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0. INTRODUCTION

One of the main achievements of the 19th century Italian school of algebraic
geometry was a complete understanding of the birational geometry of surfaces,
including the construction of minimal models. During the past several years, a
program has emerged to construct minimal models in higher dimensions using
something called extremal rays. This paper completes the final step of that
Minimal Model Program (MMP) in dimension 3 (cf. an excellent introduction
[Ko2] for nonexperts).

We should mention that, even in dimension 3, there are several things yet
to be done in classification theory (e.g. [R3, §4]).

Before formulating our main theorem (0.2.5), let us explain some corollaries
and the background.

We will work over the field C of complex numbers.
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118 SHIGEFUMI MORI

(0.1) Corollaries to Minimal Model Program for 3-folds. Here are three im-
portant corollaries indicating that the canonical divisor K, of a 3-fold X has
decisive information.

(0.1.1) Theorem. For every nonsingular projective 3-fold X, the graded
canonical ring D, >0 HO(X,é’(uKX)) is finitely generated.

This follows from MMP by virtue of the works of Fujita [Ft], Benveniste
[B1] and Kawamata [Kal], and it is considered to be a necessary step in the
construction of moduli of 3-folds.

(0.1.2) Theorem. A nonsingular projective 3-fold X is uniruled if and only if
HO(X,é’(uKX)) =0 for all v> 0, where an n-fold Z is uniruled if there is a

dominating rational map P' x Y -+ Z for some (n—1)-fold Y.

This follows from MMP by virtue of the works of Miyaoka [Myl, My2,
My3), and Miyaoka and Mori [MM]. Indeed some model X' birational to X
is shown to have a finer structure (cf. (0.3)).

(0.1.3) Theorem. Every birational morphism f: X — Y between nonsingular
projective 3-folds is a composition of divisorial contractions and directed flips

(¢ (0.2)).

This gives (in principle) a factorization of birational morphisms of 3-folds
with mild singularities (cf. (0.3.11)), and generalizes the first half of Danilov’s
factorization [Da] of toric birational morphisms of 3-folds to arbitrary bira-
tional morphisms,

We should point out that the development of the theory of extremal rays was
originally motivated by Hironaka’s approach [H] to the factorization problem
using “cones” (although the techniques were based on Kleiman’s criterion of
ampleness [K1]).

Let us look at the Minimal Model Conjecture more closely.

(0.2) The Minimal Model Conjecture. We will review the necessary material
only briefly and more detailed treatment is given in [KMM, Mr4, Wi].

(0.2.1) Definition. We say that a Weil divisor D on a normal variety X is
Q-Cartier if vD is Cartier for some v > 0. We note that X with only canonical
or terminal singularities has Q-Cartier K, , leaving the technical definition to
(1.0). We say that X has only Q-factorial singularities if every Weil divisor is
Q-Cartier.

Let X be a normal projective variety. Let p(X) denote the Picard number
(€ N), the rank of the Neron-Severi group NS(X) of X. We say that X is
a canonical (resp. minimal) model if X has only canonical (resp. terminal)
singularities and K, is ample (resp. nef), where a Q-Cartier divisor H is nef
iff (H-C) >0 for every irreducible curve C.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FLIP THEOREM AND MINIMAL MODELS FOR 3-FOLDS 119

We say that X has a canonical (resp. minimal) model if there is a canonical
(resp. minimal) model birational to X . We remark that such a canonical model
is unique while a minimal model is not.

(0.2.2) MMC, in short, claims that every variety X has a minimal model iff X
is not uniruled. To make it more explicit, we will review the theory of extremal
rays built by Benveniste, Kawamata, Kollar, Mori, Reid, Shokurov (cf. [KMM,
Mr4, R3, or Wi]. To simplify the exposition, we treat the core of the theory as
a black box; it implies the following.

(0.2.3) Theorem. Let X be a projective variety with only Q-factorial terminal
singularities. If X is not a minimal model, then there is a surjective morphism
fi X = Y to a normal projective variety Y with connected fibers such that
p(X)=p(Y)+1, =K, is f-ample and one of the following holds.

(a) dimX > dimY (Q-Fano fibering).

(b) f is birational and contracts a divisor ( divisorial contraction).
(c) f is birational and contracts no divisors ( small contraction).

(0.2.4) Let the notation and the assumptions be as in (0.2.3). If f is a divisorial
contraction, it is easy to see that Y has only Q-factorial terminal singularities.
The case of a small contraction is treated by our main theorem if X is a 3-fold.

(0.2.5) Main Theorem (Flip Theorem). Let f: X — Y be a birational mor-
phism between normal projective 3-folds such that X has only Q-factorial ter-
minal singularities, p(X) = p(Y)+1, —-K, is f-ample and f contracts no
divisors ( to curves or points). Then there is a birational morphism f: X' — Y
from a projective 3-fold X' with only Q-factorial terminal singularities such that
f contracts no divisors and K v IS f-ample. ( Let us emphasize the change in
the sign of the canonical divisor.)

The map X --+ X' is isomorphic in codimension 1 (i.e. induces X — Z ~
X' —Z' for some closed subsets Z and Z’' of codim > 2), p(X) = p(X'),
and f (or X') is called the directed flip (or flip) of f. If dimX > 4, the
existence of the directed flip is unknown.

There are a couple of ways to put (0.2.3)—(0.2.5) together to state the Minimal
Model Program. One of the formulations is the following. We note that (c) is
conjectural if dim X > 4.

(0.2.6) Minimal Model Program (Reid [R2}: an observation based on [Mr2]
and Francia [Fr]). Let X be a projective 3-fold with only Q-factorial terminal
singularities. If X is not a minimal model, then there is a morphism f: X — Y
which is a Q-Fano fibering, a divisorial contraction or a small contraction. We
treat three cases.

Case (a). No divisorial or small contractions exist. f is a Q-Fano fibering.

Case (b). f isadivisorial contraction: Since Y has only Q-factorial terminal
singularities (0.2.4), we may continue the program by replacing X with Y. We
note p(Y)=p(X)-1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



120 SHIGEFUMI MORI

Case (c). f is a small contraction: Since the directed flip X' of X — Y has
only Q-factorial terminal singularities (0.2.5), we may continue by replacing X
with X'. We note p(X') = p(X).

Since p(X) is a natural number, (b) does not occur infinitely many times,
and the following theorem of Shokurov shows that (c¢) does not repeat infinitely
many times either.

(0.2.7) Theorem (Shokurov [Sh]). To each algebraic 3-fold with only terminal
singularities is associated a nonnegative integer d(X) called the difficulty, and
one has d(X') < d(X) for X and X' as in (0.2.6(c)).

Though the existence of flip is unknown if dim X > 4, the termination of
flips (0.2.7) is generalized to 4-folds X by Kawamata, Matsuda, and Matsuki
[KMM].

These can be put together into the flow chart for 3-folds.

o

X: v
p(X) minimal & X is a minimal model
drops 9

by 1 No

IX P = l ]

f:X—Y
contraction No :

‘ X has Q-Fano fiberin

(0.2.8) divisorial Q g

or small
?

Yes
f:

small
?

A NO

Yes p(X) stays the same
X=X d(X) strictly drops

We will show how the results in (0.1) follow from the Minimal Model Pro-
gram for 3-folds and state some more corollaries.

(0.3) Results in (0.1) and further corollaries. The Minimal Model Program is
thus completed for 3-folds and

(0.3.1) Theorem. Every 3-fold has a minimal model or a model with a Q-Fano
fibering.
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FLIP THEOREM AND MINIMAL MODELS FOR 3-FOLDS 121

We recall that a nonsingular projective variety X is of general type if the
rational mapping associated to H O(X ,@(vK,)) is birational for some v >0,
and that a Q-Cartier divisor D is semiample if vD is a Cartier divisor such
that @ (vD) is generated by global sections for some v > 0.

We quote several results.

(0.3.2) Theorem (Kawamata [Kal, KMM] and Benveniste [B1]). Let X be a
nonsingular projective variety of general type which has a minimal model ( say,
Y). Then K, is semiample, and hence X has a canonical model and the
canonical ring of X is finitely generated.

This implies (0.1.1), since [Ft] settles (0.1.1) when X is a 3-fold which is
not of general type. We will explain (0.1.2).

(0.3.3) Theorem (Miyaoka [Myl, My2, My3}). If a nonsingular projective
3-fold X has a minimal model, then HO(X,@’(VKX)) # 0 for some v>0.

We note that the generalization of (0.3.3) to the case of dimX > 4 is un-
known.
Thus if we start from a nonsingular projective 3-fold X such that

HYX,0(vK,) =0 forallv>0,

then we never get a minimal model and hence we get a model X’ with a Q-Fano
fibering. Then we apply the following to get (0.1.2).

(0.3.4) Theorem (Miyaoka and Mori [MM]). If f: X — Y is a Q-Fano fiber-
ing, then X is uniruled.

Most of the above results in the absolute cases have been generalized to the
relative case based on Kollar’s vanishing theorem [Ko1]. For instance, (0.3.2) is
a special case of the following (0.3.5), which is also a special case of Kawamata’s
relative Base Point Free Theorem.

(0.3.5) Theorem (Kawamata [KMM, Theorem 3-3-1]). Let f: X — S be a
projective morphism with connected fibers from a variety X with only terminal
singularities to a variety S. If a general fiber of [ is a variety of general type
and K, is f-nef then K, is f-semiample.

(0.3.6) Remark. In the above, adivisor D on X is f-nef if (D-C) > 0 forall
irreducible curves C on X such that f(C) is a point, and it is f-semiample
if the natural map f*f,@(nD) — @(nD) is surjective for sufficiently divisible
n>0.

Unlike the absolute case, there are sometimes only trivial minimal models in
the relative case.
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(0.3.7) Proposition. Let g: Z — X be a birational projective morphism of
normal varieties such that K, is Q-Cartier and X has only Q-factorial terminal
singularities. If g is not an isomorphism, then K, is not g-nef.

(0.3.8) Remark. This is proved for smooth projective 3-folds X and Z in
[Mr2, (3.40)], whose proof works for (0.3.7) modulo trivial changes.

(0.3.9) The Minimal Model Program works equally well for 3-folds with
Q-factorial terminal singularities which are projective over a fixed irreducible re-
duced algebraic variety S as mentioned after (0.3.4) because (0.2.5) is proved
in a more general form (0.4.1). We state a theorem which is an immediate
corollary to the Minimal Model Program for 3-folds in the relative setting.

(0.3.10) Theorem. Let f: X — S be a projective morphism from a 3-fold X
with only Q-factorial terminal singularities to a variety S. Then via a com-
position of divisorial contractions and directed flips, X is S-birational to an
S-projective 3-fold f': X' — S such that X' has only Q-factorial terminal
singularities and satisfies one of the following.

(@) Ky, is f'-nef, or

(b) X' has a surjective S-morphism to an S-projective variety Z — S such
that dimZ < dim X, —K,, is relatively ample over Z, and the relative Picard
number p(X'/Z) of X' over Z is 1.

(0.3.10.1) Remark. In the important special case where f is a semistable pro-
jective morphism onto a smooth curve, we note (i) “minimal” models (maybe
nonalgebraic) over S were constructed by Kulikov [Ku] and Persson and Pink-
ham [PP] if the general fibers of f are surfaces with K ~ 0 (the first break-
through in this direction) and by Morrison {[Mrrl1] if the general fibers of f are
surfaces with 2K ~ 0 and K +£ 0 (they did not use extremal rays), (ii) Tsunoda
[Mn, T], Shokurov and Mori independently proved (0.3.10) if the general fibers
of f are minimal surfaces, and (iii) Kawamata [Ka2] proved (0.3.10) with no
assumptions on the general fibers.

By virtue of (0.3.7), the following holds.

(0.3.11) Theorem. Every birational projective morphism f: X — S between
3-folds with only Q-factorial terminal singularities is a product of divisorial con-
tractions and directed flips.

We note that (0.1.3) is only a special case of (0.3.11).
By (0.3.5) quoted earlier, we obtain

(0.3.12) Theorem. Let S be a 3-fold. Then there exist projective birational
morphisms f: X — S and g: Y — S such that

(i) X has only Q-factorial terminal singularities and K, is f-semiample,
and

(ii) Y has only canonical singularities, K, is f-ample, and there is an S-
morphism h: X — Y such that K, = h"K,, .
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We note that such Y is unique while such X is unique only in codimension
1, and we call X a Q-factorial terminal modification and Y the canonical
modification of S .

These results have two kinds of rather technical generalizations.

(0.3.13) Remark. When S is the germ (S,s) of an analytic space at a point s
or a compact analytic space, the results corresponding to (0.3.10)-(0.3.12) hold
by Nakayama [N] because (0.2.5) is proved in the analytic space case (0.4.1),
where an analytic space Z over S is said to have only Q-factorial singularities
if every global Weil divisor on Z is Q-Cartier.

(0.3.14) Remark. By virtue of the definition of the extremal ray, the results
in (0.2) extend to G-threefolds in Manin’s sense [Ma] (hence to 3-folds over
any field k of characteristic 0) as indicated by [Mr2, Chapter 2, §3]. Let us
take a finite group G for simplicity. The results in (0.2) hold true if we inter-
pret varieties (resp. subvarieties, morphisms) as varieties with regular G-action
(resp. G-stable subvarieties, G-equivariant morphisms). Here, GQ-factoriality
(the modified Q-factoriality) means that all the G-stable Weil divisors are
Q-Cartier, and Gp(X) (the modified p(X)) denotes the rank of the G-invariant
part of NS(X). This way, (0.3.1), (0.3.10), (0.3.11), and (0.3.12) hold true for
G-threefolds.

Let us refine (0.3.1) (cf. [I, Ma, and Ko3, (3.6)]), where pG3ft is an abbrevi-
ation of “projective G-threefold with only G Q-factorial terminal singularities.”

(0.3.14.1) Theorem. Any pG3ft is G-birational to either
(i) a pG3ft X with nef K, (G-minimal model), or
(i) a pG3ft X with a surjective G-morphism f to a normal projective
G-variety Y with connected fibers such that Gp(X) = Gp(Y)+1, —K,
is f-ample and dimY < dim X (GQ-Fano fibering).

Let us explain what is done in this paper to prove (0.2.5).

(0.4) What is to be done to prove the Flip Theorem. Let us modify (0.2.5) to a
statement which is formulated in both algebraic and analytic contexts without
Q-factoriality.

(0.4.1) Flip Theorem. Let f: X — Y be a proper birational morphism of nor-
mal algebraic (resp. analytic) 3-folds such that X has only terminal singu-
larities, [ contracts no divisors, and —K is f-ample. Then there is a proper
birational morphism f': X' — Y from an algebraic (resp. analytic) 3-fold X'
with only terminal singularities such that f contracts no divisors and K v s
f-ample.

We note that X' is unique and its existence is equivalent to the finite gener-
ation of @,.,/f,f(nK,) as an @, -algebra. The birational map X --» X " is
isomorphic in codimension 1 and f’ (or X') is called the directed flip (or flip)
of f.
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(0.4.1.1) Remark. (i) The conclusion of (0.4.1) holds even if X has canonical
singularities. This can be proved by the arguments as in [Ka2, Ko3], or by
applying the Minimal Model Program over Y, which are both based on the
original (0.4.1), and

(ii) the two versions of (0.4.1), the algebraic (O.4.1)alg and the analytic
(0.4.1),,, are equivalent as in [Ka2, Proposition 8.4]. It is based on the ra-
tionality of the singularities of ¥ and Shokurov’s termination of directed flips
(0.2.7).

(0.4.2) It is easy to see (0.4.1)alg = (0.2.5), and (0.4.1),,
advantage is the following: The fundamental set £ on Y for f ~! s discrete
and we may set X' — f’ 'y = Y — X. Thus the problem is local at each point
of ¥ and we may assume Y isagerm (Y, y) ata point. For f: X — (Y, y)
as in (0.4.1), we call the germ X D f "l(y)red of an analytic 3-fold X along
f—l(y)red an extremal nbd (as in (1.1)).

By treating irreducible components of f - (y) one by one [Ka2, Proposition
8.4], one can reduce (0.4.1), to

is to be proved. The

(0.4.3) Lemma. (0.4.1), holds if we assume further that Y is the germ (Y, y)
at a point 'y qnd f —’(y) is irreducible.

We should mention that f _l( y) ~ P' above. This follows from the ratio-
nality of the singularity of (Y, y) (1.3).
Kawamata’s approach [Ka2] to the directed flip is as follows:

(0.4.4) Take a double cover V' of X with branch locus D € |- 2K, |. If V
has only canonical singularities then so does the double cover W of Y with
branch locus f(D) and one can use finite generation of ®n20 Oy (nK,) [Ka2,
Theorem 6.1'] (a simpler proof is given in [Ko3]) to get finite generation of its
Z,-invariant part €9, (nKy) =€, SOy (nK,).

Thus [Ka2, Proposition 8.7] reduces (0.4.3) to the following.

(0.4.5) Theorem. Let X O C =~ P! be an extremal nbd. Then one of the
Jollowing on the linear system | —aK,| (a=1 or 2) holds.
(i) | = Ky| has a member D with only rational double points, or
(i) |-2K,| has a member D so that the double cover Z of X with branch
locus D has only canonical singularities.

Kawamata [Ka2] proved (0.4.5) in the case of 1-parameter semistable family
of surfaces to prove the result mentioned in (0.3.10.1(ii1)).

It is (0.4.5) that is actually proved in this paper (Theorems (7.3) and (9.10),
cf. alscl> Appendix B). The main information we use for the extremal nbd X >
C~P is

(0.4.6) H'(@,)=H(w,®0,)=0YZC X withZ_,=C.
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These conditions are similar to those in [Mr2, §9] (cf. (1.2.1), §10), and so are
some of our arguments.

The following is the smooth case of (0.4.5). We will illustrate our approach
by proving (0.4.7) via (0.4.6). We should emphasize that we are interested in
the arguments not the results. The results show that the smooth X is the blow-
up of a smooth 3-fold (Y, Q) along a smooth curve (Z, Q) and C is the
fiber over @, which means that extremal nbds must have singular points (cf.
§10).

(0.4.7) Propesition. Let X D C ~ P! be a smooth extremal nbd. Then O (Ky)
~ O (1), IC/IC2 ~ 0. ®I.(1), and | — K| has a smooth member, where
I is the ideal sheaf of C in X .

(0.4.8) Proof. Wesee (K, -C)=—1 from (K,-C) <0 and Hl(@’c(KX)) =0
(0.4.6). By the standard exact sequence
2

0—1I./I." —Qy®F. - O(K.)— 0,

one has a natural isomorphism
2 2, ~
(0.4.8.1) a NI /1.7) — O(Ky) @O (—K ),
and degIC/IC2 = (Ky-C) —degK. = 1. By the exact sequence
2 2
0= 1./1."®F(-1) = Oy/I."®Fy(Ky) = (1) -0

and (0.4.6), we see Hl(IC/ICZ ® F.(~1)) = 0. Whence IC/IC2 ®G(—1) ~
G- ®0F.(—1) since it has degree 12 = —1. Hence follows the second assertion.
Let x € C. Let (D,x) be a smooth divisor in the germ (X, x) intersecting
transversally with (C,x), then (D,x) extends to a divisor D' of X since
X is the germ along the curve C. Then (D'-C) =1 = (K, - C). Hence
D' e|-K,| since PicX> L (L-C)€Z induces PicX ~Z by (0.4.6) (cf.
(0.1.3)). O

(0.4.9) The arguments for singular extremal nbds X D C =~ P! are more elab-
orate. We will indicate how the arguments in (0.4.8) are modified to obtain
results similar to (0.4.7).

We start with easy definitions.
(0.4.9.1) Definition. For a coherent sheaf .7 | let grg, (F)=F ®F,/T, where
T (C & ®0,) is the maximal subsheaf of finite length. The sheaf gr(é(gr )

satisfies F ® @ ~ gr%(?’ Y® T. For n > 0, let IC(") be the nth symbolic
power of I. which is determined by

&, /1." = (@,/1.")/(maximal subsheaf of finite length).

(0.4.10) Analogues of “w, ® &. =~ O.(-1).” Let us look at grgw
(= grg(w y)) . Let m be a positive integer such that mK, is a Cartier divisor.
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Since o
m
(Wy®C:)"" — O(mK,)

induces an injection

(0.4.10.1) By: (grew)®” — &.(mK,)  (2.2),
we see deg grg w <0 by (K, -C) < 0. Thus we see one analogue
(0.4.10.2) grew =& (-1)  (232)
by H'(w, ®,) =0 (0.4.6), and another
(0.4.10.3) (Ky-C)==1+> wp(0) (23.2)
P

by B,: &(-m) — O.(mK,), where w,(0) = (len, Coker B,)/m (> 0) for
P € C . In particular, we have

(0.4.11.1) —1< (K, -C) <0 (cf. [B2, Théoreme 0]).
(0.4.11) Analogues of “I./I.>~@®@(1).” Letuslook at grod (=gre(I.)).

(It is equal to gr'C G = IC/IC(z) (2.2) in the text.) It is a locally free &.-module
of rank 2. Instead of | in (0.4.8.1), we have a natural injection

(0.4.11.1) a: N grel = grow @0 (K )=~ a1)  (22.1).
For P € C, let i,(1) =len, Cokera, so that
(0.4.11.2) deggre/ =1-5 i, (1)  (23.2).

P

A local computation shows
(0.4.11.3) Lemma (= (2.15)). If P is a singular point of X then i,(1)>0.

Our proof for the existence of good members of |~ K| or |-2K,| is based
on two kinds of classifications of singularities of X > C, one local and the
other global.

Let us see several results without going into technical details.

(0.4.12) Classification of germs (X, P) D (C, P). Using w,(0) and i,(1)
and a similar invariant w;(l) , one can give a classification of (X, P) > (C,P)
without too much trouble (it is done in §3 and (4.2), cf. Appendix A for results).
Let P be a singular point on an extremal nbd X > C ~ P'. We recall that
the index of P is the smallest positive integer m such that mK y 1s Cartier
at P. The index m is invariant under deformation and has a topological
interpretation:
!iﬂl n(U-P)=1Z
U: open nbd of P
We say that P is ordinary (4.5) if (X, P) is an ordinary double point or a
cyclic quotient terminal singularity. The classification has a simple but impor-
tant

m-:
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FLIP THEOREM AND MINIMAL MODELS FOR 3-FOLDS 127

(0.4.12.1) Corollary. An arbitrary singular point P of X D C has an open
neighborhood U so that general deformations of the pair U > CNU have only
ordinary points.

