terminal. Thus the conditions in 
(I b.3) are satisfied and the rest is the same. 0 

5. NUMERICAL CALCULATIONS FOR (IA), (IC), (IA v), AND (leV) 

The main purpose of this section is to make formulae (4.9) more explicit for 
later use. Throughout this section, we will use the notation of (4.9). 

(5.1) Proposition. Assume that P is an ordinary point of type (IA) with index 
m such that ip(l) = I. wp(O) < 1/2. Then 

(i) one has a, = I , and 
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(ii) if dEN satisfies wp(O) < lid, then one has (we note d $ m - 1 
1/(d + 1) $ (m - l)lmd < lid) 

(ip(d + 1), w;(d)) 

= 

(0, ~d(d + 1)) 
(1, ~d(d + 1) - 1) 

(2,~d(d+1)-2) . m - 1 
ifwp(O) = --d ' d =1= m - 1, m· 

(d+2,~(d-2)(d+1)) ifwp(O) = !, d=m-l. 

and 

Proof. One has a,a2 $ m by U(a,a2) = 1 and a2 > m/2 by wp(O) = 
(m - a2)lm < 1/2 (4.9). Thus a, = 1 and ord(d) = ;'l,+, which proves (i). 
Since wp(O) ~ 11m, one has d < m and 1/(d+ 1) $ (m-1)lmd < lid is im-
mediately checked. We note that U(n) = rnlml for n E;'l, by ord(d) =;'l,+. 
Then r = m - a2 E N satisfies dr < m by wp(O) = rim < lid. Let us consider 
arbitrary i, j E;'l,+ such that i + j = d + 1 . Then we claim 

U(ia2 - j) = 

Indeed from 

and 

i-I 

i 

jj=O 

if j = 1 

j> 1 
otherwise. 

1 
and wp(O) ~ d + 1 ' 

m - 1 
and wp(O) = --d ' or m· 

1 and wp(O) = - and d = m - 1, m 

mi - (ia2 - j) = (m - a2)i + j > 0, 

(ia2 - j) - m(i - 2) = 2m - j - i(m - a2 ) 

= 2m - j - ir 
~ 2m - (d + l)r > 0, 

one has i ~ U (ia2 - j) ~ i-I and U (ia2 - j) = i-I iff X (i , j) $ 0, where 
XU, j) = i(a2 - j) - m(i - 1) = m - j - ir. It is clear that X(d + 1, 0) $ 0 <=> 
m $ (d + l)r <=> wp(O) ~ 1/(d + 1). If j ~ 1, then 

X(i, j) = m - 1 - (j - 1) - ir 
~ m - 1 - (j - l)r - ir 
= m - 1 - dr ~ O. 

One sees that X(d, 1) $ 0 iff m - 1 = dr, that is wp(O) = (m - l)lmd. If 
j> 1, then X(i,j) $ 0 iff m - 1 = dr and r = 1, that is wp(O) = 11m and 
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d = m - 1. Thus the claim is proved. Since (4.9) implies 

ip(d + 1) = L {i - U(iaz - j)}, and 

w;(d) = L U(iaz - j) - (d + 1) 
i~1 

= L i - L {i - U(iaz - j)} - U( -d - 1) - (d + 1) 

= !d(d + 1) - ip(d + 1) - U(-d - 1), 

the above claim implies (5.1). 0 

181 

(5.2) Proposition. Assume that P is an ordinary point of type (IA) and index 
m. One has 

(i) ip(l) = 1 and az > 1 => ip(2) ~ 1, 
(ii) az > 1 => w;(l) ~ i p(l) - 1, and 

(iii) w;(l) ~ -1, where« =" holds iff az = 1 (¢} wp(O) = (m - l)jm). If 
furthermore az = 1 , then 

ip(d) = !d(d + 1) - r~l + ~S(d) (d ~ 2), 

w;(d) = -r~l + ~S(d) (d ~ 1), 

where S(d) = {i E ~ I 0 < i ~ d, i == d (2), i == 0 (m)} (we note 
~S(d)=t5d.m ifd~m). 

Proof. Assume that az > 1. Let m = aal + paz (a, PEN). By (ai' m) = 1, 
one sees (ai' az) = 1. Thus a l - az ¢ ~+al + ~+az and m + a l - az = 
(a + l)a l + (P - l)az E ~+al + ~+az' whence U(az - al ) = 1. Hence 

w; ( 1) = U (a I az + az) + U (az - a I) - 2 
= U(a1az + az) - 1 ~ U(a1az) - 1 ~ i p(l) - 1, 

which proves (ii). One sees -m - (-2a l ) = 2a l - m = (2 - a)a l - paz ¢ 
~+al + ~+az by 2 - a ~ 1 and p > 0 (note (al,az) = 1 and az > 1). 
Thus U( -2al ) = O. Let us assume i p( 1) = U(a l az) = I to prove (i). Then 
U(a1az - a l ) = 1 by a1az - a l > 0 and U(a1az) ~ U(a1az - a1) ~ 1. One has 
2 = 2U(a1aZ) ~ U(2a1aZ) ~ U(a1aZ) = 1. Thus one has ip(2) = 2U(a1aZ) -

U(2a1 az) + U(a1 az) - U(a1 az - a1) - U( -2a l ) = 0 or 1, which proves (i). By 
(ii) and (2.15), one sees w;(l) ~ 0 if az > 1. The formula in (iii) implies 
w;(l) = -1 if az = 1. We now need to prove the formulae in (iii) assuming 
az = 1. Then ord(d) = ~+, U(n) = rnjml for n E~, and U(a1,aZ) = 1. 
Hence (4.9) implies 

ip(d) = .. L. (i - rU -~)all) 
l.j~O. I+j=d 
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for d ~ 2. By 

2=2+-+-> - + - ~-+-=O, x -x rXl r-xl x -x 
m m m m m m 

one sees 

r'::'l + r-xl = {I if x ¢? (m), 
m m 0 otherwIse 

whence formula for ip(d) follows. One also has 

w;(d) = .. ~. (r(i-j~I+11-1) 
I.J~O. t+J=d 

= 2: (rial': 11 + r -ia~ + 11- 2) 
O<i5,d. i=d(2) 

for d ~ 1 . It is clear that 

1 + .::. = m - 1 + x + 1 ~ rx + 11 ~ x + 1 (x E ;l) 
m m m m m 

and that the first inequality is an inequality iff x == 0 (m). Hence from 

2 = 2 +.::. + -x > r 1 + xl + r 1 - xl > 1 + x + 1 - x = ~, 
m m- m m -m m m 

one sees that 

2~r1:xl+r1~xl~1 
and the first inequality is an equality iff x == 0 (m). Then the formula for 
w;(d) follows. 0 

There is another case of (IA) with ip (l) = 1, in which we need to calculate 
ip(d) for large d. 

(5.3) Proposition. Assume that P is an ordinary point of type (IA) with index 
m. If w p (0) = 1 1m, then a 1 = 1, a2 = m - 1, i p ( 1) = 1 , and 

ip(d)=(d+l)[!] (d~2), 

w;(d) = ~(d + 1) {d - 2 [d; 1] } (d ~ 1). 

Proof. By wp(O) = 11m, one has a2 = m - 1 (4.9). Thus by m E ;l++a1 + 
;l++a2 , one has a 1 = 1. Hence ip(l) = 1, ord(d) =;l+, and U(n) = rnlml 
for n E;l. Then (4.9) implies 

ip(d)=2:{i-UUm-d)}=2:[!] =(d+1)[!] (d~2), 

w;(d) = 2: U((i + l)m - (d + 1)) - (d + 1) 

= 2: (i - [d; 1]) = ~(d + 1) {d _ 2 [d; 1] } (d ~ 1). 0 
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The following provides us with necessary information for our calculation in 
(6.5). 

(5.4) Proposition. Assume that P is an ordinary point of type (IA) with index 
m such that ip(l) = 2 and wp(O) < 1/2. Let a l • a2 be as in the definition of 
type (IA) in (4.2). Then 

(i) a l =2, a2~(m+l)/2, a2,m==1 (2),and 
(ii) 

• (1) 2 wp· (2) ~ { 5 if. wp(O) < 2/5, wp ~, 

4 -l5a2.(m+I)/2 ifwp(O) ~ 2/5, 
andfurthermore if w;(2) = 3, then U((2i + l)a2 - 2(2 - i)) = i + 1 for 
iE[O,2] (cf. (2.8)). 

Proof. By wp(O) = (m -a2)/m < 1/2 (4.9), one has a2 > m/2. From ip(l) = 
U(a l a2) = 2 (4.9), one sees 2m ~ a)a2 > a) m/2, whence a) ~ 3. Since 
a) ~ 2 by U(a)a2) = 2, one will see a l = 2. Indeed if a) = 3, then 2m - 3a2 
« a2) belongs to 3~+ + a2~+' whence 2m - 3a2 == 0 (3), which however 
contradicts (m, 3) = 1 . Hence a) = 2 and m, a2 == 1 (2). This proves (i). 

By m E ~++2 + ~++a2 and a2 > m/2, one sees m ~ 5 and m = a2 + 2r for 
some r EN such that 2r < a2 . Let i, j E ~+ be such that i + j ~ 2. Then we 
claim 

(5.4.1) U((2i + 1)a2 - 2j) ~ i + 1 , where 

" " {i = 0, or 
= ¢} (i + l)r + j ~ a2 . 

To see this, let X(a, i, j) = (i + a)m - {(2i + l)a2 - 2j} for a E ~+. We 
note that U((2i + l)a2 - 2j) ~ i + a iff X(a, i, j) E ~+2 + ~+a2 by definition 
of U( ), and that 

X(O, i, j) = -(i + l)a2 + 2(ir + j) = (1 - i)a2 + 2(ir + j - a2) 

by m = a2 + 2r. Since (a2, 2) = 1 and ir + j - a2 ~ 2r - a2 < 0, this means 
that X(O, i, j) ¢ ~+a2 + 2~+ and U((2i + l)a2 - 2j) ~ i + 1. Then 

X(I. i, j) = X(O, i, j) + m = -ia2 + 2((i + l)r + j) 
= (2 - i)a2 + 2( (i + l)r + j - a2) 

(5.4.2) 

by m=a2+2r. Then X(l,O,j)=2(r+j)E~+2 andthus U((2i+l)a2-2j) = 
i + 1 if i = O. Assume that i > 0, i.e. i = 1, 2. Then one similarly sees by 
(5.4.2) that X(I, i, j) E ~+a2 + 2~+ iff (i + l)r + j - a2 ~ O. Thus our 
claim (5.4.1) is proved. By (5.4.1) and a2 > 2r, one sees U (3a2) ~ 3 and 
U(a2 - 2) = 1 , whence 

w;(1) = U(3a2) + U(a2 - 2) - 2 ~ 2 
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by (4.9(ii)). Similarly, one sees U(a2 - 4) = 1, and 

U(3a2 - 2) ~ 2, where" =" ¢:> 2r + I = a2 , i.e. a2 = (m + 1)/2, 

U(5a2) ~ 3, where" =" ¢:> 3r ~ a2 , i.e. wp(O) ~ 2/5 

because 2r + 1 :5 a2 and a2 = m - 2r. By (4.9(ii)), one has 

w;(2) = U(5a2) + U(3a2 - 2) + U(a2 - 4) - 3. 

If wp(O) < 2/5, then a2 > 3ml5 ~ (m + 1)/2 by m ~ 5. Hence w;(2) ~ 5 if 
wp(O) < 2/5, and the estimate for w;(2) follows immediately. If w;(2) = 3, 
then the above argument shows U(5a2) = 3, U(3a2 - 2) = 2, U(a2 - 4) 
= 1. 0 

(5.5) Proposition. Assume that P is of type (IC) with index m. Then one has 

(i) ip(l) = a l (~2 by (4.2)), 
(ii) 

w;(l) = {~p(l) ifwp(O) =j; (m - l)lm, . 
Ip(l) - c5a1 ,2 - c5a1 ,(m-I)/2 otherwise, 

(iii) if ip(l) = 2 and wp(O) =j; (m - 1)lm, then ip(2) = 0, 
(iv) if dE fir satisfies wp(O) < 11d:5 1/2, then ip(d' +1) = 0 and w;(d') = 

ald'(d' + 1)/2 for all d' E [1, d], and 
(v) if wp(O) = 4/5 and m = 5, then w;(2) = 0 and w;(3) = 4. 

Proof. By wp(O) = R(a4 )lm < I, R(a4 ) « m) belongs to lZ+a l + lZ+a2 • By 
a4 ~ ai' a2 (m), a l + a2 = m, 2:5 a l < a2 , one sees m ~ 5 and R(a4) = ral 
for some r E [2, mlal ). Let u = U(a4 ) , whence a4 = um - ra l . Let us 
choose dE fir such that wp(O) < lid, i.e. raid < m. For i, j E IZ+ such that 
i + j :5 d + 1 , we claim 

(5.5.1) U(ia la2 + ja4 ) = ial + ju - Max{O, ial + rj - a2}. 
First we note 

ial + rj - m < ial + rj - raid 
(5.5.2) :5 (d + 1) . Max{a l , r} - raid 

= Max {a I ,r}( d + 1 - d . Min {a I ,r}) :5 0 

by ai' r ~ 2. For a ~ 0, let X(a) = (ia l + ju - a)m - (ia l a2 + ja4 ) so that 
U(ia la2 + ja4) :5 ial + ju - a iff X(a) E lZ+a l + lZ+a2 • Then 

X(a) = ial (m - a2) + j(um - a4 ) - am 

= ia l 2 + jra l - a(al + a2) 

= (ia l + rj - a)al - aa2 

= (tal + rj - a2 - a)a l + (a l - a)a2· 

Thus X(O) E lZ+a l and U(ia la2 + ja4 ) :5 ial + ju. For a > 0, one has 
ial + rj - a2 - a :5 m - a2 - a = a l - a < a l < a2 by (5.5.2). Thus by 
(ai' a2) = 1, one sees X(a) E lZ+a l + lZ+a2 iff ial + r j - a2 - a ~ O. Hence 
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a = Max{O, ia) +rj -a2} is the largest a E IZ+ such that X(a) E IZ+a) +1Z+a2, 
whence (5.5.1) follows. Setting (i, j) = (1,0), one has U(a)a2) = a) and (i) 
follows. Using m ~ raJ + 1 and setting d = 1, one sees 

ia) + r j - a2 = (i + 1 )a) + r j - m 
:5 (i + 1 )a) + r j - 1 - raJ 
= -(a)-j)(r-i-l)+j(i+ 1)-1. 

For (i,j) = (1, 1) (resp. (0,2)), one sees j(i+ 1) = 2, a) ~ j, r ~ i+ 1. 
Thus 

ia) + r j - a2 :5 1 

and the equality holds iff m = raJ + 1 and r = 2 (resp. a) = 2 ), i.e. iff a4 == 1 
(m) and a) = (m-I)/2 (resp. a) = 2). This is because r = 2 <=> a) = (m-I)/2 
when m = raJ + 1 . Thus by (4.9) and (5.5.1), one has 

(i ,j)=() ,)) ,(0,2) 

= { a) - £5al ,2 - £5al ,(m-))/2 if a4 == 1 (m), 
a) otherwise, 

whence follows (ii). By (5.5.1) with (i, j) = (2,0), one has U(2a)a2) = 2a) -
Max{0,3a) - m}, whence one similarly obtains 

ip(2) = {MaX{0,3a)-m}+£5al,2+£5adm_))/2 ifa4 == 1 (m), 
Max{0,3a) - m} otherwise, 

If ip(I) = 2 and wp(O) =j:. (m - I)/m, then a) = 2 and a4 =!. 1 (m) by (i), 
whence m ~ 2r + 2 ~ 6 and ip(2) = O. Hence follows (iii). When d ~ 2, one 
sees 

ia) + r j - a2 :5 ia) + r j - m + Max {a I ' r} 
< Max{a l ,r}(d + 2 - d· Min{a l , r}) :5 0 

by ai' r ~ 2 and (5.5.2). Thus by (5,5.1), one sees 

ip(d' + 1) = 0 and w;(d') = aid' (d' + 1)/2 for d' E [1, d] 

if d ~ 2. This proves (iv). Assume that m = 5 and a4 == 1 (5), Then 
at =r=2, a2=3, u=2,and a4 =6. Thus IZ+a t +lZ+a2=1Z+-{I}. Hence 
for x, y, Z E IZ+ such that x+y = z, one has U(xa ta2+(y+ I)a4 ) = U(6z+6). 
Thus by (4.9), one has 

w;(z) = (z + 1)· U(6z + 6) - (z + I)(z + 2) = (z + 1)· U(z - 4) 

= (z + I) (r z ~ 41 + £5(zmod5) ,3) , 
where £5(xmod5),y denotes 1 if x == y (5) and 0 otherwise. This proves (v). 0 

The calculation needed for imprimitive points is much simpler. 
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(5.6) Proposition. Let P be an ordinary point of type (IAv ). Then we have 
(i) w;(l) ~ ip(l) - 1. and 

(ii) ip(l) ~ 2 if wp(O) < 2/3. 

Proof. Let the notation be as in (4.9). Since d is not smooth, ow(d) is not 
generated by oW2 (2.7). Hence oWl - oW2 ¢ ow(d) by ow(d) = Z+ oWl + 
Z+ ow2 • Hence U(ow2 - oWl) ~ 1 (2.8). By (4.9(ii)), we have 

w;(l) = U(sa2 OWl + ow2 ) + U(ow2 - oWl) - 2 
= U(sa2 oWl + ow2) - 1. 

By definition of U (2.8), we have U(sa2 oWl + ow2 ) ~ U(sa2 OWl) = ip(l). 
Whence w;(l) ~ ip(l) - 1 and (i) is proved. Assume now that ip(l) = 
U(sa l ow2) ~ 1 and wp(O) = (m - a2)/m < 2/3 (4.9) to prove (ii). Then 
(m.O) - sal' OW2 E ow(d) and 3a2 > m. Comparing the order part, we see 
s=2, al = 1,and (m.0)-20w2=aowl for some aEZ+. Thus m=2a2+a 
and 2a2+awtxl == 0 (2m). Hence wtxl t= 1 (2m), and wtxl == l+m (2m). 
Since (wtx l . 2m) = 1, m must be even, whence a = m = 2a2 is even. Then 
m = 2a2 + a == 2a2 + awtxl == 0 (2m), which is a contradiction. 0 

(5.7) Proposition. Let P be a type (ICv ) point. Then i p (1) = 2. w; (1) = 2. 
and wp(O) ~ 3/4. 

Proof. Since ow(d) = Z+(l. 1) + Z+(m - 1. - 1), we can easily see 

U(x) = {I if x = 1. 
2 if 2 ~ x ~ 2m 

for integers x E [1. 2m]. Thus 

and 

ip(l) = U(2m - 2) = 2. 

wp(O) = R(m + l)/m = U(m + 1) - (m + l)/m = (m - l)/m ~ 3/4. 

w;(l) = U(2m - 2 + m + 1) - U(m + 1) + U(2m + 2) - 2U(m + 1) 
= 2 + U(m - 1) - U(m + 1) + 2 + U(2) - 2U(m + 1) 
=2 

by m ~ 4 (4.9(ii)). 0 

6. POSSIBLE SINGULARITIES ON AN EXTREMAL NBD X::> C ~ jp'1 

The main purpose of this section is to limit the possible combination of 
singularities of types (IA)-{III), (IA v) -(II v) using invariants ip(d), wp(O) , 
and w;(d). 

The results are summarized in (6.7). Easy cases (6.7.1)-(6.7.3) will be treated 
in §7 and the delicate case (6.7.4) will be treated in §9. 

We consider imprimitive points first, since they are much easier to treat. 
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(6.1) Theorem. Let X ~ C ::::: WI be an extremal nbd with an imprimitive point 
P. Then 

(i) P is oJtype (IA v) or (IIv) (i.e. not oJtype (lev)), 
(ii) X ~ C has at most one more singular point, and 

(iii) if wp(O) < 2/3 or sizp ~ 2 (in particular if P is oJtype (Uv)), then 
P is the only singular point oj X on C. 

ProoJ. By (1.13), X ~ C has no other imprimitive points. Since L-deforma-
tion (4.7) at a type (IA v) or (IIv) point P produces an extremal nbd Y ~ D 
with an ordinary type (IA v) point Q such that sizQ = sizp , wQ(O) = Wp(O) , 
and Y ~ D is isomorphic to X ~ C outside small nbds of Q and P, we 
may replace X ~ C with an L-deformation at P. Also by replacing X ~ C 
with im L-deformation at other points, we may assume that X ~ C has only 
ordinary points (4.7), hence has only points of type (IA), (IA v ), (IC), (Ie v ), 
(III). 

(i) Assume that X ~ C has a type (lev) point P. Then by w;(1) = 2 
(5.7), X ~ C has another singular point Q such that w;(l) :$ -1 (2.3.3). 
By ip(l) = 2 (5.7), we have iQ(l) = 1 by (2.3.3) and (2.15). Thus Q is 
not of type (IC) by (5.5(i)), and not of type (III) by (4.9(ii)), hence of type 
(IA). By w;(1) :$ -1, we have wQ(O) ~ 1/2 (5.2(iii)), which contradicts 
wp(O) + wQ(O) < 1 (2.3.3) because wp(O) ~ 1/2 (5.7). Hence P cannot be a 
type (lev) point. 

(ii) Assume that X ~ C has two more singular points Q and R. Then by 
(2.3.3) and (2.15), we have ip(l) = iQ(l) = iR(l) = 1 and no other singular 
points. Hence Q and R are not of type (IC) by (5.5(i)). By wp(O) ~ 1/2 (4.2), 
we see WQ(O) , wR(O) < 1/2 by (2.3.3). Then we see w;(l) = w;(1) = 1, by 
(4.9(i)) for type (III) points, and by (5.1 (ii)) with d = 1 for type (IA) points. 
We also have w;(1) ~ ip(l)-l = 0 by (5.6(i)). Hence w;(1)+w;(l)+w;(1) ~ 
2, which contradicts (2.3.3). 

(iii) Assume that wp(O) < 2/3 or sizp ~ 2 and that X ~ C has another 
singular point Q. Then ip(l) ~ 2 by (5.6(ii)) or (4.10), and w;(1) ~ ip(l)-
1 ~ 1 (5.6(i)). Thus by (2.3.3) and (2.15), one sees that P and Q are the only 
singular points, i Q ( 1) = 1 and w; ( 1) :$ O. Thus Q is a type (IA) point as in 
(i). Then by wQ(O) < 1 - wp(O) :$ 1/2 (4.2), we have w;(l) = 1 by (5.1(ii)) 
with d = 1 . This is a contradiction. 0 

(6.2) Theorem. Let X ~ C::::: WI be an extremal nbd. Then 
(i) X has at most three singular points on C and at least one oj them has 

index> 1, and 
(ii) if X has three singular points on C, then they consist oj a type (III) 

point, a type (IA) point oJindex 2, and a type (IA) point (say, P) oj 
odd index (say, m~3) andsize 1 such that wp(0)=(m-1)/(2.m). 
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Proof. By (6.1), we may assume that X::J C is locally primitive. By (2.3.3), we 
have Ep ip(l) :5 3. Since ip(l) ~ 0 for all p E C and ip(l) ~ I for singular 
P by (2.15), one sees that X has at most three singular points on C. For (i), 
it is enough to derive a contradiction assuming that X ::J C has only type (III) 
singular points. Applying L-smoothing (4.7) repeatedly at type (III) points of 
X ::J C , one obtains a locally primitive extremal nbd Y ::J D ~ jp'1 such that 
Y is smooth. By (2.3.2), one has deggrb&' = 1 because ip (l) = 0 for smooth 
points P. Thus degND/ y = -deggrb&, = -1 and the space of embedded 
deformation of D in Y has dimension ~ X(ND/ y ) = 2 - 1 = 1. This means 
that D moves inside Y while it is the only reduced compact subvariety of 
dimension ~ 1 in its small enough neighborhood. This is a contradiction and 
( i) is proved. 

We will prove (ii). Let P, Q, R be the singular points with indices k, m, 
n, respectively. As in the proof of (i), one has ip(l) = iQ(1) = iR (I) = 1 and 
deggr~&' = -2. We note that X ::J C has no points of type (IC) by (5.5(i)). 
Thus P, Q, R are of type (IA), (IB), (IIA), (lIB), or (III). We treat four cases 
(modulo permutation of P, Q, R). 

(6.2.1) Case ordinary P, Q, R o!type (IA), (III), (III), respectively. We will 
derive a contradiction in this case. By w;(1) + w~(1) + w;(I) :5 1 (2.3.3) and 
w~(1) = w;(1) = 1 (4.9(ii)), one has w;(1) :5 -1. Thus by (5.2(iii)), one has 
w;(d)=-rd/21+od.k for dE[1.k]. Let dE[1.k] and let rE[O,I] be 
such that r == d (2). By w~(d) = w;(d) = [(d + 1)2/4] (4.9(ii)), one has 

1 + d + deg gr~ (J) = d + 1 + 4 (d + 1)( d - 2) + r ~ 1- 0 d.k - 2 r (d : 1) 21 

=!d(d 1) d+r -0 _ (d+l)2-(I-r) =-0 
2 + + 2 d .k 2 d .k ' 

by (2.3.2). Thus we have 
k 

~) 1 + d + deg gr~ (J)) = -1 < 0, 
d=1 

which contradicts (2.3.3). 

(6.2.2) Case ordinary P, Q, R, all o!type (IA) with wp(O) ~ wQ(O) ~ wR(O) . 
We will also derive a contradiction in this case. By wp(O) + wQ(O) + wR(O) < 
1 (2.3.3), one has wQ(O), wR(O) < 1/2. Hence by (5.1(ii)) with d = 1, 
one has iQ(2) = iR(2) = O. Hence by deggr~&' = -2 and (2.3.3), one has 
deggr~&' ~ -3 and whence -6 + ip(2) + iQ(2) + iR(2) ~ -3, i.e. ip(2) ~ 3 
by (2.3.2). Applying (5.2(i)) to P, one has a2 = 1 under the notation of (5.2), 
whence 3:5 ip(2) = 2 + 02.k by (5.2(iii)). Thus k = 2 and deggr~&' = -3, 
whence wp(O) = 1/2 and ip(d) = (d + l)[d/2] for d ~ 2 by (5.3). One 
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has wR(O) < (1 - wp(0))/2 = 1/4, and iR(3) = 0 follows from (5.1(ii)) with 
d = 2. From deggr~& = -d - 1 (d = 1, 2), one has -4 ~ deggr~& = 
-3 ·4+ ip(3) + iQ(3) + iR(3) = -8 + iQ(3) by (2.3.2) and (2.3.3). Hence 
wQ(O) < 1 - wp(O) = 1/2 and iQ(3) ~ 4, whence m = 3 and wQ(O) = 1/3 by 
(5.1(ii)) with d = 2. Thus iQ(d) = (d + 1)[d/3] for d ~ 2 by (5.3). From 
wR(O) < 1 - wp(O) - wQ(O) = 1/6, one has iR(4) = iR(5) = O. Thus by (2.3.2), 
one has 

deggr~& = -4·5 + ip(4) + iQ(4) = -20 + 10 + 5 = -5. 

deggr~& = -5·6 + ip(5) + iQ(5) = -30 + 12 + 6 = -12. 

which contradicts deggr~&+deggr~& ~ -5-6 (2.3.3). So this case does not 
occur. 
(6.2.3) Case ordinary P, Q, R of type (IA), (IA), (III), respectively. with 
wp(O) ~ wQ(O). We will prove k = 2, m = 1 (2), and wQ(O) = (m - 1)/2m 
in this case. By wQ(O) ~ wp(O) and wp(O) + wQ(O) < 1 (2.3.3), one has 
wQ(O) < 1/2 and hence w~(1) = 1 by (5.1(ii)) with d = 1. By w;(1) = 1 
(4.9(ii)) and w;(1) ~ 1 - w~(1) - w;(1) = -1 (2.3.3), one has w;(1) = -1, 
wp(O) = (k - l)/k, w;(2) = -1 + i52 ,k by (5.2(iii)). Hence deggr~ OJ = 

-1- w;(l) - w~(1) - w;(1) = -2 (2.3.2) and deggr~OJ ~ -3 (2.3.3), whence 
-3 ~ deggr~ OJ = -w;(2) - w~(2) - w;(2) (2.3.2). By w;(2) = 2 (4.9(ii)), 
one has w~(2) ~ 2 - i52 ,k' We claim k = 2. Indeed if k ~ 3, then 
wQ(O) < 1 - wp(O) = l/k ~ 1/3 and one sees w~(2) = 3 by (5.1(ii)) with 
d = 2, which contradicts w~(2) ~ 2 - i52,k' Thus k = 2 is proved, and 
hence w~(2) ~ 1 and wQ(O) < 1/2. By (5.1(ii)) with d = 2, one sees 
wQ(O) = (m - 1)/2m and m = 1 (2). 
(6.2.4) General case. We claim that X:> C has no points of type (IB) or (lIB) 
(resp. (IIA)). Indeed if otherwise, we may apply L-deformation (4.7) (repeat-
edly) at such points to produce a locally primitive extremal nbd Y:> D with 
only ordinary singular points which has at least four singular points (resp. one 
point with index 4 and at least two more singular points), which contradicts (i) 
(resp. (6.2.1)-(6.2.3)). Thus the claim is proved and X :> C has only points 
of type (IA) or (III) with i(l) = 1. When we apply L-deformation (4.7) re-
peatedly at these points to produce a locally primitive extremal nbd with only 
ordinary singular points, each singular point deforms to exactly one singular 
point of the same type with the same index, size, and w(O). Hence we are 
done by (6.2.1)-(6.2.3). 0 

(6.3) Theorem. Let X :> C ~ Wi be an extremal nbd. Then X :> C has no 
type (IB) points. 
Proof. We will derive a contradiction assuming that X :> C contains a type (IB) 
point P. We may apply L-deformation (4.7) repeatedly to X :> C , and obtain 
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an extremal nbd Y:) D ~ jp'l with only ordinary singular points which has at 
least two points P and Q of type (IA) with the same index m (> 1) such 
that wp(O) = wQ(O). By (6.1) and (6.2), P and Q are the only singular points 
of Y on D. By wp(O) = wQ(O) < 1/2 (2.3.3), one has w;(I) = w~(I) = I by 
(5.I(ii)) with d = I, which contradicts (2.3.3). Hence X:) C has no type (IB) 
points. 0 

(6.4) Theorem. Let X:) C ~ JP'1 be an extremal nbd. If X:) C has a point P 
of type (lIB), then P is the only singular point of X on c. 
Proof. If X :) C has singular points other than P, then one may apply 
L-deformation (4.7) at type (lIB) point P to X :) C to get an extremal nbd 
Y :) D ~ JP'1 with at least three singular points, two of which have indices 2 
and 4. This contradicts (6.2). 0 

(6.5) Theorem. Let X:) C ~ JP'1 be an extremal nbd. Assume that X:) C has 
a type (IC) point P with index m. Then P is the only singular point of X on 
C, and one has ip(l) = 2 and wp(O) = (m - I)jm. 
Proof. If X :) C has an imprimitive point Q (# P) , then we may pass to 
the splitting cover (l.l2) Y :) D because the point over Q has index > 1 
(1.16) and y. is locally primitive along an arbitrary irreducible component of 
D (1.13). Hence we may assume that X:) C is locally primitive. 

Using L-deformation (4.7), one may assume that X:) C has only ordinary 
singularities. We note ip(l) ~ 2 (5.5(i)). We treat three cases. 

(6.5.1) Case ip(l) ~ 3. We will derive a contradiction in this case. One has 
i p (l) = 3 and P is the only singular point of X on C by (2.3.3) and (2.15), 
whence w;(1) ~ 1 by (2.3.3). This is a contradiction, because (5.5(i)) and 
(5.5(ii)) show w;(I) ~ 3 - I = 2. 

(6.5.2) Case ip(l) = 2 and wp(O) # (m-l)jm. We will derive a contradiction 
in this case. By (5.5(ii)) and (5.5(iii)), one has w;(1) = 2 and ip (2) = O. Hence 
by (2.3.3) and i p (1) = 2, one sees that there exists exactly one more singular 
point Q of X (say, with index n) on C, iQ(1) = 1, deggr~& = -2 and 
w~(I) ~ -I. We see that Q is not of type (IC) by (5.5(i)) and hence Q is of 
type (IA) by (4.9(ii)). By (5.2(iii)), one has wQ(O) = (n-l)jn, iQ(2) = 2+c)2.n' 
and iQ(3) = 4 + c)3.n. By deggr~& = -2, one sees 

-3 ~ deggr~& = -6 + ip(2) + iQ(2) = -4 + c)2.n 

by (2.3.2) and (2.3.3). Thus n = 2, deggr~& = -3, and wp(O) < 1- wQ(O) = 

1/2. By (5.5(iv)) with d = 2, one has ip (3) = 0, and hence deggr~& = 
-12 + ip(3) + iQ(3) = -8 by (2.3.2). This contradicts deggr~& ~ -4 (2.3.3). 

(6.5.3) Case ip(l) = 2 and wp(O) = (m-l)/m. We will derive a contradiction 
assuming that X has another singular point Q on C (Q is unique by (2.3.3) 
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and (2.15)). Since P is of type (IC), one has m ~ 5, whence wQ(O) < 1 -
wp(O) ~ 1/5 (2.3.3). Since iQ(I) = 1 by (2.3.3), Q is of type (IA) or (III). 
Let Q be of type (IA) (resp. (III)). Then by wQ(O) ~ 1/5 and (5.I(ii)) (resp. 
by (4.9(ii))) with dE [1.3], one has w~(d) = d(d + 1)/2 (resp. [(d + 1)2/4]) 
for dE [1.3]. By (5.5(ii)), one has w;(1) = 1- Jm .5 • Thus by (2.3.3), one has 
1 ~ w;(1) + w~(1) = 2 - Jm .5 , whence m = 5. Hence by (5.5(v)) and (2.3.2), 
one has 

3 3 3 
"(1 d d d) - "d(d + 1) 4 "d(d + 1) - 4 0 
~ + + eggrcw - ~ 2 - - ~ 2 - - < 
d=l d=l d=l 

(resp. i;d(dt I)-4-i;[(d:1)2] =-1<0). 

This contradicts (2.3.3), and we are done. 0 

(6.6) Theorem. Let X :J C:::::: jp'l be an extremal nbd. Assume that X:J C has 
a type (IA) point P of size > 1. Then P is the only singular point of X on 
C, sizp = 2. and wp(O) > 1/2. 

Proof. As in the proof of (6.5), we may assume that X:J C is locally primitive. 
By using L-deformation (4.7), one may assume that X:J C has only ordinary 
singular points of type (IA) or (III) (6.5). Then ip(I) = sizp > 1 (4.10). Let 
m be the index of P, and a1 • •••• a4 as in the definition of type (IA) in (4.2). 
We treat three cases. 

(6.6.1) Case i p (1) ~ 3. We will derive a contradiction in this case. By i p (1) ~ 
3, one has ord(d) f. ~+ and a2 > 1, whence w;(l) ~ 2 by (S.2(ii)). Thus P 
is the only singular point of X:J C by LQ# iQ(I) + 3 ~ 3 (2.3.3) and (2.15), 
while X :J C must have some other singular point by LQ# w~(1) + 2 ~ 1 
(2.3.3). This is a contradiction. 

(6.6.2) Case ip(l) = 2 and wp(O) ~ 1/2. We will first derive a contradiction 
assuming that X:J C has another singular point Q. By LR#.Q iR(l) + 2 + 
iQ(I) ~ 3 (2.3.3) and (2.15), P and Q are the only singular points of X:J C 
and iQ(I) = I. One has wQ(O) < 1 - wp(O) ~ 1/2 by (2.3.3). Then one sees 
that w~(1) = 1 by (5.1(ii)) if Q is of type (IA), or by (4.9(ii)) if Q is of 
type (III). Since ip(l) = 2, one has w;(l) ~ ip(l) - 1 = 1 by (5.2(i)), as in 
(6.6.1). Thus we have w;(l) + w~(1) ~ 2, which contradicts (2.3.3). Hence P 
is the only singular point in this case. We can see W p (0) = (m - a2) / m f. 1/2 
(4.9(i)). Indeed if otherwise, one sees m = 2a2 and a2 = 1 by (a2 • m) = 1, 
whence ip(l) = 1 (4.9(ii)), which contradicts the hypothesis (6.6.2). Hence 
wp(O) > 1/2, which was to be proved in this case. 

(6.6.3) Case ip(I) = 2 and wp(O) < 1/2. In this case, we will also de-
rive a contradiction. By (5.4), we have at = 2 and w;(1) ~ 2. Hence by 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



192 SHIGEFUMI MORI 

LQ# w~(1)+2 $ 1 (2.3.3), X:::> C has another singular point Q (say, of index 
n) such that w~(1) $ -1. By LQ#,Q iR(I)+2+iQ(I) $ 3 (2.3.3) and (2.1S), 
we see that X:::> C has no other singular points, iQ(1) = 1, deggr~&' = -2. 
Now we claim 

(6.6.4) 
• d d n=2, a2 =(m+l)/2, wp(2) =3, deggrcw=- -1 (d=1.2). 

Since w~(1) $ -1, Q is a type (IA) point by (4.9(ii)), whence 

wQ(O) = (n - 1)/n, w~(1) = -1, w~(2) = -1 +l52 ,n 

by (S.2(iii)). By w;(1) ~ 2 (S.4(ii)) and w;(I) + w~(1) $ 1 (2.3.3), one has 
w;(1) = 2 and deggr~ w = -2 (2.3.3). Hence deggr~ w ~ -3 by (2.3.3). If 
n ~ 3, then wp(O) < 1 - wQ(O) = l/n $ 1/3 « 2/S), whence w;(2) ~ S 
(S.4(ii)) and we have a contradiction -3 $ -w;(2) - w~(2) $ -S + 1 -l52 ,n $ 
-4 from (2.3.2). Hence n = 2 and w~(2) = 0, and (2.3.2) implies -3 $ 
deggr~w = -w;(2), i.e. w;(2) $ 3. Thus by (S.4(ii)), one sees w;(2) = 3, 
a2 = (m + 1)/2, and deggr~ w = -3. This proves our claim (6.6.4). 

By (2.3.4), one has gr~&' ~ &,(_1)(1)2 and gr~w ~ &'(_I)(1)(d+l) for dE 
[0,2]. Applying (4.8) to X:::> C 3 Q (with b l = b2 = k = 1 and index 2), one 
sees that 

2 I 0 2 P2: S (gr c &') ® grew <......+ grew 
(cf. (2.2)) is described at Q (by notation of (4.8)) as 

where t2 is the uniformizing parameter of &'c ,Q • Hence it induces an injection 
2 I 0 2 )'2: S (grc&') ® grc w ® &'(Q) <......+ grc w 

which is an isomorphism at Q and hence an isomorphism outside P. We 
will study )'2 near P to derive a contradiction. Let (x) and t be normalized 
i-coordinates at P, and we will use (X", p"), (d, p"), and wt (= d-wt) 
in the sense of §2. From now on we use a instead of a2 = (m + 1)/2 for 
simplicity of notation. We note a, m == 1 (2) by (S.4(i)) and a ~ 3. One 
has &'ca,PI ~C{t2,ta} (2.7) and gr~l&' (resp. gr~IW) has Pm-semi-invariant 
free &'cI,PI-basis A and B (resp. C) near p" so that wtA == 2a == 1, 
wtB == a3 == -2 (m) (resp. wt C == a (m) by (2.10)). This is because 
(d, p") is a complete intersection F2 = F3 = 0 in (X", p") , where wtF2 == 2a, 
wtF3 == a3 (m) (4.S.1). Hence gr~&' = &'c(tm-I A)EB&'C(t2 B) near P by (4.8), 
where tm- I = (t2)a-1 and t2 E &'ca,PI' We recall that &'c,p = C{tm} is the 
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subring of Pm-invariants of &eu,pu. Since gr~& ~ &(_1)632, one can choose 
a splitting into invertible sheaves 

1 gre&=LEElM 

so that L~&(-I), M~&(-I), L®<C(P)=C(P)(tm-1A),and M®<C(P) = 
2 - -<C(P)(t B), where <C(P) = & /t&. Thus Land M have bases Land M near 

P so that 

(6.6.5) 

for some A, J1. E C{tm}. Since t2m- 3 = tm. (t2)(m-3)/2 E &eu .pu , we will replace 
B with J1.t2m- 3 A + B so that one may set J1. = 0 in (6.6.5). Let N be an &e-
basis of N = gr~w (~&(-1)) near P so that N = tm-aC near P, where 
tm- a = (t2)(m-a)/2 E &eU.N . We will show that Y2 induces an isomorphism 

(6.6.6) L2 ® N(2P + Q) EEl L ® M ® N(P + Q) EEl M2 ® N(Q) ...::..... gr~ w 

which will contradict H 1 (gr~ w) = 0 because the source is isomorphic to & EEl 
&(-1) EEl &(-2) . By (4.8) and a ~ 3 above, one has 

2 t::D ~ R((2i+l)a-2i)AiBic grew = 'I7 (7e 
i.i?O. i+i=2 

= &eta- 3 A2 C EEl &eta ABC EEl &eta+3 B2 C 

near P by direct calculation, or by 

R((2i + l)a - 2j) = m· U((2i + l)a - 2j) - ((2i + l)a - 2j) 
= (i + l)m - (2i + l)a + 2j 
= m - a - i + 2j = a-I - i + 2j, 

where we used U((2i + l)a - 2j) = i + 1 by (5.4(ii)) and 2a = m + 1 . Then 

"I2 N = t2m (tm- a- 2 A2 C + 2Ata ABC + A 2 ta+3 B2 C) , 

"I. M· N = tm(ta ABC + Ata+3 B2C), 
M2 N = ta+3 B2 C , 

and t-2m"I2 N, t-m"I. M . N, M2 N form an &e-basis for gr~ w near P. 
Since "Ii Mi N is a basis at P of components Li ® M i ® N (Q) of S2 (gr~ &) ® 

gr~ w ® &(Q), Y2 induces homomorphisms Li ® Mi ® N(iP + Q) -+ gr~ w 
(i, j E IZ+, i + j = 2), which give splitting (6.6.6). 

Thus we have a contradiction and case (6.6.3) does not occur. This proves 
(6.6). 0 
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Summarizing the results in this section, we have 

(6.7) Theorem. Let X ::) C ~ jp'1 be an extremal nbd. Then we have three 
cases: 

(i) Case X has only one point P with index > 1. Then 

(6.7.1) P is o/type (IA), (IIA), (IAv), or (IIv), and X::) C has at most one 
more singular point, which is a type (III) point, or 

(6.7.2) P is 0/ type (IC) or (lIB), X::) C has no other singular points, 
(ii) Case X has Po/index> 1 and Q o/index 2. Then 

(6.7.3) p, Q are o/type (IA), sizp = 1, X::) C has at most one more singular 
point, which is a type (III) point, 

(iii) Case X has points P, Q o/index > 2. Then 

(6.7.4) P, Q are o/type (IA), (IIA), or (IAv), and are o/size 1, and X::) C 
has no other singular points. 

Proof. First, x::) C has a point with index> 1 by (6.2), no type (Ie v) points 
by (6.1) and no type (IB) points by (6.3). 

Case (i). If P is of type (IA), (IIA), (IA v), or (IIv), then X ::) C has at 
most one more type (III) point by (6.2), whence we have (6.7.1). If P is of 
type (lIB) or (IC), then X::) C has no other singular points by (6.4) or (6.5), 
whence we have (6.7.2). 

In other cases, X ::) C has no type (IC) (resp. (lIB), (II v)) points by (6.5) 
(resp. (6.4), (6.1(iii)) and wp(O) = 1/2 (4.9(i))). 

Case (ii). X::) C has at most one more type (III) point by (6.2), and Q 
is of type (IA) because it is of index 2 (4.2). Thus wQ(O) = 1/2 (4.9(i)) and 
wp(O) < 1 - wQ(O) = 1/2 by (2.3.3). Hence P cannot be of type (IIA) or 
(IA v) and it is a type (IA) point with size 1 by (6.6). 

Case (iii). X has no other singular points by (6.2). One sees that type (IIA) 
points have size 1 by definition and type (IA) (resp. (IA v)) points have size 1 
by (6.6) (resp. (6.1)). 0 

7. EXISTENCE OF "GOOD" ANTI(BI)CANONICAL DIVISOR (EASY CASE). 

The main purpose of this section is to prove the existence of "good" members 
in 1- Kxl or 1- 2Kxl when extremal nbd X::) C ~ jp'1 has at most one point 
of index> 2 (i.e. cases (6.7.1)-(6.7.3)). We start with quoting 

(7.1) Theorem (Reid [R4, (6.3)]). Let (X, P) be a 3-/old terminal singularity. 
Then general members 0/ 1 - K x 1 passing through P have only rational double 
points at P. 

Following the same idea, one can show the following by a simple explicit 
calculation for cA type points. We note that one can reduce (7.2) for arbitrary 
3-fold terminal singularities to (7.1) by Kawamata's method in [Ka2, §8]. 
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(7.2) Proposition. Let (X. P) be a 3-fold cA-type terminal singularity of index 
m > 2. Let T be a general member of I - 2K xl. and (Y. Q) --+ (X. P) the 
double cover with branch locus T. Then (Y. Q) has only a canonical singularity. 

(7.2.1) Remark. We note that a normal Gorenstein singularity (Y. Q) is a 
canonical singularity iff it is a rational singularity [EI2, Fl, SB]. 

Proof. Let (x. y. z. u) (resp. ¢) be an l-coordinate system (resp. l-equation) 
for (X.P) such that wtx+wty == 0, wtu == wt¢ (m) (la.S). Then the 
preimage of T has a semi-invariant equation IJI = Az2 + ... , and (Y. Q) is 
the I'm-quotient of (Y". Q"): ¢ = v2 - IJI = 0 C (C5 • 0), where v is an extra 
coordinate with wt v == wt z (m) (cf. (2.10)). Since (Y. Q) is an isolated 
singularity by Bertini's Theorem and Gorenstein by the adjunction formula, we 
only have to show that (Y". Q") has only canonical singularities. We treat three 
cases. 

(7.2.2) Case m = 4 and wt¢ == 2 (4). We may assume that wt(x. y. z. u. ¢. v) 
( 22f f 223 == 3.1.1.2.2.1), ¢=x +z - (y.u),where (Y.U)E(y .yu.u) by 

consideration of wt (la.6). Since IJI = AX2 + u + ... (A E q, (Y". Q") 
is an isolated hypersurface singularity x 2 + z2 - f(y . v2 - Az2 - ... ) = 0 in 
xyzv-space. Thus it is a cA point, and hence is canonical (la.2(ii)). 

(7.2.3) Case ¢ = xy + f(z. u). wt Z2 == wtx (m). We note f E (zm. u) 
by consideration of wt and f(O. u) =f. 0 by u-axis <t (X". p") (la.6). Since 
wt z2 'I- 0, wt y, wt z by m > 2, we may write IJI = h . {x - g(y. z. u)} 
for some g and h such that h(O) =f. 0, g E (y. z)2 , and z2 appears in g 
by Weierstrass Preparation Theorem. Since g and h are unique by Weier-
strass Preparation Theorem and since IJI is semi-invariant, g and h are also 
semi-invariant. Then h -I i + g = x, and replacing v by vh 1/2 , one may 
write (Y". Q") as a hypersurface F(y. z. u. v) = (v2 - g)y + f(z. u) = 0 in 
yzuv-space. Choosing a general IJI, one may assume that the plane curve 

2 c (F)(y • z . u) == {v - g 2 (y . z . O)} Y - h (z . 0) = 0 C lP'(y . z , v) 

has only ordinary double points, where (e.g.) gn denotes the degree n part of 
g. Since f(O. u) =f. 0, it is enough to prove 

(7.2.3.1) Sublemma. Assume that a hypersurface singularity 
2 4 (V,R):F(y,z,u,v)==(v -g(y,z,u))y+f(z,u)=Oc(C ,0) 

such that g E (y, z)2, f E C + (z3, u), and f(O. u) =f. 0, has only canonical 
singularities outside {R}. If c(F) = 0 c lP'(y, z, v) is a plane curve with only 
ordinary double points. then V has only canonical singularities. 

We prove this by induction on k = ordf(O, u). If k = 0,1, then F = 0 
is smooth, and if k = 2, then R is a cA or cD point by its normality 
and hence canonical (la.2(ii)). Assume k ~ 3. The exceptional divisor D 
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of the blow-up (1: V - V of V at R lying in JP'(y, z, u, v) is defined by 
c(F)(y, z, u) + A.U3 = 0 (A. E q, and it is easy to see that D has at most 
Aoo -type singularity outside (0 : 0 : 1 : 0). Thus V is normal and has only 
rational singularities outside the point R corresponding to (0: 0 : 1 : 0) above. 
Let y = yju, Z = zju, V = vju and g = g(yu, zu, u)u-2 , / = f(zu, u)u-3 , 
and F=(v2_g)+/. Then gE(y,z)2, /ECC+(z3,u), ord/(0,u)=k-3, 
and c (F)(y, z, v) = c (F)(y , z, v). Thus V has only rational singularities 
by the induction hypothesis, and (V, R) is a canonical singularity because 
Kv = (1* Kv as is easily seen, for example, by 

* R dy 1\ dz 1\ du 1\ dv _ R dy 1\ dz 1\ du 1\ dv 
(1 es F -es F ' 

and the claim (7.2.3.1) is proved. 

(7.2.4) Case 1> = xy +f(z,u), wtz2 ¢. wtx, wty (m). This case is quite 
similar to (7.2.3). It is easily reduced to the following 

(7.2.4.1) Sublemma. Assume that a 3-fold (V, R) C (CC 5 , 0) defined by 
F == xy + f(z, u) = 0 and G == v2 + g(x, y, z, u) = 0 such that g E (x, y, z)2, 
f E CC + (z3, u), and f(O, u) # 0, has only canonical singularities outside {R}. 
Then V has only canonical singularities if we assume the following condition 
( * );. for A. = 0 and 1. 

Condition (*);.: xy + A.U2 = 0 and c(G)(x, y, z, v) == i + g2(X, y, z, 0) 
= 0 define a surface S;. in JP'(x, y , z, u, v) with at most Aoo -type singularities 
outside (0: 0 : 0 : I : 0) . 

The proof is similarly done by induction on k = ord f(O, u) . 