Any deformation of the pair U > C N U can be extended to a deformation
of the pair X O C (§1b, §10).

(0.4.12.2) Deformation Lemma. Arbitrary extremal nbds X > C ~ P! deform
to extremal nbds X' > C' with only ordinary points.

To be rigorous, the lemma is wrong as it is: The deformation X " of X often
contains finitely many compact curves other than C’ but it is true that the germ
X° > C" of X' along C' is an extremal nbd. This is, however, a matter of
technical details.

(0.4.12.3) Remark. The strategy behind (0.4.12.2) is that, for certain problems
on extremal nbds, it is enough to treat extremal nbds with only ordinary points.
Though we cannot apply the strategy directly to the flip theorem, we can still
apply it to various auxiliary problems (e.g. (0.4.13.1)).

Here is an easy example to use in our introduction.

(0.4.12.4) Example. Let pu_ acton (X', P*)=(C*,0) by
(x,y.2)=(x. .0 2) (Cen,).

where a is an integer prime to m such that 0 <a<m. Let C " X' be the
x-axis. Then (X,P) = (X”,P”)/um D(C.P)= (C”,P”)/pm is an example of
an ordinary point of index m.

We note that any ordinary (X, P) of index m > 1 is of the above form, but
in general C* is singular at P*.
The following are easy explicit computations.
(i) O p=C{x"},
(i) grow =@ (x"*dx Ady ndz),
_ Oc(mKy)=0Oc(dx Ady A dz)™ near P,
(i) wp(0)=(m—-a)/m,
(iv) grgl =0.(x"""y)®F,.(xz) near P, and
(v) ip(l)=1.

(0.4.13) Classification of extremal nbds X D C. This part is done in §6. Ar-
guments involving w,(0), ip(1) and other higher order numerical invariants
prove the following coarse classification of extremal nbds X O C (cf. Appendix
B for the precise results).

(0.4.13.1) Proposition. Let X > C ~P' be an extremal nbd. Then we have

(i) X has at most one singular point with index 1 on C,
(ii) X has at most two points with index > 1 on C, and
(i11) if X has three singular points, one of them has index 2.
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We present two arguments concerning (0.4.13.1).

(0.4.13.2) Here, only to give the idea about our approach, let us prove that X
has at most three singular points on C. The complex IC/IC2 — X/ICZ —
& — 0 induces an exact sequence

0—grod —» @ /1P -0, 0.

Since HO(ﬁX/IC(Z)) — HO(@’C) = C is surjective, one has Hl(grg I) =0 by
Hl(é’x/lc(z)) =0 (0.4.6). Thus deggrg I > -2 and it is now immediate to see
that X has at most three singular points on C by (0.4.11.2) and (0.4.11.3). O

(0.4.13.3) We sketch an easy topological proof of (ii) of (0.4.13.1). We will
disprove the case of an extremal nbd X > C ~ P' with exactly three singular
points P, @, R, which are cyclic quotient singular points of indices a,b,¢c >
1. (The general case can be either reduced to this case by Deformation Lemma
(0.4.12.2), or treated in a similar way using a certain nbd U for each P such
that n (U - P) = ZLingex P) )

Here is a homotopical description of X — {P,Q,R}: In C-{P,Q,R} =
s? - {P,Q.,R},let p (resp. o,7) be small loops around P (resp. @, R) in
S?. Embed p, 0, T into lens spaces in certain ways: p C Ss/pa , 0 C Ss/ub ,
tC S’/p,. Then S~ {P,Q,R}, S°/u,, S°/n,, S°/u, glued together by
p, o, T become homotopically equivalent to X — {P,Q, R}.

The (class of the) loop p need not generate nl(Ss/pa). But the case
nl(SS/ua) # (p) (cf. (0.4.16)) can be reduced to the case nl(SS/ya) = (p)
in an easy way ((1.13) and (1.16)). Hence we may assume that nl(SS/pa) =

(P, ..., m,(S°/w,) = (r). Thus
7 (X—{P.Q.R})~(p.o,1)/{p"=1, o’=1,17=1, por=1

by Van Kampen’s Theorem. This group is known to have a finite quotient group
in which the image of p (resp. g, t) is exactly of order a (resp. b, c). The
associated covering space of X — {P,Q, R} is extended to a finite covering
of X which is a smooth extremal nbd. This is impossible by the comment
preceding (0.4.7). O

Based on these, our case-dependent arguments go as follows.

(0.4.14) Local methods to find members € |- K, |, |-2K,|. This part is done
in §7 and generalizes an argument in (0.4.8). For each P € C of index > 1
(say m) of X,let D, be alocal divisor defined by a local section of #(-K)
at P sothat D,NC ={P}. Then —K, — >, D, is a Cartier divisor and

(0.4.14.1) Y (Dp-C)=(—K4-C) modulo Z.
P

If one can choose D,’s such that (D, -C) <1, then Y (D, -C)=(-K,-C)
(0.4.10.4) and this shows that ) D, €| -K,|.
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Let us work on Example (0.4.12.4).

(0.4.14.2) Local description.

(i) Let P be asin Example (0.4.12.4). Then &(—K,) near P is the invariant
part of &,,(dx Ady A a’z)"l . Since (¥ —x?)/(dx Ady Ndz) is p,,-invariant,
it is a local section of #(—K,) and defines D, ={y = x"}/p,, . Then

(Dp-C)=L({y =x"} (x-axis)) = & < 1.

(ii) If P in (i) is the only point of X D C withindex > 1, then D, € |- K,/|
and D, ~ (C2,O)/pm with {(x, z) = ({x, C_lz). So D, has a rational double
point of type 4, | at P.

(0.4.14.3) One can argue similarly with &(-2K ). These methods work when
X has at most one point P with index > 2 on C. We should point out that
the computation is needed only at P (note: —2K, is Cartier on X — P ) and
it is similar to (0.4.14.2).

(0.4.15) A global method to find members € | — K, |. This part is done in §9.
In view of the classification (0.4.13.1) and the local methods (0.4.14.3), we only
treat X > C ~P' with exactly two singular points, which are of indices > 3.
In this case, an isomorphism

grol =7 ®F(~1)

is proved and the singularities of X D C and the infinitesimal structure of X
along C are further studied by the arguments (9.1)-(9.8) which are similar to
but more elaborate than (0.4.13.2). Let us concentrate on the ordinary case for
simplicity. (The nonordinary case is treated similarly.) Here are the results.

(0.4.15.1) Further classification. Let X D C ~ P' be an extremal nbd with
two ordinary points of indices > 3. Then
(i) X o C ateach ordinary point P isgiven by Example (0.4.12.4) for suit-
able a, and furthermore for suitable choices of coordinates in (0.4.12.4)
at these points one has
(ii) the (unique) direct summand ¥ =& C gr‘é I ~@®&(-1) restricts to
O.(xz) C O (x"""y) @ O.(xz) ateach P, and
(iii) there is a direct summand /# =~ &(-1) of grgl restricting to
G (x""%y) ateach P.

This might not sound strong enough to be called a classification. However,
there is an explicit description of all the extremal nbds X O C ~ P! with two
points of indices > 3 based on (0.4.15.1), which will be published elsewhere.

We note that an explicit local description of this kind is the core of the
£-structure introduced in §8. Out of this, one can pick up a homomorphism
Wy — gr%l inducing an isomorphism gr%w ~ .# . Then we extend it to
wy — C/IC(") for all n >0 in (9.9).
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Let us illustrate the extension mechanism by arguing backward. From now
on till the end of (0.4.15.5), the sheaves .2° and .# are chosen and fixed as in
(0.4.15.1).

(0.4.15.2) What is to be expected. Assume that a member D (D C) of |- K|
is the zero locus of a homomorphism w, — I. extending w, — # C gr‘él
above. Then, for suitable (formal) coordinates as in (0.4.15.1), D restricts to
D, = {y = 0}/p,, near each P (an exercise using (0.4.15.1(iii))). This D,
has only rational double points as in (ii) of (0.4.14.2) and D is smooth outside
the ordinary points.

The Weil divisors nC of D (n > 0) are defined in X (not D) by ideals
J, (C&y). Foranideal J C &, , we denote by F 'J the kernel of the natural
map J — gri(J). We note that gr(J) = J/F'J and F'J > 1.J.

By the construction, J, is the ideal uniquely determined by I. > J, D IC(Z)
and J2/IC(2) =M C grg I, and the ideals

Jy,20J;0--DJ, D
enjoy the following properties (n > 2).

(a), grg(Jn) = Jn/FlJn is a locally free &.-module of rank 2,
(b), the inclusion J, C J, induces a natural surjection

0 0
Aygre(J,) » A (Cere1)
(4, corresponds to «, in (9.9.6)) fitting in the exact sequence
0 An
E .0— Kerd, —gr.(J,) — 4 — 0,

(©py; J,DJ,,, DF'J ,and J,  /F'J isan invertible subsheaf .#, of

gr(é(Jn) giving a splitting of E, .

Remark. We note that degKerd, > 0 by (a),, (b),, (c), (¥ < n). Indeed
J,D IC" by (c),’s, and the multiplication ®"(IC) — J, induces a homomor-
phism S”(gr%. 1) — gre-(J,) and an injection & ~ #" < Ker4_ (0.4.15.1). In
particular, degKeri, > deg.# = —1 hence E, is split.

Here is an explicit description at each ordinary point P .

(0.4.15.3) Local description. There is a (formal) coordinate system (x, y, z) as
in (0.4.15.1) with the following for all n:

(d), J, is the invariant part of (y,z") at P, and

(e), gr%(]n) = @’C(xm"”y)eaﬁc(x"_m[”/m]z") at P,and 4, is the projection
to the first factor £ =& .(x™ “y).

We note that (e), follows from (d), easily.

n
(0.4.15.4) The extension step. Now without D, we inductively construct J,’s
from J, with the properties (a),, ..., (d),. If J withthe properties (a),, ...,
(d), are chosen (v < n), then Kerd, > 0 and E,_ is split by the remark in
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(0.4.15.2). Let A&, C grg(Jn) be an arbitrary splitting submodule for E, , and
J,o asin (c) Then (a),, , and (b),,, are satisfied. Hence to satisfy
d)

n+1°

1> We will choose a proper .#, using degKeri, > 0 above.

(

(0.4.15.5) Local description. Let us illustrate this using the coordinates in
(0.4.15.1). Let n > 2. Assume that (d), holds. ((d), follows from (iii)
of (0.4.15.1).) Via (e),, we have

n—m[n/m]zn)

M= (x" "y +cx near P

for some ¢ € C{x™}. For (d) 141 to hold, ¢ has to satisfy certain conditions.
Let us illustrate it when n = 0 (m) by treating the cases ¢ = 0,1 to avoid
inessential coordinate changes.

Case ¢ =0. One has .#, =@.(x"""-y) and J,, is the invariant part of

. 2" =)+ . 2. 2",

Case ¢ =1.Onehas #,=0.(x" " “y+z") and J,_,,
of (!, yz, 2" X"y 42" = (X" + 2"+ (n.2) (0. 2.

Thus (d),,, does not hold in the case ¢ = 1 when n =0 (m), and the
choice of .#, should not be arbitrary. In general, one can see that (d),,, is
satisfied if ¢(0) = 0. Hence we can choose an .#Z, satisfying the two conditions
(there are two points) because .#, depends on two parameters by degKeri, >
deg# =—1.

Though we use these J,’s to compute the general sections of w x* ®I1./ IC(")
for n >» 0 in (9.9.6)-(9.9.13), it is intuitively clearer to say that the good
member D of | — K,| can be recovered (cf. (0.4.15.2)) as the formal Weil
divisor !in C, of the completion X~ of X along C, where C, is the closed

subscheme defined by J, .

1s the invariant part

(0.4.16) Comment on imprimitive points. A point P on an extremal nbd X DO
C ~ P is imprimitive (1.7) if

lim 7 (UNC = P)~Z— lim n,(U - P) = Z/(index P)

(cf. (0.4.12)) is not surjective.

If X>C~P hasan imprimitive point P, then X D C has a finite cover
X' 5 C' which is an extremal nbd primitive everywhere along any irreducible
component of C' (C’ is reducible). Therefore we may work on X' instead of
X . Nevertheless we treat imprimitive points as extra cases and classify them.
It is not just because we want to classify them. Our proof of the flip theorem
needs them. Indeed if we do not flip the imprimitive X directly, we have to
flip several curves on X' instead, since C’ above is reducible. If the 3-fold
picks up an imprimitive point after one flip, then one has to go up to a finite
cover of the flipped 3-fold. Therefore, we need to disprove the possibility:

(0.4.16.1) One has to go up to covers for infinitely many times and hence the
processes do not stop.
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The impossibility of (0.4.16.1) is not obvious to us. We can settle it, but our
proof even uses the flip theorem.

(0.4.17) The descriptions of the sections. Since §§6, 7, and 9 are described in
(0.4.13), (0.4.14), and (0.4.15), let us now describe other sections. §1 gives
basic definitions and the corollaries to the vanishing (0.4.6). §la reviews the
necessary material on terminal singularities. The terminal lemma (1a.6) in it
is used all over in this paper and is the key in the number matching calcula-
tion mentioned above. §1b gives us some tools to deform extremal nbds (cf.
(0.4.12.2)), and it says that being an extremal nbd is an open condition. §§2
and 8 prepare basic formulas (cf. (0.4.10) and (0.4.11)) and terminology (e.g.
[-structures mentioned in (0.4.15.1)), and §2 gives formulas covering all the
cases while §8 gives carefully tuned formulas covering only the delicate case.
8§83 and 4 classify the local structure of X O C at a singular point x of X into
several cases (cf. {0.4.12) and Appendix A), and §5 gives practical formulas to
work with in §§6 and 9. §10 states a slight generalization of our main theorem
(0.4.5) together with a short explanation and it also makes comments on (1a.7).
We put a diagram indicating logical dependence among sections:

1—-1la — 1b
\ \
2—- 3 - 4 -5-6 -7,
N\ \
8 — 9

where X — --- — Y means that §Y depends on some results in §X. For instance,
it does not mean that the results in §1b are quoted only in §4; they are also
quoted in §9.
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Conventions. A variety (or an algebraic variety) means an irreducible reduced
separated scheme of finite type over T, the field of complex numbers. A curve in
a variety means a 1-dimensional closed subscheme. An analytic space is meant
to be Hausdorff and have countable open bases. The word “bimeromorphic” is
used interchangeably with “birational” by abuse of language.

“Complex” and “ 0-sequence” are used interchangeably.

The set of rational numbers is denoted by 7 ; the set of real numbers is
denoted by =; the set of integers is denoted by Z; the set of nonnegative
integers {z € Z | z > 0} 1s denoted by Z_ ; and the set of positive integers
{z€Z|z>0} isdenoted by Z_, and it is equal to [! which denotes the set
of natural numbers.

For r € X, [r] denotes the integer d such that d <r<d+ 1, and [r] the
integer u suchthat u— 1 <r<wu.For i,je=, J; y denotes Kronecker’s &,

i.e.
{1 ifi=j,
0 ifi#/.
For mell,weset Z =7Z/mZ and p, ={ze€T|z" =1}.

i

List of notation and terminology. This list can be found at the end of the paper.

1. PRELIMINARIES AND BASIC DEFINITIONS

The main purpose of this section is to recall some known results and make
basic definitions together with auxiliary results.

(1.0) Definition (Reid [R1]). Let (X, P) be a germ of a normal analytic (or
algebraic) variety. Let f: Y — (X, P) be a resolution, i.e. a proper bimeromor-
phic morphism from a complex manifold Y . We say that the singulanty (X, P)
is rational if R'f,é’y =0 for all /> 0 and all resolutions f: Y — (X,P). We
say that (X, P) is a canonical (resp. terminal) singularity if
(i) thereisan integer r > 0 such that rK, isa Cartier divisor (the smallest
such r is called the index of (X, P)), and
(i) let f: Y — (X, P) be an arbitrary resolution, and let E,, ... . E,  be
all the exceptional divisors. Then one has rK, = f'(rKX) +3.,a,E;
with all ¢, > 0 (resp. a,>0).

Let us introduce the notion of an extremal nbd which we will study through-
out this paper.

(1.1) Let X be an analytic 3-fold with at most terminal singularities and
C C X a reduced connected curve, and we consider the germ of X along
C . We say that X D C is an extremal nbd if there is a proper bimeromorphic
morphism f: X — (Y, Q) so that f,@, =, , f"(Q) =C (assets), fl,;_
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is an isomorphism, and —K, is f-ample. Wecall f: X — (Y, Q) the total con-
traction. (In case of reducible C, f contracts all the components of C, which
is why we put the adjective “total.”) We note that X is the blow-up of (Y, Q)
by a divisorial ideal f,&(-mK,) ~ %mz(a)?m ,@y) for sufficiently divisible
m € N, because X — Y is an isomorphism in codimension 1. Since (Y, Q)
is an isolated singularity, it is algebraic by Artin [A2], hence sois f: X — Y.
We note that our notion of total contraction of extremal nbd coincides with
Kawamata’s flipping singularity [Ka2, §8]. We quote his result [Ka2, §8] with
the Grauert-Riemenshneider vanishing theorem [GR].

(1.2) Theorem. Riﬁé’x = R'ﬂwX =0 (i>0).
(1.2.1) Remark. For an arbitrary ideal J such that Supp&,/J C C, one sees
H'(@,)))=H (0, /Jo,) = H (0, /Jo,)]/) =0

by (1.2) because fibers of f have dimension < 1, where » denotes the largest
submodule of w,/Jw, of finite length.

The following two corollaries are in [BS, §8, Ka2, §3]. We give the proofs for
the readers’ convenience.

(1.3) Corollary. (i) C is a union of P'’s, whose configuration is a tree.
(ii) If C is a union of r Pls (r>1), then
PicX ~ H*(C,Z) ~ 7%

Since (1.3(ii)) is used in this paper only to compare a finite number of divisors
at a time, we simply shrink X O C if needed and we need not worry about the
inductive limit.

Proof . (i) follows from the exact sequence R' f.0y—-H Yc ,0.) — 0. From
(1.2) and the exact sequence

0—>ZX—>@X—»ﬁX — 1,

we have PicX =~ RZLZX ~ HZ(C,ZC) ~ 7% since X is a germ along C
[Go, Théoréme 4.11.1]. O

(1.4) Corollary. If L is an invertible sheaf on X such that (L-C;) >0 for all
irreducible components C,, then f*f,.L -+ L and R'f,L=0.

Proof. For each i, choose P, € C; so that P, ¢ oF for all j # i, and a
Cartier divisor H; of X such that H,- C; = P, and H, N C; =@ forall
J # 1 (note that X is a germ along curve C). Then L~& (3 ,(L-C,)H,) by
(1.3). By choosing different P;’s, one obtains a surjection ﬁxez — L and hence
f*f.L—» L. Since dimf~'(Q)=1,o0nehas 0=R'£,0,*? »R'f L. O

(1.5) Corollary. If C' is a curve contained in C, then the germ of X along C'
is an extremal nbd.
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Proof. Under the notation of proof of (1.4), the morphism associated to the
base-point-free linear system |}, ., H,| contracts components of C' only,

where I={i€I|Ci¢C'}. O

iel

We want to study the subgroup of the divisor class group ClX consisting of
Weil divisor classes D which are Q-Cartier (i.e. nD is Cartier for some n € N).
We call this the semi-Cartier divisor class group and denote it by CI** X . Then
we quote

(1.6) Proposition (Reid, Ue {Ka2, Lemma 5.1]). If (V, P) is a 3-fold terminal
singularity of index m, then CI*(V,P) ~ Z/(m) and it is generated by the
class [w,] of w,, .

We note that (1.6) implies that if P is a terminal singular point of index
m of an algebraic (or even formal) 3-fold V' then Z/(m)[w,] is equal to the
torsion part of Cl&, .

(1.7) Corollary-Definition. Under the notation and assumptions of (1.6), let
(W, P) be a smooth curve C (V,P). Then

(i) for an arbitrary & € CI*(V, P), there exists an effective divisor D (3 P)
such that [D1=¢&¢ and DNW = {P}.

(ii) &€ — (mD - C)/m induces a well-defined homomorphism

c(W,P): CI*(V,P)— L1z/2 C Q/Z

We say that V DO W is locally primitive at P (and P is a primitive point) if
cl(W, P) is an isomorphism and that an extremal nbd X > C ~ P s locally
primitive if it is so at each point of C. A point P € W is called imprimitive if
V D W is not primitive at P, and
(iii) let
n: (VH, PY > (V,P)

be the canonical cover (cf. [R2]) and W' = n_l(W)red. Then W' has exactly
|Kercl(W, P)| irreducible components. In particular, V > W islocally primitive
iff W' is irreducible. We call |Kercl(W,P)| (resp. m/|Kercl(W, P)|) the
splitting degree ( resp. subindex) of V > W at P (or simply of P).

Proof. Let I C &), , be a divisorial ideal representing —¢. Let ¢ be an
element of #2~(I,,,) which does not vanish along any irreducible components
of (W, P). Then the divisor D defined by ¢I satisfies the conditions in (i).
Let D be an effective Weil divisor with class [w,] such that DN W = {P}
as in (i). Let ¢ € &), , be such that (¢) = mD and n = (mD-W). Then
¢|,, = t" for some coordinate ¢ of (W,P), and |Kercl(W,P)| = (m,n).
One sees that &, ,, D Gy, p[21/(2" — ¢l ) = C{t}[2]/(z" — ") is birational
because V' — {(v,z2) €V xC| z™ = ¢} is isomorphic above general points of
W . Thus W' has (m,n) irreducible components. 0O
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(1.8) Let X O C ~ P' be an extremal nbd. Let H be an effective Cartier
divisor on X such that (H-C)=1 and H N C is a smooth point of X . Let
Py, ..., P € C be all the points of X of indices > 1 (say, m,, ..., m,) and
D,,...,D, effective Q-Cartier divisors such that D, C = {P;} and [D,] is
a generator of CI*(X,P,) for all i (1.7). Then these imply that the following

natural 0-sequence is an exact sequence
(1.8.1) 0— PicX - CI* X — € CI*(x,P) -0,

and one has

(1.9) Corollary. CI*(X) is generated by [D,].....[D,] and [H], and
mD;1—(m,D;-C)[H]1=0 (1 <i< n) are the generating relations, and
(1.10) Corollary. Under the notation and assumptions of (1.8), the following
are equivalent.