(7.2.4.2) It remains to see that (*)0 and (*)1 are satisfied by general G (or 
T E 1- 2KI). Since So is the cone over the curve Z C JP'(x, y, z, v) defined by 
xy = 0 and c( G) = 0, (*)0 is equivalent to the assertion that Z has at most 
ordinary double points. Thus (*)0 is certainly satisfied by general G because 
it is satisfied by G = v2 + JiZ2 (Ji E CC - {O}) • 

On the other hand, SI is a double cover of the surface W c JP'(x, y, z, v) 
defined by c(G) = 0 with branch locus Z. Thus one can see that SI has 
at most Aoo -type singularities for general G by the fact that W has at most 
Aoo -type singularities when z2 appears in G, as follows. If e E SI does not lie 
over a point in Z, then SI - W is etale at e, whence SI has at most Aoo -type 
singularity at e because so does W everywhere. If e E SI lies over C E Z, 
then the Cartier divisor ({v = O} , e) of (SI' e) is the ramification divisor and 
isomorphic to (Z, C). Since (Z, C) has at most an ordinary double point as 
above, (SI' e) has at most an Aoo -type singular point. Thus the case (7.2.4) is 
finished, and (7.2) is proved. 0 

(7.3) Theorem. Let X :::> C ~ JP'I be an extremal nbd. Assume that X :::> C 
has at most one point of index > 2 (<:} X :::> C is in one of (6.7.1), (6.7.2), 
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(6.7.3)). We have three cases by (6.7) : 
(7.3.1) a point P is of type (IA), (IIA), (IAv), or (IIv), and no other point of 
index> 1 (~(6.7.1)), 

(7.3.2) a point P is of type (IC) or (lIB), and no other singular point (~ 
(6.7.2)), and 

(7.3.3) P, Q are of type (IA), index Q = 2, sizp = 1, and no other points of 
index> 1 (~(6.7.3)). 

Then (i) in case (7.3.1), general members (D, P) of 1 - K(X .P) 1 satisfy 
D n C = {P}, DEI - K x 1 and that D has only rational double points as 
singularities, and 

(ii) in case (7.3.2) or (7.3.3), general members (D, P) of 1-2K(X ,p)1 satisfy 
D n C = {P}, DEI - 2Kxl and that the double cover Y of X with branch 
locus D has at most canonical singularities. 

Proof. Let (x) = (XI' ... ,x4 ) and t be normalized f-coordinates and ¢ an 
f-equation of X :J C at P as in (4.2). Let ai' ... ,a4 be as in (4.2). Then 
elements of &'(-Kx) (resp. &,(-2Kx)) at P are of the form fo.- I (resp. 
fo.- 2 ), where f is a semi-invariant in &'XI,PI such that wt f == wt 0. (resp. 
2 wto.) and 0. = Resdx l 1\ dX2 1\ dX3 1\ dx4!¢. 

In case (7.3.1), P is of type (IA), (IIA), (IA v), or (II v), whence wt 0. == 
wtx2 (m) by wtx l x 3 == 0 and wtx4 == wt¢ (4.2). Then a general f with 
wt f == wt 0. (m) is AX2 + . .. and (D. P) E 1 - K(X ,P) 1 defined by f satisfies 
(mD)· C = a2P , and D is a Q-Cartier Weil divisor of X. One has D ~ -K x 
as elements of Cl(X. P) because wto.- I == wtf- I (mod m), whence D + Kx 
is in PicX with (D + Kx' C) = 0 because (Kx ' C) = -1 + wp(O) = -a2/m 
(2.3.2). Thus DE 1- Kxl (1.3(ii)), whence we are done by (7.1). 

We note that, in the remaining cases, X :J C is locally primitive. In case 
(7.3.2), let P be of type (IC) (resp. (lIB)). Then one has a l = 2, a2 = m - 2, 
a3 = m, a4 == 1 (m) (resp. (a l • ...• a4 ) = (3.2.S.S)) by (4.9(ii)), (S.S(i)) 
and (6.S) (resp. definition). Hence wtO == a4 == 1 (m), and a general f with 
wtf == 2wtO == 2 (m) is AX I + ... by a2 = 2 (resp. AX2 + ... by a2 = 2) 
with A E C* . Thus (D. P) E 1- 2K(X ,p)1 defined by f satisfies (mD)· C = 2P , 
and D is a Q-Cartier Weil divisor of X. One has D ~ -2K x as elements 
of Cl(X. P) , whence D + 2K x is in Pic X with (D + 2K x' C) = 0 because 
(Kx ' C) = -1 + wp(O) = -1/m by (2.3.2) and (6.S) (resp. (4.9(ii))). Thus 
D E 1- 2Kxl (1.3(ii)). We note that P is of cA-type, by (la.6) and m 2: S 
(part of definition) if P is of type (IC), and by definition otherwise. Hence we 
are done by (7.2). 

Let us consider (7.3.3). First we note that wQ(O) = 1/2 by (4.9(i)) and index 
Q = 2. Then wp(O) = (m - a2 )/m < 1 - wQ(O) = 1/2 by (2.3.3) and (4.9(i)), 
whence 2a2 > m. This means m 2: 3 since m > a2 (4.2). On the other 
hand, one has a l a2 ~ m by sizp = U(a l a2 ) = 1. Hence a l = 1. One has 
wto. == a2 by (2.10), and a general f with wtf == 2wto. == 2a2 - m (m) is 
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AX/+,uXI2a2-m+ ... (A,,uEC*). Thus (D,P)EI-2K(x.p)1 defined by f 
satisfies (mD)· C = (2a2 - m)P , and D is a ~-Cartier Weil divisor of X. 
We note that D and -2K x are Cartier divisors outside {P} because index 
Q = 2. Thus by D ~ -2K x as elements of CI(X, P) , one sees D ~ -2K x in 
PicX by 

(-2Kx ' C) = -2(-1 + wp(O) + wQ(O)) 
= -2(-1 + (m - a2)/m + 1/2) 
= (2a2 - m)/m. 

Hence DE 1- 2Kxl. We need to show that P is of cA-type (la.6). Indeed if 
P is not of cA-type, then by m ~ 3 we see that P is of cD-type and m = 3 
(la.6). Thus by (4.11), we have wp(O) = 2/3, which contradicts wp(O) < 1/2. 
Thus P is of cA-type. 0 

8. J -FILTRATION AND LIFTING STRUCTURE 

We need to introduce several notions for the arguments in the next section. 
The main ingredients are rather simple commutative algebra lemmas (8.3) and 
(8.11), and other parts are formal arguments to obtain the main (8.12) from 
these. 

We note that Reid's notion of width in [Rl, (5.3)] is different from our width 
in (8.2). 

(8.1) Let X be an analytic normal 3-fold and C c X a reduced curve such 
that no irreducible components of C are contained in the singular locus of X. 

(8.1.1) Lemma. Let Y = Yo :J ~ :J ... :J ~ be a chain of coherent sheaves 
on X. Then we have equivalent conditions: 

( a) Y; is Y; _I -saturated for all i E [1, n], 
(b) Y; is Yo -saturated for all i E [1 , n], and 
(c) Y; is Sj-saturatedfor all i. j E [0, n] with j < i. 

Proof. First it is obvious that (c) =* (a). (b). When n = 2, (a) =* (c) and 
(b) =* (c) amount to saying the following: 

(*) When ~ is Yo-saturated, Y; is ~ -saturated iff Y; is Yo-saturated. 
Thus n = 2 case is easily checked. Indeed for every closed point P EX, we 

have 
Hom(C(P) . Yo/Y;) ~ Hom(C(P) ,~/Y;) 

from the exact sequence 

o ~ ~/Y; ~ Yo/Y; ~ Yo/~ ~ 0 
and Hom(C(P).Yo/~) = O. 

(a) =* (c) This is proved by induction on j - i by virtue of the exact sequence 

o ~ Sj+I/Y; ~ Sj/Y; ~ Sj/Sj+l ~ 0 

and the above (*). 
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(b) ::;. (c) This is proved by the above (*) and the exact sequence 

0-. $}/'y; -. Yo/.Y; -. Yo/$} -. O. 0 

(8.2) Definition. Let sP = Yo :J 5; :J ... :J ~ be a chain of coherent sheaves 
on X. We say that it is saturated if the equivalent conditions in (8.1.1) hold. 
We call the chain Yo :J Saty 5; :J ... :J Saty ~ the saturation of the chain 
Yo:J ... :J~. 

Let J c &x be a sheaf of ideals. We say that J is C -laminal (or laminal, if 
there is no danger of confusion) if J has no embedded primary components, 
Ie = v'J, and ID (2) "/J J for an arbitrary irreducible component D of C (cf. 
(2.2)) . The width of J is the smallest dEN such that J :J led, and J is said 
to be of pure width d if the D-primary component of J is a D-laminal ideal 
of width d for each irreducible component D of C . 

Let J be a C -laminal ideal of pure width d and let sP be a coherent 
&x-module. For n E Z+, let q = [n/d] and r = n - dq (note r E [O,d - 1]). 
Let Fn(sP,J) = Saty(JqI/ + Jq+l)sP , grn(sP,J) = Fn(sP,J)/Fn+l(sP,J). 
One easily sees that 

n n' eLl n+n' CLJ (8.2.1) Lemma. F (&x' J) . F (J, J) c F (J, J) . 

Proof. Let q = [n/d] , r = n - dq, and q' = [n'/d] , r' = n' - dq'. Then 
q" = [(n + n')/d] is given as q" = q + q' + e for some e = 0,1, and r" = 
(n + n') - dq" is given as r" = r + r' - ed . It is enough to see 

(JqI/ +f+ I ), (f'l/' +Jql+l ) c Jq"I/" + Jq"+I. 

If e = 0, then this is obvious because q" = q + q' and r" = r + r'. If 
d q , q',' q"-I ,"+d q" ," e = 1 , then we use lee J . Indeed J Ie' J Ie = J lee J Ie' 

q , q' + I q", q" ," II 1 J Ie' J = J lee J Ie by r = r + r - d < r, and the rest is 
similar. 0 

(8,2.2) Then 

sP = F O (sP, J) :J ... :J F n (sP,J) :J F n+1 (sP, J) :J ... 
is called the J-filtration, and gr'(&,J) = EBn~o grn(&,J) is a graded 
&e-algebra and gr' (sP, J) = EBn>O grn (sP , J) is a graded gr' (&, J)-module. 

For s EsP, the width of s with respect to J (denoted by width J s) is given 
by width J s = inf{ i E Z+ I s E Fi (sP ,J)}. It is easy to see but worthwhile 

I d dO. to note that F (&x' J) = Ie' F (&x' J) = J, gr (&, J) = gre J, and m 
particular the usage of width J s is compatible with width of J . 

For n = qd + r as above, one has a natural homomorphism 

)'n(sP, J): sq (gl (&, J)) ® (gr l (& I J)/i!J' ® gr~sP -. gl(sP, J). 
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We construct a O-sequence 
I ®d tlJ 0 OJ [I PJ I ] E(J): 0 -+ gr (&',1) ----+ gre(J) ----+ Ker gre &' ----+ gr (&',1) -+ 0, 

together with the remarks: If d = 1, then J = Ie' pn(.9, J) = pn.9, 
'l(.9,J) = y~(.9) (§2), and we set a J = 0 and PJ = d J = id, and E(J) 
is exact. If d ~ 2, then a J' P J' Y J are naturally induced homomorphisms, 
E(J) is a O-sequence by 1/ c J and I;;l + J c p2(&, ,J), and we note that 
Ker PJ and grl (&',1) are of rank 1. 

(8.3) Proposition. Under the notation and assumptions of (8.1), assume that 
(u, v) = Ie,p (= Ie ®&'x,p) and let d ~ 1. Then 

(i) J = (ud , v) is a C -laminal ideal of pure width d in a nbd of P , and 
one has the following for all n ~ 0 : 

and 

pn(&,x ,J)p = L (uiVi ), 
i ,i?O, i+di?n 

i ,i?O, i+di=n 
Thus E(J) is exact and yn(&,x' J) is isomorphic at P, and 

(ii) let J be a C-Iaminal ideal of pure width d in a nbd of P E C. Then 
(ud , v) = Jp (= J ®&'x,p) iff v E Jp . 

Proof. (i) Since (C,P) isCohen-Macaulay,sois (X,P). Hence (u,v): (X,P) 
-+ (<c2 , 0) is flat since it is equidimensional. Since Kn = 2:i+di?n(uivi )<c{u, v} 
contains some power of maximal ideal (u, v), it is (u, v)-primary. Thus by 
flatness, Kn&'X ,P has no embedded primes. Then following the definition, one 
easily sees pn (&'x' J) p = Kn&'X ,p' It is clear that Kn/ Kn+1 = EBi+di=n <CUi vi , 
whence one sees the assertion on grn(&" J)p by flatness of (X, P) -+ (<c2 , 0), 
and yn (&'x ,1) p is an isomorphism for all n ~ O. If d ~ 2, then one sees 
grl (&" J) p = &'e ,pu, gr~(J) = &'e ,pud EB &'e ,P V, gr~ &' = &'e ,pu EB &'e ,P v, and 
Ker P J = &' e ,P v , whence E (J) is exact. 

(ii) The only-if part is obvious. Assume that v E Jp • By (i), (ud , v) has no 
embedded primes at P, and (ud , v) c J p by the definition of width. Thus it is 
enough to prove (ud , v)Q = JQ for close enough points Q E C - {P}. Let Q 
be a point such that X and C are smooth at Q, whence u and v form a part 
of coordinates at Q. Then JQ/(v)Q is a divisorial ideal of a smooth surface 

({v = O}'Q) and one easily sees JQ/(v)Q = {(u,v)/(v)}~ = (ud,v)Q/(v)Q' 
d whence JQ = (u ,v)Q' 0 

(8.4) Definition-Corollary. Let the notation and assumptions be as in (8,1). Let 
J be a C-Iaminal ideal of pure width d. We say that J is a nested complete 
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intersection (nested c.i., in short) at P if (u, v) = Ie ,p and (ud , v) = Jp for 
some u and v, and that J is locally a nest c.i. on a subset if J is a nested c, i. 
at each point of the set, Then 

(i) let P E C, Then J is a nested c.i. at P iff (C, P) is a complete 
intersection in (X, P), 1m a J = Ker P J ' and grl (& , J) is a locally free 
&e-module at P, and 

(ii) J is locally a nested c.i. on an open dense subset of C. In particular, 
Ker P J is the gr~ & -saturation of 1m a J . 

Proof. (i) If d = 1 then this is obvious; if d ~ 2 then the only-if part is done 
in (S.3(i)). If (C,P) is a c.i. in (X,P), then gr~& ~ IclI/ is locally free 
of rank 2 at P. From the other assumptions, ImaJ ~ Ker PJ and ImPJ are 
invertible at P. Thus there exist v E Jp and u E Ie ,p such that 1m a J = &e v 
and ImPJ = &eu in a nbd of P. Then (u, v) = Ie,p by Nakayama's lemma, 
and (S.3(ii)) proves our claim. 

(ii)Let d~2. Since gr~& (resp. ImaJ , KerPJ , grl(&,J)) is of rank 
2 (resp. 1, 1 , 1 ) on each irreducible component of C, one sees that E(J) is 
exact on an open dense subset. 0 

(S.5) Corollary. Let the notation and assumptions be as in (S.l). Let J be 
a C-laminal ideal of pure width d and.9 a torsion-free &x-module which is 
locally free of rank p on an open set of X containing an open dense subset of 
C. Let n ~ O. Then 

(i) yn(.9, J) is injective at smooth points of C, and 
(ii) yn(.9,J) is isomorphic on an open dense subset of C consisting of 

points at which .9 is locally free and J is a nested c.i. In particular, 
grn(.9,J) is pure of rank p[njd] + p (i.e. of the same rank p[njd] + p 
on each irreducible component of C). 

Proof. The assertion (i) follows from (ii) since the source of yn(.9,J) is free 
at smooth points. The first part in (ii) follows from (S.3(i)) and (S.4(ii)), and 
the second from the first. 0 

(S.6) Definition-Corollary. Under the notation and assumptions of (S.5), as-
sume that d ~ 2, and let q = [njd], and r = n - qd. Then E(J) induces a 
saturated filtration (or chain) 

gl (.9 ,J) = <1>0 grn (.9 , J) ::J ... ::J <l>i grn (.9,J) ::J ... ::J <l>q+1 grn (.9 , J) = 0 

such that grn,i(.9,J) = <l>igrn(.9,J)j<l>i+lgl(.9,J) is a torsion-free 
&e-module of pure rank p for i E [0, q] and there is a naturally induced map 
(iE[O,q]) 

yn ,i (.9 , J): grl (&, J)®(di+r) ® (1m a J )®(q-i) ® gr~.9 -> grn ,i (.9, J). 

For an arbitrary i E [0, q], one has 
(i) yn ,i (.9 , J) is injective at smooth points of C, and 
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(ii) ImaJ = Ker PJ and yn.i(.9,J) is an isomorphism on the open dense 
subset of C consisting of the points P at which .9 is a locally free 
&'x-module and J is a nested c.L Furthermore, if u, v are the elements 
in &'x.p as in (8.4), then we have 

<I>i grn (.9, J) = Udi grn- id(.9,J) for i E [0, q]. 

Proof. By (8.4(ii)), KeraJ and ImaJ are pure rank 1 &'c-modules fitting in 
o . 

the exact sequence 0 ..... Ker a J ..... gr c J ..... 1m a J ..... O. Let <I>l be the sub sheaf 
of grn(.9,J) given as the saturation of the image of the map 

(Kera J{~i ® Sq-i (gl (&" J)) ® grl (&" J)®r ® gr~.9 ..... grn(.9, J) 

induced by yn(.9, J) for i E [0, q]. Then <I>i is a saturated &'c-submodule of 
pure rank (q + 1 - i)p by (8.5). Since the sequence 

(KeraJ) ® Sq-i-I gl(&', J) ..B1.. Sq-i gl (&" J) ..... Sq-i(lmaJ)jSat(O) ..... 0 

constructed in the obvious way is a O-sequence (Sat(O) is the saturation of 0) 
and exact on an open dense subset of C , one has 

Sq-i (grd (&" J))jSat(lm(t5(i))) ~ Sq-i (1m a J )jSat(O). 

Thus by the right exactness of the tensor functor, one has 

(KeraJ)®i ®Sq-i(lmaJ) ®grl(&',J)®r ®gr~.9 ..... <I>ij<I>i+l. 

Using the map !l J: grl (&' . J)®d ..... Ker a J induced by E(J) , we have 
yn.i (.9, J) . The rest follows from (8.4) as in (8.5), except that the last equality 
follows from (8.3(i)). 0 

(8.7) Remark. If X c C ~ jp'1 is an extremal nbd and J is a C-Iaminal ideal 
of width d, then for .9 = &'x' ()) x ' one sees that grn (.9 , J) is a locally free 
&'c-module of rank [njd] + 1 . Let n E Z+ . As in (2.3.3) and (2.3.4), one sees 
that 

X(F I (.9 ,J)jFn+I(.9,J)) = L (degg{(.9,J) + [ejd] + 1) ~ 0, 
I~e~n 

and that if degg{(.9, J) S -[ejd] - 1 for all e E [1, n], then 

g{ (.9,J) ~ &'( -1 )E!)([e/d1+1) 

for e E [1, n] and deggre (.9 ,I) ~ -[ejd] - 1 for e = n + 1. 

(8.8) Let (X, P) be the germ of a 3-fold terminal singularity of index m and 
C c (X, P) a reduced curve. Let 7lU: (XU, pU) ..... (X, P) be the Pm-canonical 
cover and d = 7lU- 1 (C)red c (XU, pU) . Meanings of these symbols will be fixed 
in paragraphs (8.8)-(8.8.6). 
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Let 9 be a coherent sheaf (on X, or X") . A subquotient of 9 is a coherent 
sheaf 2' endowed with an identification 2' = L jA', where L and A' are 
coherent subsheaves of 9. The subquotient 2' is said to be 9 -saturated if 
9 :J L :J A' is saturated. An isomorphism theorem says that an arbitrary 
subquotient % of 2' is a subquotient of 9 , and if furthermore 2' is 9-
saturated, then % is 2'-saturated ¢} % is 9-saturated (8.1.1). Therefore we 
may simply say, for instance, 2' is saturated if there is no danger of confusion. 

Let SSQ(9) be the small category of saturated subquotients of 9, where 
Hom(~ j./Y,. ,L j A') consists only of the natural map if ~ eLand ./Y,. c A' 
(or 0 if otherwise). If 9 is a "'m-sheaf on X", then SSQ(9, "'m) is the full 
subcategory of SSQ(9) consisting of L jA' such that L and A' are "'m-
stable subsheaves of 9 . 

Let 9 be a coherent sheaf on X such that 9 :J 0 is saturated. By an 
i-structure of 9 at P (or, of ~ = 9 ®&x ,p), we mean a coherent sheaf 9" 
on X" with "'m-action endowed with an isomorphism S{~} c:= 9 (cf. (2.5)) 
such that 9" :J 0 is saturated. We note that &x has a trivial i-structure 
&xu :J &x' 

(8.8.1) Lemma-Definition. Let 9 beacoherentsheafon X with an i-structure 
9" :J 9. Then there is a 1 -1 correspondence between SSQ(9) and 
SSQ(9" , "'m) : 

SSQ(9) ~ SSQ(9" , "'m) , 
quo 

where lif and quo are exact functors such that lifo quo = id and quo 0 lif = id, 
and are defined for subsheaves Land L" as lif(L) = SatS"u (&xuL) and 
quo(L") = LtO} = L" n 9, where &xuL is the subsheave of 9 generated by 
n"· L. For each saturated subquotient L of 9, lif(L) and lif(L) :J L are 
called the canonical lifting of L and the induced i -structure of L. (If there 
is a danger of confusion, 9-lif(L) will be used. ) 

Proof. It is clear that lif and quo for subsheaves satisfy lif 0 quo = id and 
quo 0 lif = id, because n" is etale outside p". Therefore the definition of lif 
(similarly of quo) extends to subquotients L jA' by exactness: lif(L jA') = 
lif(L)jlif(A') . 0 

(8.8.2) Proposition-Definition. Let 2', L and A' be coherent sheaves on X 
with i-structures 2' c 2'", L c L" , and A' c A'". Then 

(i) the restriction map 

res: Hom '" (L" ,A'") -+ Hom ... (L ,A') I'm-O'xU C7x 

defined by res( q}) = 1/>1 L is an injection. If an &x-homomorphism 1/>: L -+ A' 
extends to a "'m-&'xu-homomorphism 1/>": L" -+ A'" in this sense, we say that 
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¢J is an i-homomorphism and that ¢J~ is the canonical lifting of ¢J, since it is 
unique, 

(ii) we say that an i-homomorphism ¢J is an i-surjection (resp. i-isomor-
phism, i-injection) if the canonical lifting ¢J~ is a surjection (resp. isomor-
phism, injection). Then ¢J is an injection iff it is an i-injection, and ¢J is a 
surjection (resp. isomorphism) ifit is an i-surjection (resp. i-isomorphism), 

(iii) if L = .9/ EB fB is a splitting by &'x-submodules .9/ ,fB c L, then it 
is called an i-splitting and written as M =.9/ $fB if L~ = lif(.9/) EB lif(fB), 

(iv) let 1jI: 2 - Land ¢J: L -./Y be i-homomorphisms. Then W: 0 -
2 ~ L ~./Y - 0 is a O-sequence iff its canonical lifting W~: 0 - 2~ L 
L~ L ./Y~ - 0 is a O-sequence. We say that W is i-exact (resp. i-split) 

if W~ is exact (resp. split) as a sequence of I'm -&'xu-homomorphisms. Then W 
is exact (resp. split) if it is i-exact (resp. i-split). We note that these are 
compatible with the definitions in (ii) and (iii), and 

(v) let ¢J: L -./Y be an i-homomorphism. If ¢J is an i-surjection (resp. 
i-injection and ./Y :J ¢J(L) is saturated), then Ker¢J (resp. Coker¢J) has an 
induced i-structure and 0 - Ker ¢J - L - ./Y - 0 (resp. 0 - L - ./Y -
Coker¢J - 0) is i-exact. 
Proof. (i) The map res is well defined because ¢J~(L) c A{~} = ./Y. It is 

injective because L~ :J 0 is saturated and ¢Jttl XU-{PU} = (nttl X-{P})* ¢J if ¢J = 
res(¢J~), which follows from the fact that xtt - {ptt} - X - {P} is a finite etale 
I'm -Galois covering. 

(ii) If Ker¢Jtt # 0 then Supp(Ker¢Jtt) ~ {ptt} by ptt ~ Ass(Ltt), whence 
Supp(Ker ¢J) ~ {P} by flat descent. Thus ¢J is an i-injection if it is an injection. 
Other assertions are obvious because I'm is linearly reductive. 

(iv) Since res(¢Jtt 0 1jI~) = ¢Jo 1jI, one sees ¢Jo IjI = 0 ¢:} ¢Jtt 0 1jI~ = 0 by (i). This 
proves the first assertion, and others follow from the linear reductivity of I'm . 

(v) By the assumptions, Ker¢J (resp. Coker¢J) is a saturated subquotient of 
L whence has an induced i-structure. Since 0 _ Ker ¢Jtt _ Ltt - ./Y~ - 0 
(resp. 0 - Ltt - ./Y tt - Coker ¢Jtt _ 0) is exact, the assertion follows by 
(iv). 0 

(8.8.3) Definition. Let L be a coherent sheaf on X with i-structure L c 
Ltt . If s~ , ... ,s~ E Ltt are I'm -semi-invariants generating Ltt as &'xu -module 
at ptt, we say that {s~, ... ,s~} is an i-basis of L at P (or, of Lp). 