(i) (D-C)= l/ml---m" Jor some D € CI*(X).
ISC( )
(X) is torsion-free.
X D C is locally primitive (i.e. (m;,(mD,-C)) =1 forall i) and
(m,.,mj)— \ forall i and j such that i # j.

Proof of (1.10). By [CI*(X): PicX]=m, --m,_, (i) implies (ii), and (ii) =
(iii) is obvious. It remains to prove (iii) = (iv) and (iv) = (i). By (1.9), it is
clear that (m,,(m,D,-C)) =1 for all i if CI*(X) is torsion-free. Thus we
may assume (m;,(m;D;-C)) =1 forall i, to prove (iii) = (iv) and (iv) = (i).
Let k;,n, € Z be such that mk,+ (m,D,-C)n; = 1. Then 6, = n,[D,]+ k,[H]
(i € [1,n]) and [H] form a set of generators of CI*(X) such that m6, = [H],
whence we see that the generating relations are m d, = [H] (1 < a < n).
Then (iii) = (iv) is obvious by m; = mjéj. If m,...,m, are pairwise
prime, then n, = H#a m; (a € [1,n]) generate the unit ideal Z and hence
(IIm,)é, =n,H, (a€[l,n]) generate Pic X, whence (iv) = (i). O

(1.11) Proposition-Definition. Let X be a normal analytic space, D a Weil
divisor and d € N such that dD is a principal divisor (¢) for some meromorphic
function ¢ on X. Let n: X' — X be the normalization of @’X[z]/(zd —¢) on
X, which is a finite Galois p,-morphism. We call it the p,-cover associated to
[D.¢] and denote it by n[D,d,$]: X[D.d,¢] — X (we may use the divisor
class of D instead of D and may omit ¢ in the expression if there is no danger
of confusion). One has
(1) =[D|,.d. 9|, 1=nr[D.d, 9] x, U for opensets U of X,
(i1) the pull back of D by the finite morphism n[D,d] is the principal divisor
(2),
(iii) if X isconnected and if the exponential map t — €' induces a surjection
exp: Ho(é’x) - Ho(é’x'), then the number of connected components of
X|[D,d] is exactly d/(order of [D] in C1X), and
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(iv) the morphism n[D,d] is étale in codim 1. Furthermore, the ramifica-
tion index of n[D,d] at points above P € X is the order of the class
(D,P)e Cl{X,P) induced by D .

Proof . (i) and (ii) are obvious. For (iii), let n be the order of [D] in Cl1 X and
¢ be the number of connected components of X{D,d]. By the hypothesis, the
d/nth root of ¢ is a meromorphic function on X because nD is a principal
divisor. Hence z¢ — ¢ has at least d/n prime factors, and it is clear that ¢ >
d/n. Let Y be a connected component of X[D,d]. Then Y — X is a Galois
pd/c-morphism and the norm Ny/x(z) of z for Y/X satisfies (Ny/X(z)) =
(d/c)D, whence d/c > n. Thus ¢ = d/n and (iii) is done. (iv) follows from
(iii) applied to a small contractible nbd of P. 0O

(1.12) Corollary. Let X D C be an extremal nbd, f: X — (Y,Q) the to-
tal contraction, and D € C1X be of order d. Then X Yo x [D.,d] > ct =
7:[D,a’]_l(C)red is an extremal nbd and f*: X[D,d] — (Y”,Q”) = Y[f.D.d]
is the total contraction. Using the notation of (1.8), we consider n* = n[D,d]:
X" = X in two special cases when C ~P' (cf (1.10)).

(1.12.1) Case d = (m,,(m,D,-C)) > 1 for some a € [1,n] and D =
(m,D,— (m,D, -C)H)/d . In this case, P, is an imprimitive point of splitting
degree d, subindex mi = m,/d, 7' is étale over X — {P,}. n”"(Pa) is one
point P: of index m, C*' is a union of d Phs meeting only at P:, and each
irreducible component is locally primitive at P(f. In this case, we call the extremal

nbd X' > C* the splitting cover of X D C associated to P,, and

(1.12.2) Case X > C is locally primitive, d = (m,, m,) > 1 for some distinct
a,bell,n], and D =aD,+ D, + yH, where o, f,y € Z satisfy (a,m,) =
m,/d and (B, m,) =m,/d (cf proofof (1.10), (iii) = (iv)). In this case, nt
is étale over X —{P , P}, nu—l(Pa) { resp. n’H(Pb)) is one point P‘f ( resp.

Pg) of index m_,/d (resp. m,/d), and c'~p'.

(1.12.3) Remark. In (1.12), it is easy to see that one can choose D and d as
in (1.12.1) or (1.12.2) if CI*(X) has a nonzero torsion (cf. (1.10)).

Proof. We note that exp: H(@,) = H*(@,) — H(@,") = H(@,") is surjec-
tive since (Y, Q) is a germ. Since D and f,D are of order d, X' and Y*
are connected by (1.11(iii)), whence there is only one point Q“ e Y over Q.
By construction, fJ‘ is bimeromorphic and étale over Y* — {Q”} , whence ﬂ is
isomorphic outside Cct = ﬂ_l(Q“). Since (Y",Q“) 1s normal, C" is connected
(ZMT). Since =" is étale in codimension 1, one sees 7" K y = Ky, , whence
X'> ¢! is an extremal nbd and fu is the total contraction.

In (1.12.1), D is Cartier outside {P,}, and of order 4 at P,. Thus
(1.11(iv)) implies the first part and n,(C~P,) = 0 implies the second part. The
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last assertion follows because (X | Pﬁ ) and (X, P,) have isomorphic canonical
covers.

In (1.12.2), the proof is the same except for the assertion C'~P' If C' is
reducible, then each irreducible component meets some component at P, and
some others at P, , because 7' is Galois. Then C' contains a cycle of IPI’s,

whence Hl(é’c,) # 0, which contradicts (1.3(i)). Thus C* ~ P! (1.3(1)). O

(1.13) Corollary. Let X > C = P' be an extremal nbd. Then X > C does not
have more than one imprimitive point. If it has an imprimitive point P, then
the splitting cover X "5 ' of X 5 C associated to P is locally primitive along
an arbitrary irreducible component of ct.

Proof. Assume that X D C has two imprimitive points P, P’ (P # P') with
splitting degrees d, d' (> 1), respectively. Let D (resp. D') be the divisor
as given in (1.12.1) for P (resp. P’). Let X' o> C' (resp. X5 Cb) be the
extremal nbd obtained from D (resp. D' )asin (1.12). Let nt = z[D,d]: X' o
X . Since D’ has order d’ globally and also at P’, #"* D’ has order d’ on X"
because 7' is étale over X — {P} (1.12.1). Hence X'=x'[2"D",d'1=Xx" Xy
X' > C'=C"x, C’ is an extremal nbd. By (1.12.1), C" is a Galois p, x p,-
cover of P! with dd’ irreducible components such that each component meets
d — 1 (resp. d' — 1) other components at every point above P (resp. P').
Thus C' contains a cycle of P’s and H l(@’C,) # 0, which contradicts (1.3(1)).
Hence X > C has at most 1 imprimitive point, and the last assertion follows
from (1.12.1). O

Let X O C be an extremal nbd and D (C C) an arbitrary reduced curve.
Let grOD @ be wy ® @, modulo the maximal subsheaf of finite length (which
is compatible with the definition in (2.2)).

(1.14) Proposition. Let X D C be an extremal nbd. Then
(i) grOD w ~ &, (—1) for each irreducible component D (=~ P') of C, and
(i) if C(1),...,C(r) are the irreducible components of C, then
0 0
g 0 =~ @ B @-
1<i<r

Proof. (i) Let m € N be such that mK, is a Cartier divisor. Then w?}’" —

@(mK,) ® @, induces (0, ® 7)%" — (g5 0)®" < &O,(mK,). Thus
deggr(l’) @ < 0 by (K,-D) < 0. On the other hand, one has Hl(grg w) =0 by

(1.2.1), whence grOD w=0,(-1).
(ii) By construction, we have an injection

0 0
grco— P Blcu) @
1<€i<r
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whose cokernel F is of finite length. Since H 1(gr(é w) =0 (1.2.1), we have
0< x(grg w) = —length(F) by (i). Thus F=0. O

By (1.14(ii)), we have

(1.15) Corollary. Let X > C be an extremal nbd such that two irreducible
components of C meet at P. Then P has index > 1.

(1.16) Corollary. Let X D C ~ P' be an extremal nbd and P an Imprimitive
point. Then P has subindex > 1.

Indeed, we immediately see (1.16) by applying (1.15) to the splitting cover
of X O C associated to P.

la (APPENDIX la). RESULTS ON 3-FOLD TERMINAL SINGULARITIES

In Appendix la, we list only some of the necessary results and definitions on
3-fold terminal singularities for convenience of quotation. We refer the reader
to [Mr3], or [R4] for more polished treatments.

We start by quoting a general

(la.1) Theorem ([Fl, E12, SB]). Canonical { hence terminal) singularities are
rational in all dimensions.

Let (X,P) be a 3-fold terminal singularity of index m > 1, and let
' (X ",P”) — (X, P) be the canonical cover, which is a Galois u, -cover.

Then (X ",P”) is a 3-fold terminal singularity of index 1 [R1, (3.1)], and the
B,-action on X - {P”} is free because the singularity of (X, P) is isolated.
We will fix the meaning of these symbols.

The essential result is

(1a.2) Definition-Theorem (Reid [R1]). 4 3-fold hypersurface singularity
(Y,Q) is a cDV point if a general hyperplane section H through Q has at
most a rational double point at Q . Depending on the type of H, (Y, Q) is said
to be of type cA, cD, or cE. Then

(i) the canonical cover (X*, P') introduced above is an isolated cDV point.
Depending on the type of (Y”,P”) , (X, P) is said to be of type cA,
c¢D, or cE, and

(i) a ¢DV point (Y, Q) is a canonical singularity, and if it is isolated then
it is a terminal singularity.

We note that (X, P) is of cA type iff (X*, P") is smooth (cA, type) or the
quadratic part of the defining equation of the normal hypersurface singularity
0.4 ! , P") has rank > 2 as a quadratic form.

From now on we assume that m > 1. Then the g, -action on (X | P“) is
to be analyzed. We fix a character y generating X (g, ) = Hom(u,,, C*) = z, .
For a p,-semi-invariant v, we write as wtv =a (mod m) if g(v)= x(g)*-v
for all g € pu,, . For a sequence of semi-invariants v = (v, ..., v,), we write as
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wtv = (a,,...,a,) (mod m) if wtv, = a, (mod m) for all /. (We note that
x will be chosen to be an ¢-character (2.5) in the text.)
The combinatorially hardest cA,-singularity is analyzed by

(1a.3) Theorem (Danilov [Da], Morrison and Stevens [MS]). If (X*, P*) is
smooth, it is p, -isomorphic to (x-space, 0) such that

wtx =(a,b, —a) (modm)

for some a,b € Z prime to m. Conversely (x-space, 0)/u,, for every such
action is terminal.

Other cases are combinatorially easier, though one has to take the defining
equation into account.

(1a.4) .Theorem ([Mr3, Theorems 12, 23, 25]). If (X°,P*) is singular, it is
B,,-isomorphic to a hypersurface ¢ =0 in (x-space, 0) such that

(i) wt(x,¢)=(a.b, —a,0,0) (modm), or
(i) m=4, and wt(x,¢) = (a,b, —a,2,2) (modm) for some a,b €Z
prime to m.

We introduce the following notion to give a unified treatment of these three
cases in (1a.3) and (la.4).

(1a.5) Definition-Corollary. Let us consider p, -equivariant embeddings

4

eX:(X:,P)———»{¢> 0} C (x-space,0) =(Z,,0)

such that x = (x,, ...,

(mod m) for some i if (X°,P®) is smooth. We call such x an ¢-coordinate
system and ¢ € ”{x} an ¢-equation of (X, P). For an {-coordinate system

x, we call the set of points in ,i at which the p, -action is not free the fixed
axis and denote it by F, . Then

x,) and ¢ are p_-semi-invariants and wtx; = 0

() given an (-coordinate system x, F_ is the x.-axis for some i. Thus
the name of fixed axis is justified, and
(i1) given two C-coordinate systems x and y , there exists a p, -isomorphism

(2t 0 = (=10

cx.y.( )

such that c, vy € =€ and hence c y(F ) = F,. Thus the fixed axis
may be denoted szmply by F without causing confuszon whence

(ii1) given an f-coordinate system x and an f-equation ¢, the multiplicity
of 0 in the equation ¢| o = 0 makes sense and is independent of choice

of x and ¢. We call it the axial multiplicity of (X, P).

We note that this axial multiplicity coincides with Morrison’s weight [Mrr2]
when the singularity is not “exceptional,” that is if we are not in case (1a.4(ii)).
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Proof. Indeed (i) follows from (1a.3) and (1a.4) because there exists exactly one
i such that wtx; is not prime to m, and (iii) immediately follows from (i) and
(ii). Let x and y be two f-coordinate systems. Then modulo permutation of
y;’s, we may assume that wtx = wty (mod m) and that wtx, = wty, =0

(mod m) if (X*, P*) is smooth. We treat two cases for (ii).

(1a.5.1) Case (X*,P%) is smooth. We see by (1a.3) that &, ,, = C{x'}
C{y},yz,y3}, and th,ere exist semi-invariant ft:nctions f=0U,.f) '
C{x'} such that f(x)+ 9, ,x, = y,, where x = (x|, x,,x;), and 4, , Iis
Kronecker’s delta. Then we set c, LX) = f(x")+(0, 0,0.x,). Since wt f, =0
(mod m) and (wtx,,m) =1 forall i €[1,3], wesee f, € (x')’ by m>1.
Since 8(f;, f;. /;)/8x'(0) # 0, we see that ¢, isa u,-isomorphism.

m

(1a.5.2) Case (X*, P*) issingular. Both x and y are minimal sets of generators
of the maximal ideal of &y, ,.. Thus there exist semi-invariant functions [ =
(fis -, fy) € T{x} such that f(x) =y, in &y, p.. Then detdf/ox(0) # O,
and we set ¢, LX) = flx). It is clear that this is a
u,,-isomorphism. 0O

By (1a.3) and [Mr3, Theorems 12, 23, 25], we have

(la.6) Theorem. Let x and ¢ be an £-coordinate system and an f(-equation
of (X, P). Then modulo permutation of x;’s we may assume that

(%) (wtx,,m)=1 (i€[l,3]), wtx x; =0, wig = wix,(m),

and we have two cases: (1) wto =0 (m), or (i) m=4 and wtp =2 (4).
Assuming ¢ € (x)2 , we have one of the following.
(i) Case wtop=0 (m).
(ia) P isa cA-point, and up to p,-change of ¢-coordinate system and mul-
tiplication of ¢ by invariant units, we have

¢ =x,X, +f(x2m VX))

(ib) m=3, P isacD-point, wtx = %(1,1,2,0) (mod 3) modulo permu-
tation, and x42 and x33 must appear in ¢ (i.e. 82¢/8x42(0) #0 and
9°¢/9x,°(0) # 0).

(ic) m=2, PisacA, cD, or cEs-point, wtx =(1,1,1,0) (mod 2) (cf
[Mr3, Theorems 23, 25] for details) .

(i) Case m=4 and wt¢ =2 (4). P isa cA-point, wtx = +(1,1,3,2)
(mod 4) modulo permutation of x,’s, and then x32 must appear in ¢

(ie. 3°9/3x,7(0) # 0).

We note that (la.6) is only a necessary condition. Sufficient conditions are
found in [Mr3, Remarks 12.1, 23.1, 25.1] and [KSB]. We quote only what we
need (cf. (10.7)-(10.9)).
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(la.7) Theorem. Let pu, act diagonally on x-space with x = (x, ... ,x,) and
@€ ()c)2 a p,,-semi-invariant so that (wtx,,m)=1 for i € [1,3] and wtx, =
wto (m). Let (X,P)=({¢=0},0)/n,,. Then
(i) ([KSB, (6.7)] cf also (10.7)-(10.9)) if wtx, = 0 (m) and the
quadratic part g of ¢(x,,x,,x;,0) has rank > 2 as a quadratic form
and if (X, P) has an isolated singularity, then (X, P) is terminal and
of index m, and
(ii) ({Mr3, Remark 12.1]) if m =4 and wt(x,¢)=+(1,1,3,2,2) mod 4
and if ¢ = x,x, + x32 +x,”""" (n € N), then (X,P) is a terminal
singularity of index 4 as in (la.6(ii)).

Idea of proof. Since (ii) is stated in [Mr3, Remark 12.11], we only comment on
how to reduce (i) to a result in [KSB, (6.7)].

First we show, modulo permutation of x,, x,, and x; and pu, -change of
X,X,Xx;-space, g(x,,x,,0,0)=x x, in two cases.

Case 1. m = 2: Since wtx, =1 (2) for i/ € [1,3], we may assume g =
X, X, +/1x32 for some A € C modulo a linear change of x,, x,, and x,, which
is a p, -change of coordinates.

Case2. m > 2: Since (wtx,,m)=1 for i €[l, 3], we see no xl.?' appear
in g and that at most two of x,x,, X,X;, and x;x, appear in g. Modulo a
permutation of X, X,,and x;, we may write g = ux, X, +vx,x, (u,v€C,
u # 0). We note that wtx, = wtx; if v #0. Thus (x,x,,x;) = (x;,X,, X;)
with X, = ux, + vx; isa p,-change of coordinates, and g(X) = x,X, .

Then one can show that one can write
m
B(x,, Xy, X3, X,) = X, X%, + f(x;, x,)
modulo a g, -change of coordinates by approximation for some convergent

power series f [Al]. Now [KSB, (6.7)] shows that (X, P) is a terminal singu-
larity of index m. O

1b (APPENDIX 1b). DEFORMATION OF EXTREMAL NBDS

In Appendix 1b, we will study how to construct a small deformation of an
extremal nbd and obtain a nearby extremal nbd from it in three steps: local
process, local-to-global process, and global process. We should note that only
the local description (1b.3) is needed for many arguments in the text but the
explicit construction in (1b.8.1) is also needed for some delicate arguments (e.g.
in §9). The formal scheme case is treated by [Wa).

(1b.1) Let X D C =~ P' be an extremal nbd. Let P € C be a point of
X of index m and =': (X*, P") — (X.P) the canonical cover and c' =
n""l(C)red. Fix an embedding (X, P) C ((CN,P) and a u,-equivariant em-
bedding (X", P') c (C*,0).
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The following are the three steps to construct a small deformation of extremal
nbd X O C ~P' with parameter A.

(L) Construct a small embedded u, -equivariant deformation of the germs

x*, P> (C", PH
in ((34,P) which, if m > 1, satisfies (1b.3(i)) and one of (1b.3(ii)), (1b.5(ii'))
or (1b.5(ii")).

As the p,_-quotients, one has a small embedded deformation X, = C, 2
of (X,P)>C in ((CN,P) = ((C4,P)/um with only terminal singularities, by
(1b.3) and (1b.5) if m > 1, and by Elkik’s Theorem [Ell] if m = 1. Then

(LG) extend the deformation X, , > Cp ; of the germs (X,P) D (C,P) to
a deformation X, O C; of X D C, which is trivial outside a small nbd of P
(1b.8).

If X, D C, is a small deformation of X D C ~ P! , then

(G) X, is a modification of some Stein variety if 0 < |[A] < 1 by Grauert’s
theorem [Gra]. Thus we have a proper bimeromorphic morphism f,: X; — Y,
so that C, is a part of the exceptional set E,, and f; is the total contraction
of the extremal nbd X, D E, by (1b.10). Thus by (1.5), the germ X; > C, of
X; > C, along C, is an extremal nbd if 0 < 4| < 1.

We call such an extremal nbd a nearby extremal nbd of X > C.

(1b.2) Let (X,0) be a 3-fold terminal singularity of index m > 1, and (Xtj ,0)
the u,-canonical cover. Let (x) = (x,,...,x,) and ¢ be an
£-coordinate system and an {-equation of (X, P), and let F * c x-space be
the fixed axis (1a.5).
(1b.3) Proposition. Let v be a semi-invariant € (x)C{x} such that wty =
wto (m) and {¢ = w = 0} is a surface. Let Xg ={¢+4iy =0}, (X,,0) =
(Xg,O)/um (AeC), S"=Sing{¢ = w =0}, and let S,F, C X, the images of
S Fnx f respectively. Assume that

(i) S'nF'c {0}, and

(ii) (X,,0) is terminal if 0 < |A| < 1.
For € >0 and A€ C suchthat 1 > ¢ > |A|, let

X, , ={(x)eX]llx| <eVi} and X, =X [u,.

Then X, . has only terminal singularities ; X, .- (SUF,) is smooth; X, .N
S — F, are Gorenstein points; X, ,NF, —(SU{0}) consists of cyclic quotient
singular points of the same index m' which is a factor of m; 0 is a point of
index m.

We note that m' # m in (1b.3) only if (X,P) is exceptional, i.e. in case
(1a.6(ii)), where m =4 and m' =2.

Remark (1b.3.1). Under the notation and assumptions of (1b.3), let (Ctj .0) C
(X” ,0) be a p, -stable reduced curve such that (C,0) = (C” ,0)/n,, 1s smooth
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and (C*,0) ,,-equivariantly deforms with (X*,0) in c* so that Cf cX f
Thenfore <1 and P, €C, , = (CfﬂX}e)/pm s X, , D C,, islocally primitive
at P, iff (Cu,Pf) is irreducible, where Pf € Cf is a point above P, .