Let Y be a closed subscheme of X such that P ~ Ass(&'y) and let ytt = 
lif(Y) . Then it is easy to see that L is an &'y-module iff Ltt is an &'yu-module. 
We say that L is an i-free &'y-module at P iff Ltt is a free &'yu-module at 
P~. If L is an i-free &'y-module at P, then an i-basis of L at P is said to 
be i-free if it is a free &'yu-basis. We say that an i-free &'y-module is i-trivial 
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if it has an i-free i-basis consisting of Pm-invariants. We note that i-trivial 
i-free &'y-modules are free, but in general, there is no implication between 
freeness and i-freeness in either direction. Therefore, we call a free i-free &'y-
module at P a qi-Jree &'y-module. We call i-free (resp. qi-free) &'y-modules 
at P of rank 1 i-invertible (resp. qi-invertible) &'y-modules at P. 

(8.8.4) Let Y, Y~ be as above, and Z a closed subscheme of Y such that P ¢ 
Ass(Z). Let .2', L, ./Y be &'y-modules at P with i-structures .2' C .2'# , 
L c L~, ./Y c ./Y~. We list the following obvious operations together with 
easy comments. 

(EB) LEB./Y c (LEB./Y)# is an &'y-module at P with i-structure defined by 

(L EB ./Y)# = L# EB ./Y~. 

We note that this is compatible with i-splitting in (8.8.2(iii)), and we have 
natural i-isomorphisms 

(EB.l) 
(EB.2) 

(.2' EB L) EB./Y ~ .2' EB (L EB ./Y) , 
LEB./Y~./YEBL. 

Let X be an i-character (2.5) for X ::) C at P. Let .2'y[v1 , for v E IZm ' be 
the i-invertible &'y-module with an i-basis ev on which Pm acts by ,(ev) = 
X(,t ev (' E Pm). Then i-free &'y-module L of rank r is determined by wt 
(say, VI' ..• ,v, mod m) of its i-free i-basis, that is there is an i-isomorphism 
L ~ .2'y[vdEB··· EB.2'y[v,1. Hence there are at most (';.') i-free rank r 
&'y-modules. We note that L is qi-free iff .2'y[vi1 is qi-free for all i E [1, r1 
by (8.8.2(ii)), and that L is i-trivial iff Vi == 0 (mod m) for all i E [1, r1. 

(®) L®./Y c (L®'/y)~ is an &'y-module at P with i-structure defined by 
~ # # # (L ®./Y) = (L ®19' ./Y )/SatLU""A'"U (0). 

xU "" 

It is a biadditive functor in the obvious sense, and we have natural i-isomor-
phisms. 

(®.o) L ® &'y ~ L (&'y denotes the i-trivial &'y), 

(®.1) (.2' ® L) ®./Y ~.2' ® (L ®./Y), 
(®.2) L ®./Y ~./Y ® L, 
(®.3) .2' ® (L EB./Y) ~ (.2' ® L) EB (.2' ®./Y), 

and easy comments 
(®.4) .2'®a is i-surjective if a: L --+./Y is i-surjective, 
(®.5) .2'®~. is i-exact if .2' is i-free and ~. is i-exact, 
(®.6) L®./Y is an i-free &'y-module at P of rank r·s if Land ./Y are 

i-free &'y-modules at P of rank rand s, 
(®.7) L®&,z is an i-free &'z-module at P if L is an i-free &'y-module 

at P, 
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(®.S) L®./Y ~ L ®./Y as &'y-modules if L is i-trivial, and 
(®.9) the natural &'x-homomorphism L ®&x ./Y ---- L®./Y is an isomor-

phism outside P. 
(®®) i-invertible &'y-module L®n c (L®n)u at P is defined for n E ~ 

and i-invertible &'y-module L at P by (L®n)u = (Lu)®n . We have natural 
i-isomorphisms 

(®®.l) 

(®®.2) 

whence i-invertible &'z-modules (&'z®L®n) at P (®. 7) satisfy 
- -

( ®®.3 ) (&'z ® L)®n ~ &'z ® (L®n) (n E ~) 

by (®.l), (®.~ and &'z®&'z ~ &'z (®.O). We note by (®®.l) that 
(®®.4) L®a is i-trivial if a == 0 (mod m), 

whence we see by (®.S) that - - -(®®.5) (L®'/y)®mn ~ (L®m)®n ® ('/y®m)®n as &'y-modules for n E ~, if 
./Y is also an i-invertible &'y-module at P. 

(det) i-invertible &'y-module detL c (detL)U at P is defined for i-free 
&'y-module L at P by (detL)U = det.., L U • (7xl 

(S) i-free &'y-module Sn(L) c Sn(L)U at P is defined for n E Nand 
i-free &'y-module L at P by Sn(L)U = Sn &xl (LU) (symmetric nth power). 
If Land ./Y are i-free &'y-modules of rank 2 and 1 respectively, then we 
have a natural i-isomorphism for n E N 

(S.l) det(Sn(L) ®./Y) ~ (detL)®n(n+1)/2 ®'/y®(n+1). 

(S.S.5) If furthermore dim Y = land L is qi-free, then one can define local 
degree ql deg(L, P) E ~+ as follows: let SI' ... ,s, (resp. s~, ... ,s!) be a free 
basis (resp. an i-free basis) of L at P. Then Si = E j J;jS~ (i E [1, r]) and 
g = det(J;) is a semi-invariant by SI 1\ ... 1\ s, = g(s~ 1\ ... 1\ s!) , whence gm E 

&'y.p. Then gldeg(L, P) = lenp(&'y.p/(gm)), which is obviously independent 
of choice of i-basis and basis. 

If we set B(Y,P) = Max{qldeg(.5l'y[v],P) Iv E ~m' .5l'y[v): qi-free}, then 
ql deg(L, P) :5 B(Y, P) . r for arbitrary qi-free L of rank r. 

We note that if Y is a smooth curve at P and if L is a qi-free (i.e. i-free) 
&'c-module at P with an i-free i-basis (s~, ... ,s~) , then 

qldeg(L,P) = LR(YU-wts:) 
i 

(cf. (2.S)). 
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As a corollary to these definitions, we have 

(8.8.6) Corollary. Let J be a C-laminal ideal of width d and Y c y" an 
f.-free &x-module at P. Then 

(i) &CI = &x-lif(&c) (thatis d = lif(C)) , Jtt = &x-lif(J) is a d-laminal 
ideal of width d, we have equalities of subquotients 

Fn(ytt ,Jtt) = Y-lif Fn(y,J) , grn(y", J tt ) = Y-lifgrn(y,J) 

and hence f. -isomorphisms 

Fn(y,J) ':::=. Fn(&, J) ® Y and grn(y, J) ':::=. grn(&, J) ® Y 

for all n ?: O. If furthermore d ?: 2, then similarly we have 

gl·i(y" ,Jtt) = Y-lifgl·i(y, J), grn.i(y,J) ':::=. gl·i(&,J) ® Y 

for all n, i (8.6), and 
(ii) homomorphisms Q J1 , PJI' .6.J1 (8.2.2), yn(ytt,Jtt ) (and yn.i(ytt,Jtt) 

if d ?: 2) are I'm -homomorphisms "lifting" Q J' P J' .6. J' l (Y ,J) (and 
yn.i (Y,J) if d ?: 2) in the obvious sense. In particular, Q J is an f.-homomor-
phism, PJ is an f.-surjection, KerPJ E SSB(&x), KerPJI = lif(KerPJ ), 
yn(y,J) = yn(& ,J)®Y (and yn.i(y, J) = yn.i(&, J)®Y if d ?: 2). 

Proof. Equalities in (i) are for saturated subquotients and they hold outside ptt 
((8.3(i)) and (8.6(ii))) where lltt is etale. Therefore they hold in a nbd of ptt . 
The meaning of "lifting" in (ii) is the following commutative diagram 

O-+grl(&,J)®d ~ gr~(J) ~ Ker[gr~&~grl(&,J)]-+O 

1 D ~ 

0-+ grl (&tt ,Jtt)®d ~ gr~1 (J tt ) ~ Ker[gr~l&tt ~ grl (&tt ,Jtt) -+ 0 
where PJI is surjective. The rest follows from the construction and defini-
tion. 0 

(8.9) Definition. Let X:J C be an extremal nbd and Y c X a closed subspace 
without embedded or isolated points. Let PI' ... , PI E X be points of indices 
m l , ... ,ml (?: 1) such that X - {PI' ... ,PI} has no points of indices> 1, 
and Y is given the induced f.-structure at these points. A coherent &y-module 
is said to be f.-coherent if it is given f.-structure at each of PI' ... , PI' If an 
f.-coherent &y-module L is locally free of rank r on yO = Y - {PI' ... ,PI} 
and f.-free (resp. qf.-free) at each Pi' then we say that L is a locally f.-
free (resp. qf.-free) &y-module of rank r, and we may also say that L is 
an f.-invertible (resp. qf.-invertible) &y-module if r = 1. Local definitions 
of iB and ® for f.-coherent &y-modules (cf. (®.9) in (8.8.4)), powers for f.-
invertible sheaves, Sn and ~t for f.-free &y-modules (8.8.4) patch with the 
corresponding operations on yO, and thus these operations give f.-coherent 
&y-modules. Formulae in (8.8.4) extending the usual ones to &y-modules with 
f.-structures at Pi'S extend further to f.-coherent &y-modules since they coincide 
with the classical ones on the punctured nbds. Therefore we will quote the local 
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formulae in (8.8.4) in global setting by abuse oflanguage. For example, gr~ w :::: 
&'c®wx is an i-invertible &'c-module by (®.7) in (8.8.4) and (8.8.6(i)). 

The notion of i-homomorphism, i-injection, i-surjection, i-isomorphism, 
i-splitting, and i-exactness for i-coherent sheaves are defined in the obvious 
way since these are local properties. An i-exact sequence 0 -+ Y -+ L -+ 

.IY -+ 0 is (globally) i-split if L has a coherent subsheaf % giving an i-
splitting L = Im(Y -+ L)ffi% . 

We note that i-structure (i-coherence, ... ) does not depend on choice of 
above PI' ... ,PI as long as X - {PI' ... ,PI} has no points of indices > I . 

(8.9.1) Proposition-Definition. Assume further that Y is a complete pure 
I-dimensional closed subscheme of X. Then 

(i) if L is a locally i-Jree &'y-module, then (detL)®1l is qi-invertible and 
- -(detL)®lln :::: ((detL)®Il)®n 

as &'y-modulesfor all n, fl E N such that lcm{ml' ... ,m,} I fl. Then we define 

I degyL = * degy(detL)®1l E <Q! 

which is independent of choice of such fl, where degy is the usual degree for 
&'y-invertible sheaves. We note that I degc(gr~ w) = (wx · C), and 

I degy(L ®.IY) = I degy L + I degy.IY 

if Land .IY are of rank 1, and 

I degy(.IY ® Sn L) = !n(n + 1)1 degyL + (n + 1)1 degy.IY (n ~ 0) 

if L is of rank 2 and .IY is of rank 1, 
(ii) let QL(Y) = Z EB (EB I ::;j9 ZP!)/CEI::;j::;1 Z(1 - mjP!)) , then 

deg: QL(Y) -+ <Q!; deg (z + L Zjp/) = z + L zJm j 

is a well-defined homomorphism. For a locally qi-Jree &'y-module L, let 
I 

qly(L) = degyL + L ql deg(L, Pj)p! E QL(Y) , 
j=1 

then I degyL = deg(qly(L)); and qly(L®.IY) = qly(L) + qly(.IY) for 
qi-invertible Land .IY such that L®.IY is qi-invertible; and 

o ~ IdegyL -degyL ~ r L B(Y,PJ/mj 
l::;j9 

(cj (8.8.5)) if L is of rank r, and 
(iii) if Y :::: jp'1 and X:::> Y is locally primitive, then 

TL: QL(Y) -+ Z; 
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is well defined, where Vi is defined for (X, Pi) ::J (Y, Pi) as in (2.8). Further-
more, if Land ./Y are i-invertible &'y-modules, then degyL = TL(qly(L)), 
whence 

(a, bE Z). 

We say that an expression' = z + L:i ziPi~ of' E QL(Y) is normalized if 
Vi( -zi) = 0 for all i. 

Proof. (i) The first assertion follows from (®®.5) in (8.8.4). By i-isomorphism 
gr~ w :::: &'c®wx in (8.9), one also has 

I degc(gr~ w) = ~ degc(&'c ® w x )®~ =~ degc &'C ® (w X ®Jl) = (w x . C) . 
- -

The last two assertions follow from the definition by (L®'/y)®Jl :::: (L®Jl) ® 
('/y®Jl) ,and (®®.5) and (S.l) in (8.8.4). 

(ii) The definition of qi deg(L, Pi) shows 

(*).I.i ~i • ql deg(L, PJ = lenp; Coker [(detL)®Jl ---t (detL)®Jl] 

for locally qi-free L if mi I Il. By summing up (*).1.1'···' (*).I.t' one 
has I degyL = deg(qiy(L)). Let Land ./Y be ql-invertible &'y-modules 
such that L®./Y is qi-invertible. By (®®.5) in (8.8.4) and (*) D • + (*) A/" • -.... / -" ./ 

( * ).I®.AJ" .i ' one has 

~(ql deg(L, Pi) + ql deg(./Y, Pi) - ql deg(L ®./Y, PJ) m i 

= lenp; Coker[(L ® '/y)®Jl ---t (L ® '/y)®Jl]. 

Let ai be the length of L®./Y jL ®./Y at Pi. Then 

degy L ® ./Y = degy L ®./Y + a l + ... + at ' 

and 
ql deg(L, PJ + ql deg(./Y, Pi) = qi deg(L ®./Y, Pi) + aimi . 

Thus 

qly(L) + qly(./Y) = degyL ®./Y + ~)ql deg(L, Pi) + qi deg(./Y, PJ)Pi~ 
i 

= degyL ®./Y + 2)ql deg(L ®./Y, Pi) + aimi)Pi~ 
i 

= degy L ®./Y + L ai + L qi deg(L ® ./Y, PJPf 
i i 

= qly(L ®./Y). 

The last assertion follows from (8.8.5). 
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(iii) TL is well defined by Ui(mi+z) = I+Ui(z) (zEIZ) for all i (2.8(iii)). 
By (8.8.5) and the definition of Ri for (X, Pi) :::> (y, Pi) , (2.8) shows that 

Ui( -ql deg(L, Pi)) = 0 

for all i, whence TL(qly(L)) = degyL . The rest follows from (ii). 0 

(8.10) Definition-Corollary. Let (X, P) :::> C be the germ oj a 3-Jold terminal 
singularity oJindex m 2: 1 and a reduced curve, and let (X~ ,P~) be the canonical 
cover. Let J be a C -laminal ideal oj pure width d, and J~ the canonical lifting 
oj J at P. IJ an i-basis {Sl' S2} oj Ie at P satisfies (SId, S2) = J~ at P~, 
we say that the ordered i-basis (Sl' S2) is a (1, d)-monomializing i-basis oj 
Ie :::> J at P, and that J is (1, d)-monomializable at P if such (Sl' S2) exists. 
We note that widthJu Sl = 1 and widthJu S2 = d by (8.3(i)). 

Assume that J is (1, d)-monomializable at P and let .9 be an i-Jree 
&x-module at P. Let n E 1Z+, q = [njd] , r = n - qd, and let i be an 
arbitrary integer in [0, q]. Then 

(i) grn(.9,J), gr~.9, gr~&, grl(&,J), grd(&,J) , KerPJ are i-Jree 
&e-modules at P with their induced i-structures (8.8.6(ii)), and 

gl(.9,J)~:::: (.EB &euSl is/) ®&cu.9~, 
l+dJ=n 

I ~ (gre&) = &eusl ffi&eus2' 
grl(& ,J)~ = &eusl if d ~ 2, 

d ~ d gr (&, J) = &eusl ffi &eUs2' 

(Ker P )~ = {&euS2 if d ~ 2, 
J 0 if d = 1, 

(ii) ·l(.9,J) induces an i-isomorphism 

~/(.9,J): sq (gl (& ,J)) ® (grl (&, J))®r ® gr~.9 -- grn(.9,J), 

(iii) if d ~ 2, then we have an isomorphism 
n .i( = )~ Air di+r q-i O7~ gr ...T ,J :::: ueas l S2 ®&...T, 

cU 

whence yn.i (.9,J) induces an i-isomorphism 

)in.i (.9 ,J): grl (& ,J) ®(di+r) ®(Ker PJ ) ®(q-i) ® gr~.9 __ grn.i (.9 , J) . 

Indeed (i) and (ii) are immediate corollaries to (8.3) and (8.8.6) via the 
definitions in (8.8). For (iii), we also use (8.6). 

(8.10.1) Remark. If m = 1 in (8.10), then J is (1, d)-monomializable at P 
iff J is a nested c.i. at P. 
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(S.II) Definition-Proposition. Let (X, P) ::) C be the germ of a 3-fold terminal 
singularity of index m ~ 1 and a reduced curve defined by ideal Ie and let 
(XU, pU) be the canonical cover. Let d, leu be the canonicalliftings of C, Ie 
at P. Let {s) ,s2,e} be an i-basis of Ie at P, band d integers ~ 2, and 
f E &xu a semi-invariant such that 7 = f mod leu is a nonzero divisor of &eu . 
For n ~ 0, let 

JY,,= L (S)iejs/)&xu ::)JY,,0= 
i+bj+dk?n i+bj+dk?n 

,%'= 
n 

i+bj+dk?n 
O~i<b 

i+j+k?2 

Assume that fe - s) b E .%b+) at pU. Then one has 
(i) JU =.%d is a d-laminal ideal of pure width d, wtfe == b wts) (m), 

width JUs) = 1, width jU S2 = d, width JU e = b, and furthermore for all n ~ 0, 
we have Fn(&xu, Ja) = JY" = JY,,', 

i+bj+dk=n 
O~i<b. O~j.k 

and an isomorphism of graded &eu .pu -algebras with I'm -action 

• • a ~ - b 
~jU .pu: gr (&xu, J )pu --+ &eu .pu[S) , S2' E]/(jE - S) ), 

sending s)' S2' e to S), S2' E, respectively. In particular, 

(cf. (S.S.6(ii)) for 0Ju), 
(ii) if we further assume 
(a) d > band fe - Sl b - hS2 E .%b:1 for some unit h (resp. (b) fe-

s) bE .%b:I) , then gr~u & is a free &eu-module with a free basis {Sl' e} (resp. 
{s) ,S2}) and Ker Pju is an invertible sheaf (cf. (S.S.6(ii))) and 

Imoju = 7· KerPju (resp. KerPJu) , 

i.e. Ker Pju = &eue (resp. &eUs2)' 
(iii) let J be a C-laminal ideal of width d and let Ja = lif J. Then JU =.%d 

iff S2 E Ja . 
If the condition in (iii) holds and if (a) (resp. (b)) in (ii) holds, then we 

say thatthe ordered i-basis (s)' S2' e) is a (I, d ,b )-monomializing i-basis of 
the first (resp. second) kind of Ie::) J at P, and that f is the attached semi-
invariant. We say that J is (I, d , b )-monomializable at P and Ie::) J at P 
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(or simply P) is of the first kind (resp. the second kind) if such an i-basis 
exists. 

Proof. (i) Since Sl b == fe (mod ~+I) and ~+I·~-b C ~+I ,we have a nat-
ural surjection 

i+bj+dk=n 
O~i<b, O~j ,k 

from a free &'cl-module of rank [njd] + 1. Let us fix an arbitrary N E N for 
the moment. If QU E d - {pu} is a point close to pU such that f(QU) =f. 0, 
then e E Ei+dk~b(SliS/) by Nakayama's lemma. Thus lCI,QI = (SI,S2) and 
~,QI = Li+dk~n(Slis/). By (8.3(i)), ~j~+1 is free of rank [njd] + 1 at 
QU , .7!d is a d -laminal ideal of pure width d at QU, and ~ = F n (&' XI ' .7!d) 
for all n E [0, N] if QU is close enough to pU. Hence (Ker Y n) QI = 0, and 
KerYn = 0 by KerYn c Sat(O) = 0 (n E [0, ND. Hence Yn is an isomorphism 
for all n E [0, N] and we note an = lCI for all n ~ 1. Hence &'xd~ has 
no embedded primes for all n E [0, N], whence .7!d = Sat(.7!d) (= JU) is a 
d-Iaminal ideal of pure width d and ~ = Sat(~) = Fn(&'XI' JU) for all n E 
[0, N] because (~)QI = Fn(&'XI ,.7!d)QI at nearby points QU (=f. pU). Hence it 
holds for all n ~ 0 and 0;1 is a Ilm -isomorphism for all n ~ 0, because N was 
chosen arbitrarily. Hence ~ = ~+I +%: for all n > 0, and ~ = ~+n' +%: 
for all n, n' > O. If n' is large enough, then ~+n' c lc~ and ~ = ~ 

b b - b by Nakayama's lemma. By 0JI(sl)=foJI(e),wehave wtfe==bwtsl (m). 
Since d ~ 2 and gr~1 JU = grd (&" JU) has a free basis {S2' SI d-b[d/bJ . e[d/bJ} 
by 0;1, we see that ImaJI = &'CIS2 if d =f. b by d - b[djb] + [djb] ~ 2. If 
d = b , then fe - sIb E ~+ I implies e E 1(2) by b ~ 2, whence a JI (e) = 0 
and ImaJI = &'CIS2 anyway. The rest is obvious. 

(ii) The assertion on the free basis is straightforward. By (8.4), Ker PJI = 
Sat(Im aJI) and (ii) follows from (i). 

(iii) The only-if part is obvious by definition. By (8.8.6), JU is a d-Iaminal 
ideal of width d. Assume that S2 E JU. Let QU E d - {pU} be a point close 
to pU such that f(QU) =f. O. Then one has lCI,QI = (SI' S2)' and the same 
argument as in the proof of (8.3(ii)) can be used to get JU QI = (.7!d)QI. Then 
JU = Sat(JU) = Sat(.7!d) =.7!d. 0 

(8.11.1) Remark. Let the notation and assumptions be as in (8. 11 (i)). Let !7 
be a locally i-free &'x-module and J = quo(JU) (8.8.1). Then 

(i) if 7 is a unit then (SI' S2) is a (1, d)-monomializing i-basis of Ie ::) J 
at P, 
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(ii) using (8.6) and (8.8.6), one sees that grn(9,J), gr~9, L = grl(&" J), 
grd (&' ,J) , 2 = Ker P J' grn.i (9, J) are f-free &'e-modules at P with the de-
scriptions 

2" = { &'eue 
&'eUs2 

L" = &'eusl' 

(P first kind), 
(P second kind), 

d(mY J)" _ mY ffi mY [d/b] d-b[d/b] gr 0', - O'eUs2 wO'eue Sl ' 
n .i(mY J)" mY q-i [(di+r)/b] (di+r)-b[(di+r)/b] gr 0', =O'eUs2 e Sl ' 

and that l·i(9,J) (n ~ 0) induces an f-isomorphism 

yn.i (9,1): L®(di+r) ® g:ej ® 2®(q-i) ® gr~9 -+ grn.i (9, J) 

for i E [0, q], where q = [njd] and r = n - qd, ej = [(di + r)jb] - (q - i) 
(resp. ej = [(di + r)jbD if P is of the first (resp. second) kind, and gp is an 
f-invertible &'e-module at P given by 

--I Pm " --I gp = (&'ed ) c gp = &'ed . 

This is because Sl' S2 are f-free f-bases of L,2®g®(-I) (resp. L,2), 
and Sl di+r == (J. e)[(di+r)/b] • SI di+r-b[(di+r)/b] , and 

(iii) if there is a global curve C extending (C, P) (cf. (8.9)), one can triv-
iallyextend gp to an f-invertible &'e-module g on global C so that the unit 
section 1 of gp extends to a global section of g and generates g outside 
P . By construction, one sees I dege g = m -I len p (&' e j (})&' e) . 

(8.12) Theorem. Let X ~ C :::: Wi be an extremal nbd and let J be a 
C-Iaminal ideal oj pure width d and let PI' ... ,PI E C be such that X is 
smooth and J is a nested c. i. at arbitrary points oj C - {PI' ... , PI}' We assume 
that there exists s E [0, d] (s = 0 if d = 1) such that J is 
(1 , d, b j )-monomializable Jor some b j (resp. (1, d)-monomializable) at Pj 

Jor all j ~ s (resp. j ~ s + 1). We also assume that there exists s' E [0, s] 
such that Pj is oj the first (resp. second) kind if j E [1 ,s'] (resp. [s' + 1 ,s D. 
For each j ~ s, let gj be the f-invertible &'e-module obtained as g at Pj 

in (8.11 (iii)). Let Y be a locally f-Jree &'x-module oj rank p. Let n E fZ+ ' 
q = [njd], r = n - qd, and let i be an arbitrary integer in [0, q]. Then 
grn(y,J), gr~Y, grd(&',J) are locally f-Jree &'e-modulesoJrank qp+p, 
p, 2, respectively, and 

(i) iJ d = 1, then J = Ie> grn(Y,J) = gr~Y, grl(&,,J) = gr~&', and 
yn(y, Ie) induces an f-isomorphism 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



214 SHIGEFUMI MORI 

and one has I dege gr~ & :::: 0, and 
(ii) if d:::: 2, then L = grl(&,J), :? = Ker Pj (8.2.2), and grn,i(,9,1) 

(8.6) are i-invertible &e-modules, Pj induces an i-exact sequence 
1 O-+:? -+ gre & -+ L -+ 0, 

and yn,i(,9,1) (8.6) induces an i-isomorphism 

yn,i(,9, J): v/t®(di+r)® (d9 g j ®ei ) ® :?®(q-i) ® gr~,9 -+ grn,i(,9, J), 
J=I 

where ej = [(di + r)/b) - (q - i) (resp. [(di + r)/b)) for j E [1,s'] (resp. 
j E [s' + 1 , s n , and one has 

1 (1 1) 'I I degeL + i dege :? + L bj - d I degegj + L b/ degegj :::: 0, 

where ~ (resp. ~') is over Pj of the first (resp. second) kind. 

Proof. The assertions follow mostly from (8.10), (8.11), (8.11.1). For (i), we 
only need to show I dege gr~ & :::: O. By (8.9.1) and yn(&x' Ie) , one has 

dege gr~ & :::; I dege gr~ & = !n(n + 1)1 dege gr~ &. 

Thus I dege gr~ & :::: 0 by (8.7). For (ii), we need to prove the last inequality. 
We note that I dege gj :::: dege gj :::: 0 (8.9.1) since gj has a nonzero global 
section (8.11(iii)). Thus by (8.9.1) and yn,i(&x,1), one has 

dege grn ,j (&x,1) :::; I dege grn ,j (&x,1) 

:::; (di + r)1 degeL + (q - i)1 dege :? 

~di+r ~. + ~ -b-.-ldegegj - ~(q -l)/degegj , 
j=1 J j=1 

and summing these up for i = 0, ... , q (= [n/dJ), one has 

dege grn(&, J) 

,; ;~ (I degeAt' + JI dege? + ~ :/ dege 9ij - t JI dege 9ij ) + O(n). 

where O(n) is a term bounded by (constant)· n as n -+ 00. Thus again by 
(8.7), we are done. 0 

(8.13) Let X be an analytic 3-fold with only terminal singularities and C a 
smooth curve in X defined by ideal I. Let J be a C -laminal ideal of width 
d:::: 2. Let 

0-+ gl,I(&,J) -+ gr~J -+ gl'o(&,1) -+ 0 

be the i-exact sequence given in (8.6). 
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Assume that it has a splitting 

(S.13.1) gr~ J = g/" (&,J) ffi Y;-
into invertible sheaves on C, where Y;- is a subbundle of gr~ J of rank 1 and 
hence Y;- has an induced i-structure as a gr~ J -saturated subsheaf of gr~ J 
(S.S.l). We note that (S.13.1) is not necessarily an i-splitting. Let K be a 
C-primary ideal of &x such that J ::> K ::> F' J and K/ F' J = Y;-. Let P be 
a point on C, (XU. pU) the canonical cover of germ (X, P) , and d c (XU. pU) 
the canonical lifting of C . Then we can study K in the following four cases. 

(S.14) Proposition. Assume that J is a nested c. i. at P (of width d ~ 2 as 
above). Then K is a nested c.i. at P of width d + 1 such that Fi (& , K) p = 
Fi(& ,J)p for i ~ d. Thus K is a C-laminal ideal of width d + 1 such that 
F i (&. K) = F i (&. J) for i ~ d, whence PK = PJ and Ker PK = Ker PJ • 

Proof. The ideal I has a basis {u, v} at P such that Jp = (ud , v). Then 
Y;- is generated by w = v + aud for some a E &x.p by (S.3(i)), whence 
Ip = (u, w), Jp = (ud • w), and Kp = (ud+', w) (S.3(ii)), and the equality 
holds by (S.3(i)). Thus Kp is a C-Iaminal ideal of width d + 1 . Since d ~ 2, 
gr'(&,J) = gr'(&.K) = (u.v)/(u2 ,v), whence PJ = PK : gr~& _ gr'(&,J) 
because they are naturally induced maps (S.2.2). 0 

Learning that K is a C -laminal ideal of width d + 1 , we see 

(S.14.1) Corollary. F'J/F'K = grd+l.'(&,K) and the natural map K - J 
induces an i-isomorphism grd+'.o(&, K) = K/ F' J ...::.... Y;- . 

Proof. Since grd+'., (&. K) is a gr~ K-saturation of (Id+' + F' K)/ F' K in 
gr~K via yd+"'(&,K) (S.6(ii)) and since I d+' c F'J by width J = d, 
we see grd+"'(&,K) C F'J/F'K, which are both gr~K-saturated submod-
ules of gr~K of rank 1. Hence grd+"'(&,K) = F'J/F'K. Since J, K, 
F' J are &x-saturated submodules of &x and since Y;- = K + F' J/ F' J is a 
J/ F' J -saturated submodule of J/ F' J , the two expressions K/ F' J and K + 
F'J/F'J induce the same i-structure on Y;- by (S.S.l). 0 

(S.15) Proposition. Assume that (d, pU) is smooth and that I ::> J has a 
(1, d)-monomializing i-basis (s" S2) at P. There exists a semi-invariant a E 
&x#.p# such that wta = wts2 - dwts,. or -wts2 +dwts, (mod m) and such 
that 

(S.15.1) if gr~ J = grd., (&,J) ffi Y;- (S.13.1) is an i-splitting at p. then 
(s,. S2 + as, d) is a (I, d + l)-monomializing i-basis for I::> K at P, and 
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(B.15.2) if gr~ J = grd •1 (&,1) tB 2'" (B.13.I) is not an i-splitting at P, then 
o < ord a < 00, and (Sl' aS2 + Sl d , S2) is a (I, d + I, d)-monomializing i-basis 
of the first kindfor I :J K at P with attached semi-invariant -a and relation: 

d d (-a)s2 - Sl = -(S2 + aS I ). 

Proof. Since d is smooth, we see that lif(2',,) = &cl(7isl + ys/) for some 
semi-invariants 71 (! 0), y E &CI by (B. I o (iii)) , and that 2'" defines an 
i-splitting iff ord71 :5 ordY. In case of (B.15.1) (resp. (B.15.2)), we take a semi-
invariant representative a E &XI.PC of y. 71- 1 (resp. 71· y-I ). Since S2 + aSI d 

(resp. aS2 + Sl d) belongs to K, (B.I0) (resp. (B.ll)) applies. 0 

(B.16) Proposition. Assume that (d, p") is smooth, that I :J J has a 
(1, d , b )-monomializing i-basis (Sl' S2' e) at P with attached semi-invariant 
f, and that gr~ J = grd .1 (&, J) tB 2'" (B.13.1) is an i-splitting at P. Let 
q = [d / b] and r = d - qb. Assume that I :J J is of the first (resp. second) 
kind at P. 

Then there exists a semi-invariant a E &XI.PC such that wt a == wts2 -
rwtsl-qwte (modm) and (sl,s2+asl'eq,e) isa (l,d+l.b)-monomializ-
ing i-basis of the first (resp. second) kind for I :J K at P with attached 
semi-invariant f. 

Proof· By (B.ll(i)), there exists a E &CI such that 2'" = &CU(S2 + as~eq). 
Let S3 = S2 + asl' eq for some semi-invariant representative a of a, whence 
s3 E K. Let fe - s~ = g(sl.s2,e) be the relation given in (B.ll(ii)). Then 
fe - Sl b = g(sl . S3 - asl' eq . e) is the relation for a (1. d + 1 . b )-monomializing 
i-basis (Sl' S3' e). If (Sl' S2' e) is of the first kind, then q + r ~ 2 by d> b, 
whence (Sl' s3' e) is of the first kind. If (Sl' s2' e) is of the second kind, then 
g(sl' S2' e) E (Sl' S2' e)2 and g(sl' S3 - as/ eq . e) E (Sl' s3' e)2. The rest is 
similar. 0 

9. EXISTENCE OF "GOOD" ANTICANONICAL DIVISOR (DELICATE CASE). 

The main purpose of this section is to treat the delicate case (6.7.4), and our 
main result is (9.10). 

Unless otherwise mentioned, we will work under the notation and assump-
tions of the following (9.1) throughout this section. 

(9.1) Let X :J C ~ Wi be an extremal nbd with 2 points P, p' of indices 
m, m' ~ 3. Then by (6.7), this is case (6.7.4); 

( * ) X :J C has no other singular points, and P. p' are of size 1 
and of type (IA), (IA v) , or (IIA). 
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Since X :) C has only one imprimitive point (1.13), we will assume that p' is 
a primitive point. Let m and s be the subindex and the splitting degree of P . 
We note that m = sm, and that s = 1 iff P is primitive. 

Let I c &'X be the sheaf of defining ideals of C in X. Let 1lU: (XU, pU) -+ 

(X, P) (resp. 1l~: (X~ ,P~) -+ (X, pI)) be the canonical cover and (d, pU) = 
I ~ ~ ~-1 U ~ 

1l- (C)red (resp. (C ,P) = 1l (C)red)' Let I (resp. I ) be the canoni-
cal lifting of I at P (resp. pI). Let x = (XI' ... ,x4 ) and t (resp. x' = 
(x; , ... ,x~) and t' ) be normalized i-coordinates (2.6) at P (resp. pI) such 
that ai = d-ordxi (resp. a; = d-ordx;) with i E [1,4] as in (4.2). We will 
use ord = CU-ord, wt = d-wt, ow = d-ow, R, U for X:) C at P (resp. 

I C~ I ~ I ~ I I I . ord = -ord, wt = C -wt, ow = C -ow, R , U for X:) C at P ) In the 
sense introduced in (2.5) and (2.8). 

We note that if P (resp. pI) is of type (IA) and a2 = 1 (resp. a; = 1), 
then one may permute XI and X3 (resp. x; and x~) (cf. (4.2)). 

We make a preliminary observation at P, which applies also to p' modulo 
obvious changes. 

(9.1.1) Lemma. Under the above notation and assumptions, assume that 
(Cu, pU) is smooth (resp. p is ordinary (4.5)). Let ~ be a torsion-free 
&'c-module of rank 2 with i-structure (resp. ~ = gr~ 1). Then 

(i) ~ is a qi-free &'c-module at P (8.8.3), and 
(ii) for an arbitrary splitting ~ = &'CSI EEl &'CS2 near P, there exists f..l E C 

with the following property. 
Foran arbitrary S3E~®&'c.p with S3(P) = f..lSI(P) +S2(P) (E~®qP)), 

there exists an i-free i-basis {u I ' u2} of ~ at P such that s IE&' cu .pu u I and 
s3 E &'cu .PU u2 • 

In particular, &'CSI is an i-invertible &'c-module at P (with its induced 
i-structure (8.8.1)) with an i-free i-basis u l at P,and ~=&'CSIEB&'CS3 isan 
i-splitting at P. 

Proof. (i) is obvious because ~u is &'cu-free of rank 2 (8.8.6) by the assump-
tion. Let {VI' v2 } be an i-free i-basis of ~ at P such that Si = /;1 VI + /;2 V2 
(i = 1, 2) and ord./; I :::; ord./;2' where fi} are semi-invariants in &'cu .pu . 
Then we have 

(9.1.2) Claim. R(wt vI). R(wt v2) < m, and if 

(z, w) E ±(d-wt(v l ) - d-wt*(v2 )) +Z+(m,O) c Z x Zm 

satisfies z ~ 0 (cf. (2.8)), then (z, w) E ow( d) . 
Indeed, if (d, pU) is smooth then (9.1.2) follows from ow(d) ~ Z+ (2.5). 

If P is ordinary, then one sees that P is of type (IA) or (IA v) and that 
sizp = 1 by (*) in (9.1), where the claim follows from (4.5.2). 
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By the choice of 1;), we see that 
(9.1.3) ow 1;) E C~-OW*(V) + 1Z+(m, 0) for all i, j (2.8(i)), 

(9.1.4) for each i E [1,2], ow 1;) = d-ow*(v) for some j. 
This is because rYes i is an g' -saturated sub module of g' . Then we will prove 

(9.1.5) Claim. owj21-owfll E 1Z+(m,O), and if ordhl > ord.t;I' then 
ul = sllfll and u2 = s2/h2 form an £-free £-basis for g' at P. 

Proof of Claim. Since ord.t; I :::; ord f12 by the choice of v) , we have ord.t; I = 
R(wtvl ) or ordfll :::; ord.t;2 = R(wtv2) by (9.1.4), whence ordfll < m in 
either case by (9.1.2), and ow.t;1 = d-ow*(vl ) by (9.1.3). Thus ow f21 -
OW.t;1 E 1Z+(m, 0) C ow(d) as claimed. Assume now ordhl > ord.t;1 as in 
(9.1.5). Then ord hi 2: m + R(wt VI) (9.1.3), whence ow h2 = d-ow* (v2) by 
(9.1.4). Thus ord.t;2 - ord.t;1 = ord.t;2 - R(wt VI) 2: 0 and ordhl - ordh2 = 
ord f21 - R(wt v2) > 0 by R(wt v2) < m (9.1.2), and one sees ow.t;2 - ow.t; I ' 
ow hi - ow h2 E ow( d) by (9.1.2) and (9.1.3). Since 1;) have representatives 
of the form 

(invariant unit) . (monomial in x) 

in rYXI,PI (cf. (2.7)), this implies that .t;2/.t; I' hi I h2 E rYel,PI and 
(h llh2)(PU) = 0 by (2.7) and ul = vI + (.t;2/.t;I)V2 and u2 = (h llh2)vl + v2 
form an £-free £-basis of g' at P and the claim follows. 

(9.1.6) Since ow hi - ow .t; I E ow( d) , there exists J.l E CC such that 

ord(J.l.t;1 +hl) > ord.t;1 (2,7), 

If S3 E g'0rYe ,p satisfies S3(P) = J.lSI (P)+S2(P) , then g' = rYesl EBrYes3 near P 
and the coefficients 1; I and f32 in s 3 = 1; I V I + 1;2 V 2 satisfy ord 1; I > ord.t; I . 
Hence we can apply (9.1.5) to Sl' s3 . 0 

(9.1. 7) Corollary. Assume that (d, pU) and (d, PP) are smooth (resp. P 
and pi are ordinary). Let g' be a torsion-free £-coherent rYe-module of rank 
2 (resp. g' = gr~ l). Then 

(i) g' is a locally £-free rYe-module of rank 2, 
(ii) every g' -saturated invertible rYe-submodule 2' of g' (2.2) is an 

£-invertible rYe-module with its induced £-structure, and 
(iii) if g' = 2' EB L is a splitting into invertible rYe-modules such that 

deg2' > degL, then we have an £-splitting g' = 2' EB {(idM , f)(L)} 
for some f E Hom(2' ,L), where (idM , f): L - 2' EB L = g' . 

Proof. (i) and (ii) follow from (9.1.1(i)) and (9.1.1(ii)), respectively. For (ii), 
we see that L* 02' is generated by global sections and dimHo(L* 02') 2: 2 
by deg2' > degL, whence (iii) follows from (9.1.1(ii)). 0 
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(9.1.8) Corollary. Assume that (d, p#) and (d ,P~) are smooth. Let ft', .5?, 
L be i-free &' c-modules of rank 2, 1, 1, and let 

O-+.5?-+ft'-+L-+O 

be an i -exact sequence. Then 
(i) for a point Q such that ql deg(.5?, Q) ~ ql deg(L, Q), an arbitrary 

splitting ft' = .5? $ /Y at Q is an i -splitting at Q, and 
(ii) if (a) deg.5? > degL , or 

(b) deg.5? ~ degL - 1 and ql deg(.5?, Q) ~ ql deg(L, Q) for 
Q = p and p', 

then the sequence is i-split. 

Proof. As for (ii), (a) follows from (9.1.7), and (b) follows from (i). As for 
(i), it is enough to prove that a splitting ft' = .5? $ /Y at P is an i-splitting 
at P assuming that ql deg(.5?, P) ~ ql deg(L, P). Let {u l ' u2} be an i-free 
i-basis for ft' at P such that ul is an i-free i-basis for .5? at P. Then 
R(wt ul ) ~ R(wt u2) (8.8.5) by the assumption. We note that /Y is generated 
by fl u l + f 2u2 such that 1;,1; E &'CI.PI are semi-invariants with ord 1; ~ 
R(wt u l ) and ord1; = R(wt u2) . Thus 1;/1; E &'CI .PI and {u l ' (1;/1;)u l +u2} 
is an i-free i-basis for ft' at P, and ft' = .5?$/Y. 0 

(9.2) Under the notation and assumptions of (9.1), assume that P and p' 
are ordinary. Then they are of type (IA) or (IAv) and ip(l) = sizp = 1, 
ip,(I) = sizp, = 1 by (*) in (9.1) and (4.10). Hence deggr~&' = -1 (2.3.2) 
and gr~&' ~ &'$&'(-1), since HI(gr~&') = 0 (2.3.4). We note that the 
sub sheaf .5? c gr~ &' such that .5? ~ &' is unique and that .5? is an f.-
invertible &'c-module, and let u l (resp. u~) be an f.-free f.-basis of .5? at P 
(resp. pI) (8.8.3). 

(9.3) Theorem. Assume that P and p' are ordinary as in (9.2). Then (d, p#) 
and (d ,P~) are smooth (whence P and p' are primitive), wt u I == -1 (m), 
and wt' u~ == -1 (m' ). Furthermore, al = a; = 1 after necessary permutations 
are made as in (4.2). 
(9.3.1) Remark. By (4.5.1), an f.-free f.-basis of gr~&' at P has wt == sala2 , 
-a l (mod m). If P is of type (IA v), then we treat it as a separate case: 
(9.3.ipr) s ~ 2, 
and then consider locally primitive X:J C as follows. 

We note that if a2 = 1 , then one may permute XI and x3 (9.1), by which 
al a2 == al and a3 are permuted. We also note that if a2 = m - 1, then 
ala2 == a3 • Thus one may assume either (i) wtu l == ala2 and 2 ~ a2 ~ m - 2, 
or (ii) wt ul == a3 , and the same remark applies to p'. Therefore there are 
three cases (modulo permutation of P and pI): 

I· I I I I I (9.3.a) wtu l ==ala2, a2t±l(m); wtul ==ala2, a2t±1(m), 
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wt' u; = a; (m'). 

(9.3.c) wt u l = a3 (m); wt' U; = a; (m'). 

Proof. We will prove (9.3) by showing that only (9.3.c) is possible and that 
a l = a~ = 1. Since gr~ & = 2' EB &( -1) and 2' ~ & (9.2), one may choose 
subbundle L ~ &(-1) of gr~& such that gr~& = 2' EBL is an i-splitting 
(9. 1. 7 (iii)). Let u2 (resp. u;) be an i-free i-basis of L at P (resp. P'). 

(9.3.2) Let J be the C-Iaminal ideal of width 2 such that JII(2) = 2'. Since 
JII(2) = 2' , the surjection a J: gr~ J ---+ JII(2) = 2' induced by identity is an 
i-surjection by (8.8.1). Thus we have equalities ImaJ = Ker PJ = 2' with 
i-structure by (8.4(ii)) and an i-isomorphism grl (&. J) ~ L . In particular J 
is a nested c.i. outside {P. P'} by (8.4(i)). 

Let JU (resp. Jb) be the canonical lifting of J at P (resp. P'). We may 
replace u l • u2 E lUI IU(2) (resp. u;. u; E Ib I l(2)) with their representatives so 
that we may assume u l E JU and u2 E Itt (resp. u; E Jb and u; E l). Thus one 
sees Itt = (u l • u2) and Jtt = (u l • u/) (resp. l = (u; . u;) and Jb = (u; . u; 2)) 
by (8.3), and (U2 .UI ) (resp. (u;.u;)) is a (1.2)-monomializing i-basis for 
I :) J at P (resp. P'). Hence 

1 o $ 'degc L + "2' degc 2' 

(9.3.3) = (-1 + ;k R(wt u2 ) + ~, R' (wt' u;)) 

+ ~ (;k R(wtu l ) + ~,R'(wt' u;)) 

by (8.12). By (2.3) and (4.9(i)), one has 
_-I , ,-I (9.3.4) 1 < a2 • m + a2 • m 

(9.3.5) Case (9.3.ipr). We will disprove this case. Since sizp = ip (l) = I, 
we have wp(O) ~ 2/3 by (5.6(ii)). Whence wp,(O) < 1/3 by (2.3.3) and 
a~ = 1 by (5.1(i)). Since sizp = sizp, = I, we see that {R(wtu l ).R(wtu2)} 

= {m - sala2.al } and al $ m - sala2 by (4.5.2) and that {R'(wt'u;). 
R' (wt' u;)} = {m' - a;. I} and 1 $ m' - a;. Then (9.3.3) gives 

O 2( m-sala2 m'-a;) al 1 
$ -1+ +, +-=-+-, m m m m 

_-I < m (-2sa la2 + al + 3a2). 

where 11m' $ (m' - a;)lm' < a2· m- I (9.3.4) is used in the second inequality. 
Hence we have a contradiction: 

0< -2sala2 + al + 3a2 $ -4ala2 + al + 3a2 
= a 1(1 - 4a2) + 3a2 $ 1 . (1 - 4a2) + 3a2 = 1 - a2 $ 0 
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by s ~ 2, ai' a2 ~ 1 . Thus case (9.3.ipr) does not occur, and P is a primitive 
point and m = m in the rest of proof of (9.3). 

(9.3.6) Case (9.3.a). We will disprove this case. By U(a 1a2) = 1 and U'(a;a;) 
= 1, one has R(wtu l) = m-a1a2 and R'(wt' u~) = m' -a;a;, and by definition 
one has R(wt u2) = a l and R' (wt' u;) = a; . Thus (9.3.3) reduces to 

1 1" o ~ -2 al (2 - a2) + -, al (2 - a2), m 2m 
which implies a2 = a; = 2, because a2, a; ~ 2. By a2 ¢ ±1 (m) and 
(a2 ' m) = 1, one sees that m ~ 5, and similarly m' ~ 5. This contradicts 
(9.3.4). 

(9.3.7) Case (9.3.b). We will disprove this case. We have R(wt u1) = m - al a2 
and R(wtu2) = ai' R'(wt'u~) = a; and R'(wt'u~) = m' -a;a;, and m ~ 5 
as above. Thus (9.3.3) reduces to 

(9.3.7.1) 1 ~ al (a2 - 2)/m + a; (2a; - l)/m'. 

(9.3.7.2) Claim a; = 1. First by a2 ¢ ±1 and a2 < m, one has m ~ a2+2 and 
1 = m/m ~ 2/m+a2/m > 2/m+1-a;/m' by (9.3.4), whence 0> 2/m-a;/m'. 
By (9.3.7.1), one has 

1 ~ (a2 - 2)/m + a; (2a; - l)/m' > 1 - a;/m' - 2/m + a; (2a; - l)/m', 

where we used (9.3.4) in the second inequality, whence 

2/m - a;/m' > -2a;/m' + a; (2a; - l)/m'. 

Hence one has 

0> 2/m - a;/m' > -2a;/m' + a; (2a; - l)/m' = {(a; - 1)(2a; - 1) - l}/m'. 

Whence 0> (a; - 1)(2a~ - 1) - 1 ~ (a; - 1) - 1 = a; - 2. Thus a; = 1 and 
(9.3.7.2) is proved. 

(9.3.7.3) Claim al = 1. We first consider the case m = 5. If al ~ 2, then 
al = a2 = 2 by R(wtul) = 5 - a1a2 > 0, which contradicts 5 E alZ+ + a2Z+. 
Thus al = 1 if m = 5. Let us assume m ~ 6 and al ~ 2. Then by (9.3.7.1), 
one has 

1 ~ 2(a2 - 2)/m + (2a; - l)/m' > 2 - 4/m - l/m', 

where (9.3.4) is used in the second inequality. Thus by m ~ 6, one has l/m' > 
1 - 4/m ~ 1/3, which contradicts our assumption m' ~ 3. Hence a l = 1 if 
m ~ 6, and (9.3.7.3) is proved. 
(9.3.7.4) Thus (C~, P~) and (d, P~) are smooth, whence U(z) = rz/ml and 
U'(z) = rz' /m'l (z E Z) and TL(z + z~ P~ + i P~) = z + [z~ /m] + [i /m'] 
(cf. (8.9.1(iii)) for definition). One also sees qlc(£') = (m - a2)P~ + P~ and 
qldL) = -1 + P~ + (m' - a;)P~ by (8.8.5) (cf. (8.9.1(ii)) for definition). 
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(9.3.7.5) Claim 2a; < m'. We will derive a contradiction assuming that 2a; ~ 
'w h'f 2 ' 'h '2 d' b (' ') m. e note t at 1 a2 = m t en m = an a2 = 1 y a2 ' m = 1 . 

This contradicts m' ~ 3, and we have 2a; - 1 ~ m'. Hence by (9.3.7.1), we 
have a2 = 2 and 2a; = m' + 1 , whence m' == 1 (2). Then (9.3.4) reduces 
to 1 < 21m + (m' + 1)/2m' ,i.e. 1 < 41m + 11m'. Since m ~ 5, one has 
m' < 5 by 11m' > 1 - 41m ~ 1/5. Thus by m' == 1 (2) and m' > 1, one 
has m' = 3, whence m = 5 by 41m > 1 - 1/3 = 2/3. Since a2 = 2 and 
a; = (m' + 1 )/2 = 2, one sees q1c(2') = 3pU + pP and q1c(./I) = -1 + pU + pP 
(9.3.7.4). Hence subquotients of F' (& ,1)1 F4(&,J) fit in exact sequences (8.6) 

gr' (&,1) = gr"o(&,J), 
0- gr2 .,(&, J) _ gi(& ,J) _ gr2 .0(& ,J) _ 0, 

0- gr3 .,(& ,J) _ gl(&, J) _ gr3 .0 (& ,J) _ O. 

Since J is a nested c.i. outside {P, P'} and (1, 2)-monomializable at P and 
P' (9.3.2), we can apply (8.12(ii)) (with d = 2, s = s' = 0) to get 

gr'·o(&,J)-::::::../I (n= 1, q=O, r= 1), 

gi'o(&,J) -::::::.2' (n = 2, q = 1, r = 0), 

gr2 ., (&, J) -::::::. ./I®2, 
3.0 ~ gr (&,1) -::::::. 2' (is;./I (n = 3, q = 1, r = 1), 

gr3 .,(&,J) -::::::. ./I®3. 