Indeed this follows from (1.7(iii)), because (X ﬁ’s,Pf) — (X, ., P,) is the

canonical cover and (Cf , Pf) is the preimage of C;.
We recall a special case of Bertini’s Theorem.

(1b.4) Lemma (Bertini). Let ¢ and y be convergent power series in x, ...,

X, , which are prime to each other. Then {¢ + Ay = 0} N B, is smooth outside
the singular locus of {¢ =y =0}NB, if 0 < |A| < e <1, where B, = {(x) |
|x;| <& (Vi)}.

Proof. Let (x,4) = (x(t),A(?)) (Jt]| < 1) be a parametrized curve with pa-
rameter ¢ such that (x(0),4(0)) = 0 and x(¢) is a singular point of ¢ +
A(t)w =0 and A(¢) £ 0. It is enough to show that x(¢) is a singular point of
{¢ = w = 0} forall ¢t. By the hypothesis, one has

(+) Fex(O) + A0 FE(x0) =0 (el

i

From ¢(x(¢)) + A(t)w(x(¢)) = 0, one has
o dx;, dA
Z(ax +'1 )dt+EW—O’

whence (dA/dt)y(x ( )) =0 and y(x(¢)) =0 by A(¢) # const. Thus one has

d(x(t)) = w(x(¢)) =0, and ( ) above implies
rank(M ) <1
X |yox(r)
which means that x(¢) is a singular point of {¢ = y = 0} by Jacobian crite-
rion. 0O

Proof of (1b.3). We may assume wtx, = wto, wtx,x, =0 (m), (wtx,, m)
# 1, and wtx;, wtx,, wtx,; are prime t0 m (modulo a permutation of
X, ..., X,), sO that F'= x,-axis (1a.6). Since the p -action on Xt - {0} is
free, ¢/ Z 0. By (1b.4), one sees that (¢ + Ay)|;, = 0 has no multiple
roots x, such that 0 < |x,| < 1 if |4| < 1. Let ¢ € R be small enough and
B, ={(x;,....x,) | Ix,|, ..., |x,] < ¢&}. Then

(1) X}, =X} nB, is smooth in B, - S,

(2) X; ! . has only isolated rational singularities, and

(3) X; ﬂ . intersects transversally with F ' in B, - {0},
if |4 <€ << 1, where (1) follows from (1b.4), and (2) follows from [El1]. Let
ng Xn — X, , be the quotient map. Let Q” € Xf’e — {0} for A such that

A < €. If Qu ¢ F', then ni is étale at Q' and X, . 1s smooth at ng(Q")
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by (1) if Q’i & F tust , and has Gorenstein terminal singularity at ni(Q") by
(2)if @f € §* - F'. If Q* € F* - {0}, then x,(Q") = x,(Q") = x,;(Q") = 0
and x,, x,, x, form a GQ,-semi-invariant coordinate system for (Xﬁ’E,Q”)
by (3), where Go» (C m,,) is the stabilizer at Q" and |Gps| = (wtx,,m). Since
wtx;x, =0 (m) and wtx,, wtx,, wtx, are prime to m, X, , has at most
a terminal cyclic quotient singularity at nﬁ(Qu) by (la.3). O

(1b.5) Corollary. In (1b.3) above, (ii) follows from either one of the following:

(i) (6. 9) 2 (x,.....x,)°,
(i") (¢, w) C (X, ... ,x4)2, wtx, =0 (m), (¢ +Ay)(x;,x,,x;,0) has a
quadratic part of rank > 2 in x,x,,x; if 0<|A| < 1.

Proof. By (1a.3), (ii') implies (ii). Let us assume (ii"). By (1a.4(i)), (wtx;, m)
=1 for 7 € {1,3]. Since (X,0) has an isolated singularity, (X,,0) has an
isolated singularity if [A| < 1. Then such (X,,0) is terminal by (1a.7(i)). O

(1b.6) Proposition. Let 27 D & be analytic subspaces of germ ((CN bS (Ci ,Px0)
Sfat over (Ci,O) such that C = € N ((CN x 0) C ¢V is a smooth curve. Then

there is a biholomorphic automorphism a of ((CN X Ci , P x0) over ((C/ll ,0) such
that

Olenyo=1d and a(%)=CxC;.

Proof. We choose coordinates (x,,...,xy) of ((CN , P) such that x(P) =0
and C = x,-axis. Then by flatness & C cV x(C/l1 is defined by x,—Af,(x,4) =0
(i €[2, N]) for some convergent power series f;. We set

o(x,A)=(x;, % —Afy, ... xy —Afy,4). O

Let y = (y,,...,¥y), and let (X,P) C (ty-space,0) =~ ((CN“,O) be the
germ of a pure r-dimensional analytic subspace such that X D> C = t-axis
and (SingX)NC c {P}. Then I, p/I.,* is a rank (r — 1)&, ,-module,
where I. , C &y , is the defining ideal of C in (X,P). Let (Z,P x0) C
(tyA-space, 0) ~ (CN 2 0) be the germ of an analytic subspace defined by ideal
J C C{t,y.4} such that the projection f: (2°,P x 0) — (A-line,0) is flat,
X= f_](O) ,and & D % = ti-plane. Then

) T ¢ ksl O N
AN+ +T A+ ) +T

Here and in (1b.7), ideals (e.g. (¥)) mean ideals in C{t, y, A} unless otherwise
denoted.

I p/1- P2 (isomorphism theorem).
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(1b.7) Proposition. Under the above notation and assumptions, let u =
(uy,....u,_,) be elements of the ideal (y) such that Ic,p/Ic,PZ + (W) p
is of finite length. Then for small enough o > > 0, the natural map

(t.y.A)eZ; (t,u,2);
A?(Zi§3={vm14n<y-%Cxﬁ“ﬁ: el
lul <8, |A <0 ul, |2 < &

is biholomorphic for all y,6 € R such that 0 < d € y € B, where |y| =
Max,|y,|, |u| = Max;|u |, and I is the interval (B,c).

Proof. By the natural isomorphisms

J+MW+WVNKU( v (w+u)>
2 - 2 2
Ay + () A+ () A+ +J

2
zKer( @ e p¥i—Icplcp ) .

1<i<N

one sees that J + A(y) + (y)z//l(y) + (y)2 is a free @ p-module of rank N —
r + 1. Thus it is generated by images of some [ = (f,....,fy) € J. Let
h,; € C{t,y,A} (i,j € [1,N]) be such that u, = > by, (i <r) and
fi=5,hyy, (i 2r). Since (y)/A(y) + (¥)* + (u) + (f) is of finite length,
det(h,,)(¢,0,0) is not identically zero. For arbitrary small enough a > > 0,
one sees (O (u,f)/oy)(t.y,A)#0 if a>|t| > and |y|, |4 € B, because
o(u, f
(By )(1,0,0) = det(h,;)(¢.0,0).

By the Implicit Function Theorem, y j’s are expressed as convergent power
series y; = yj(u,f) in (u) and (f) such that ¥;(0,0) = 0 depending holo-
morphically on ¢ and A suchthat a > |¢t| > f and 6> 4| f 0<d <« f. In
other words, (¢, u, f,4) forms a coordinate system for the open set {(¢,y,4) |
B<ltl<a, |vl<y, |2 <3} of C¥*' if 0 <J « y < B. Imposing extra
conditions f =0 and |u| < and making & smaller, we see (1b.7). O

(1b.8) Definition. Let X O C be the germ of a normal analytic space X along
a smooth irreducible compact curve C such that C ¢ Sing X . Let P € C and
(X, P) C (ty-space,0) ~ (C¥*',0) an embedding of a germ so that (C, P) is
the t-axis, where y = (y,,...,yy). Let X; O C, be a deformation of pair
X > C of germs at P. By (1b.6), we may embed X, > C, as (C"™' x €],

P x 0) > Z D % = ti-plane which are flat over ((Ci ,0).
Let wu=(u,,...,u,_,) beelements of (y)C{r,y,A} such that

|
(1b.8.1) IC/IC2 + (u)@y 1s of finite length at P,

where I is the sheaf of defining ideals of C in X. Let u(-,¢) = (u,(-,¢c), ...,
u _ . (-,c)) € C{t, y} be the restrictions of u to A=c.

r—1
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Then applying (1b.7) to both 2 and the trivial deformation (X ><C/l1 , Px0) C
(tyi-space, 0), we see that

ey (ﬂ,a)xyx&)ZX c! ((ﬂ,a)xyxé)
p < U< XTI a0y <6
such that
plu(-.0)=u (ie[l,r-11), plp=1id: € — tA-plane
by the identification
?/<(ﬂ'o‘)x”x‘5>=?/((ﬂ'°‘)x7’x‘5) ifl>a>f>7>»6>0.
u u(-,0)
Thusif 1> >a> >y > d> 0, one may patch
pe [O,a)xyxé) d (X xC! ((ﬁ,a')xyx5>
( u<é and (X< T a0 <o

via the above isomorphism to get a deformation of X ([0 2 32? ) which is trivial

on X((uﬂ( "0 :67) , where

V<o

for an interval /. Thus replacing X with a smaller nbd of C, we can extend
this deformation to the deformation X, > C, = C of X O C. For simplicity
of notation, we set (omitting a, #, 7, &)

X(IX/> {(t.y)e(X.P)|ltlel. |y <7y, [v| <&}

Z (u)=Xx {A| 4| <8} - (X xC}) ([Ol;({flox) i§5> > E,(u),

_ [0,a) xyxé
o) = (102 X720 ) 52 qu),

mld(u) ou((u) ( ) o %mld( ) and
l(u) oug( ( ) D g;u( )»
where 2 (u). . ll(u) are defined in the obvious way.

We note that X 2C,=C1s obtained by patching

_ [0.a)xy _y_x[ [0.B1xy
Xl,in_Xl<u(.'l)<§> and X/lout X X(u(’0)<5>

e[ Ba)xy = o (B.a)xy
”*‘X< M)«s) X( u(-, 0)<5>
such that /’z u,(-.0) =u,(-,4) (Gell,r-1},on X =X aNX

via

A.mid A.out?
and C,;,....C, d are defined similarly.
We call 2” () D F(u) (or X, D C,) the twisted extension of 2 > % (or
(X/I,P)D(C/1 P)) by u
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(1b.8.2) Corollary. Let X D> C be the germ of a normal analytic space along
a complete smooth irreducible curve such that C ¢ Sing X . Let P € C. Then
every deformation of germs (X, P) D (C, P) can be extended to a deformation
of X D C so that the deformation is trivial outside some small nbd of P .

(1b.8.3) Propesition. Let the notation and assumptions be as in (1b.8.1). Let
I (resp. 1,) be the sheaf of defining ideals of C (resp. C,) in X (resp. X)),
and let 1? be the symbolic square of I. Then

(i) the closed subscheme of X defined by I @ deforms in a flat family as
subschemes defined by (1)), iff x(L,/(1)®) = x(1/1'®) for each A > 0O such
that |A| <« 1. If so, then (1(2))1 = (Il)(z) ( hence denoted by I/{Z)) and Il/Ijz)
is a flat family of locally free sheaves on C, over ((C; ,0), and

(ii) assume that the closed subscheme defined by I @ deforms and that I /1 @)
contains an invertible subsheaf L such that L, is generated by (the image
of ) u,(-,0). Then L deforms as invertible subsheaf L, of IA/I/{Z) and L, is
generated at P, (= P) by u,(-,4).

Proof. (1) The only-if part is the invariance of y in a flat family. Assume that
x(L/I)P) = x(I/1P) if 0 < |A] < 1. Let J be the sheaf of defining ideals
of &,(«) in Z,(u). Then J&, =1, JP@, is a subsheaf of I'” such that

all
len1?/J%¢, < oo, and

IOy, =1, and JPo, =(1)? ifo<i<1.

Then F = J/J® is flat over (C},0) and F, = F® &y = L,/(I,)? if 0 <
|A| < 1, and we have a surjection F, - 1/1(2) . By x(Il/(Il)(z)) = x(I/I(Z)) , we
see that Ker[F, — I/ 2 )] is a sheaf supported on a finite set such that

x(Ker[Fy — I/17]) = x(Fy) = x(I/1?) = x(F,) - x(1, (1)) =0,
whence F, ~ 1/1(2) , J(Z)é’x =1® , and (i) is proved.
(i) Since L and @u,(-,0) patch on some X (ff%))’éfs) , the trivial extension
of L on 2 (u) and Gu, on Z; (u) patch on 2, ,,(u) because p*ul(-,O) =
U . |

(1b.9) Proposition. Let X be an analytic space and C a compact subvariety
which is a smooth irreducible curve. Then there is an open neighborhood V of
C in X and an effective Cartier divisor E on V such that every irreducible
compact subvariety C' in V with dimension > 0 is a curve and (C' -E) > 0.

Proof. Let ¢ > 6 > 0. Foreach P € C, let (NJP be a neighborhood of P
in X such that (~]P is identified with an analytic set of D, x DEN such that
C p = l~/P NC and P are equal to D, x 0 and 0 x O, respectively, where
D,={zeC||z|<e}. Let U,=U,nND,xD;" and C,=D;x0c U,NC.
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Since C =|J, C, and C is compact, there are finitely many C,’s covering C.

We use the notation U,, U,, C,, C,, P, (i=1,...,r) for these (cf. (1b.9.1)).

I

In D, x D," containing U,, the closed set C, x (D," — D, /2N) is compact and
disjoint from C ;. Hence in |J (~J,. , U_C"i X (5;V - D;\/Iz) is compact and disjoint
from C. Thus there is an open neighborhood V' C |JU, of C such that V' is
disjoint from U?i X (E;V—D;/lz) . In particular (VﬂUi)ﬂ—C_i xDJN C ?i xDJ/ZN
for all i. Since D(;/ZN cC DJN , Vn U,) ﬂﬁfi X D(;N) is compact for all 7.
We note that the first projections f;: U, — C; are not necessarily compatible
with each other.

N

ST

(1b.9.1) v, { © i

By replacing V' with a smaller open neighborhood of C, one may assume
that V C Ufi_l(Ci), and that E, = fi_l(P[) NV is closed in V' and hence
an effective Cartier divisor. Let E=E +---+E . Let C " be an irreducible
compact subvariety in ¥ . Then (C'N u)n fl.'l (?i) is closed in the compact
set (VNU)N(C,xD,") hence is compact. Thus the induced map f: C, — C,
is proper for all i, where C; =(C'n Uu)n fi-l(Ci) . Since fibers of ﬂ lie in
Dé/ZN and compact, f: must be finite. Thus dimC’' = | and (C'-Ei) >0
by C'=U C; and jj is open and proper. Let j be such that C;. # . Then
f,(C}) = C; by connectedness of C; and (E;-C') = (f}."l(Pj)-C') > 0. Hence
(E-C')Z(EJ-C')>O. 0

(1b.10) Corollary. Under the notation and assumptions of (1b.9), assume that
there is a line bundle L on X such that (L-C) > 0. Then there is an open
neighborhood W of C in X such that every irreducible compact subvariety C'
in W with dimension >0 is a curve and (L-C')> 0.

Proof. Let V and E be as in (1b.9). By [Go, Théoreme 4.11.1], one has

. 2 2
1 H ~H VL)~ 7.
Uoplelr‘lnDC (U’ZU) (C C) z
Thus on a sufficiently small neighborhood W of C, (L-C)E,, and LW®(E'C)
induce the same class in HZ(W,ZW) , where E,, and L, are restrictions of E
and L to W, respectively. Hence for C' ¢ W , one has (LW-C') =(L-C")>0
from (E, -C)=(E-C')>0. O
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2. NUMERICAL INVARIANTS i,(n), w,(0), AND w;(n)

The main purpose of this section is to introduce numerical invariants which
will be the main tools of our study.
We will use the results and definitions in §1a on 3-fold terminal singularities.

(2.1) Let X be an analytic normal Cohen-Macaulay 3-fold and C C X a
reduced curve such that K, is Q-Cartier and no irreducible component of C
is contained in the singular locus of X .

(2.2) Definition. For coherent &, -modules & > 9, we say that J is sat-
urated in &* (or, S-saturated) iff ¥/ has no &,-submodule of finite
length > 0. For each 9 C .%°, there is a smallest .%-saturated submod-
ule 77 containing .7, and one sees that Supp(?/7") is 0-dimensional and
len, 7’ /9 < oo atall P € X. We call such 77 the #-saturation of 7 and
denote it by Sat_ 7 .

Let I (resp. I(C") ) be the sheaf of ideals defining C in X (resp. the symbolic
nth power of I, thatis Sat, 1."). For a coherent &,-module ., let F".% =

Sat, I."% = Sat, I (n>0) and grlh(F) = F"F/F"™'% . Let grl. @ =
gro(@y) and grpw =gre(w,). We note that gr@ = D,50 8¢ 7 is naturally
a graded & -algebra and gr.(¥) = @, 81¢() is naturally a graded gr&-
module, and one has a natural homomorphism

Ve(P): S (gre O) 8 gre(F) m we(F) (2 ),

where S"(grlc @) denotes the symmetric nth power of ngC .
It is easy to see the following

(2.2.1) Lemma. Via the natural map Qi, — W, , there is a map
gréé’ X grlcﬁ X QIC -~ Q; QO — grgw,

XXy Xzdur— zdx ANdy ANdu

which induces a homomorphism /\2(gr1C g)® Qlc — gr% .
Thus one can define homomorphisms
2, 1 10
o N(gro @) — Zomg, Qe 810 0),
a, =70(0y): S" (g1 O) — g1 & (n22).

We denote by i,(n) the length len, Cokera, of Cokera, at P € C. We
note that i,(n) €Z, (P € C) and that i,(n)=0 if X and C are smooth at
P.

Let m € N be such that mK, is a Cartier divisor, and let

-+

By: (ere 0)®" = 0" © .,

Bn=y2(wx):gr%w@S"(grlcé’)—»gr'éw (n>1)
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be the natural homomorphisms, where w%") is the double dual of w?m .

We denote by wp(n) for n > 1 (resp. wp(0)) len, Cokerp,
(resp. (len, Coker §;)/m € Q), and define

wh(n) = (”’2“1> ip(1) = wy(n) forn>1.

We note that w,(n) € Z_, wy(n) € Z (P € C), and wyp(n) = wy(n) =0
(n2>1) if X and C are smooth at P. We also note that w,(0) is independent
of the choice of m if C is smooth at P.

(2.3) From the above constructions, one can see

(2.3.1) (Formulae) If C ~P', then

deggr, @ = 2+deggrgw— > ip(1),
P
deggré@’:%n(n+1)deggrlcé"+2ip(n) (n>2),
P
(g C)=deggriw+ > w,(0), and
P

deggry w = L(n+ 1)(n +2) deggro. w + n(n + 1) - dowp(m)  (n>1).
P

(2.3.2) (Formulae) If X D C ~ P' is an extremal nbd, then grgw ~0.(-1),
and |

deggre @ =1-Y ip(1),

P
deggr'éﬁ:%n(n+1)deggrlcé’+2ip(n) (n>2),
P
(@y-C)=—14>_w,(0), and
P

deggrew=4m+ Y(n-2)=> wy(n) (n>1).
P

(2.3.3) (Necessary conditions) If X O C =~ P' is an extremal nbd, then

Y wp(0) <1,

3

Z deggr'cé’z - Z (i+1) forallmeN,
1<i<n 1<i<n

> deggr @ > — Y (i+1) forallneN,
1<i<n 1<i<n

and when n = 1, these reduce to

Y ip(1)<3 and > wy() <.
P P
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Proof of (2.3). Indeed (2.3.1) follows immediately from the constructions of
o, a,, B,,and B, . By (1.14(i)), we have grOCw =~ @.(—1), hence the asser-
tions in (2.3.2) follow. For (2.3.3), one has H'(@,/IV*")) = H' (w,/F" ' w))
=0 by (1.2.1). Then H‘(IC/I(C"“)) = 0 from the exact sequence

01 /18 w o, 1) S @ 0
and H O(ﬁx /1 é"“)) -» H O(ﬁc) = C. Then from the exact sequences:

I
0-grn@ — I /10 S 1 10 -0 (n>1),

I
O—grlrow—w,/F o, —w,/Fo,—-0 (n20),

one has
n .
C/I("+l ZX ng and x(a)X/F"+1wX Zx(gr’c w)
i=0
Now (2.3.3) follows from these. 0O

The proof shows that if deg gr‘é@’ < —d -

(2.3.4) Remark. Let n € Z_.
1 (resp. deggr‘éa) < -d-1) for d € {1,n], then gr’éé’ O-(—1
(resp gr‘éw o~ é’c(—l)e @+1) ) for d € [1,n] and H (gr";'ﬁ) = 0 (resp.
H' (g w)=0).

(2.4) In the remainder of this section, we assume that (X, P) is a germ of a
3-fold analytic terminal singularity of index m and C C (X, P) is a smooth
curve such that P has subindex » and splitting degree s (1.7). We note
that m =m-s. Let (X”,Pu) — (X, P) be the canonical u, -cover and Cc'=
(Cxy Xu)red - (X”,P"). Then (C”,P”) has s irreducible components (1.7),
and C' is not contained in the singular locus of X ‘)

(2.5) Definition. Let (C r P") be an irreducible component of the normaliza-
tion of one of the irreducible components C*(i) (i €{1,s]) of (C'i , P”). Then
u,, naturally acts on (x*, P"y and (C", P"), and so does B on (CT,PT) (1.7),
and let

T ﬁxu Pt ““ﬁcf pt

be the natural map. Since (X, P) and (C, P) are normal, one has

é’X,P = (ﬁxﬁ,m)“m’ and ﬁc_p = (é’o,p#)“ﬁ' .

Since u,, acts freely on X' - {P”} , so does it on C*— {P"} and so does p on
CT—{PT}. Hence &, ,, hasa uniformizing parameter ¢ (i.e. G 5y = C{t})
such that ¢ is a p,-semi-invariant, and let x be a generator of X(u,) =
Hom(pm,(C*) = Z,, such that the restriction ¥ of x to p_ is the character

associated to ¢. Hence &, , = C{tm} , and we call such ¢ an ¢-coordinate of
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(C.P),and x an {-character of (C,P). We note that ¥ = y modmZ, is
determined independent of choice of £-coordinate ¢.

For a semi-invariant v #0, let C “wt v (or simply wtv if there is no danger
of confusion) be n € Z,, such that ny (or x" if written multiplicatively) is the
character associated to v. We note that changing ¢-character y to axy (a € Z,
is a unit such that a = 1 mod 77 ) changes Cl-wtv to a ' Cl-wiv.

If C' dominates C“(i) , then for z € @y, py, let

C*(i)-ord(z) = sup{n € Z, | t(z) € "C{¢}}.

If z is a p,-semi-invariant, then C'i)-ord(z) = C”(j)-ord(z) forall i, j,
since g, acts transitively on C“(i)’s. In this case, we may write C*(i)-ord(z)
as C”-ord(z) or even as ord(z), if it does not cause confusion.

For a p, -semi-invariant z € &), ,,, we define Cn-ow(z) (or ow(z)) as
ow(z) = (ord(z),wt(z)) € (Z,_ U {oo}) x Z,,. We note that ord(z) = wt(z)
(mod m) if ord(z) < oc. We define semigroups

(
ord(Cn) ={ord(w) |w € G, py — Iy ps} CZ,, and
ow(C*) = {ow(W) | W €Oy py — Iy pu} C T, X Z,,.

Assume that g, acts on a C-algebra R via C-algebra automorphisms, and
that M is a p, - R-module. Let n € Z,. Let C[n] be the l1-dimensional
C-vector space on which u_ acts by ny, where x is an ¢-character of (C, P),
and let M([n] = M ®_ C[n] be the R-module with the naturally induced
u,,-action. Let

M{n} = Hom“m(C[n],M)
={xeM|yx)=yx() 'xforall ye B}
Then M{n} = M{[-n], is an R{O}-module.

(2.6) Definition. Let (x) be an ¢-coordinate system for (X, P) (la.5). We
note that wt(x) up to permutation does not depend on choice of (x). Let
a, = ord(x;) (i € [1,4], 0 < a; < o0). We say that (x) is minimal if q,
is the smallest positive integer such that (a,, wtx;) € ow(C " (in particular
a; < oo) forall i. Thus ord(x) and ow(x) up to permutation do not depend
on choice of minimal (x). We say that (x) and an ¢-coordinate ¢ of (C,P)
are normalized (-coordinates if (x) is minimal and 7(x,) = t* for all i (cf.
(2.7(iv))). Then we have

(2.7) Lemma. Let (X,P)D> C beasin (2.4), and y an £-character. Then
(i) if (x) and t are an £-coordinate system of (X, P) and an (-coordinate
of (C,P), then there exists an {-coordinate system (y) of (X, P) such that

ow(y,) =ow(x,) and t(y)=1" foralli,

[
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(ii) for (y) and t asin (i), let A= {i|ord(y;) # co}. Then y;, (i € A)
give an embedding (C*,P") c ((CA,O) such that the images of s irreducible
components are parametrized by t as

i d(yi
()™ (gen,/um=n).

ow induces an isomorphism of semigroups
ow - {funclions #0 on (C*, P") which are }N
)

) ' = ow(CY),
monomials in y with coefficients 1

(iil) (m,0) € ow(Cu), and (u,v) e ow(C”) Jor all large enough u € N and
all v e L, suchthat u=v (mod m), and

(iv) (X, P) D> C have normalized ¢-coordinates.
Proof. Since t is p_-equivariant, we have 1(x;) = % g, for some units g, €
C{t™}. Since
- ﬁcf ,pt) = (C{tm}’

we can choose units 4; € @, , such that 7(h;) = g, forall /. Then it is enough

M@y , — Gy py) =M@, ,

to take y, = x,.hi_l for (i). Since u,, acts transitively on irreducible compo-
nents of C*, the first assertion of (i1) follows easily. Whence ow, is injective,
and we see that, for each u, -semi-invariant u, there exists a monomial v in y
such that ow(u) = ow(v) . Hence follows (ii). As for (iii), (7,0) € ow(C”) fol-
lows from & , = C{t™}, and we see (wt y;,»m) =1 for some i € A given
in (ii) because the g, -actionon C *_{P"} is free. Whence the second assertion
follows because Z(7,0) + Z, ow(y;) contains (u,v) given in (iii). For (iv),
let (x) and ¢ be as in (i). For each i, let f, € C{x} be a p, -semi-invariant
with wt(f;) = wt(x;) (m), minimizing ord(f;). For some suitable ¢ € C,
(x”) =(x,+e&f,,....,x,+¢&f;) is an L-coordinate system such that ord(xu) is
the smallest. Then (i) gives normalized ¢-coordinates. O

(2.8) Definition. Under the notation and assumptions of (2.4),let z = (x,w) €
Z, X Z,, be such that x =w (mod m).
(i) We define U(z), R(w) € Z as
U(z) = min{k € Z | k(71,0) — z € ow(C")}
=1+ max{k € Z | k(7,0) — z ¢ ow(C"}, and
Rw)=min{fueZ | (u, ~w)€ ow(C”)}.

We may write R(w) as R(z). These are well defined since second projection
ow(Cu) — Z,, is surjective and the equality for U(z) follows by (7,0) €
ow(C n) (2.7(iii)). For a u, -semi-invariant v, we denote (R(wtv), —wtv) €
ow(C") by Clow*(v) (or ow"(v)),
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(i) we see m - U(z) = x + R(z) and U(z+ (m,0)) = U(z) + 1. We may
write U(x,x mod m) as U(x) for x € Z. In particular,
(iii) if P is a primitive point, then s = 1 and # = m, whence U(z) and
R(z) reduce to
U(x) = min{k € Z | mk — x € ord(C")}
=1+ max{k € Z | mk — x € ord(C")},
R(x) = R(x mod m) = min{u € ord(C*) | u = —x (m)},
with the properties m - U(x)=x+ R{x), Ux+m)=U(x)+ 1.
(2.9) Lemma. One has
Ié") = (I(C'f,)){o} and F'w, = (F"wX,,){O},
whence

grnc(@)x) = grgu (ﬁxu){o} and grnc(wx) = grncn(wxu){o} .

Proof . Since (I%)) 0 =CFxpN 1%, one sees that (1) (oy s a primary ideal
associated to C. Since X' is étale over X at general points of C', Ié") =
I(")

(Igf,)){o} at general points of C', whence Ié") = (I )0 - Since wy = (@yy) g

(via the trace map), the exact sequence
0— F'wyy — 0y — 8@y, — 0
gives the exact sequence

0= (F'oy,) gy = @y — (&8s @xa) (o — 0.

Since X* is étale over X at general points of C*, one has Ié")w = (F "w x+){0}
at general points of C. Since w,/(F"w,,) (o is torsion-free, one has F "w, =

(F'og)y- O

Let x be an {-coordinate system and ¢ an {-equation (1a.5).
(2.10) Ceorollary. One has wy, ® Oy, ~ O,[k], and wp(0) = R(k)/m, where
k= C”-wt(x1x2x3x4/¢) .
Proof . By the residue formula, w,,®&, is an invertible &, ,,-module whose
generator is the image @ of
dx, Ndx, Ndx; Ndx,

¢

which has C'-wt = k, whence Wy ® Opy =~ Oqy[k]. We see that grg(a)) =
uC{t"}@ for some semi-invariant u € @, _pr With the minimal ord# under

the condition that wtu+k =0 (m). Hence w,(0) = R(k)/m by definition
of R(k). O

Res,
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(2.11) We introduce the following construction to compute i,(1) and w;(l)
for the terminal singularity (X, P) in (2.4).

Let x and ¢ be an £-coordinate system and an £-equation at (X, P) (1a.5),
and t an ¢-coordinate of (C, P) (2.5). We will use the symbols introduced in
(2.5) and (2.6). Let h,(t) = t(x;) € C{t} and ¢, = d¢/0x;, (i €[1,4]). By
symmetry among X, , ..., Xx,, we will assume that 4,(7) #0.

Let (X*, P%) c (2" P* = (x,x,x,x,-space,0) be an embedding by the ¢-
coordinate system x. Let (CT,PT) C (ZT,PT) = (y,¥,¥;V,-space, 0) be the
embedding (¢) — (hl(t),hz(t),h3(l),t). Then (y) = (¥,,¥,, Y5, h,(y,)) de-
fines a morphism (ZT , PT) — (Zu , P”) fitting in the commutative diagram

Z'>xt> ¢t
! i |
Z'> x' > ¢
where X' c Z' is defined by w(y) = ¢(y,, v,, ¥, hy(»,) = 0.

We note that u; naturally acts on zt , X t s ct , and that c' is not con-
tained in the singular locus of X " because X' — X" is étale outside {y,=0}
and C' ={y,=y,=¥,=0}, where ¥, =y, -~ h(y,) for i=1,2,3.

Let J' (resp. JT) be the ideal defining C' in Z* (resp. ¢’ in ZT). Let
J'™ and J™™ be the symbolic nth power of J* and J T, respectively. Then
J'=(,.7,.7;), and

I~ oy, e C{1}y, ® C{1} 7,

(we identify y, =1 in O, p, ) and let
o J gt
be the natural map. For g,,g,,8; € JT/JW), let [g,.8,,81€Z, U{oco} be
the length of
2

(/TP iy g, + Cltb g, + Cltdey,

and for subsets 4,B,C C JT/JT(Z) , let
[4,B,C]=inf{[a.b.c]|a€ A, beB, ceC}.

By abuse of notation, one may denote [...,0a,...] by [...,a,...] when a €
J' (resp. [...,04,...] by [..., A4, ...] when ACJ”). We note that [*, *, ]
has semiadditivity

(¢, 8.8 + &) > min{(g,. &, 8] . (g8, &)}
because [g,.g,.8,]=ordg Ag Ng;.
(2.12) Proposition. Under the notation of (2.11), one has
ip(1) ="' - (7 — R(k) — ord(x,) + [, /" (g . /' (,]) and
wp(l) =7 - (71— 3R(k) — ord(x,) + [, J{_; . J{_13])

if ord(x,) < oo, where k = C”—wt(xlx2x3x4/¢) .
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Proof. By symmetry among X, X, , X; , One may assume

7(9,). 1(¢3) € T(¢)C{1}.
In this proof, we denote tensor products over &, (resp. &, , &y, ) by ® (resp.
i t
®, ® ).
We put o, and B, inthe commutative diagrams of natural homomorphisms

31 ®ﬂcf

(/\2 gre @’) QW R g0 @O,
l(/\Qfl)@ffz lfe,

2 1
(Neeo)o'oe —Lo oy 8,

and
0 1 8180,
(81 @) ® (8rp O) ® Oy —5  (grp 0) ® G,
lg2®?f1 lgl
1 ~ 1
W yy & g — 8l (Wyy & Fer)
where

fi: grlcﬁ QG — ngC, g,
5080 — Wct
& (gr% W)@ Ty — Wy ® O+
and f, is defined similarly to o, . Thus
m-ip(l) = Z len Coker f; — len Coker f;,
i=1,2,4

and
m - wp(1) = 2 -len Coker g, + len Coker f, — len Coker g, ,

because (C‘r , PT)

a(9) = $(y,, ¥y, ¥5. hy(y,)) modJ™®
= ¢(h +7,. hy+ T, hy+F,.h,) modJ'®
=1(¢)V, + 1(#,)V, + 1($3)¥;.
Since C' ¢ Sing X* (2.4), one has o(¢) # 0. Hence 1(¢,) # 0, and a($)/7(¢,)
is a part of a free basis of J'/J '@ Then we claim
(2.12.1) grct (Fe) = (I 177D [Clt}a(8)/7(8,).

Indeed, since a(¢) = (a(¢)/1(8,)) - 1(8,) € J'/JT® is sent to 0 in gry, (@)
and t(¢,) # 0 in &, , one sees that o(¢)/7(4,) is also sent to 0. Thus it
induces a surjective homomorphism

T jC{tyo () /1()) = erps (Fxs).

— (C, P) is of degree 1. We note
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which is an isomorphism because both are free of rank 2, and (2.12.1) is
checked. Since we have &.-module surjections

l 1
gro @ ~ (gr, @’){0} “ Jﬁ{()}
and
1 1 ; 1 !
Brew > (8o @ @ Wyy) oy = R T) iy “ iy

by (2.9) and (2.10), we can use (2.12.1) to calculate the cokernels of f; and g,
as

Coker f, ~ (J' /7" /C{t}a(J]y,) + C{t}o(8)/7(8,)),
and
Coker g, ~ (J'/7"®)/C{t}a(J}_\,) + C{t} (0 (0)/1(0))).
Hence we have
len(Coker f|) = [¢, J{no} , J{uo}] —ord(¢,),
and
len(Coker g,) = [¢,J{ﬁ_k} ,J?_k}] —ord1(¢,),

because o(¢)/t(¢,) is a part of a free basis of JT/JT(Z) .

It is clear that len Coker f, = m — 1, because C "L Cis given by t — "
One sees that the cokernel of
0
L8 w®Cn — Wy, ®' Ot — Wy ® O

has length R(k)+a,— 1 because the cokernel of g,: gr%w@ﬁc, — Wy, " Oy
has length R(k) by the proof of (2.10) and
dx, Ndx; Adx,

¢,
dy,Ndy,Nd -

Y, yj’3 Ya _ /% la))(T o o.,.

1

One sees that len Coker f, = ord(7¢,) because we have

Wy & Ot = O

as—1
=1 O,

Imf, =Ondy,Ndy; Ndy, = y, 0, o Ot =100 4, & Oy
by grlc,ﬁ =07, ®0-~y; (2.12.1). Thus one has
M ip(1) = R(k) - a,+[8.Tfg, Ty
Since lenCoker g, = R(k) as above, one also has
7 wy(1) =2 R(k) +18, T, . Jioy] = (0. T}y T3],

whence
Aowp(1) =71~ 3-R(k) —a, + 6. J}_p, Ji_)]. O
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(2.13) Definition. For b € Z,*, let
X’ = xlb‘xzbzxfsxf", where b = (b,.b,,b,.b,).

For normalized ¢-coordinates (x) and ¢, we define

(2.13.1) for b,c € Z,* such that ow(x") = ow(x%), let P(b,c) = x’ -

x, IP(b,c)] = ord(xb) €Z, if b#c¢ (o0 if b =c), and let us define
ex,(P(b,c)) € z? by ex,(P(b,c));=b,—c; (i€[l,3]). Thenallsuch P(b,c)
generate the ideal J', and

(2.13.2) P(b,c)=P(b,d) - P(c,d),

b’ [ NS

(2.13.3) Pb+b,c+cy=Pb,c)x" —P®',c)x

if bc.d.b,c €z,* satisfy ow(x") = ow(x*) = ow(x?) and ow(x?) =
CI

ow(x" ).
The following allows us to calculate [*,#,*]} in (2.11).

(2.14) Proposition. Assume that (x) and t are normalized and let us use the
notation of (2.11). Then for P asin (2.13.1), one has

3
o(P) =Y ex,(P)Y, (Y, =7,/1%),
i=1

and hence
oo ifex,(P,),ex,(P,),ex,(P,) are dependent,

[Pn’Pz'Pslz{ Z Pl - Z a;, otherwise,

i=1.2.3 i=1.2.3
Jor such P, P,, Py asin (2.13.1).

Proof. One sees

(2.15) Corollary. Under the notation and assumptions of (2.4), assume that
(X, P) issingular. Then i(1) > 1.

Proof. If m=1,then C* ~ C is smooth and the assertion follows from (2.16).
Let us assume m > 1 and choose normalized ¢-coordinates (x) and ¢ (2.7)
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and an f-equation ¢ (la.5) so that wtx, = wt¢ and wtx;x, =0 (m) by
the classification of terminal singularities (1a.5), and we will follow (2.11). By
(1a.6), we see that wtx,, wtx,, wtx, are prime to m, and treat two cases.

Case where C'-wi¢ = 0 (m). One has a, = m since (x) and ¢ are
normalized and (71,0) € ow(C”) One has

(2.15.1) - ip(1) 2 oy Tfoy - Iioy] — R(WLXS)

by (2.12). Hence we see m - ip( ) > [P, P,, ;] — R(wtx,) for suitable invari-
ant P, P,, P, in (2.13.1). Hence wt(P;) = 0 (mod m) for all i. Since
ex4(P,), ..., ex,(P;) are independent, one sees that there is a permutation
? € 6, such that ex ( ) # 0 for all i € [1,3] by expanding the deter-
minant. Thus one has monomlals v, in x such that ow(vx;) = (||P || 0),
and we have v, # 1 by wtx; #0 (m) for all i € [1,3]. Hence [|Py(l.)|| > a;

for i=1,2 and P, Y03) | > a; + R(wtx,) (2.8). By (2.14), one has

mip(1) 2 D {lIPyll — ) + 1P, 5ll — a5 — R(wixy) > 0.
i=1,2

Case where m = 4 and C'-wt¢ =2 (4). Then (4,0) € ow(C“) by (2.7(iii)),
and (4,0) € (ow(C”) - {0} + (ow(C") —{0}) by (2.7(ii)) because no x; has
wt =0 (4), whence (1,+1), (2,0),0r (2,2) € ow(C”) by m=2,4 (1.16). If
(2,0) € ow(C"), then we can repeat the same argument to get (1,+1) € ow(Ch .
If (1, £1) € ow(C"), then we have (2,2) =2 (1, £1) € ow(C*). Thus we
have (2,2) € ow(C”) anyway, and hence g, = ord x, = 2 by normalizedness.
Since x,¢ € Jig, , (2.12) implies the same formula as (2.15.1):

8 ’
=Vioy Yoy Jioy] ~ R (W‘xs)'

where we used that m = 4 = 2a, . The rest is the same as the previous case. O

(2.16) Lemma. Assume that (C” ”) is smno l-coordinate system (x) and as-
sumptions of (2.4). Then there exists notation and assumpttons of (2.4). Then
there exists an l-coordinate system (x) and an (-equation ¢ (la.5) of (X, P)
such that C" is the x,-axis and ¢ = x4'x1 mod (x, ,x2,x3) (r 20). Further-
more we have

(i) lenpn cu /Is =r,
(il) if wt¢p =0 (m) then

. _r ifm=1,
)= { [r/ml+1 ifm>1

and
(i) if m=4 and wtp =2 (4) then ip(1) =[(r +6)/4].
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Proof. We note that s = 1 and 7 = m by smoothness of C'. The first
assertion is obvious, and (i) follows from IC,(Z)/IC,Z ~ (Op/(x)) - x, =
C{x,}/(x,"). From (2.12) and the definition of [*,*,x] follows

4
. 1 w
ip(1) = m {m -R (E wtx, —wth) -1+ [x‘,'xl ,xf(mmxz,xf( txa)x3}}

i=1
4
{Z (wtx;) +r— R(wtx,) (Zwtx —wtq&)}
i=1 i=1

If m =1, then we are done because R(z) =0 for z € Z. Assume that m > 1
and wt¢ =0 (m). By (la.6), there exists g € &, such that R(wtxa(l)) =0,
R(wtxa(z)) + R(wt xam) = m, whence

Z R(wtx;) (Z wLX; —wtqb)

1<i<4 1<i<4
and
ip(1)=L{m+r—-R(wtx))} =[r/ml+1,
because R(wtx,) € [0, m). This proves (ii). Assume that m =4 and wt¢ =2
(4). By (la.6), there exists ¢ € &, such that R(wtxam) =2, R(wtxa(z)) +
R(wtxa(3)) =4, whence Zl<i<4R(wtx.) = R(¥ cicq WX, —Wig) =6, and

ip(1) = 4{r+6— R(wtx)} =[(r + 6)/4],
because R(wtx,)€[0,4). O

3. EMBEDDING DIMENSION OF (C”, P

The main purpose of this section is to prove that the pull back ct (2.4) of
C by the canonical cover (X ”,P”) — (X, P) has only planar singularities if
X 5 C ~P' is an extremal nbd. We treat primitive points and imprimitive
points separately.

Part 1. Primitive point P. The following is the main theorem.

(3.1) Theorem. If X > C ~P' is an extremal nbd and P a primitive point of
index m, then embdim,, C' <2, where (C*, P") is the pull back of C to the

canonical cover (X*, PY).

(3.2) Under the above notation and assumptions, let us choose normalized
£-coordinates (x) and ¢ (2.7), and an f-equation ¢ so that C”-wtgb =
Cﬁ-wtx4, C”—wtx2x3 = 0 (m) (la.5). (We note that we may permute X,
and x,.)

We note that embdim,, C' < 2 is equivalent to “the semigroup ord(C”) is
generated by two elements (2.7).” It is clear that ord(C”) is generated by 2 and
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the smallest odd number if 2 € ord(C ”) . So we assume that m,q,,...,a, >3
and use the notation of §2 in Part I of this section.
First we treat the exceptional terminal singularities (1a.6).

(3.3) Lemma. If m = 4 and C'-wt(¢) = 2 (4), then one has embdim, ct
<2.

Proof. One has a, =2 (4). Then a,,a,,a,,a,#0 (4) and
4 € (ord(C") — {0}) + (ord(C") — {0}) (2.7).
Whence 2 € ord(C*), and we are done by the remark in (3.2). O

(3.4) Lemma. Assume that w,(0) < 1, ip(1) < 3, and embdim,, c' > 3.
Then i,(1) =3, a, > m, a, =3, a, = m, R(a,) = 3n for some integer
n€[l,m/3) modulo permutation of x, and x,.