These are calculated and arranged as 

2'-::::::.& ~ ./1-::::::.&(-1) ~ gr'(&,J) 

~@./I-::::::.&(_~./I®2-::::::'&(=2) ~ gr2(&,J) 

~./I®3 -::::::.&(-2) ~gr3(&,J) 

because qlc(2'®./I) = q1c(2') + q1c(./I) = -1 + 4pu + 2pP, qIC(./I®2) = 
2q1c(./I) 
= -2 + 2pU + 2pP , and qIC(./I®3) = 3q/c(./I) = -2 + 3P~ are normalized 
expressions (8.9.1). Hence X(F'(&,J)IF4(&,J)) = -1 < 0, which is a con-
tradiction to H' (&) = 0 as in (8.7). Thus (9.3.7.5) is proved. 

(9.3.7.6) By (9.3.7.5), one has qIC(./I®2) = 2q1c(./I) = -1 +2PU+(m' -2a;)PP 
and degc ./I®2 = -1 . Thus the &c-module exact sequence 

®2 ° 0-./1 -grcJ-2'-O 
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is split, and gr~ J contains a unique subbundle 2'., such that 2'., ~.? and 

° u®2 = grc J =./n EB oL J as &'c-modules. 
Let K be the C-primary ideal such that J :::) K :::) FI J and K/ FI J = 

2'.,. Then K is a C -laminal ideal of width 3 which is a nested d. outside 
{p. pI}, and we have i-isomorphisms Ker PK = Ker PJ =.? and grl (&'. K) = 

grl(&,,J) ~ L by (8.14). We see that gr~J = 2'., EBL®2 is an i-splitting at 
p' by (9.1.8(i)), because ql deg(L®2. Pp) = m' - 2a; ~ ql deg(.? Pp) = 1 
by (9.3.7.4) and 2a; < m' (9.3.7.5). Hence the (1.2)-monomializing i-basis 
(U;.U'I) of I:::) J at p' lifts to a (1.3)-monomializing i-basis (denoted by 
the same (u;. u;), by abuse of language) of I:::) K at p' (8.15.1). Let 

( = ) = H.? (m-a2 mk+2 2) 
-z-J P = oL J ® (7 C ,P = Ilt u I + t u2 • 

where Il is a unit and 0 :5 k :5 00. If k = 0 (resp. k ~ 1), then u 2 ' 

v = Ilx~-a2-2ul + U22 • u l form a (1.3. 2)-monomializing i-basis of the first 
kind (resp. (u 2 • u l ) lifts to a (1. 3)-monomializing i-basis denoted by the same 
(u2 • u l ), by abuse of language) of I ::) K at P by m -a2 ~ 2 and (8.15), where 
XII c# = t by a l = 1 (9.1). One can see i-isomorphisms 

2'., = gr3 ,o(&,. K) ~.? ® g®(-B) 

by (8.14.1) (with d = 2) for the first equality and by (8.12(ii)) (with d = n = 3, 
q = 1, r = i = 0) for the second, where e = 1 (resp. 0) and g is as defined 
in (8.11.1): 

(Jr H.? (Jr U H.? -(m-a2 -2) 
;;z; P = (7 C ,P C ;;z; P = (7 c# ,pI t 

(note m> m - a2 - 2 ~ 0). 

(9.3.7.7) Claim a; = 1. Indeed by (9.3.7.6) and (S.12), one has 
0< I deg L + 11 deg .? + e(l - l).L(m - a - 2) - C 3 C 2 3m 2 

under the notation of (9.3.7.6). Thus in any case, we have 

0:5 (l/m - a;/m') + ((m - a2)/m + l/m')/3 + (m - a2 - 2)/6m. 

whence m'(3(m - a2) + 4) ~ 2m(3a; - 1). Thus one sees 
m - a2 , 3(m - a2) + 4 , 

a; m < m:5 2. (3a; _ 1) m . 

where (9.3.4) was used for the first inequality. Whence follows {3(m - a2 ) + 
4} . a; > 2(3a; - l)(m - a2), hence 4a; > (m - a2)(3a; - 2) ~ 2(3a; - 2) by 
m - a2 ~ 2, whence a; = 1. Thus (9.3.7.7) is proved. 

(9.3.7.8) By (S.12(ii)) (with d = n = 3, q = i = 1, r = 0), we see gr3 ,1(&'.K) 
= L®3®9'®B. Hence by 2'., = gr3 ,o(&,. K) (9.3.7.6), we have an i-exact 
sequence 
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where degc L®3®g®e = -1 and degc~ = 0 by 

qlc(L®3 ® g®e) = 3{ -1 + pU + (m' - 1 )P~} + e(m - a2 - 2)PU 

= {-I + 3pU + (m' - 3)P~} + e(m - a2 - 2)PU 

= -1 + {3 + e(m - a2 - 2)}PU + (m' - 3)P~, 

qlc(~) = qlc:? - e(m - a2 - 2)PU 

= {(m - a2) - e(m - a2 - 2)}PU + P~, 
where 0 < 3 + e(m - a2 - 2) < m and 0 < (m - a2) - e(m - a2 - 2) < m 
by 2 :$ a2 :$ m - 2. Hence the exact sequence splits, and we write gr~ K = 

®3- ®e L ®g ED Yx as &'c-modules. 
Let H be a C -primary ideal such that K ::J H ::J FI K and HI FI K = Yx . 

Then H is a C -laminal ideal of width 4 which is a nested c.i. outside {P, P'} , 
and we have i-isomorphisms Ker PH = Ker P K = 2' and grl (&' , H) = 
grl(&',K)'::::!.L by (S.14). 

(9.3.7.9) Claim gr~K = L®3®g®e EDYx is an i-splitting at P if e = 1. 
Indeed since ql deg(L®3®g, P) = m + 1 - a2 > 2 = ql deg(~, P), it is an 
i-splitting at P by (9.1.S(i)). 

(9.3.7.10) The (1,3,2)-monomializing i-basis (U2 ,V,UI ) of the first kind (resp. 
(1,3)-monomializing i-basis (U2 ,u l )) induces a (1,4,2)-monomializing i-
basis (u2 , v, u I ) of the first kind with the same attached semi-invariant (resp. 
(1,4,3)-monomializing i-basis of the first kind or (1,4)-monomializing i-
basis as in (9.3.7.6)) for I ::J H at P by (S.16) (resp. by (S.15)). At p', one 
has 

, " m'k'+m'-3,3 (Yx) p' = Yp, = &'c' .P' (p, 1 u l + 1 u2 ), 

where p,' is a unit and 0 :$ k' :$ 00. If k' ~ 1 or m' ~ 4, then gr~ K = 

2'K ED L®3®g®e is an i-splitting at P' and H is (1, 4)-monomializable at 
P' (S.15.1). If (k', m') = (0,3), then we have a (1,4, 3)-monomializing i-
basis u;, v' = p,' x; U'I + u; 3, u~ of the first kind for I ::J H at P' (S.15.2), 
where we note x; I c' = I' by a; = 1 (9.1). 

Thus we have by (S.12) 

0< I deg L + 11 deg 2' + (1 - 1).l(m - a - 2) + e' (~ - 1) -L - C 4 C 24m 2 .J 4 m' 

(resp. 0 :$/degcL + !tdegC 2' + (t -!) ~(m - a2 - 2) +e' U -!) ~,) , 

where e' = 1 or 0 according as (k', m') = (0,3) or otherwise. 
If m' ~ 4 , then we have e' = 0, and in either case, we get 

o < (J.. __ 1 ) + ! (m -a2 + _1 ) + m -a2 - 2 
- m m' 4 m m' 4m' 
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whence m ~ (2m - 2a2 + 2)m' /3. Using (9.3.4), one sees 

(m - a2)m' < m ~ (2m - 2a2 + 2)m' /3 

225 

whence m - a2 < (2m - 2a2 + 2)/3, i.e. m - a2 < 2. This implies m - a2 = 1 , 
which contradicts a2 ~ ± 1 (m). 

If m' = 3 , then in either case, we get 

o (1 1 ) 1 (m -a2 1 ) m -a2 - 2 1 
~ m - '3 + 4 m + '3 + 4m + 36 ' 

whence m ~ 9(m - a2 + 1)/4. Thus by (9.3.4), we have 

3(m - a2) < m ~ 9(m - a2 + 1)/4, 

and 4(m - a2) < 3(m - a2 + 1), i.e. m - a2 < 3. Thus m - a2 = 2 by a2 ~ ±1 
(m). Then one has 6 < m ~ 27/4 = 6.75, which is a contradiction. Thus 
(9.3.b) does not occur. 

(9.3.8) Case (9.3.c). Our purpose here is to prove a1 = a~ = 1 and smoothness 
of (C~ ,pU) and (d, P"). By symmetry of P and P' , we may assume a~/ m' > 
1/2 in view of (9.3.4). Since sizp ' = 1, we have m' ~ a~a~ > a~m'/2. 
Thus a~ = 1. We will prove a1 = 1 by deriving a contradiction assuming 
a1 ~ 2 till end of (9.3.8.8). We have qld.2") = alPU + P" and qlc(L) = 
-1 + (m - a1a2)PU + (m' - a~)P" . Thus (9.3.3) reduces to 

(9.3.8.1) < - + + +- -+- . O ( 1 m-ala2 m'-a~) 1 (all) 
- m m' 2 m m' 

Using (9.3.4), we rewrite it as 

O ala2 a2 1 (all) <---+-+- -+- , m m 2 m m' 

that is 

(9.3.8.2) 

(9.3.8.3) Claim a2 = 1. If a2 ~ 2, then 

(2a1a2 - 2a2 - a1) - a2 = (2a1 - 3)a2 - a1 ~ 4a1 - 6 - a1 ~ 0, 

whence we have l/m' > a2/m. Then (9.3.4) implies 1 < a2/m + a~/m' < 
(1 + a~) / m' ~ 1 , which is a contradiction and a2 = 1 is proved. 

(9.3.8.4) Claima1 = 2. By a2 = 1, (9.3.4) implies I/m > (m' - a~)/m' ~ 

l/m'. (9.3.8.2) implies l/m' > (a1 - 2)/m, whence 1 > a1 - 2. By the 
hypothesis a1 ~ 2 , we have a1 = 2 . 

(9.3.8.5) Since a2 = 1 and a~ = 1, (d, pU) and (d, P") are smooth, whence 

U(z) = rz/ml and U'(z) = rz/m'l (z E iZ), 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



226 SHIGEFUMI MORI 

and 
TL(z + zU pU + / P~) = z + [zU 1m] + [/Im']. 

One also sees qlc(2') = 2p u + p~, q1c(L) = -1 + (m - 2)PU + (m' - a;)P~ , 
and qlc(gr~ w) = -1 + (m - I)PU + (m' - a;)P~ (2.10) and (8.9.1). 

(9.3.8.6) Claim m ~ 5. Since a l = 2 is prime to m and m > 1, it is 
enough to derive a contradiction assuming m = 3. Then (9.3.4) implies 3(m'-
a;) < m'. Thus by (9.3.8.5) and the additivity of qlc' we can calculate the 
values of qlc for subquotients w®2'®i®L®j (i, j ~ 0, 4> 2i + j > 0) of 
F I (w,J)IF4(w,J) as follows: 

P~ + (/11' - a; + l)P~ 1 + 2(m' + a;)P' => grl(w,J) 

_ 1 + 2pI + (2m' - 2a; + l)P' - 2 + p" + 3(m' - a;)P' => gr2(w, J) 

- 3 + 2P" + 4(m' - a;)P' => gr3(w, J) 

as in (9.3.7.5). The expressions are normalized except for qlc(w®L®3) = 
-3 + 2pu + 4(m' - a;)P'; it is not normalized only when 4(m' - a;) ~ m' 
and its normalized form in this case is -2 + 2pu + (3m' - 4a;)P~. Thus 
X(FI(w,J)IF4(w,J)) = -lor -2, which contradicts (8.7). Hence m ~ 5. 

(9.3.8.7) By m ~ 5, we see qlc(L®2) = -1 + (m - 4)PU + 2(m' - a;)P~ and 
degc L®2 = -1 . Thus 

®2 0 O-.L -.grc J-.2'-.O 

splits as &'c-modules and gr~ J contains unique sub modules isomorphic to 2' , 
whence we write as gr~ J = L®2 E9.2., . 

Let K be the C-primary ideal such that J ~ K ~ FIJ and KIFIJ = 
.2.,. Then K is a C -laminal ideal of width 3 which is a nested c.i. outside 
{P, P'}, and we have i-isomorphisms Ker PK = Ker PJ = 2' and grl (&" K) = 

grl(&,,J) ~ L by (8.14). We see that gr~J =.2., E9L®2 is an i-splitting at 
P' (9.1.8) because ql deg(2', P') = 1 < ql deg(L®2, P') = 2(m' - a;) by 
m(m' - a;) < m' (9.3.4). Hence the (1, 2)-monomializing i-basis of I ~ J at 
P' lifts to a (1, 3)-monomializing i-basis of I ~ K at P' (8.15). Let 

( CL7) MY (2 mk+m-4 2) 
oZ-J P =uC,P fJ,t U I +t u2 ' 

where fJ, is a unit and 0 ~ k ~ 00. If (k, m) = (0,5) (resp. (k, m) =f. (0.5)), 
then u2, v = fJ,X2U I + U22, ul form a (1,3, 2)-monomializing i-basis of the 
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first kind with attached semi-invariant j.lX2 (resp. (u2 , u,) lifts to a (1, 3)-
monomializing i-basis) of I :::> K at P (8.15), where we note x21 CI = t by 
a2 = 1 (9.1). Thus by (8.12(ii)) and (8.11 (iii)), we have 

1 (1 1) e o ~ , degc ,(( + 3' degc 2' + "2 - 3 m 

= (-1 + m -2 + m' -a;) + ! (~ + _1 ) + ~ , 
m m' 3 m m' 6m 

where e = 1 (resp. e = 0). Combining this with (m' - a;)m < m' (9.3.4), we 
have 
(9.3.8.8) (8 - e)(m' - a;)m < (8 - e)m' ~ m{6(m' - a;) + 2}. 

Thus (8 - e)(m' - a;) < 6(m' - a;) + 2, whence m' - a; = e = 1 because 
m' - a; ~ 1 and e = 0, 1. Hence m = 5 by e = 1. Then (9.3.8.8) implies 
7 . 5 < 7 . m' ~ 5 . 8 , which is impossible. Thus we have shown a, = a~ = 1 in 
case (9.3.c), and we are done. 0 

(9.4) Theorem. Let the notation and assumptions be as in (9.1). Then P and 
P' are type (IA) points. 

Proof. It is enough to derive a contradiction assuming that P is of type (IIA) 
or (IA v). Indeed it would imply that P is of type (IA) and hence P' is also of 
type (IA) by symmetry of P and P' . Before we start the calculation leading to 
a contradiction, we will replace X :::> C with some nearby extremal nbd since 
it is enough to disprove the latter. 

(9.4.1) By replacing X:::> C with its L-deformation at p' (4.7), we may assume 
that P' is ordinary (hence of type (IA)). Then (d, P~) is smooth and a~ = 1 
modulo necessary permutations as in (4.2). Indeed a further L-deformation of 
X :::> C at P would have only ordinary points, whence (d, P~) is smooth and 
a~ = 1 modulo permutations by (9.3). 

Then P is a type (IIA) point. Indeed if it is of type (IA v), then replacing 
X :::> C with its L-deformation (4.7) at P, we have an extremal nbd X :::> 
C ~ jp" with ordinary P, p' of indices ~ 3 such that P is imprimitive, which 
contradicts (9.3). 

(9.4.2) By replacing X:::> C with its L'-deformation at P (4.12.2(ii)), we may 
take an i-coordinate system Y = (Y" ... ,Y4 ) and an i-equation If! for (X, P) 
such that wtYi = ai (i E [1,4]), d is the Y,-axis, </> = Y'Y2 + Y/ + Y/ (we 
note that there exists no singularity other than P, P' by (6.2)). Hence i p (1) = 1 
by (2.16). Thus by ip,(I) = sizp, = 1, we have deggr~ &' = -1 (2.3.2) and 
gr~ &' ~ &' EEl &'( -1). Then 2' c gr~ &' such that 2' ~ &' is unique, and 2' 
is an i-invertible &'c-module (9.1.7). 

We note that Y2 E I~(2), and {Y3,Y4 } is an i-free i-basis of gr~&' at 
P such that R(wtY3) = R(a3) = 1 and R(wty4 ) = R(a4 ) = 2 (4.2). Let 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



228 SHIGEFUMI MORI 

Y, (.t;Y3+ ~Y 4) (.t;. ~ E &'Cu .pu) be a basis of :? at P . Then qi deg(:? . P) = 1 
if .t; is a unit (2 if otherwise) by (S.S.5). 

(9.4.3) We consider the case qi deg(:? P) =I- 1 (otherwise this process is not 
needed). In this case, we see ord ~ = 1 as above. Let X;. :::> C;. be the twisted 
extensions (1 b.S.l) of the trivial deformation 

(X. P) :::> (C. P) by (Y, (.t;Y3 + ~Y4 + JeY3)' Y'Y3)' 

Then deggr~>. &' = -1 by (2.3.2) since the deformation is locally trivial. Then 
1(2) deforms as 112) by (lb.S.3(i)). Since ~ is generated by Y, (.t;Y3 + ~Y4)' 
:? deforms as an invertible subsheaf ~ of 1;.//12) such that ~ is generated 
by Y, ((13 + Je)Y3 + ~Y4) at p;. (= P) and ~ is the trivial deformation of :? 
in X;..out = X o.out (lb.S.3(ii)). Then replacing X:::> C by nearby extremal nbd 
X; :::> C;. , we may assume ql deg(:? . P) = 1 , anyway. 

(9.4.4) Thus we may assume ql deg(:? P) = 1 . We also see ql deg(:? pI) = 1 
or R' (a;) by (9.3.1) and (S.8.5) because a~ = 1 (9.4.1). Hence if ql deg(:? pI) 
> 1 , then we can apply a process similar to (9.4.3), and thus we may also assume 
ql deg(:? • pI) = 1 . 
(9.4.5) Since we have deggr~&' = -1 and gr~&' :::>:? ~ &', we have a split-
ting gr~&' =:? $&'(-1) and hence an i-splitting gr~&' = :?ffiL for some 
submodule L ~ &'(-1) (9.1.7(iii)). By (9.4.4), we have q1c(:?) = P~ + P~ 
and q1c(L) = -1 + 2P~ + (m' - a;)P~ (S.8.5) and (9.4.2). Since process 
(9.4.3) and (9.4.4) does not change (X. P) :::> (C. P) , we may use (y) given 
in (9.4.2). Since qi deg(:? P) = 1, :? has an i-free i-basis Y3 + /Y,Y4 
at P (9.4.2), where / is an invariant in CC{y}. If we set Y~ = Y3 + /Y,Y4 

1/ f /2 2 (1/ 1/ )' , and Y2 = Y2 - 2 Y3Y4 - Y'Y4 ' then Y,. Y2 • Y3 • Y4 IS an i-coordmate 
'h ' 'I '( 1/ 1/2 3) Th h ' system WIt SImI ar propertIes e.g. 'II = Y'Y2 + Y3 + Y4' us c oosmg 

(Y,. y;. y~. Y4) as new (Y,. Y2• Y3• y4), we may simply assume that Y3 is an 
i-free i-basis of :? at P. 
(9.4.6) Let J be a C-Iaminal ideal of width 2 such that J/I(2) =:? Then as 
in (9.3.2), J is a nested c.i. outside {P. pI} and we have equalities 1m a J . = 
Ker PJ =:? with i-structure and an i-isomorphism gr'(&',J) ~ L. Also as 
in (9.3.2), we can see that J is (1. 2)-monomializable at ordinary point p' by 
the i-splitting gr~ I = 1m a JffiL. Then (9.4.5) shows that (y 4' Y3' Y2) is a 
(1.2.3)-monomializing i-basis of the second kind for I :::> J at P . Let g be 
the i-invertible &'c-module defined in (8.11.1 (iii)) from (y 4' Y3' Y2) , then we 
have a normali.zed expression q1cg = P~. We now have an i-isomorphism 

grn ,i ({JJ. J) ~ L®(2i+r) ® g®[(2i+r)/3] ® :?®(q-i) ® gr~ (JJ 

for all n=2q+r~O with rE[O.I] and iE[O.q] by (S.12) (with d=2, 
t = 2, s = 1, s' = 0). Now the way we derive a contradiction is very similar to 
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(9-3_8.6). We note qlc(gr~w) = -1+3PU+{m' -a;)PP (2.10) and (8.9.1), and 
calculate the values of q1c for subquotients grn.i(w,J) (O $; i $; [n/2), n E 

[1, 3]) of FI(W,J)/F4(W,J) as in (9.3.8.6) by (9.4.5) and additivity of q1c-
We get 

U I I P = -2 + 2P + 4(m - a2)P , 

which are arranged as 

(I + m' - a;)p'~- 1 + P~ + 2(m' - a_;_)P_' __ *_grl(w.J) 

~ " ) , - 1 + 2P + (I + 2m - 2a2 P ~ "" - 2 + 3P + 3(m - a2)P 

~ '" 3 J) -2+2P +4(m -a2 )P *gr (w. 

The expressions are normalized (8.9.1) because 4(m'-a;) < m' by wp,(O) = 
(m' - a;)/m' < 1 - wp(O) = 1/4 (2.3.3) and (4.9(i)). Thus 

x(FI(w,J)/F4(w,J)) < 0 

(8.9.1(iii)), which contradicts HI (w) = 0 as in (8.7) and we are done. 0 

(9.4.7) Corollary-Definition. Points P and pi are type (IA) points such that 
a I = a~ = 1 (after necessary permutations are made as in (4.2)), and i (P) < m 
and i{pl) < m', where we define i{P) = lenpuIU(2)/Iu2 and i(pl) = 
lenp • I P(2) /I P2 • 

We note that P is ordinary iff i{P) = O. 

Proof. By symmetry between P and pi, we need to check the assertions only 
for P and pU. We will derive a contradiction assuming that a l = 1 cannot be 
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achieved, that is either (i) 1 < at < m-l ,or (ii) at = m-l and a2 > 1. Since 
it is enough to disprove nearby extremal nbds, we may replace X :J C with 
some nearby extremal nbd. So we may replace X:J C with an L-deformation 
Y :J D at P (4.7), and further with an L-deformation at pi of Y :J D. In 
this process a/s are not changed since P and pi are of type (IA). Thus our 
X :J C has two ordinary points P, pi with indices m, m' ~ 3 such that (i) 
1 < at < m - 1, or (ii) at = m - 1 and a2 > 1. This contradicts (9.3). Thus 
at = 1 and similarly a~ = 1 (modulo necessary permutations). If e(p) ~ m, 
then an L' -deformation of X :J C at P (4.12.2) is locally primitive and has 
at least one point of type (III) besides P and pi of indices m, m' ~ 3. This 
contradicts (6.2), and hence e(p) < m. Thus we are done. 0 

(9.4.8) Corollary. We have ip(l) = ip,(I) = 1 and an isomorphism gr~&' ::::= 
&'EfJ&,(-I). 

Proof. By (2.16),wehave ip(1) = ip,(1) = 1. Thus deggr~&,=-1 by (2.3.2). 
t t t Hence we have grc &' ::::= &' EfJ &'( -1) by H (grc &') = 0 (2.3.4). 0 

(9.5) Let the notation and assumptions be as in (9.1). Then P and pi are of 
type (IA) and we may assume at = a~ = 1 . Then gr~ &' ::::= &' EfJ &'( -1) , hence 
there exists exactly one sub module £? of gr~ &' such that £? ::::= &'C ' and it is 
gr~&'-saturated. We note by (9.1.7(ii)), £? is an £-invertible &'c-module. 

Though the following is formulated only for P , it also applies to pi modulo 
obvious changes. 

(9.5.1) Definition-Lemma. Let q(P) = ql deg(£?, P). Then there exists a E 6 4 

with a(l) = 1 such that e(p) = R(aa(4))' q(P) = R(aa(3))' and {Ya(2)' Ya(3)} 
is an e-free £-basis of gr~ &' at P. 
Proof. There exists an e-coordinate system (y) = (Yt , ... , Y4) and an 
e-equation r/J at P such that d = yt-axis, wtYi == ai (i E [1,4]), and 
r/J == y/(P)Ya(4) mod (Y2'Y3,y4)2 for some a E 6 4 such that a(l) = 1 
(2.16). Then £(P) = R(aa(4)) by £(P) < m (2.16), and {Ya(2)' Ya(3)} is an 
e-free e-basis of gr~ &' at P. Thus q(P) = R(aa(2)) or R(aa(3))' 0 

We will define deformation processes of X :J C which are more delicate 
than the ones in (4.7). We begin with a general description. 