Proof . By normalizedness of (x) and ¢, one has a, = m and (a,a,a;,m) =
1. Since m-wy(0) = R(a,) (2.10), one has R(a,) < m by (2.3.3). From
R(a)) e ord(C*), one has R(a))€Z_a,+Z,a, (a=2 or3), because a,+a,,
a,=0 (m).
(3.4.1) We claim that a, > m and thus R(a,) € Za_ . To see this, let us assume
a, < m. Then a, < m by (a,,m) =1. Thus m = a, + R(a;) by R(a,),
a <m,and a, +R(a)=0 (m). Whence meZ, _a +Z,a,. Since a, > 1
and (m,a;)=1,onesees m¢g7Z _a, andhence a, =meZ,  a+Z,  a, . Thus
a,+a,€%Z, ,a +7%Z,_,a, by a,+a,=0 (m), whence a;,_ €Z _.a +Z,a,.
Thus a, and a, generate ord(C”), which is a contradiction, and (3.4.1) is
proved.
(3.4.2) We claim that m > 4, and that a, or a, = 3 implies (3.4) if i,(1) = 3.
First by a remark in (3.2), m > R(a,) > 3, which implies m > 4. If one has
a, > a, = 3 modulo permutation, then 2a, > a, +a,; > m, whence R(a,) = a,
(¢ =3) or R(a)) €3Z, (a=2). If R(a) = a,, then a; < m. Thus one
sees a; =m -3, a =3 (m), and hence a,,a, € Z,a, +Z,a,. Thisis a
contradiction, and R(q,) € 3Z_ . Thus (3.4.2) is proved.
(3.4.3) Let S be the set of b = (b,.b,,b;) € Z,” — {0} such that ab, +
a,b, + a;b; = 0 (m). We say that b € S is reduced if b ¢ S+ S. Let
lbll = a,b, + a,b, + a;b, .

Let A=(0,1,1). We note that b = 4 if b € § is reduced and satisfies
b,,by>0. For b= (b ,b,,by) €S, let

Q(b) = P((b,.b,,55,0).(0,0,0,[|b]|/m)),
with the notation of (2.13.1). Then ex,(Q(b)) = b and ||Q(b)|| = ||b]|. One

sees that J{"O} 1s generated by Q(b) (b € .S) by (2.13.2) and that by Q(b)’s
such that b € S is reduced because (2.13.3) reduces to

Qb +b')= Q)" - o)XV (b0 €5).
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By subadditivity of [, *,x] (2.11), (2.12) implies
Im>m- lp(l) —R(a )+[¢ {0}» 0}]
> —R(a,) +[Q(b"), 0(6%),Q(b")]

for some reduced b',b%,b% € S. Throughout Part I of this section, b' denotes
such a vector not a power of b . By (2.14), one has

(3.4.4) Z 16" - a,) — R(a,)

and that b', b*, b* are independent. Let b' = (b;). We note
(3.4.5) |6°| > (b) — 1)m +a, + R(a,) if b, >1.

Indeed one sees Hb | > (b -1a, +a, > (bi - 1)m+a; by (3.4.1), whence
16 - (b' - 1)m > a,. Thus ||b']| - (b’ —1)m > a, + R(a,) because ||b'|| =0
(m) and a, + R(a;) =m-[a;/m] by R(a;) <m.

(3.4.6) We treat three cases.

+ 0 + 0 + b' is the ith row.
+ 0 + 0 + 0 + at (i, j) means
0 + 0 11 0 1 1 b;. >0.

FIGURE (3.4.A) FIGURE (3.4.B) FiGURE (3.4.0)

Case (A). None of b', b*, b is A. We will derive a contradiction in this
case. Expanding det(bj) one sees that there is a o € 6, such that b D20
for all i. Since 5°"") # 1, one has b =0 for some 7€ &, fixing 1 (3.4.3).
Modulo such permutations gort (resp T) of b"s (resp X, and X5 ), one may
assume that b; # 0 for all i and b3 = 0. Since b and b° are reduced and
b?,b> # 4, one sees that b = b; =0 (3.4.3). Now (b') is as in Figure (3.4.A)
above.

By (3.4.5), we rewrite (3.4.4) as

2 3
3m 2 (16" - a, — R(a)) + (167 = a) + (16°] - a3)
2 3
> (b, = Dm+ (I6°] - a,) + (I6°] - a5).

Let i €[2,3]. If b) =0, then b] = m by bj = b; = 0, whence ||| -
a,=(m-1)a;23(m-1)>2m by a, >3 and m > 4. If b, > 1, then
')l — a; > bya, > bym. Hence from (3.4.6.1), one has b? = b’ = 1. Then
(3.4.6.1) implies 3m > (bl1 — 1)m + 2m, and one has bl1 = 1. Since b' and
b are reduced and bll :blzz 1, one has bzl,bz2 €[0,m - 1]. By b' bres
and bll = b12 = | and b31 = b;' = (, one has b; = b22 (m), whence bzl = b;
and b' = b? , whence b', b? , b are dependent. This is a contradiction.

(3.4.6.1)
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Case (B). b® = A and bll,bf' > 0 modulo permutation of b , b? , b, We
will also derive a contradiction in this case. Modulo permutation of b' and b*
one may assume ]|b1 | < ”bzu , and modulo further permutation of x, and X,
one may also assume b3l =0 because b' is reduced and b’ # 4 (3.4.3). Now
(b}) is as in (3.4.B).

Since a, > m, one has 2m < a, + R(a,), whence m > 3m —a, — R(a,).
Then (3.4.4) gives

m>3m—(a,+R(a,)) 2 3 {|Ib']|l - (a, + R(a,))}.
i=1,2
Since [|b'|| - (a, + R(a,)) € mZ, (3.4.5), one has ||b']| = a,+R(a,) by ||b'] <
|5%|| . Then the inequality gives ||b*]| < 3m . Hence one has bl1 =1, b12 =1,2
by (3.4.5). Since b, = 1 and by =0, one has b, > 0. Since ||b'|| = a,+R(a,),
one has b = R(a /a2 < m/3 Since b =1 or 2 and since b’ is reduced,
one easily sees b° (bl ,bl b2 ,0) or (blz,O,m b1 bz) by b22 b32 =0 and
0< b12 -bz1 < m. We have the second case since b° is independent of b'. Then

B2 = b7 - a, + (m — b} - b))ay > b} -a, + 3(m — b} - b))
= 3m+b12(al - 3b21) >3m,

because a, > m > 3b2l . This contradicts ||b2|| < 3m obtained above.

Case (C). b = A, bl1 >0, and bf‘ =0 modulo permutation of b', b? , b,
Modulo permutation of x, and x,, one may further assume b32 =0. Now (b;)
is as in (3.4.C). Then b = (0, m,0) since it is reduced. By (3.4.5) applied to
b' and (3.4.4), one has 3m > (bl1 —1)m+a,m. Thus a, =3 and i,(1)=3
from the inequality. Thus the proof of (3.4) is finished. D

(3.5) We now prove (3.1). We will derive a contradiction assuming that there
is a point P € C at which embdim,, C' > 3. By (2.3.3), one sees wp(0) < 1
and ip(1) <3, since w,(0) >0 and iQ(l) >0 forall Q € C. By (3.4), one
has i (1) = 3. One has EQ#P iQ(l) = 0 by (2.3.3), whence P is the only
singular point of X on C by (2.15). Thus by (2.3.3), one has w;(l) <1.We
will work at P using the notation of (3.2), and estimate w;(l) by an argument
similar to (3.4). By (3.4), one has a, = 3, a, = m, R(a,) = 3n for some
ne(l,m/3),and a, >m. By x,"¢ € J{”3n} , one sees from (2.12) that

m>m-wy(l) = =91 +[$, 3y 3]
(3.5'1) :——12n+[x2¢ {3n}’J{3n}]

[ {3n} {3n}’ 3n}]

Let v = (0,n,0) and, following (3.4.3), let T be the set of b € Z+3 —{v}
such that ||b]| =3n (m). We say that b € T is reduced if b¢ T +S (3.4.3).
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For b= (b,,b,,b,) €T, let
Q(b) = P((by, by, b,,0),(0,n,0, (]| - 3n)/m)).

Then ex4(§(b)) =b—v and ||Q(b)|| = ||b]|. One sees that J{3 y is generated

by Q(b) (b e T) by (2.13.2) because 3n < m, and that by Q(b)’s such that
b € T is reduced, because (2 13.3) reduces to

Qb +b)=0(b)x" - Qb +wv)xIP1—> (beT, b eS).
By subadditivity of [*,*,%] (2.11), (2.14) and (3.5.1) imply

3
(3.5.2) Z(Hb | —a)—12n

for some reduced b' b b € T such that b' — v, b? -v, b - v are inde-
pendent. Let b' = (bj) As in case (A) of (3.4.6), we may assume (b’ —v), # 0
for all i.

(3.5.3) We note that an integer z € (0, m) belongs to ord(CY) iff z = a,=m-3
or z € 3Z_, and there is only one way to express such z as sum of a,, a,,
a,, a,.

3> Y4

(3.5.4) We claim ||b1|| >a,+6n. Onesees 6n—m ¢ ord(C”) by (3.5.3), because
6n—-m<mbym>3n,6n-m#z0 (3)by (3, m)=1,and 6n-m#m-3.
On the other hand, one sees that 1|b1|| —a, =6n-m (m) by Hbl|| =3n (m),
and that |[b']| - a, € ord(C*) by (b' —v), = b/ >0. Thus [|b'||—a, > 6n (cf.
(2.8)), which is (3.5.4).

(3.5.5) We claim ||b3|| > a, + 3+ 3n and that the equality holds only when

b = (0,n+1,1). Let us see that a,z, + a,z, +a;z;,=34+3n (z€ Z+3) has
a unique solution z =(0,n+ 1,0). We claim

(3.5.5.1) 3+3n#a,, ia, (i=1,2).

Indeed 3n + 3 = q; or ia, implies 2n+ 1 or n+ 147 =0 (m) because
a, =-3n, iay = -3i (m) and (3,m) =1. By m > 3n, one sees that this
is possible only when i =2, m =4, n =1, whence a, = 6/2 = 3, which
implies a contradiction a, + a; # 0 (m). Hence (3.5.5.1) is proved. Thus
one sees 3+ 3n—a, ¢ ord(C”) because 3+3n—-a, <1 by ¢, >m > 3n.
Hence z, = 0. If z, > 0, then (3.5.3) implies z = (0,n + 1,0), because
a,(z, — 1)+ a;z; = 3n < m. Hence we may assume z, =0. Then z; >3 by
(3.5.5.1). Hence by a; > m/2 (a; >3, a;+3 > m, and (a;,m) = 1), one
sees that z,a, >3m/2>m+2>3+3n. Thus z=(0,n+1,0) is the only
solution. Let us prove (3.5.5). Since (b° —v), =5} > 1, ||b°|| - a, € ord(C").
From ||b*|| —a,=3+3n and 3+ 3n-m ¢ ord(C*) (3+3n-m <2), one
sees |\b3|| —a, > 3+ 3n. The rest follows from the above.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



166 SHIGEFUMI MORI

(3.5.6) We claim that |]b2|| > m + 3n, and that the equality holds only if
b = (0,n+1,1). By a,+6n>m+3n and a,+ 3+ 3n > m+ 3n, one
may reduce (3.5.6) to (3.5.4) or (3.5.5) if b12 or b;z > 0. Hence we assume
b12 = b32 = 0. Then by b # v, one sees b22 >n+m and ||b2|| > 3n+3m,
which proves (3.5.6).

(3.5.7) From (3.5.4)-(3.5.6), one sees
3 .
S I8’ —a,) > m+12n
i=1
and that the equality holds only if b* = b*> = (0,n+ 1,1). This contradicts
(3.5.2). Thus (3.1) is proved. O

Part II. Imprimitive point P . The main result is (3.8).

(3.6) Let X D C ~ P' be an extremal nbd with an imprimitive point P of
index m, subindex 7 (> 1), and splitting degree 5. Let X "S5 C = C"(l) U
-y C"(s) 5 P’ be the splitting cover of X D C associated to P (1.12). We
denote by Xb(i) D Cb(i) > Pb(i) the extremal nbd obtained from X’ >C' > P
by restriction to a small nbd of C’(i). Let (X*,P") > C'=cC*(1)u---uCl(s)
be the canonical cover of (X, P) and the irreducible components of the pull
back C' of C (with reduced structure) such that C”(i) dominates Cb(i) for
each i. We note that (X”,P”) — (Xb,P") is a p, -canonical cover. Let (x)
and ¢t be normalized ¢-coordinates for X D C at P and ¢ an {-equation
such that wtx, + wtx; =0 and wtx, = wt¢ (m). By (1.14) and (2.9), we

have o
8l @ = (O, @) "'—’@gfcm W= GB @)

where @ is a p, -semi-invariant generator of w,, at P
Hence we have p-semi-invariants u;, € &y, p, for i € [1,s] such that

ui|C,m =0 for je[l,s)\{i} and (ui|C,(i))25 is a generator of gr‘éb(i) w. We

also have a p -semi-invariant u € &,, p, such that u@ is a generator of grg w
at P. It is easy to see that we may further assume that % is a monomial in
x with coefficient 1. For each i, we note that m - w,, #(0), m-wp(0) are
nonnegative integers such that #-wy, l.)(O) =m-wp(0) (mod m) by (2.10) and
- Wpy(,(0), 7+ wp(0) < m by (2.3.3). Whence we have

(3.7) Proposition. wa(t.)(O) =wp(0) forall i.

Hence we see C”(i)-ord(ui) = ord(u) = m - w,(0) < m (2.10). Thus if we
consider the induced map

D: (T p@) —»@grcb w®C(P GBC

we see ®(vw) =0 for p, -semi-invariants v with ord(v) >m-wy(0).
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(3.8) Proposition. Modulo permutations of x,, ...,x, and modulo changes of
¢-character x (2.5), we have
ow(Ch) = Z_ ow(x,) + Z, ow(x,)

{(in particular (Cu , P”) is a planar singularity (2.7)) and one of the following
holds :

(3.8.1) wtp =0 (m), wtx, +wtx; =0 (m), ow(x,) = (m,0), (m,0) €
Z, ow(x,)+Z, ow(x,), and wp(0) >1/2,

(3.82) wtop=0 (m), s

ord for (x):

2, m is an even integer > 4, and a list of wt and

X, X, X3 X,
wt 1 -1 0 m+1 modm,
ord 1 m—-1 m m+1

(3.83) s=m=2, wtp=2 (4), and

X, X, X3 X,

wt 1 3 3 2 modd.
oord 1 1 1 2

Proof. We treat three cases.

(3.8.4) Case wt¢ =0 (m) and ordx, < m. Then we claim that u is not
a power of x,. Indeed if u = x,* for some o, then C”-wtxz'”rl =0 (m),
whence o+ 1> m >2m by (wtx,,m)=1 (1a.5), and ordu > . This is a
contradiction. Thus up to a permutation of x, and x,, we may assume # = x,v
for some monomial v. Then wtx,u =0 (m), whence ordx,u =0 (m) and
ordx,u < 2m. Hence ord x,u = m, i.e. ow(x,u) = (m,0). By normalized-
ness, ow(x,) = ow(x,u). We also see wix,v = wtx,u — wtx, = wtx, (m)
and ordx,v < ordx,u = m, whence ow(x,v) = ow(x;) by normalizedness.
Thus we have ow(X”) =Z, ow(x,) + Z, ow(x,).

We claim (m,0) € Z_, ow(x,) + Z,, ow(x,) . Indeed if otherwise, we have
(m,0) = a-ow(x,) (a€ Z) up to permutation of x, and x,, whence a =0
(m) by (wtx,,m) = 1, which contradicts 7 = o -ordx; and m > m. Thus
the claim is proved.

We also claim that w,(0) > 1/2. Indeed if otherwise, we have m/2 >
m-wy(0) = ordu. Hence ordx, = m — ordu > m - wp(0) and ordx; >
m—ordx, >m—ordu >m-w,(0), because x, | u. Thus ¢ factors through

@ - by A
(@’Cu’l,,w/(xlm,xz,x3,x4))" ~C(P’)x,"®

for a unique A € (0,71) such that Awtx, = —wt @ (m). This contradicts the
surjectivity of ® and s > 2. Thus w,(0) > 1/2 as claimed, and we have case
(3.8.1).

(3.8.5) Case ordx, > m and wt$ =0 (m). We note first that ord x, > m by
(ordx,,m) = (wtx,,m) =1 and m > 1. We may assume ordx, <ordx; up
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to a permutation of x, and x;, whence ord(x32) > m. Since xlm y Xy» X X4,
x32 , X, have ord > 7, we see that ¢ factors through

T 2 - by A by ——
(é’cu'l,aa)/(xlm,x1x3,x3 ,xz,x4))" ~C(P)x,/ oo (C(P )xSw)"

foraunique A € (0,7) such that Awtx +wt@ =0 (7). Hence by surjectivity
of ®,wehave s =2 and wtx; +wtw =0 (m). Since wtx, = -wtx, (m),
we see A=-1 (m), whence A=m~1 and ordx, =1 by ordxll < m. Thus
ordx; =m—1 by wtx; = —1 and ordx; < m because ®(x,) # 0. Hence
ow(x,) +ow(x;) = (m,0), whence it is equal to ow(x,) by the normalizedness
as before. Since ® factors through (Cxlm_lw @ Cx,@ , we see that u = )cl"'_l
or Xx;.

We claim that u = xlm_1 . Indeed if u = x;, then wtx, +wtx; =0 (m),
and wtx, = wtx, (m) which contradicts normalizedness by ordx, > 1 and
ordx, = 1. Hence u=x,""".

Thus we have wtx, = —(m~1)wtx, = (m

+1)wtx, (m). Since ordx, >m
m+l1 7

1)

and ord x, =m+ 1, we have ow(x,) = (M + 1)ow(x,) by normalizedness,
whence ow(C”) =  Z,ow(x;) + Z, ow(x;). By (wtx,,m) =
(m+ 1)wtx,,m) =1, wesee m =0 (2). By changing {-character y with
(I+m)y if necessary, we may assume ow(x,) = (1,1), ow(x,) = (m+1,m+1),
ow(x,) = (m,0). Since ow(x,;) &€ Z _ow(x,) (otherwise (C”,P”) is smooth
(2.7)), we have ow(x,) = (m — 1, — 1). We note that if m = 2, then permut-
ing x, and x;, we have case (3.8.1). Hence we may assume 7 > 4, and by
permuting x,’s, we have case (3.8.2).

(3.8.6) Case m = 4, mi = s = 2, wt¢ = 2 (4). Then we have wtx =
(1,3,3,2) mod4 up to permutation of x,, ..., x, and a choice of ¢-character
x (1a.5). Then we have wtu = 1 (4) and ordu = 1. Hence u = x; and
ordx, = 1, whence ow(x,) = ow(xlz) . Since m-w,(0) = 1, @ factors through
Cx,w+ Cx,@0 + Cx;@. Thus ordx, =1 or ordx; = 1 by surjectivity of @,
and ordx, = ordx; = 1 by normalizedness. Hence ow(C“) = Z, ow(x,) +
Z, ow(x,), and we have case (3.8.3). O

4. CLASSIFICATION OF X D C AT P INTO CASES
After classifying X D C 3 P into several cases, we will study the deformation
processes using results in §§1a and 1b. These processes allow us to treat fewer
cases with only ordinary singular points (4.5).

(41) Let XD C =~ P' be an extremal nbd, and P € C a singular point of X
of index m > 1, subindex #i, splitting degree s. We note that m = m -5 and
that s = 1 iff P is primitive. We consider the germs (X, P) D (C,P), and
use the notation in §2 like p,-cover (X*,P") > (C*, P') of X D C, etc. One

has embdim,, C* <2 by (3.1) and (3.8). So, let (x) = (x,, ...,x,) and ¢ be
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normalized £-coordinates (2.6) and ¢ an ¢-equationof X D C 3 P (la.5) such
that x; and x, form coordinates for (C“,Pﬁ). Then (a,,w,) and (a,,w,)
generate ow(C"), where ow, = (a;,w;) =ow(x;) (i€(l,4]).

We note that U(s - a,a,) = U(sa, - ow,) = U(sa, - ow,) (cf. (2.8)) depends
only on ow(C”) and m. Indeed if ow(C”) ~ Z,, then a or a, =1 and
a,,a,<m,and U(a,a) = 1;if ow(C*) £Z,_, then

{ow, . ow,} = (ow(C*) — {OP)\((ow(C") — {0}) + (ow(C") - {0}))
and U(s-a,a,) depends only on ow(C") and m.

(4.1.1) Definition. We call U(s-a,a,) the sizeof X > C > P (or simply size
of P ) and denote it by siz, (cf. (4.10)).

(4.2) Proposition-Definition. Modulo permutations of x;’s (and changes of
¢-characters in case of imprimitive points) which preserve the condition

ow(Cn) =Z, oW, +7Z_ OwW,,

exactly one of the following cases holds. This division is independent of the choice
of normalized ¢-coordinates (x) and t.

( Primitive point P)

Case (I) m>1, C'wtd=0 (m),

(IA) a,+a;=0 (m), a,=m, meZ a +7Z,_a,,
where we may still permute x| and x, if a, =1,

(IB) a,+ay,=0 (m), a,=m, 2<a,,

(IC) a,+a,=a,=m, a,#4qa,, a,, 2<a,<a,.

Case (I) m=4, C'wtg=2 (4), p€ (x)°,

(TA) (a,,....a,)=(1,1,3,2),

(IB) (a,,....a,)=(3,2,5,5), and

Case (III} m = 1. In this case, X'=X and C'=C.

(Imprimitive point P)

Case (1Y) 71, s> 1, Cl-wtgp=0 (m),

(IAY) w,+w, =0 (m), ow(x,) = (m,0) €Z,, ow,+Z, ow,, and w,(0) >
1/2,

(ICY) s =2, 7 is an even integer > 4, and

X, X, X, X,
wt 1 -1 0 m+1 modm,
oord 1 m—-1 m m+1

Case (II') s=m=2, wtp=2 (4), ¢ (x)’, and

4),
X, Xy X3 X,
wt 1 3 3 2 modd4.
ord 1 1 I 2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



170 SHIGEFUMI MORI

Depending on the case occurring, we say that X D C> P (or XD>C at P,
or simply P (if there is no danger of confusion)) is of type (IA), ..., (III),
(AY), ..., 1Y),

Proof. The case of imprimitive points was treated in (3.8). Now assume that
P is primitive. First we show that one of cases (IA), ..., (III) occurs.
In case (I), one has g, +a, =0 (m), q, = m for some distinct i,j. ke

[1,4] by normalizedness of (x) and ¢ and (la.6). If ord(C”) = Z_ , then
(aam, ,aa(4)) =(1,b,m-1,m)or (b,1,m-b,m) forsome befl,m—1)
and 0 € 6, where Z +aa(l)+Z +52) = Z, is maintained. Thus we may assume
a,,a, > 2, and treat three cases modulo (12) and (34) €&, .

(4.2.1) Case a; +a;=0, a, or a,=m. If a,=m,then m¢Z, a UZ,a,
by (m,a,a,) =1, and we have (IA). Otherwise, we have (IB).

(4.2.2) Case a,+a, =0, a; =m, and 2 < a < a, If ay=a ora,,
this belongs to (4.2.1) modulo (34) € 6,. Otherwise, we have (IC), because
a,#a, by (m,a;)=1 and me (q,,a,).

(4.2.3) Case ay+a,=0, a,=m. Since a, =m and a, #0 (m), we have
R(a,) €Z, a,. By (2.3.3) and (2.10), one has R(a,) = m-wp(0) < m, whence
a, <m. Thus a, + R(a,) = m, because a, + R(a;) (< 2m) belongs to Z_ m.
Hence m € Z_a, , which contradicts (m,a,) = 1. Thus (4.2.3) does not occur,

and case (I) is finished.

(4.2.4) In case (II),one has a,, ... ,a, #0 (4) (1a.6)and 4 € (ord(Cn)—{O})+
(ord(C*) - {0}), whence 2 € ord(C*). Since 4w,(0) (€ N) is prime to 4 and
4w,(0) < 4 by (2.3.3) and (2.10), one has 3 € ord(C”). Thus ord(C”) =1Z,
or Z, — {1}. Hence by C*-wt(x) = (1,2.3,1), (1,2,3,3) mod 4 and mod-
ulo permutation, one has C”-ord(x) =(1,2,3,1), (3,2,5,5), (1,2,3,3), or
(3,2,5,3) modulo permutation. The last case is impossible by (2.3.3), because

one has w,(0) = 5/4 > 1 by (2.10). In the third case, one sees that xl2 must
appear in the power series expansion of ¢ by (1a.6) and wtx, # wtx,;, wtx,
(4). Thus by ¢ € (x, —x,”,x;—X,”, %, —X,") , one has ¢/8x,(0) # 0, which
contradicts the assumption ¢ € (x)2 of case (II). From the first two cases, one
has (IIA) or (IIB).

(4.2.5) We will show that there are no overlaps in cases and the division does
not depend on choice of (x) and ¢. By normalizedness, a,, ...,a, (modulo
permutation) is independent of choice of (x) and ¢ (2.6). In case (II), we
have (IT1A) iff ord(C”) = Z, . We only need to consider case (I). If ord(C”) =
Z_ , then we have (IA), and we are done. Assume that ord(C”) # L, , where
ord(C”) needs exactly two generators @, and a,. One has (IB) iff m is one
of the generators. In case (IC), there is exactly one solution (i, j) = (1,2) for
a+a;= 0 (m) (1<i< j<4),anditis given by the generators g, and q,.
Therefore (IA) and (IC) do not occur at the same time. 0O
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(4.3) Let f; and f, be monomials in x;, and x, such that
X, = f(x,,x,) on ct (i=3,4).

Then

_ saz saxy _ _ _
Fy=x"-x", Fy=x;-f;, Fo=x,-/

generate the defining ideal J* of (C*, P%) in (C4 ,0). Then
¢=g - F,+8& F+g, F

for some semi-invariant g’s€ C{x} with wtg, =wt¢ —wtF,.

(4.4) Lemma. Under the notation of (4.2), one has

(i) (X', P"Y issmooth and J* = (F,,F,,¢) if P isof type (IC) or (1c"y,
and
(ii) J* = (F,,F,, ¢) if P isoftype (IIB) or (II").

Proof . (i) One sees that f; must be x,x,, and
¢ =8 (6" =) + g5 (03 — X %y) + 8- (%, — 1).

Since P is of type (IC) or (IC" ), one sees that m = s(a, +a,) > 4, and

g, € (x), and that g,, f, € (x)2 by wtx, #0, £wtx,, twtx, (m). Since

m > 5, one sees that x,x, or x; must appear in the power series expansion of

¢ (1a.5). By sa,,sa, > 2, this is only possible if g, is a unit. Thus (X”,Pu)

is smooth and (F,, F;, F,) = (F,, F}, ).

(ii) By (1a.6), xl2 must appear in the power series expansion of ¢, since
wtx, # wtx,, wtx;, wtx, (4). One sees that f; and f, must be x x, if
P is of type (IIB) (resp. f; = x, and f, € (x)2 if P is of type (II')). Thus
similarly in

2 sal)

d=8 (X, =X, )+ & (- f)+8& (x,— 1),

we see that g, € (x) by ¢ € (x)z, and hence that g, is a unit, whence
(F,,F;,F,)=(F;,F,,¢). O

(4.5) Definition. Let X > C =~ P' be an extremal nbd, and P € C be a
singular point of X .

(i) Wesay X D C is ordinary at P (or P is an ordinary point) if (X, P)
is an ordinary double point or a cyclic quotient singularity (i.e. the
canonical cover (X | P“) is smooth), and

(ii) We say that P is almost ordinary iff P is of type (IB) and (C” ,P") is
a complete intersection in (X | Pn) .

(4.5.1) Remark. (i) P is an ordinary point iff either
(a) P is of type (IA) or (IAY), and (X, P) is a cyclic quotient singularity
(& JH= (¢.F,, F) & (C”,Pﬁ) is a complete intersection in (X“,Pu) )s
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(b) P is of type (IC) or (IC), or

(c) P isoftype (IIl), and (X, P) is an ordinary doubie point (i.e. (X,P)D
C is given as ({xy = zu},0) D x-axis for suitable coordinates
(x,y,z,u)),

(ii) a type (IB) point P is almost ordinary iff J'= (¢, Fy, Fy).

Proof . We treat (i) first. If P is of type (IA) or (IAY), then F, = x,— f,(x,.x,)
and wt¢ # wtF,, wtF; (m). Therefore the equivalence in case (a) is clear.
If P is of type (IB), then ¢ € (x)* by ¢ € (F,,F,,F,), F, € (x)* and
wtop # wtF;, wtF, (m). Thus P is not ordinary. (4.4(i)) treats points
of type (IC), (ICY). Points of type (IIA), (IIB), (II') are never ordinary by
¢ € (x)°. (ii) follows from wto £ wtF,, wtF, (m). O

Points of type (IA) or (IA") require delicate analysis. For these, we state
the following technical lemma to be used in §9.

(4.5.2) Lemma. If P is an ordinary point of type (1A) or (IAY) such that
siz, = 1 and (C”,Pﬁ) is singular, then {F,, F,} is a free basis for gr'C,,ﬁ at
P such that ow"(F,) = (7,0) - sa, -ow,, ow"(F;) = ow, (2.8), R(WtF)) >
R(wtF,), and

ow' (F,) — ow' (F,), (7, 0) + ow’ (F,) — ow’ (F,) € ow(C").

Proof. By wtF, =sa,a, and wtF, = —wtx, (m), we see ow” (F,)=(m,0) -
sa, -ow, and ow’(F;) = ow, by siz, = U(sa, -ow,) = 1 and q, < 7.
We have ow’(F,) € Z_ow, + Z, ow, (2.8), and claim further that ow"(F,) €
Z, ow, +Z,_, ow,. Indeed if otherwise, we have (#1,0) = a-ow; for some
a€Z,, i€([l,2], whence a =0 (m) by (wtx,,m) = (wtx,,m) = 1
and thus m = m and a, = 1 by m = aq,, which implies that P is a type
(IA) point and (C '’ P”) is smooth. This contradicts our original assumption.
Thus we have ow'(Fz) €Z,, oW, +7Z, ow,, hence R(WtF,) - R(WtF;) >0,
and ow’(F,) —ow (F,) € ow(C"). Then it is obvious that (771, 0) + ow" (F;) —
ow’(F,) = sa, -ow, + ow, € ow(C*). O

(4.6) Let X D C ~ P! be an extremal nbd with a singular point P € C of X
of index m,andlet P, ..., P be all the other singular pointsof X on C. Let
(X ”,P“) o (C | P”) be the u, -canonical cover of (X, P) and the preimage of
C.Let x=(x,,...,x,) and ¢ be normalized ¢-coordinates giving embedding
(x*, P c (C*,0) such that a, = C*-ord(x,) (i €[1,4]) are as in (4.2). Let
¢ € C{x} be an £-equation of (X, P), and J'c C{x} the ideal defining ct
in (<C4,O) ,andlet F,, F;, F, be asin (4.3). The following is the deformation
process.

Let 6 = x, if P is an almost ordinary type (IB) point or a type (IIB) point,
and @ = 0 otherwise. Let C! ¢ (C*,0) be defined by F,+10 = F, = F, =0
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for A € C. Then we follow step (L) in §1b. We will choose semi-invariant

€ (x)C{x} with wty =wt¢ (m) such that ¢, = ¢ + Ay induces 0 on C:
and such that X; , (2 P = 0) has only terminal singularities if |1| < ¢ <1,
where we introduce B, = {(x) | |x;| < ¢ (Vi)}, X}‘f,e = XfﬁB8 y Xy, = Xf’e/um,
Cf e = Cf NnB,, C,= Cf,e /m,, (this part will be studied more closely case by
case later in the proof). Then step (LG) embeds the deformation X, , > C, . 3
P to a deformation X, > C, ~P' which is trivial outside X, , for |4 < ¢ <1

(1b.7). Thus by (G) in §1b, one has nearby extremal nbds X ;’ OC, ~ P' such
that X; Cc X, for |A] < 1.

(4.7) Proposition-Definition. For suitable choice of y, each nearby extremal
nbd X; > C, ~P' (JA| <& < 1) contains P,P,,...,P, in the natural way
mentioned above so that (X : ,P) D (C,, P,) is naturally isomorphic to (X, P;) O
(C.P) for i €[l,r] and XM D C,, contains all the singularities (€ C;) of
X, D C, other than P, P . If P is a primitive (resp. an imprimitive)
pomz then X, .2 CM is Iocally primitive (resp. P is an imprimitive point
of X,, > C,, with the same subindex and splitting degree as X > C > P).
Depending on the type of X > C 3 P, one has

Type (1A) (resp. (IB) but not almost ordinary, (IAV)). P is the only sin-
gularity of X; , on C, ,, and it is an ordinary type (IA) (resp. an almost
ordinary type (IB), an ordinary type (IAV)) point, and one can use the same
(x), t, ow,s, F’s, except for the t-equation which is ¢, = O, whence size,
w(0) remain the same.

Type (IIA) (resp. (I1Y)). P is the only singularity of X beon C ,andit
is an ordinary type (IA) (resp. (IAY)) point, with the same index, size, and
w(0) as X>C at P.

Type (I1B) and almost ordinary. X, , has exactly a, singular points (includ-
ing P) on C, , which are ordinary points of type (1A) with index m, and the
invariant w(0) for X, , D C, , takes the same value for these a, points.

Type (1IB). has exactly two singular points P and Q on C, ., which
are ordinary poznts of type (IA), with indices 4 and 2, respectively, and

Type (III). X, , has exactly n singular points, and they are on C, , and of
type (III), where n is the invariant i,(1) for X>C at P. If n= 1 then the
singular point on C, , is ordinary.

We call all these processes (or X ;’ D C,, by abuse of language) L-deforma-
tions at P. The L-deformation at a type (111) point P is also called a separating
L-deformation.

In case of type (I11), one can also make X, , smooth when 0 < |A| € e < 1
by choosing some other suitable y . We call thzs process an L-smoothing at P .
(L-deformation will mean separating L-deformation for type (III) points unless
otherwise mentioned. )
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Proof . First we note that, if P is an almost ordinary point of type (IB) or a
point of type (IIB), F, + Ax, is semi-invariant and Cf is smooth in a small
enough nbd of (((34,0) when 0 < |A| € 1 (1b.4). Thus the assertion on local
primitiveness (or imprimitiveness) follows from (1b.3.1) if other parts are done.
We treat several cases depending on the type of P.

(4.7.1) (IA), (IIA), (IAY), (IY) (resp. (IB) but not almost ordinary). We choose
semi-invariant general y € F, + C{x}F, + C{x}F; (resp. F, +
(C*x, + (x)’C{x})F, + C{x}F,) with wty = wté (m). We note that {¢ =
v = 0} is a normal surface by Bertini’s Theorem because ((x)ZJ hEm L C{x}
defines a closed subscheme C (<C4,0) which is equal to C" except at a finite
number of points. Thus (1b.3(i)) is satisfied, and (1b.5(ii')) (resp. (1b.5(ii"))
is satisfied by the choice of y . Thus X, , has only terminal singularities and
these come from points in Xie N x,-axis for a =4 (resp. a=2) (1b.3). Since
c'n x,-axis = {0}, P is the only singular point of X, , lyingon C. We note
JH= (¢,.F,, F;) (resp. JH= (¢,, F5, F,)) . The assertions on size, w(0) follow
from definition and (2.10).

(4.7.2) Almost ordinary and (IB), or (IIB). We write ¢ as ¢ = g,F, + g, F; +
g,F,, where g,, g,, g, are semi-invariants such that wtg, = wt¢ — wtF,.
We note that g, is a unit by the hypothesis or (4.4(ii)). We choose semi-
invariant general y € g,x, + C{x}F; + C{x}F, with wty =wt¢ (m). Thus
¢, € 8,(F,+4x,))+C{x}F,+C{x}F,,and ¢, =0 on C. Then y ¢ (x)* since
&, is a unit. One can check (1b.3(i)) similarly to the previous case. By (1b.3)
and v ¢ (x)2 » X, . has only terminal cyclic quotient singularities and they are
images of X! N x,-axis. If P is of type (IB), C} N x,-axis = {(0,£,0,0) |
EM = A&} and X, X, x, form coordinates for Xi‘ at all these a, points by
0¢,/0x, # 0. Since x, is a uniformizant for C} at all these points, p, is the
stabilizer of each point, and wt(x) are the same at these points, one sees that
they have index m and the same w(0) by (2.10). If P is of type (IIB), one has
Cf N x,-axis = (0) or (0, £ Vv4,0,0). Stabilizer of (0) is p, , and stabilizers
of the conjugate (0, ++v/4,0,0) are #, . So we have two points with indices 4
and 2.

(4.7.3) (III). In this case, we choose coordinates (z,,...,z,) so that C is
z,-axis and ¢ = z,"z, (22,23,24)2 (2.16). Then n = iy(1) by (2.16). Let
yE€z2z,+(z,, 25, 24)2 be general enough so that ({ = 0},0) is an ordinary
double point and {¢ = ¥ = 0} is a surface smooth outside z,-axis by Bertini’s
Theorem. Let ¢, = ¢ +Ay, X, , = {(z) | ¢,(2) = 0, |z]| < & (Vi)} and
C,,=4X,,NnC when |A| < ¢ < 1. By (1b.4), X, , has singularities only on
C,, if ) <e<x 1. Since ¢, = (z," '+ X)z,z, (2,.2,,2,)°, one sees that
X, , hasexactly n singular points {(¢,0,0,0) | E"+AE =0} in C, , by solving
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n—1

0¢,/0z, =0 on x -axis. Againby ¢, = (2| +4)z,z, (z,, z3,z4)2, X, . has
cA-points at these points, whence terminal (1a.2(ii)). If n =1, then (X, ., 0)
is an ordinary double point if 0 < |[A] « 1 because sois ({w = 0},0).

(4.7.4) To construct an L-smoothing for type (III) P, one may choose general
Y € 23+ (25,24, 24)2 with the notation of (4.7.3), and the rest is similar to
(4.7.3). O

By using L-deformation (4.7), we can reduce many problems on extremal
nbds to the ones on extremal nbds with only ordinary singularities. To derive
formulae for ordinary singularities, we need an easy
(4.8) Lemma. Under the notation of (4.1), assume that

2
Iei/loy” = Oy, @8y, and Wy, ® Oy = O, 80

near P', where I is the defining ideal of C' in X', and v, v, and Q are
semi-invariants with C*-wis by, by, k. Then

gr(é@,: @ ﬁCtR(ibl+jb2)Vllvzj
i,j20, i+j=d
glo= @ ety i
i,j20, i+j=d
i,,(d):rln S {iR(b,) + jR(b,) — R(ib, + jb)}  (d>2), and
i,j20, i+j=d
1 . . . .
wpld) = > {iR(b))+ jR(b)) + R(k) - R(ib, + jb,+ k)} (d > 1).
i,j>0, i+j=d

Proof. By the assumptions, one has I, = ( v2) Hence I d) = (v, vz)d,

gr‘é, @G ~ @ﬁcﬂvlivzj, and gr‘én W=D, 'v,’Q. The lemma follows from
(2.8) and (2.9). O

Then we have

(4.9) Theorem. Let X D C ~ P' be an extremal nbd, and let P € C be a
singular point of X of index m > 1, subindex m, and splitting degree s. Let
(x) and t be normalized £-coordinates as in (4.2), a, = ord(x;), ow, = ow(x,)
(i€[1,4]). Then

(i) the value of w,(0) is given depending on type of P :

wp(0)] (m -a2 m| ( )/m ] e | o
tpe | (1A),(1AY) | (1B 1cY) | @1a), aig) | (ar¥y |
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(ii) if P is ordinary, then depending on type of P, one has
Type (IA):
ip(1)=U(aa,), wp(0) = (m—a,)/m,
ipdy= Y {iU(aa,) - Ulia,a, - ja))} (d22),

i,j20, i+j=d
wid)= Y.  Uliaa,—ja,+a)-(d+1) (@d>1),
i,j20, i+j=d
Type (IAY):
ip(1)=U(s-q,a,), wp(0) = (M —a,)/m,
ip(d) = Z {iU(sa,-ow,) — U(isa,-ow, — j-ow )} d>2)),
i,j>0, i+j=d
wp(d)= Y. Ulisay-ow, —j-ow +ow) —(d+1) (d21),
i,j>20, i+j=d

Type (IC) or (IC”):
ip(1) =U(saa,), wp(0) = R(a,)/m,

ipd)= Y. {iU(sayay) + jU(a,) - Ulisaa, + ja, )y  (d22),
i,j>0, i+j=d
wpd)= Y. {Ulisaa,+(j+Da,) -G+ 1)U(a)} ([@d21),
i,j>20, i+j=d
and
Type (1I): ip(1 wp(0) =0,

)=
ip(d) = [d /4 (d=22),
wpd) =[(d+1)°/4]  (d21).
Proof. We omit the proof of (i) since it follows immediately from (2.10) for the
case of type (IA) (resp. (IA)), where R(a,) =% —a, by (7,0) € Z, 5O+
Z,,ow,. We assume that P is ordinary, and consider type (I) or (I ) case
first. Let F,, F;, F,, J' be as in (4.3) (hence as in (2.11)). We use the
notation of §2 We note C”-wt( F)) = ||F|| (mod m) (i € [2,4]) (cf. (2.13)).
Since ¢ is a part of basis for J*/J" " one has

[4’ {0}'1{0}] = [J{O}' (0 J{O}]
R F2) R(wt F3) F.
[t (Wt z t 3F t Wl 4)F4]
4

3
Z (IFI, wtF) = a,
i=1

by (2.8(ii)) and (2.14). Whence by ( 12), one has |

4
ip(1)=1+ Z U(|F,||, wtF,) - % {R(k) + Zai} ,
i=1

i=2
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where k = wtx, (resp. wtx,) if P is of type (IA) or (IAY) (resp. (IC) or
(Icvy).

If P is of type (IA) or (IA"), we have U(I|Ell, wtF,)) = U(sa, - ow,) =
U(sa,a,), U(|F,l, wtF,) = U(m,0) =1, and U(||F||, wtF;) = U(owx,) =
(a,+a,;)/m by wix, +wtx; =0 (m) and a, <m. Since (m,0) €Z, _, ow, +
Z,, ow,, we have (71,0) —ow, € ow(Cﬁ) , and one has R(k) +a, = U(ow,) =
m, and thus i,(1) = U(sa,a,). The rest follows from (4.8) (v, = F,, v, = F)
because R(z)=U(z)—x (z=(x,y) € ow(C") (2.8).

If P is of type (IC) or (ICY), we have U(IIE|l, wtF,) = U(sa,a,),
U(IF,)l, wtF;) = U(m,0) = 1, and U(||F,||, wtF,) = U(a,) (we note a, =
wtx, (mod m) for type (IC") points). Whence we have ip(1) = U(sa,a,).
The rest follows similarly from (4.8) and 1. = (F,, F,) (4.4(i)).

We consider type (III). Since (X, P) is Gorenstein, w,(1) =0 and w,(d) =
ip(d) (d > 2), whence wp(l) = ip(1) and wi(d) = (“31)ip(1) — ip(d)
(d>2). Wesee ip(1) =1 (2.16), and we need to calculate i,(d) (d >2). We
may choose coordinates (z,,...,z,) so that C is z,-axis and X = {z,z, =
Z32,} in ((C4,O). Then ﬁX’P =C{z}/(z,z, - 2z4z,), and let I. = (z,, 24, 2,),
and Ic(d) the symbolic dth power of /.. We note z, € Ic(z) by z,z, =2z, €
ICZ. Let J, (d € N) be the ideal generated by zziz3jz4k for i,j,k €Z,_ such

that 2i+ j+k >d. Then I.J, CJ, ,,and J, C Ic(d) by z, € Ic(z). By

_ . min{j .k} _j—min{j .k} _k—min{;j .k}
z,z, = z,Z,, one sees that Vi =2, z3 z, € ﬁX,P sat-
: Jk _ _min{jk} : : _
isfies z3z, = z, Vi for j,k € Z_. Thus one easily sees that J, =

(vd,O’vd—l,l’ "’o,d) and

@ O pVida—i > Jal Vg1

0<i<d

Since J, = I, we will see J, = Ic(d) by induction on d. Indeed if J, = Ic(d) ,
then

d
d d) , (d+1 d
(%) @ﬁC,Pvi,d—-i - (I(c )/Jd+l - I(c )/Ié+ ) =)gro&@
i=0

is a surjection between free &. ,-modules of the same rank d + 1, and hence
it is an isomorphism and J, , = I(Cd“) . By (%), one has

d
d d in{i,d—i
gro /S grlcﬁzea(ﬁc,p/(zinn{l l}))'vi,d—i
i=0
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dei

i Zmin{i,d—i}v.

by grlcé’zﬁc‘l,zﬂaﬁ’c_l,z“ and z3"z4 ) i
ip(d) =[d’/4] and wp(d) = [(d +1)’/4] (d >2) by

4—; - Hence one sees

(d—1)/2
) 2 i=(d*-1)/4 ifdodd,
ip(d) =Y minfi,d—i}={ =
i=0 2Y i-dj2=d’/4  ifd even.
i=0

We note that the formula for w,(d) works for d =1 as well. O

(4.10) Remark. We note that i,(1) = siz, for ordinary P by (4.9(ii)) (cf.
(4.1.1)).
We can consider two slightly more delicate deformations than in (4.7).