(9.6) Let the notation and assumptions be as in (9.5). We will choose an 
e-coordinate system (y) = (Y t , ... , Y4) and an e-equation r/J at P such 
that d = Yt-axis and wtYi == ai (m) (i E [1,4]), and invariant U1 ,U2 E 

(Y2'Y3'Y4)(C{Y} such that gr~&'/(Ut,U2) is of finite length and £? is gen-
erated by u t at P. We will choose an invariant IJI E (Y2'Y3'Y4)C{y} such 
that 
(9.6.1) g.c.d.{r/J, IJI} = 1 and Sing{r/J = IJI = O} n y4-axis C {O}, 
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and 

(9.6.2) (X;., p;.) is terminal if 0 < IAI « 1, 

where <p;. = <p + A"" and (X;.'P;.) = ({<p;. = O},O)/Pm :::) (C;.'P;,) = 
(YI-axis,O)/Pm (A E <C). We note 

(9.6.3) Remark. (y) is an i-coordinate system for X;. :::) C at p;. = P, whence 
(aI' ... , a4) remain the same for p;., 

Then we can apply (1 b.3) as in step (L) in § 1 b, and following step (LG) in § 1 b, 
let X;. :::) C;. be the twisted extension of (X;., P;.) :::) (C;.' p;.) by u = (u l ' u2) • 

We note that X;. :::) C;. (= C) may be identified with X :::) C outside a small 
nbd of p;.: 

X;. .out = X - X ([0 ~p~ ; y) :::) C;. .out = C n X;. .out ' 

where p, y, 0 E <C are as in (Ib.8.I). Then by step (G) in §Ib, we have nearby 
extremal nbds X; :::) C;. = C , where X; is a nbd of C;. in X;., Though we 
have not yet explicitly constructed X; :::) C;. , we can say the following. 

(9.6.4) Lemma. For an arbitrary small enough A, X; :::) C;. is a locally primitive 
extremal nbd with exactly two singular points p;. and p{, which are of type (IA) 
and have indices m and m' . Let I;. be the sheaf of defining ideals of C;. in X;., 
then the coherent sheaves grl (&' , I;.) on C;. form a flat family with parameter 
A, and 2' deforms as submodules 2;. (~&') of grl (&' , I;.) such that 

2:lc =2'lc and 2: ®&.c p =&.c p u l · 
A ). ,out O,out JI. A J >. A' A 

In particular we have i(P{) = i(P') and q(p{) = q(P'). 

Proof. By smoothness of (d, pU) , we have local primitiveness of X;. :::) C;. in 
a nbd of p;. (Ib.3.I), whence local primitiveness of X;. :::) C;. follows by the 
definition of twisted extension. It is clear that X; :::) C;. has two singular points 
p;. and p{ with indices m, m' (~3), whence X; has no other singular points 
on C;. by (6.2). They are of type (IA) by (9.6.3) and triviality of deformation 
near P' . Thus deggrl (&" I;.) = -1 by (9.5), and grl (&" I;.)'s form a flat family 
by (Ib.8.3(i)). The assertions on 2' follow from (Ib.8.3(ii)). We see that 
i(P{) = i(P') by X;..out" = "Xo.out ' and that q(P;) = q(P') by 2;." = "2' 
after the previous identification. 0 

(9.7) Proposition-Definition. In each of the following five cases (a)-(e), there 
exists a deformation X;. :::) C;. as described above such that i(P;.) and q(p;.) 
satisfy the conditions (cf. (9.6.3)). 

(a) i(P) = R(a2 ) > 1, q(P) = 1 ~ i(P;.) = 1, q(p;.) = R(a2) > 1, 
(b) i(P) = R(a2) > 1, q(P) = 0 ~ i(P;.) = 0, q(p;.) = R(a2) > 1, 
(c) i(P) = 1, q(P) = R(a2) > 1 ~ i(P;.) = 0, q(p;.) = R(a2) > 1, 
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(d) I(P) = I, q(P) = 0 '* I(P;J = 0, q(p)) = I, 
and if a2 = m - I , then 

(e) I(P) = q(P) = I '* I(P)) = q(p;J = I and P). has axial multiplicity 2. 
We call all these processes (or X; :::> C).) the LG-deformations of X :::> C 

at P. 

(9.7.1) Remark. We put a table of possible values of I (P), q(P) with the 
changes (a)-(e) described (cf. (9.5.1) and (9.6.3)). 

I(P) = 0; q(P) = R(a2) I 

~ Q(e) t(d) 

(b) 1 I(P)=I; q(P) = R(a2) 0 

~I I(P) = R(a2) > I; q(P) = 0 

The enclosed cases correspond to I(P) + q(P) > 1, and will be disproved in 
(9.8). 

Proof. (a) (resp. (b)) We can choose (y) in (9.6) such that 
,/.. _ t(P) ( )2 
'I' = Y1 Y2 Y2' Y3' Y4 

and Y1Y3 (resp. Y4) generates 2' at P. Then we set u = (Y 1Y3, Y4) (resp. 
(Y4, Y1Y3)) and choose a general invariant IfI == Y1Y3 (resp. Y4) mod (Y2' Y3' y4)2 
such that g.c.d{4J, 1fI} = 1 and Sing{4J = IfI = O} C yl-axis. Thus (9.6.1) is sat-
isfied. Since Y1Y3 (resp. Y4) appears in 4J)., (lb.5(ii")) (resp. (lb.5(ii'))) is 
satisfied and (9.6.2) is satisfied. Let 0 < A.« 1 . Since 4J). = 0 on X)., we see 

l(P) _ 2 
(9.7.2) -Y1 Y2/A. = Y1Y3 (resp. Y4) modI).. 

Thus Y3 + y/(P)-l y2/A. E I?) (resp. Y4 + y 1t (P)y2/A. E 1/), and I(P).) = 1 
(resp. 0) (cf. (2.16(i))). Hence {Y2'Y3} (resp. {Y2'Y3}) is an I-free I-basis 
of gr l (l9',I).) at P). (cf. (9.5.1)). Using (9.6.4), we see that Y2 is an I-free 
I-basis of ~ at P). by (9.7.2), whence q(p).) = R(a2 ). 

(c) (resp. (d), (e)). Let b = R(a2). We can choose (y) in (9.6) such that 4J == 
2 b b 07 Y1Y3 (Y2' Y3' Y4) and YI Y2 (resp. Y4' YI Y2) generates J; at P. Then 

b b b we set u = (YI Y2' Y4) (resp. (Y4' YI Y2)' (Y 1 Y2' Y4)) and choose a general 
invariant IfI==Y4 (resp. Y4,Y/) mod (Y2'Y3,y4)3 such that g.c.d·{4J,IfI}= 1 
and Sing{ 4J = IfI = O} C YI-axis. Thus (9.6.1) is satisfied. Since Y1 Y3 appears 
in 4J, (I b.5(ii")) is satisfied and (9.6.2) is satisfied. Let 0 < A. « 1 . As in the 
cases (a) and (b), we also see 

(9.7.3) 
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It is thus similarly seen that i(P;) = 0 (resp. 0,1), {Y2' Y3} (resp. {Y2' y3}, 
{Y2'Y4}) is an i-free i-basis of gr~&' at P, and q(PA) = R(a2) (resp. 
I, R(a2)). In case (e), we note that ¢>A restricted to the fixed axis (y4-axis) 
has a double zero, whence PA has axial multiplicity 2 (la.5). 0 

(9.8) Theorem. We have i(P) = q(P) = 1 and i(pI) + q(pI) = 1. 

Proof. By symmetry, it is enough to disprove i(P) + q(P) > 1. Since it is 
enough to disprove a nearby extremal nbd of X :::> C , we will replace X :::> C 
with its LG-deformation (9.7) at P or p' for several times. We treat three 
cases. 

(9.8.1) Case i(P) = 0 and q(P) > 1. By replacing X :::> C with its 
LG-deformation at p' (9.7.1) for several times, we get a locally primitive 
X:::> C with exactly two points P and p' with indices m, m' (~3) (9.6.4) 
such that i(pI) = O. Since LG-deformation at p' does not change "nbd" of 
P (9.6.4), we have i(P) = 0 and q(P) > 1. By definition of i(P) and i(pI) , 
P and p' are ordinary. Hence this contradicts (9.3) and we are done. 

(9.8.2) Case R(a2) > 1. By replacing X :::> C with its LG-deformation at P 
(9.7.1) for several times, we get X :::> C with i(P) = 0 and q(P) > 1 as in 
(9.8.1), whence we are done by (9.8.1). 

(9.8.3) Case R(a2) = 1. Similarly to the previous case, we may assume that 
i(P) = q(P) = 1, P has axial multiplicity 2, and that p' is ordinary, i.e. 
i(pI) = O. We have q(pI) = 1 by (9.8.1). 

(9.8.3.1) Since gr~&' = 2' $ &'(-1) (9.5), we have an i-splitting gr~&' = 
2'ffiL for some submodule L ~ &'(-1) (9.1.7(iii)), which is hence an i-
invertible 
&'c-module (9.1.1). We have q1c(2') = pU+pb and q1c(L) = -1+(m' _a;)pb 
(9.5.1) because q/deg(L,P) = R(a4 ) = 0 by i(P) = q(P) = R(a2) = R(a3 ) = 
1 and ql deg(L, pI) = R' (a;) by i(p') = 0 = R' (a~) and q(pI) = 1 = R'(a;). 

(9.8.3.2) Let Y = (Y" ... 'Y4) be an i-coordinate system and an i-equation 
¢> at P such that d = Y,-axis, ¢> := Y'Y3 (Y2'Y3,y4)2 (2.16) and 2' is 
generated by Y'Y2 at P (9.1.1) (or cf. (9.4.5)). Since P has axial multiplicity 
2, we see ¢>:= Y'Y3 + gy/ mod (Y2'Y3)2 + (Y2'Y3)Y4 + Y/, where g is an 
invariant unit E CC{y}. Thus by replacing Y4 by g±' /2Y4' we may further 
assume 

223 
¢>:= Y'Y3 + Y4 mod (Y2' Y3) + (Y2' Y3)Y4 + (Y4 ). 

(9.8.3.3) Let J be a C -laminal ideal of width 2 such that J/ [(2) = 2'. Then 
an argument very similar to (9.3.2) or (9.4.6) shows that J is a nested c.i. out-
side {P, pI}, that we have equalities 1m Q' J = Ker PJ = 2' with i-structure 
and an i-isomorphism gr' (&' ,J) ~ L , and that J is (1, 2)-monomializable 
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at ordinary point P'. We see by (9.8.3.2) that (y 4' Y2' Y3) is a (1, 2,2)-
monomializing i-basis of the second kind for I ::J J at P. Let 9 be the 
i-invertible &'c-module defined in (8.1 1.1 (iii)) from (Y4' Y2' Y3)' then we have 
a normalized expression q/c9 = pU . Hence we have an inequality 

-/ degc L ~ F degc .2 + !/ degc 9 

by (8.12(ii)) (with d = 2, t = 2, s = 1, s' = 0). This reduces to 

a2' < !(J.. + _1 ) + _1_ = J.. + _1_ <! 
m' - 2 m m' 2· m m 2m' - 2 

by m, m' ~ 3, where we used / degcL = -a;lm', / degc .2 = 11m + 11m' 
(9.8.3.1), and / degc 9 = 11m. Thus 2a; ~ m' and we see 2a; < m' by 
m' ~ 3 and (a;, m') = 1. Also by (8.12), we have i-isomorphisms 

gi'o(&,,J) '::::..2 (d = 2, n = 2, q = 1, r = 0), 

gr2 •1(&,,J) '::::.L®2 ®9, 
and an i-exact sequence 

®2 - ° O--+L ®9--+grcJ--+.2--+0. 

We note that q1c(L®2®9) = 2q1c(L) + q1c(9) = -1 + pU + (m' - 2a;)pb is 
a normalized expression, and that the sequence is i-split as 

° ®2--grc J = (L ®9)EB~ 

for some ~ C gr~ J i-isomorphic to .2 (9.1.8(ii)) by q/c(.2) = pU + pb and , , 
m > 2a2 • 

(9.8.3.4) Let K be a C-primary ideal such that J::J K ::J FIJ and KIF'J = 
~. Then K is a C -laminal ideal of width 3 which is a nested c.i. outside 
{P, p'}, and we have i-isomorphisms Ker PK = Ker PJ =.2 and grl (&" K) = 
grl(&,,J) '::::. L by (8.14). Then K is (1, 3)-monomializable at p' (8.15.1) 
and the (1, 2, 2)-monomializing i-basis (y 4' Y2' Y3) for I ::J J at P lifts to a 
(1,3,2)-monomializing i-basis (denoted by the same) (Y4'Y2'Y3) (by abuse 
of language) of the second kind for I ::J K at P with the same attached semi-
invariant by (8.16). Thus the invertible sheaf 9 for K is the same as the one 
in (9.8.3.3). Then we have an inequality by (8.12(ii)) 

-I degc L ~ V degc .2 + !/ degc 9, 

which reduces to , 
1 a2 1 ( 1 1 ) 1 5 1 -<-<- -+- +--=--+-, m m' - 3 m m' 2· m 6· m 3m' (9.8.3.5) 

where the first inequality follows from wp(O) = 11m < 1 - wp,(O) = a;lm' 
(2.3.3) and (4.9(i)). Then we treat two cases. 
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(9.8.3.6) Case m = 3. By (9.8.3.5), we have 1/3 < 5/18 + 113m' , whence 
m' = 3.4.5. If m' = 3, then a; = 2 by (9.8.3.5), which contradicts 2a; < m' 
proved in (9.8.3.3). We see that (9.8.3.5) reduces to 4/3 < a; :5 5·4/(6·3) + 
1/3 = 13/9 if m' = 4, and to 5/3 < a;:5 5·51(6·3)+ 1/3 = 31118 if m' = 5. 
These are both impossible, and the case m = 3 cannot occur. 

(9.8.3.7) Case m ~ 4. Since 
5 1 < 5 1 _ 23 1 

6 . m + 3m' - 6· 4 + 3 . 3 - 72 < '3 . 
we see that 3a; < m' by (9.8.3.5). Then we continue as in (9.8.3.3). By 
(8. 12(ii)), we have i-isomorphisms 

gr3.o(&.K)~2" (d=3. n=3. q= 1. r=O). 

gr3 .1(&, K) ~ L®3 ® f:g, 
and an i -exact sequence 

®3 - 0 O-L ®f:g-grcK-2"-O. 
Since q1c(L®3®f:g) = 3q1c(L)+q1dfg) = -1 +P"+(m' -3a;)pl> is a normal-
ized expression, the sequence is also i-split as gr~ K = L®3 ®f:giB~ for some 
submodule 2"K i-isomorphic to 2" (9.1.8). Then as in (9.8.3.4), we can define 
a C-Iaminal ideal H of width 4 such that K:::> H:::> FIK and HIFIK =~. 
We see that H is a nested c.i. outside {P, P'}; H is (1, 4)-monomializable 
at P' (8.15); (y 4' Y2' Y3) lifts to a (1.4. 2)-monomializing i-basis of the sec-
ond kind for I :::> H at P with the same attached semi-invariant; we have 
i-isomorphisms grl (&. H) ~ Land Ker PH ~ 2" and the same f:g. Thus we 
have 

1 a; 1 1 1 ( 1 1 ) 1 3 1 
m < m' :5 41 degc 2" + 2,1 degc f:g = 4 m + m' + 2 . m = 4· m + 4m' 

just as (9.8.3.5). Then by 11m < 3/(4m) + 1/(4m') , we see 11m < 11m', 
whence a;lm' :5 3/(4m) + 1/(4m') < 11m'. Thus a; = 0, which is a contra-
diction. Thus we must have i(P) + q(P) = 1 and (9.8) is proved. 0 

(9.9) Let the notation and assumptions be as in (9.1). Then gr~& = 2" E9 
&(-1), and by (9.1.1) there is a submodule L ~ &(-1) such that gr~& = 
2"iBL. Then by (9.8), ql deg(L. P) = R(a2) and ql deg(L. P') = R'(a;) 
(9.5.1). In particular q1c(L) = -1 + (m - a2)P" + (m' - a;)pl> . Thus by (2.10) 
and gr~ OJ ~ & ( -1) , we have 

(9.9.1) Proposition. There is an i-isomorphism L ~ gr~ OJ . 

Indeed L:::::;gr~ OJ is an i-isomorphism because 
o , 

qldeg(L. Q) = qldeg(grc OJ. Q) for Q = P. P 
(cf. comment after (iB.2) in (8.8.4)). 
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(9.9.2) We note that w~ has a structure of an e-invertible &x-module 
Wx ®(-I) . Hence gr~(w~) is e-isomorphic to 

&c ® W~(-I) ~ (&c ® WX)®(-I) ~ (gr~ W)®(-I) 

by (8.8.6(i)) and (®®.3) in (8.8.4), whence we have a normalized expression 
qlc(gr~ w~) = -qlc(gr~ w) = -qlc(./() = -1 + a2P~ + a;PP . We also have an 
e -isomorphism 

1 * 1 ~ * ~ ®(-I) ~ grc(wx) ~ (grc&) ® Wx ~ Sf ® L EB &c' 

by (8.8.6(i)) and (8.8.4). Then 

(9.9.3) Lemma. We have an isomorphism 

HO(w:IP2w:) ~ HO(p 1w:Ip2w:) ~ HO(Sf ® L®(-I)) EB HO(&d, 

and let 
0* 0* 2* ° h: H (wx ) -+ H (wxlP wx ) -+ H (&c) ~ C 

be the projection to the factor HO (& c), Then every global section s E HO ( w ~ ) 
such that h(s) i- 0 defines a zero locus (s)o which is a normal surface with 
only rational double points. (To be precise, (s)o is smooth outside {P, pI}, has 
Amw_1-type (resp. Amlwl_l-type) singularity at P (resp. pI), where w (resp. 
w') is the axial multiplicity of (X, P) (resp. (X, pI))). 

Proof. The first assertion follows from HO(gr~(w~)) ~ HO(&c(-I)) = 0 
(9.9.2). Let s E HO(w~) be such that h(s) i- O. Then s E HO(pIW~) by 
HO (gr~ w ~) = 0 . 

If Q i- p, p', then the image of s(Q) in (gr~ w~) ®C(Q) = w~ ®IcII/ ® 
C(Q) is nonzero because h(s) generates the subspace &c ® C(Q) ~ C. Hence 
(s)o is smooth at Q. 

By symmetry we need to consider (s)o only at P~. By (9.5.1) and e(p) = 
0, 1 , we can take an e -coordinate system y 1 ' ••• , Y 4 such that d = y 1 -axis, 
wtYj==aj (m) (iE(1,4]), Y2 is an e-free e-basisof L at P, Y3 (resp. Y4) 
is an e-free e-basis of Sf at P, and ¢ == Y4 (resp. Y1Y3) mod (Y2' Y3' Y4)2 if 
e(p) = 0 (resp. 1). Let () be an e-free e-basis of w~ at P. By the assumption 
h(s) i- 0, &cu-component of sp in the decomposition at p~ 

1 * ~ = ~ ",,181(-1) ~ ° a /fiY /fiY () /fiY () gr (wx ) = (..z; ®..-n ®grcw) EBuc= =uC=(Y3'Y4) EBuCU Y2 

generates &CU Y2()' Then s = j() for some semi-invariant f E (Y2' Y3' y4)C{y} 
such that wtf == a2 == wtY2 (m) and 8fI8Y2(O) i- O. Thus there exist an 
invariant unit u E C{y} and a semi-invariant g E (Y3' y4)C{yl , Y3' Y4} such 
that wt g == a2 (m) and f = u . (y 2 - g) (Weierstrass Preparation Theorem). 
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The zero locus (s)~ of s in the canonical cover (XU, pU) is thus isomorphic 
to a hypersurface in (YIY3Y4-space, 0) with defining equation 'II(YI , Y3' Y4) = 
4>(yl ,g'Y3'Y4) E C{YI 'Y3'Y4}' By the congruence relation on 4>, we have 
'II==Y4 (resp. YIY3) mod (Y3,y4)2. 

We will see that (s)~ is a Aw_I-type singularity. Indeed if 'II == Y4 then 
the axial multiplicity w is 1 and (s)~ is smooth. We consider the case 
'II == YIY3' Since a'll/aYI == Y3 mod (Y3' y4)2 has wt == a3 'I- ° (m) and 
a'll/aY3 == YI mod (Y3' Y4) has wt == a l 'I- ° (m), we see a'll/aYI == Y3 mod 
(y/,y3y4,y l y/) and a'll/aY3==YI mod (Y3,YIY4) because wtY4==0 (m). 
Hence a'll/aYI and a'll/aY3 generate the ideal (YI , Y3) in a nbd of origin by 
Nakayama's lemma, and they define Y4-axis. On the other hand, by wtg == a2 
(m), we see g(0,0'Y4) = ° and 'II(0,0'Y4) = 4>(0,0,0,y4) = cy4W + "', 
where w is the axial multiplicity of (X, P) (la.5). Thus (s)~ is an isolated 
singularity, and it is easy to see (s)~ is Pm-isomorphic to a Aw_I-singularity 
YIY3 = Y/ (by analytic approximation). 

Hence ((s)o'P) = (s)~/Pm is isomorphic to a Amw_I-type singularity: 
mw h m m Zl z3=Z4 ,were zi =YI ,z3=Y3 ,z4=Y4' 0 

(9.9.4) Theorem. The homomorphism 
o. 0 h: H (wx ) -+ H (&c) = C 

defined in (9.9.3) is a surjection. 

We will prove the theorem in several steps. 

(9.9.5) Let J2 be the C-Iaminal ideal of width 2 such that J2/ [(2) = L . Since 
J2 , [(2) , L are saturated subquotients of &x ' the surjection J2 -+ L induces 
a surjection of canonicalliftings at P (and also at pI) by (8.8.1). Thus the 
homomorphism 0: J for J = J2 (8.2.2) is an i-surjection 

o 
0:2: grCJ2 -+L. 

We will inductively define C-Iaminal ideals I n of width n. 
(9.9.6) Lemma-Definition. Let I n be a C-laminal ideal of width n (2: 2) such 
that the homomorphism 0: J for J = I n (8.2.2) is an i-surjection 

o O:n: grcJn -+L. 

Then the i-exact sequence (8.8.2(v)) 
o 0-+ KerO:n -+ grcJn -+ L -+ ° 

is i-split, that is gr~ I n = (Ker O:n)9~ for some submodule ~ of gr~ I n such 
that the induced map ~ -+ L is an i-isomorphism. Let In+1 be the C-
primary ideal such that I n :::) I n+1 :::) FI I n and In+d FI I n = ~. Then the 
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natural i-surjections gr~ I n+ I - Ln (C gr~ I n) (cf. (8.8.1)) and Ln --=::.... L 
induce an i-surjection 

o Qn+l : grc I n+1 -+ L. 
In particular. I n+1 is a C-laminal ideal. hence of width n + 1 . 

Proof. We only need to prove i-splitness by induction on n. By inductive 
construction of I n , we have L = Ker Pn and ,2' = grl (&'. I n) (8.2), where 
Pn = PJ for J = I n (8.2.2). Hence by E(Jn) (8.2.2) and (8.4), we have an 
injection &'c ::::: ,2'®d -+ KerQn' Thus degc KerQn > degL and the sequence 
is i-split (9.1.8(ii)). 0 

(9.9.6.1) Let us fix a number e E N which is divisible by axial multiplicities 
of (X. P) and (X. pI). Let C(n) c X be the closed sub scheme defined by 
F ne (&': Je) . Then we have 

(9.9.7) Key Lemma. For an arbitrary n ~ 2. Fne (&' . Je) is equal to the symbolic 
nth power Je (n). Jne / Fne (&' .Je) is an i-invertible &'C(n_I)-module. and we have 
an i-isomorphism 

O(n): F ne (ltJ ~ .Jne )/ F ne (ltJ ~ .Je) --=::.... ltJ ~ ® (Jne / F ne (&' .Je)) --=::.... &'C(n-I) 

. . nemm'. n. and mcluslOn F (ltJ x' Je) c Je . ltJ X • 

Proof. Since ltJ~ is an i-invertible &'x-module, we have natural i-isomor-
phisms by (8.8.6(i)) 

ltJ~ ® Jne ::::: Fne(ltJ~ .Jne ) and ltJ~ ® F ne (&,. Je)::::: Fne(ltJ~ .Je) 

inducing an i-isomorphism 

Fne (ltJ ~ .Jne )/ F ne (ltJ ~ .Je) ::::: ltJ ~ ® (Jne / Fne (&' .Je)) 

by (®.5) in (8.8.4), provided that Jne ~ F ne (&'. Je) which is to be proved later. 

(9.9.8) Let us first assume that !T = Jne / F ne (&'. Je) is an i-invertible 
&'C(n_Ifmodule and Fne(&, .Je) = J/n) . Then Fne(&, .Je) c 1(2) and Qne gives 
the identification Jne + 1(2) /1(2) = L , whence the identity map induces the 
surjection !T - L of saturated subquotients and it is an i-surjection (8.8.1). 
Thus by (®.O) and (®.4) in (8.8.4), we have an i-surjection 

a: ltJ~ ®!T ®&'c -+ (ltJ~ ®L :::::)&'C' 

where the last i-isomorphism is due to (9.9.1). Then it is an i-isomorphism 
(8.8.2(v)) by Kera = O. Hence the i-invertible &'C(n_Ifmodule ltJ~®!T has 
an i-free i-basis with wt == 0 mod m (resp. m'), hence i-trivial at P (resp. 
pI). Then we see that ltJ~®!T is an invertible &'C(n_I)-module such that 

(ltJ~ ®!T)®&'c::::: ((ltJ~ ®!T) ®&'c :::::)&'c 
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by (®.8) in (8.8.4). Since HI (&'C(n-I)) = 0, we have an isomorphism 8(n): 
w~®.9' -.::..... &'C(n-I) of invertible &'C(n_lfmodules. Since w~®.9' and 

&'C(n-I) are C-trivial at P and pi, 8(n) is an C-isomorphism. 

(9.9.9) It remains to show that Fne(&',Je) = J/n) , JneIFne(&,.Je) is an 
C-invertible &'C(n_I)-module, and the last inclusion of (9.9.7) at each point 
Q E C. Let Q E C - {P, pi}. By the surjectivity of O'.ne' let {u l , u2} be 
a basis of gr~ = 1112 at P such that &'c.Qu l = LQ and ul E Jne . Then by 
(8.3(i)), we see that Je = (u l ' u/), Jne = (u l ' u2 ne) , and F ne (&" Je) = Je n near 

Q. In particular, we have the global equality F ne (&" Je) = Je (n) since both are 
C-primary. Furthermore, by u2ne E Fne(&,.Je) , we see that JneIFne(&,.Je) ~ 
&'1{(ul,u/)n: ul } ~ &'jJ/-I. Thus the sheaf is invertible and the inclusion 
at Q is obvious by F ne (&" Je) = Je n . 

(9.9.10) By symmetry, it is enough to consider at P. Let Y = (Y I , ... , Y4 ) 

and <P be an C -coordinate system and an C -equation at P such that d = Y 1-

axis, wtyi==ai (m) (iE[I,4]), <P==Y4 (resp. YIY3) mod (Y2'Y3,y4 )2 if 
C(P) = 0 (resp. 1), Y2 E J!e' where J!e is the canonical lifting of Jne at P. 
We note that we used C-surjection O'.ne for the last condition. We treat two 
cases. 

(9.9.11) Case C(P) = O. Again by (8.3(i)), (Y3, Y2) is a (I, e)-monomializing 
(resp. (I, ne)-monomializing) C-basis for I :J Je (resp. I :J Jne ) at P. Thus 
as in (9.9.9), the canonical liftings are calculated as J: = (Y2, Y/), J!e = 
(Y2, Y3 ne), and F ne (&' , Je)~ = (J:)n. Hence J!el F ne (&" Je)tt ~ &' jJ~n-1 is 
similarly checked. By F ne (&' , Je)tt = J: n , the inclusion follows from the easy 

(9.9.11.1) Sublemma. If J tt , Ktt C &'x= p= are ideals generated by semi-invari-
ants and k E IZrn' then . 

ttrn tt tt tt (J K ){k} c (J{O}) . K{k} (cf (2.5)). 

Indeed for arbitrary semi-invariants ul ' ... , urn E Jtt and v E K~ such that 
wtul+···+wturn+wtv==k (m), there exist a,bE[O,m] such that a<b 
and Li<a wtui == Li<b wtui (m), whence La<i<b wtui == 0 (m). Then 
(9.9.11. 1) follows from- -

ui"'urnv= (II ui). (IIui·IIui.v) EJ:o}·K: k }· 
a<i<:;'b i<:;.a b<i 

(9.9.12) Case C (P) = 1 . By C(P) > 0, X~ is singular and we see that the axial 
multiplicity w satisfies w> 1. Then we may rewrite <P == YIY3 (y2,y3,y4 )2 
as 
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where g, is an invariant unit, and g2' g3 E (Y2' Y3' Y4)C{y} are semi-invariants 
with wt == -a2, a, (m). Then (Y4' Y2' Y3) is a (1, e, w)-monomializing (resp. 
(1, ne, w)-monomializing) i-basis of the second kind for I::) Je (resp. I::) Jne ) 
at P by (8.11(ii)). Since wi e, we have J: = (y2,y//W ), J~e = (Y2,y;e/w) , 
and F ne (&, Je)U = (Y2' y;/w)n by (8.11). Hence 

J!ejJne(&.Je)U c::::.&/{(J:)n: Y2} c::::.&/(J:)n-, 

as in (9.9.11) and the inclusion follows from (9.9.11.1). Thus (9.9.7) is 
proved. 0 

(9.9.13) For an arbitrary n EN, h factors through 

° • ne • ° hne : H (wx/F (wx .Ie)) --+ H (&d = C 

by construction. By the construction of Jne ' we see that the image of the natural 
map Jne --+ gr~ & is L and the composite map 

w~ ® Jne = Fne (w~, Jne ) --+ w~/Fne (w~ .Ie) --+ w~ ® L 

is an i-surjection of &x-modules (cf. (9.9.8)). Thus by (9.9.7), we get the 
commutative diagram with a surjection n 

HO(Fne(w~, Jne )/ Fne(w~, Je)) ~ HO(&C(n-')) 

Whence hne is surjective. Since the topology induced by {Fne(w~.Je)}nEN is 
equivalent to the usual one (9.9.7), we can apply [Gro, Theoreme (4.1.5)] to the 
total contraction f: X --+ (y, Q) of X::) C to get 

r • A1i'~ l' HO( ·/Fne ( • J)) J. W x ® (7 Y ,Q c::::. E!! w x w x' e ' 
n 

where &;Q is the completion of &Y,Q' Since Ker hne satisfies the Mittag-
Leffler condition, we have a surjection 

• ~ ° f.wx®&Y,Q--+H (&c)' 

Hence h is a surjection, and (9.9.4) is proved. 0 
Thus by (9.9.3) and (9.9.4), we have the main result of this section. 

(9.10) Theorem. Let X ::) C c::::. W' be an extremal nbd with two points P, P' 
with indices 2: 3. Then general members of I - K x I are normal surfaces con-
taining C, smooth outside {P, P'}, with rational double points of A-type at 
p,p', 
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Hence the proof of (0.4.5) is completed and thus the Flip Theorems (0.4.1) 
and (0.2.5) are proved and the results mentioned in §O follow. 

10. A SLIGHT GENERALIZATION OF (0.4.5) AND COMMENTS ON (la.7) 
In this section, we state a slight generalization (10.2) of (0.4.5) and then make 

comments on (1 a. 7). 
The proof of (10.2) is basically the same as that of (0.4.5). Therefore, we 

will only indicate changes to be made together with simple explanations. 

( 10. 1) Let k be an algebraically closed field of characteristic 0 . Let C be a 
connected reduced projective curve over k and let X:) C be a 3-dimensional 
normal formal scheme along C which has only terminal singularities. We con-
sider the following condition: 

(*) -K x is ample on C and HI (X, &'x(L)) = 0 for all Weil divi-
sors L on X such that nL ~ 0 or nK x for some n > 0 . 

We note that (*) is satisfied by the formal schemes associated to extremal nbds 
by (1.2.1) and (1.12). The following is the slight generalization of (0.4.5). 

(10.2) Proposition. Let X :) C be as in (10.1) satisfying the condition (*) 
and such that C is irreducible. Then one of the following on the linear system 
1- aKxl (a = 1, or 2) holds. 

(i) 1- Kxl has a member D with only rational double points, or 
(ii) 1 - 2K x 1 has a member D so that the double cover Z of X with branch 

locus D has only canonical singularities. 

For instance, this applies to a divisorial contraction of a 3-fold contracting 
an irreducible divisor to a curve. 

(10.3) Except for the obvious changes due to the fact that X:) C is a formal 
scheme along C rather than the germ of an analytic space along C, most 
arguments use only the condition ( *). The only nontrivial changes are the 
following. 

(10.4) Changes in § 1. Let X :) C be as in (10.1) with the condition (*). 
Since HI(X,&'x) = 0 (*), the description of Pic X (1.3) and elsc X (1.9) 
for irreducible C are also proved by the same argument. By (*), the splitting 
cover X':) C' (1.12) satisfies the condition: 

(**) -Kx' is ample on C' andHI(X"&'x1) =HI(X',wXI ) =0. 

Since (1.13)-(1.16) need only the property (**), the results corresponding to 
(1.13)-(1.16) hold, which are the results needed in later sections. 

(10.5) Changes in §lb. A "nearby extremal nbd" for a parameter A. should 
be replaced by the generic deformation XA :) CA over k((A.)) which is to be 
defined in a similar way. It is easy to see that XA :) CA satisfies the condition 
(*) . 
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(10.6) Changes to be made in §§6 and 7. The only place in this paper which 
uses the property that the total contraction X -+ Y is an isomorphism outside 
C is (6.2(i)) which asserts that X has index> 1. Therefore, for our formal 
scheme X ::) C ~ IP'I with (*), (6.2(i)) should be changed to "X has at most 
three singular points in C" and thus (6.7) should have an extra case (6.7.0) 
where X is Gorenstein. 

Hence §7 should treat the extra case (6.7.0), which is very easy: 1- Kxl has 
a smooth member by (1.3) since &'c(-Kx) ~ &'(-1). 

( 1 O. 7) It was after this paper had been written that the author learned that 
[KSB] contained the complete classification of 3-fold terminal singularities 
[KSB, Theorem 6.5] and settled 

(10.8) Theorem (Kolhir, Shepherd-Barron). Small deformations of 3-fold ter-
minal singularities are terminal. 

(10.9) If we use it, the conditions (lb.3(ii)) and hence (lb.s) became unnec-
essary, and therefore the arguments for (lb.3), (4.7), (4.12), and (9.6) became 
simpler but not much. Therefore the revision at this point does not seem worth 
the trouble, and we decided not to revise the paper. 

ApPENDIX A. SUMMARY OF LOCAL CLASSIFICATION OF X::) C 3 P 

In this appendix, we will summarize the classification of the local structure 
of an extremal nbd X ::) C ~ IP'I at a singular point P. 

(A. 1 ) Let X ::) C ~ IP'I be an extremal nbd and P E C a singular point of X 
of index m. Let nU: (XU, pU) -+ (X, P) be the canonical cover of the germ, 
and let d = nU- 1 (C)red C Xu. We note that (XU, pU) is at most an isolated 
cDV singularity (hence embeddable in (CC4 , 0)) with Pm-action which is free 
on XU - pU and that nU is the Pm -quotient morphism. 

There exists a set (y) = (Y 1 ' Y2' Y3' Y4 ) of Pm-semi-invariant convergent 
power series giving a Pm-equivariant embedding of (Xu, pU) into (e, 0). 

(A.2) Notation. Given a generating character X E Hom(Pm, CC*) ~ Zm' we 
write wtf = a for a Pm-semi-invariant f if g(f) = X(gt f for all g E Pm ; 
wt(~, ... ,I,) = (ai' ... ,a,) for Pm-semi-invariant ~, ... ,I, if wt!; = a j 

for all i. 

(A.3) Summary. By choosing the above (y) and X properly, we have the follow-
ing case-by-case description of e ::) XU ::) d, in which gj'S are 
Pm -semi-invariant convergent power series in y with the specified weights such 
that XU has at most an isolated cD V point at the origin. Each result is in 
(4.2)-( 4.4) unless otherwise mentioned. 
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(IA) There exist positive integers ai' a2, a, p such that (a l a2, m) = 1, 
aal +pa2=m, wt(y)==(al ,a2, -al,O), 

eu ~ ~ 0 : YI - Y2 = Y3 = Y4 = , 
X u (a 2 al ) 0 :g2· YI -Y2 +g3· Y3+ g4· Y4= , 

where wt(g2' g3' g4) == (-a l a2, a l ' 0) . 

(IB) This does not occur by (6.3). 

(IC) wt(Y) == (2, m - 2,0, 1) and m is an odd integer ~ 5, 
U m-2 2 

e:YI -Y2 =Y3=Y4 =0, 
XU: g2· (Y I m-2 - Y/) + Y3 + g4· Y4 = 0, 

where wt(g2' g4) == (4, - 1). 
In this case, (YI'Y2'Y4) induces an embedding (XU ,0)::::: (((:3,0) in which 

d is given by YI m-2 - Y2 2 = Y4 = O. The assertion on wt(Y) is a combination 
of (4.9.(i)), (5.5(i)) and (6.5). 

(IIA) wt(y)==(I,I,3,2), m=4, 
U e : YI - Y2 = Y3 = Y4 = 0, 

Xu: g2.(YI-Y2)+g3.Y3+g4.Y4=0, 

where wt(g2' g3' g4) == (1, 3,0), g2' g3 ¢ (y)2, g4(0) = O. 

(lIB) wt(y)==(3,2,1,1), m=4, 
u 2 3 e : YI - Y2 = Y3 = Y4 = 0, 

U 2 3 X:Y I -Y2 +g3· Y3+ g4· Y4=0, 

where wt(g3' g4) == (1, 1), g3· Y3 + g4· Y4 ¢ (y)3 . 

(III) m = 1, 
U e :YI- Y2=Y3=Y4=0, 

XU: YI.(YI-Y2)+g3.Y3+g4.Y4=0, 
where g3(0) = g4(0) = O. 

This will be proved at the end of (A.3). 

(IA v) There exist positive integers ai' a2 , WI' w2 ' a, p, s, m such that s, 
m > 1, sm = m, a2 :$ m12, aa l + pa2 = m, aWl + pW2 == 0 (m), Wi == a i 
(m) for i = 1, 2, (WI w2' m) = 1, wt(Y) == (wI' w2' - WI ,0), 

eu a2S alS 0 : YI - Y2 = Y3 = Y4 = , 
X u (a2s a1s) 0 : g2· YI - Y2 + g3 . Y3 + g4 . Y4 = , 

where wt(g2' g3' g4) == (-sa l a2, ai' 0); and ag3/ aYI (0) =1= 0 or g4 = 1. 
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(ICV ) This does not occur by (6.1). 

(IIv) wt(y)==(I.3,3,2), m=4, 
" 2 2 C : y, - Y2 = Y3 = Y4 = 0, 

~ 2 2 
X:y, -Y2 +g3'Y3+g4'Y4=0, 

where wt(g3' g4) == (3,0) and g4(0) = O. 
We note that the I'm-action on X~ - {O} is free in all the above cases by the 

smoothness of X" - {O} . 

Proof for case (III). The assertion on the equation of X" is equivalent to i p ( I ) 
= I (2.16(ii)). If ip(l) > I, then by a separating L-deformation (4.7) one 
obtains an extremal nbd X' ::J C' with two ordinary double points Q, R on 
C'. Since w~(I) = w;(1) = I (4.9(ii)), X' has another singular point on C' 
by LXEC' w;(1) ~ I (2.3.3). It contradicts (6.2(ii)). 0 

(A.4) Remarks. (i) For the simplicity of the formulation, (y) above is different 
from (x) which is used in (4.2). Our Y i is Xi in (4.2) for i = 1,2 and it is 
Fi in (4.3) for i = 3,4, 

(ii) we note that (X", 0) is smooth or a cA type point (la.2), except in the 
case (IA), 

(iii) when X::J C is as in (10.2) and not an extremal nbd, we still have the 
same local results (cf. § 10, especially (10.6)), and 

(iv) we note that a, ' a2 in (IA v) need not be prime to m, as in an example 
of X ::J C 3 P for which a, = 3, a2 = 2, w, = 3+41·2 = 85, w2 = 2+41·3 = 
125, 0:: = 13, P = I, s = 6, m = 41, m = 41·6 = 246. 

ApPENDIX B. POSSIBLE SINGULARITIES ON AN EXTREMAL NBD 

In this appendix, we make a list of possible singularities of an extremal nbd 
as a summary. 

(B. I ) Summary. Let X ::J C ~]!D' be an extremal nbd. The following is the list 
of all the possible singularities of X on C. 

Case (I) (treated in (6.7.1) and (7.3.1)): 
(a) a type (IA) point P and at most one type (III) point Q, 
(b) a type (IIA) point P and at most one type (III) point Q, 
(c) a type (IA v) point P and at most one type (III) point Q, 
(d) a type (II V ) point P (cf. (6.I(iii))). 
In (I), a general member DEI - Kxl satisfies D n C = {P} (7.3) and has 

only rational double points as singularities. 
Case (2) (treated in (6.7.2) and (7.3.2)): 
(e) a type (IC) point P, or 
(f) a type (lIB) point P. 
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Case (3) (treated in (6.7.3) and (7.3.3)): 
(g) two type (IA) points P, Q and at most one type (III) point R such that 

index Q = 2 and P is a type cA point of index ~ 3 and size = 1 (cf. (7.3)). 
In (2) and (3), a general member EEl - 2Kxl is such that En C = {P} 

and such that the double cover of X, branched along E and at Q, has only 
canonical singularities. 

Case (4) (treated in (6.7.4) and in §9): 
(h) two type (IA) points P, Q with indices ~ 3. 
In (4), a general member DEI - Kxl contains C, is smooth outside of 

{P. Q}, and has rational double points of type A at P and Q (9.10). 

(B.2) Remark. When X :J C is as in (10.2) and not an extremal nbd, the 
results are the same except that we have an extra case: 

Case (5) (this is not an extremal nbd by (6.2(i))): 
(i) at most one type (III) point P. 

In this case (-K x' C) = 1 , & ( - K x) is generated by global sections, and 1-K xl 
has a smooth member (10.6). 

This is the Gorenstein case as mentioned at (10.6) and the same argument as 
in the proof of (III) of (A.3) shows that X has at most one type (III) singular 
point on C. 

LIST OF NOTATION AND TERMINOLOGY 

Numbers on the right show the paragraphs where the notations/symbols are 
defined/ explained. 

m ~ (1.12). (la.l). (lb. 1). (2.4). (9.1) 
[11] 11 (9.1) 
[(] (1. d)-monomializable (8.10) 

(1. d)-monomializing i-basis (8.10) 
(1 . d . b )-monomializable at P (8.11) 
(1 . d. b )-monomializing i-basis of the first kind (8.11) 
(1 . d . b )-monomializing i-basis of the second kind (8.11) 
(d.pU) (2.4).(9.1) 

(d. p b) (9.1) 

(Ct.pt) (2.5) 

(I). (IA). (IB). (IC) (4.2) 
(II). (IIA). (lIB) (4.2) 
(III) (4.2) 
(IV). (IA v). (ICv) (4.2) 
(IIv) (4.2) 

[0] O-sequence 
[A] ai 

Conventions 
(2.6). (4.2). (9.1) 
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I (9.1) aj 

almost ordinary (4.5) 
attached semi-invariant (8.11 ) 
axial multiplicity (la.5) 

[B) B(Y,P) (8.8.5) 
[C] d(i) (2.5) 

d-ord (2.5) 
d-ow (2.5) 
C#-ow* (2.8) 
d-wt (2.5) 
C(n) (9.9.6.1) 
C-Iaminal (8.2) 
elsc X (1.5) 
eA (la.2) 
canonical lifting (of a homomorphism) (8.8.2) 
canonical lifting (of a sequence) (8.8.2) 
canonical lifting (of a sheaf) (8.8.1) 
canonical singularity (1.0) 
cD ( la.2) 
eDV point (la.2) 
eE (la.2) 
cl(W, P) (1.7) 
~11(u), ~n(u), ~ut(u), ~mid(u) (1 b.8.1) 

[D) deg (deg: QL( Y) -+ <Q!) (8.9.1) 
det (e.g. detL) (8.8.4), (8.9) 
9 p (8.11.1) 

[E) E(J) (8.2.2) 
e (9.9.6.1) 
ex4 (P(b, e)) (2.13.1) 
extremal nbd (1.1 ) 

[F] F2 ,F3 ,F4 (4.3) 
Fn(y, J~ (8.2) 
Fny (2.2) 
first kind (8.11) 
fixed axis (la.5) 
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[G) gr' & (= E9n~ogr~&) (2,2) 

gr' (.9'. J) (8.2.1 ) 
grn(.9'. J) (8.2) 

grn.i (.9' . J) (8.6) 

gr~ = E9n~ogr~ (2.2) 
n (2.2) grc 

[H) h 0.. 0 : H (cox) ~ H (&d = CC (9.9.3) 

[I] /U .l (9.1 ) 

ip(n) (2.2.1 ) 
imprimitive (1. 7) 

index ( 1.0) 
induced i-structure (8.8.1 ) 

[J] I n (9.9.6) 
J -filtration (8.2.2) 

[K] ~ . .%:.~o (8.11 ) 

[L] L' -deformation (4.12.2) 
L-deformation (4.7) 
L-smoothing (4.7) 
LG-deformation (9.7) 
laminal (8.2) 
I deg (e.g. I degy L) (8.9.1 ) 

lif (8.8.1) 

locally a nested c.i. (8.4) 
locally i-free (8.9) 
locally primitive (1. 7) 
locally primitive at P (1. 7) 
locally qi-free (8.9) 

!? (9.2) 
i (e.g. i(P)) (9.4.7) 

i-basis (8.8.3) 

i-character (2.5) 
i-coherent (8.9) 
i-coordinate (2.5) 

i-coordinate system (la.5) 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



248 

[M] 

i-equation 
i-exact 
i-free i-basis at P 
i-free 19y -module at P 
i-homomorphism 
i-injection 
i-invertible 
i-isomorphism 
i-split 
i-splitting 
i-structure at P 
i-surjection 
i-trivial 
minimal 
monomializable 
monomializing 
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(la.5) 
(8.8.2), (8.9) 

(8.8.3) 
(8.8.3) 

(8.8.2), (8.9) 
(8.8.2), (8.9) 
(8.8.3), (8.9) 
(8.8.2), (8.9) 
(8.8.2), (8.9) 
(8.8.2), (8.9) 

(8.8) 
(8.8.2), (8.9) 

(8.8.3) 
(2.6) 

(8.10), (8.11) 
(8.10), (8.11) 

L The paragraph preceding (9.3.2), (9.4.5), (9.8.3.1), (9.9) 
[N] nearby extremal nbd (1 b.l) 

nested c.i. (8.4 ) 
nested complete intersection (8.4) 
normalized expression (8.9.1) 
normalized i-coordinates (2.6) 
N Conventions 

[0] ord (2.5), (9.1) 
ord' (9.1 ) 

ord(d) (2.5) 
ordered (i-basis) (8.10), (8.11) 
ordinary (4.5) 
ow (2.5), (9.1) 
ow; (4.1 ) , 

(9.1 ) ow 

ow(d) (2.5) .. (2.8) ow 
[P] P(b,c) (2.13.1 ) 

primitive point (1. 7) 
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pure of rank (8.5) 
pure width (8.2) 

[Q] QL (e.g. QL( Y)) (8.9.1) 
q (e.g. q(P)) (9.5.1) 
ql (e.g. qly(~)) (8.9.1) 
qldeg(~ .P) (8.8.5) 
ql-free (8.8.3) 
ql-invertible (8.8.3). (8.9) 
quo (8.8.1) 
Q! Conventions 

[R] R (2.8). (9.1) 
R' (9.1 ) 
rational singularity ( 1.0) 
reduced (3.4.3). (3.5.1) 
res (8.8.2) 

[S] S(d) (5.2) 
SSQ(.9'). SSQ(.9'. Pm) (8.8) 
- -n S (e.g. S (~)) (8.8.4). (8.9) 
saturated submodule (2.2) 
saturated chain (8.2) 
saturated subquotient (8.8) 
saturation of submodule (8.2) 
saturation of chain (8.2) 
second kind (8.11 ) 
semi-Cartier divisor class group ( 1.5) 
separating L-deformation (4.7) 
size. sizp (4.1.1 ) 
splitting cover (1.12.1 ) 
splitting degree (1.7) 
subindex (1.7) 
subquotient (8.8) 
(5 n (symmetric group of degree n) (2.15.1) 

[T] TL (TL: QL(Y) -+ iZ) (8.9.1) 
t (2.6). (9.1) 
t' (9.1 ) 
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terminal singularity 
total contraction 
twisted extension 

[U] V 

[W] 

V' , 
u"u, , 
U2 ,U2 

~(IX~Xc5) 

, 
W,w 

wp(n) 

SHIGEFUMI MORI 

w;(n) = (n!') ip(l) - wp(n) 

width (of an element), widthJs 
width (of a laminal ideal) 
wt 
wt' 

[X] Xl ,in ,Xl,mid' Xl ,out 

X (~~J) 
X[D,d,cf>] 
x = (X" ... ,X4) 
x' = (x; , ... ,x~) 

~,(U) '~n(U) ,2'mid(U) '~ut(U) 

2' e~~~6) 
[Z] Z+,Z++,Zm 
[ r] r 1 (round up) 
[ [ ] [ ] (Gaussian symbol) 

[. , . , .] 
[n] (e.g. M[n] for n E Zm) 

(1.0) 
(1.1 ) 

(lb.8.1 ) 
(2.8), (9.1) 

(9.1) 
(9.2) 

The paragraph preceding (9.3.2) 

(lb.7) 

(9.9.3) 
(2.2.1) 

(2.2.1) 

(8.2.2) 
(8.2) 

(2.5), (9.1) 
(9.1) 

(lb.8.1) 

(lb.8.1) 

(1.11) 
(2.6), (9.1) 

(9.1 ) 
(lb.8.1) 

(lb.7) 

Conventions 
Conventions 
Conventions 

(2.11) 
(2.5), (8.8.4) 

Rem: M[n] is defined in two places in equivalent ways. 

[ {] {n} (e.g. M{n}) (2.5) 
(8.2.2) 
(2.2.1 ) 

[a] aJ 

an 
o an: grcJn-+ L (9.9.6) 

Rem: The above two an's have nothing to do with each other. 
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[P] 

[y] 

PJ 

Pn 
yn.j (.9' . J) 

yn(.9'. J) 
yn.j (.9'. J) 
yn(.9' ,J) 

n 
Ye 
tl.J 

OJ.j (Kronecker's 0) 
• n 

oJ' .p.' oJ' 
O(n) [0] 

[1C] U (U U) II II II I 1C: X ,P -+ (X, P) , 1C : (X , P ) -+ (X, P ) 

[0'] 
[r] 

[cJ)] 

1C[D,d,if>] 
0': JU -+ J t jJt (2) 

r: &x'.p, -+ &et .pt 
cJ)j grn (.9' , J) 

[p] Pm 
P [cover associated to [D , if>] 

[EEl] E9 (e.g. 2'E9L) 
- ® - ®n [®] ®, (e.g . ..?®L,2' ) 

[ II] II II 
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