(4.11) Lemma. Under the notation of (4.2), assume that (X ,P) is a cD-type
terminal singularity of index 3 (1a.2) and that P is a type (IA) point. Then
(@,....a,)=(1,1,2,3) or (2,1,1,3) and w,(0) = 2/3. Thus modulo per-
mutation of x, and x, (4.2), we “may” assume (a,,...,a,)=(1,1,2,3).

Proof. By m = 3€Z++al +Z, a,,wesee a,=1ora,=1. If a, =1, then
a,+a,=m=3 by ord(Cu) = Z, and normalizedness, whence (a,,a;) = (1,2)
or (2,1). Wecanalso see a, = 1,2 and that (a,,a,) =(1,2) if a; = 1. Thus
it is enough to disprove (a) = (1,2,2,3). Indeed it means that x,|., = ¢,
Xolor = X3l e = t2, and x|, = 2. By (la.6), ¢ € (x4)2 + x,(x, ,xz,x3)2 +
(x, ,)62,)63)3 and xl3 appears in ¢ because wtx, # wtx,, wtx,. Hence @| .,
is of order 3, which is a contradiction. Thus (a) =(1,1,2,3) or (2,1,1,3),
whence w,(0) =2/3 by (4.9(1)). O

(4.12) Under the notation and assumptions of (4.2), assume that P is a type
(IA) point with a, = 1 or a type (IIA) point. Then there exists an £-coordinate
system (z) = (z,,...,z,) for (X,P) and an ¢-coordinate for (C,P) such
that C* is the z,-axis, wtz, =a, (i €[1,4]), and ¢ = z,"z (22,23,24)2,
where n = lenl,,ulc,,(?')/lm2 >0 and g €[2,4] (2.16).

We note that if P is of type (IA) and n > 2, then wtz,z, =0 (m). Because
otherwise, we see that m > 3 and ¢ € <Cz42 + (z)3 , hence (X, P) isa cD-type
terminal singularity of index 3 (1a.6) and wtz,z; = 0 by (4.11), which is a
contradiction. Thus we have

(4.12.1) Sublemma. If P isatype (IA) point with a, = 1 and len,, I, /I "
> 2, then a, = 1.

q

If P isof type (IA) and n > m (resp. P is of type (IIA)), then we can
choose a general semi-invariant

* — * 3 * * 3 4
weCz" %z +Czyzy+ 10 (resp. w €C'z2,+C7z, +1.,")
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such that {¢ = y = 0} is a surface which is smooth outside z,-axis by Bertini’s
Theorem. Then as in (4.6) and (4.7), ¢, = ¢ + Ay induces a deformation
X, 2C 2P ofnbdof P in X D> C such that X; , O C, , is locally

primitive, and nearby extremal nbds X f > (.

(4.12.2) Proposition Definition. (i) If P is a type (IA) point with a, = 1 and
n=leng, I cu /Icn > m, then X; , D C,, has a type (IA) point with index
m and at least one type (III) pomt and

(ii) if P is of type (1IA), then X; > C, > P has an {-coordinate system
(¥) (depending on 1) such that wty, = a, (i €[1,4]), Cf is the y, -axis,
O, =¥y, + y32 + y43 for each small enough 2> 0.

We call all these processes ( or Xf > C,, by abuse of language ) L'-deform-
ations at P.

Proof. Since S' = Sing{¢ = w = 0} is contained in z -axis, S'nF ¢ {0},
where F* is the fixed axis, i.e. z,-axis (1a.5).

(1) Since z,z, appears in y , the conditions in (1b.3) are satisfied by (1b.5),
and (1b.3) applies. The argument is similar to (4.7), and we only show existence
of an extra type (III) point. By

_ n—(m—ay) m—a, 2
¢, =(z, Y +A)z Tz, mod(z,,25,2,)"

we see a moving singular point by n — (m — aq) > 0. This gives a type (III)
point since it is not on the fixed axis (1b.3).

(i1) By (1a.5), 232 appears in ¢, whence the quadratic part of ¢, is of the
form az,z, + ﬁzzz + yz32 (a,B,7y€C, ay #0). Thus using the Weierstrass
Preparation Theorem, one can easily obtain an £-coordinate system (y) such
that wty, = a, (i € [1,4]), Cf 1s the y -axis, ¢, = y,y, + y32 + y42rH
(r > 1). By construction of y, ¢|,., has exactly a triple root at the origin,
and we note that F* = y,-axis in terms of the coordinates y. Thus r = 1
(la.5(111)). By (la.7(i1)), ({¢, = 0},0)/p,, is terminal. Thus the conditions in
(1b.3) are satisfied and the rest is the same. 0O

5. NUMERICAL CALCULATIONS FOR (IA), (IC), (IAY), anp (ICY)

The main purpose of this section is to make formulae (4.9) more explicit for
later use. Throughout this section, we will use the notation of (4.9).

(5.1) Proposition. Assume that P is an ordinary point of type (1A) with index
m such that i,(1)=1, w,(0) < 1/2. Then

(1) one has a, =1, and
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(i) if d €N satisfies w,(0) < 1/d, then one has (we note d < m—1 and
1/d+1)<(m-1)/md< 1/d)

(ip(d +1), wp(d))

(O,%d(d+ 1)) iwp(0) < 5

(1 , %d(d+ 1) - 1) ifwp(0) > %H w,(0) # ’Zl—fdl,
) <2,%d(d+1)—2) lfwP(O):%,d¢m—l,

<d+2,%(d—2)(d+1)) ifw,,(O):%, d=m—1.

Proof. One has aa, < m by Ulaa,) = 1 and a, > m/2 by wy(0) =
(m-a,)/m < 1/2 (4.9). Thus g, = 1 and ord(C”) = Z, , which proves (i).
Since wp(0) > 1/m,onehas d <m and 1/(d+1) < (m—1)/md < 1/d isim-
mediately checked. We note that U(n) = [n/m] for n € Z by ord(Cu) =Z,.
Then r = m—a, €N satisfies dr < m by w,(0) =r/m < 1/d. Let us consider
arbitrary i, j € Z_ such that i+ j=d + 1. Then we claim

. 1
= >
j=0 ande(O)_d+1,
-1
1 if j= =
Ulia, - j) = i i J=1 and wy(0) mod o
j>1 ande(0)=%andd=m—l,

I otherwise.
Indeed from
mi - (ia, — j)=(m—-a,)i+ j>0,
and
(la,—j)-m(i-2)=2m—j—i(m-a,)
=2m-—j—ir
>2m—(d+1)r>0,
one has i > U(ia, — j)>i—1 and U(ia, — j)=1i-1 iff X(i,j) <0, where
X(i,j)=ilay—j)—-m(i—1)=m~ j—ir. Itisclear that X(d+1,0) <0«
m<(d+D)rewg(0)>1/(d+1). If j>1, then
X, H=m—-1-(j-1)—ir
>m-—-1—-(j—lr—ir
=m-1-dr>0.

iff m—1=dr,thatis w,(0) = (m—1)/md. If

One sees that X(d,1) <0
if m—1=dr and r =1, thatis w,(0) = 1/m and

<
j>1,then X(i,j)<0
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d = m — 1. Thus the claim is proved. Since (4.9) implies

E{z (iay—j)}, and
=ZUI(12-] -(d+1)

i>1
=Y i=Y {i-Uliagy- )y -U(-d-1)—(d+1)
=ldd+1)-i,(d+1)-U(-d-1),

the above claim implies (5.1). O

(5.2) Proposition. Assume that P is an ordinary point of type (1A) and index
m. One has
(i) ip(1)=1 and a,>1=1i,(2)<1,
(i) a, > 1= wy(l) > zp(l) -1, and
(iii) wp(1) > —1 where “ =" holds iff a, =1 (& wy(0)=(m—1)/m). If
Jurthermore a, =1, then
ip(d)=3dd+1)-[41+4Sd) (d>2),

*

wp(d)=-[41+8Sd) (d=>1),

where S(d)={i€Z|0<i<d, i=d(2), i=0 (m)} (we note
4S(d) =0, ,, if d <m).

Proof. Assume that a, > 1. Let m =ca, + fa, (a,f€N). By (a;, m)=1,
one sees (a,,a,) = 1. Thus a, —a, ¢ Z a, +Z,a, and m+a, —a, =
(e+Da, +(f-1a,€Z,a +7Z_a,, whence U(a, —a,)=1. Hence

wyp(1) = U(a,a, +a,) + Ua, —a,) -2
=Ulaa,+a,) -1 >Uaja,) - 1>1i,(1)-1,

which proves (ii). One sees —m — (-2a) = 2a, - m = (2 - a)a, — fa, ¢
Z,ay+Z,a, by 2-a <1 and B > 0 (note (a,,4,) =1 and a, > 1).
Thus U(-2a,) = 0. Let us assume i,(1) = U(a,a,) = 1 to prove (i). Then
U(a,a,—a,)=1 by a,a,—a; >0 and U(a,a,) > U(a,a, —a,;) > 1. One has
2 =2U(aa,) > U(2a,a,) > U(a,a,) = 1. Thus one has i,(2) = 2U(a,a,) -
U(2a,a,) + U(a,a,) — U(a,a, — a,) — U(=2a;) = 0 or 1, which proves (i). By
(ii) and (2.15), one sees wy(1) > 0 if a, > 1. The formula in (iii) implies
w;(l) -1 if a, = 1. We now need to prove the formulae in (iii) assuming
a, = 1. Then ord(C) Z,, U(n)=[n/m] for n€Z,and U(a,,a,) =1.
Hence (4.9) implies

wa- 2[5

i.j>20, i+j=d

=gdd+1)- Y ([’“ﬂ * ["%D

0<i<d, i=d(2)
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for d >2. By

2:2+£+—_x>m+[z] >X X o
m m m m m m

B[], e

whence formula for i,(d) follows. One also has

- ¥ (Ao

one secs

i,j>0, i+j=d
ia, + 1 —ia, +1
SN(ERE
. : m m
O0<i<d, i=d(2)

for d > 1. It is clear that
X m—l+x+1 >{x+l"2x+1

1+ =
m

€Z
m m m (x )

and that the first inequality is an inequality iff x =0 (m). Hence from

1+x}+[1—x'|21+x+1—x 2

m m m m

22[1+x"‘+{1—)ﬂ21
m m

and the first inequality is an equality iff x = 0 (m). Then the formula for
wp(d) follows. O

2=2+i+_—x2[
m m

s

one sees that

There is another case of (IA) with i,(1) = 1, in which we need to calculate
ip(d) forlarge d.

(5.3) Proposition. Assume that P is an ordinary point of type (IA) with index
m. If wo(0)=1/m, then a, =1, a,=m—1, ip(1)=1, and

i(d)=(d+1) [%] @z 2),
1(d+1){d—2[%]} @>1).

Proof. By wp(0) = 1/m, one has a, =m —1 (4.9). Thusby me Z__ a, +
Z,,a,,onehas a = 1. Hence ip(1) =1, ord(C") = Z_,and U(n) = [n/m)]
for n € Z. Then (4.9) implies

ipd)=> {i-U(im-d)} =Y [%] =(d+1) [%] d>2)),
wp(d) = U((i+)m—(d+1)) - (d+1)

S [) -heenfea ) e s

wp(d) =

(S]]
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The following provides us with necessary information for our calculation in
(6.5).

(5.4) Proposition. Assume that P is an ordinary point of type (1A) with index
m such that i,(1) =2 and w,(0) < 1/2. Let a,,a, be as in the definition of
type (1A) in (4.2). Then

(i) a=2,a,>2m+1)/2, a,, m=1 (2), and

(i)
;(1)22, w;(2)2{5 z.fwP(O)<2/5,

40y, meny2 ¥wp(0) 2 2/5,

and furthermore if w,(2) =3, then U((2i+ 1)a,—2(2—10))=i+1 for
ief0,2] (c¢f (2.8).

Proof. By wp(0) = (m—a,)/m < 1/2 (4.9), one has a, > m/2. From i, (1) =
U(aa,) = 2 (4.9), one sees 2m > a,a, > aym/2, whence a; < 3. Since
a, 22 by U(a,a,) =2, one will see a, = 2. Indeed if a; = 3, then 2m - 3a,
(< a,) belongs to 3Z_+ a,Z, _, whence 2m — 3a, = 0 (3), which however
contradicts (m,3)= 1. Hence a, =2 and m, a, =1 (2). This proves (i).

BymeZ 2+Z_,a, and a, > m/2, one sees m > 5 and m = a,+ 2r for
some r € N such that 2r<a,. Let i, j € Z, be such that i+ j <2. Then we
claim

(5.4.1) U((2i + 1)a, — 2j) > i+ 1, where

« {i=0, or
= <:> . .
(i+)r+j>a,.

To see this, let X(a,i,j) = (i +e)m —{(2i+1)a, —2j} for a €Z . We
note that U((2i + 1)a, - 2j)<i+a iff X(a,i,j) €Z 2+ Z, a, by definition
of U(), and that

X(0,1,j)=—(i+ lay,+2(ir+ j) = (1 = i)a, + 2(ir + j — a,)

by m=a,+2r. Since (a,,2)=1 and ir+j—a, <2r —a, <0, this means
that X(0,7, /)¢ Z_a,+2Z, and U((2i+1)a,-2j)>i+1. Then
X(1,i,/)=X(0,i,))+m=~ia,+2((i + 1)r + j)
=2-Da,+2((i+ H)r+j—a,)
by m=a,+2r. Then X(1,0, j) =2(r+j) € Z,2 and thus U((2i+1)a,-2j) =
i+ 1 if i =0. Assume that i > 0, i.e. i = 1,2. Then one similarly sees by
(5.4.2) that X(1,i,)) € Z,a, +2Z_ iff (i+ 1)r+j—a, 2 0. Thus our
claim (5.4.1) is proved. By (5.4.1) and a, > 2r, one sees U(3a,) > 3 and
U(a, ~2) =1, whence

wp(1)=U(3a,)+ Ula,—2)~22>2

(5.4.2)
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by (4.9(ii)). Similarly, one sees U(a, —4) =1, and
UBBa,~2)>2, where“="®2r+1=a,, ie a,=(m+1)/2,
U(5a,) >3, where“="¢3r>a,, ie wy(0)>2/5

because 2r +1<a, and a, = m — 2r. By (4.9(ii)), one has

*

wh(2) = U(5a,) + U(3a, — 2) + U(a, — 4) - 3.

If w,(0) <2/5, then a,>3m/5> (m+1)/2 by m>5. Hence w,(2) >5 if
w,(0) < 2/5, and the estimate for w,(2) follows immediately. If w,(2) =3,
then the above argument shows U(5a,) = 3, U(3a, - 2) = 2, U(a, — 4)

=1. 0O

(5.5) Proposition. Assume that P is of type (1C) with index m. Then one has
(i) ip(l)=a, (>2by(42)),

(i) : .
ooy fip(1) fwp(0)#(m—1)/m,
wp(l) =1 .
ip(1) =8, 2= 04 (m-1)2 otherwise,
(i) if ip(1) =2 and wp(0) # (m —1)/m, then i,(2) =0,
(iv) if d € N satisfies wp(0) < 1/d < 1/2, then iP(d'+l) =0 and w;(a") =
a,d'(d +1)/2 forall d' €[1,d], and
(v) if wp(0)=4/5 and m =5, then w,(2)=0 and w,(3) = 4.
Proof. By wp(0) = R(a,)/m <1, R(a,) (< m) belongsto Z ,a, +7Z,a,. By
a,#¥a,,a, (m), a,+a,=m, 2<a,<a,,onesees m>5 and R(a,) = rq,
for some r € [2,m/a;). Let u = U(a,), whence a, = um —ra,. Let us
choose d € N such that w,(0) < 1/d,i.e. rajd <m. For i, j€Z_ such that
i+j<d+1, weclaim
(5.5.1) Ulia,a, + ja,) = ia, + ju —Max{0,ia, +rj —a,}.
First we note
ia +rj—m<ia +rj—rad
(5.5.2) <(d+1)-Max{a, ,r} -rad
= Max{a ,r}(d+1-d-Min{a;,r}) <0
by a,,r > 2. For « >0, let X(a) = (ia, + ju — a)m — (ia,a, + ja,) so that
Ulia\a, + ja,) <ia) + ju—a iff X(a)€Z,a, +Z a,. Then
X(a) =ia,(m-a,) + j(um —a,) — am
= ia,2 + jra, — a(a, + a,)
= (la, +rj—a)a, — aa,
=(ia, +rj—a,—a)a, +(a, —a)a,.
Thus X(0) € Z a, and U(ia,a, + ja,) < ia, + ju. For a > 0, one has
ia +trj—-a,—a<m-a,-a=a —-oa<a <a by (552). Thus by
(a,,a,) =1, one sees X(a) € Z,a, +Z a, iff ia +rj—-a,—a>0. Hence
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o = Max{0, ia, +rj—a,} is the largest o € Z_ such that X(a) € Z _a,+Z a,,
whence (5.5.1) follows. Setting (i, j) = (1,0), one has U(aa,) = a, and (i)
follows. Using m > ra, + 1 and setting d = 1, one sees

ia, +rj—a,=(i+1l)a, +rj-m
<@+ la +rj—1~ra,
=—(a, - )r—i-1+jli+1)-1.
For (i,j) = (1,1) (resp. (0,2)), onesees j(i+1)=2, a >j, r>i+1.
Thus

ia,+rj—a,<1

and the equality holds iff m =ra, +1 and r =2 (resp. a;, =2),ie. iff q, =1
(m) and a, = (m—1)/2 (resp. a; = 2). Thisis because r =2 < a, = (m—1)/2
when m = ra, + 1. Thus by (4.9) and (5.5.1), one has

wh(1) = > {Ulia,a, + ja,) — ju}
(1./)=(1.1).(0.2)
_ { a =0, 2= 0, (mryy fa,=1(m),
a, otherwise,
whence follows (ii). By (5.5.1) with (i, j) = (2,0), one has U(24,a,) = 2a, -
Max{0, 3a, — m}, whence one similarly obtains

(2 = { Max{0,3a, —m}+38, ,+3, (n_y fa,=1(m),
Max{0, 3a, — m} otherwise.
If ip(1)=2 and w,(0) # (m—1)/m, then a;, =2 and a, #1 (m) by (i),
whence m > 2r+22> 6 and i,(2) = 0. Hence follows (iii). When d > 2, one

sees
ia +rj—a,<ia +rj-m+Max{a,,r}

<Max{a,,r}(d+2~d-Min{a,,r}) <0
by a,, r > 2 and (5.5.2). Thus by (5.5.1), one sees
ip(d+1)=0 and wi(d)=ad'(d +1)/2 ford €[l,d]

if d > 2. This proves (iv). Assume that m = 5 and q, = 1 (5). Then
a=r=2,a,=3,u=2,and a,=6. Thus Z _a,+Z, a,=7Z,_—{1}. Hence
for x,y,z €Z,_ suchthat x+y = z,one has U(xa a,+(y+1)a,) = U(6z+6).
Thus by (4.9), one has

wh(z)=(z+1)-U(6z+6) - (z+ 1)(z+2)=(z+1)-U(z - 4)
-4
=(z+1) <[2 - ]+6(Zmod5)‘3> ,

denotes 1 if x =y (5) and O otherwise. This proves (v). O

where d(x mods) .y

The calculation needed for imprimitive points is much simpler.
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(5.6) Proposition. Let P be an ordinary point of type (IAV). Then we have
(i) w;(l) >ip(1)—1, and
(ii) ip(l) >2 if wp(0) <2/3.

Proof . Let the notation be as in (4.9). Since C' is not smooth, ow(C n) is not
generated by ow, (2.7). Hence ow, — ow, ¢ ow(C”) by ow(C“) =1Z, ow, +
Z, ow,. Hence U(ow, —ow,;) > 1 (2.8). By (4.9(ii)), we have

*

wp(1) = U(sa,ow, +ow,) + U(ow, —ow ) — 2
= U(sa,ow, +ow,) — 1.

By definition of U (2.8), we have U(sa,ow, + ow,) > U(sa,ow,) = i,(1).
Whence w;,(l) > ip(1) = 1 and (i) is proved. Assume now that i,(1) =
U(sa,ow,) < 1 and wp(0) = (m — a,)/m < 2/3 (4.9) to prove (ii). Then
(m,0) —sa, - ow, € ow(C u) and 3a, > m. Comparing the order part, we see
s=2,a =1,and (m,0)-20w, = cow, forsome a € Z, . Thus m = 2a,+a
and 2a,+awtx, =0 (2m). Hence wtx, #1 (2m),and wtx, = 14+m (2m).
Since (wtx,,2m) =1, m must be even, whence o =7 = 2a, is even. Then
m=12a,+a=2a,+awtx; =0 (2m), which is a contradiction. O

(5.7) Propoesition. Let P be a type (IC') point. Then ip(1)=2, wp(l) =2,
and wp(0) > 3/4.

Proof. Since ow(C") = z,(1,1)+Z (m—1, —1), we can easily see

1 ifx=1
Ulx) = ,
() {2 f2<x<2m
for integers x € [1,2m]. Thus
i,(1)=U2m-2)=2,
wp(0)=R(m+1)/m=Um+1)-(m+1)/m=m-1)/m2>3/4,
and
wo(l)=UQm-2+m+1)-Um+ 1)+ UQ2m +2) - 2U(m + 1)
=2+Um-1)-Um+1)+2+UQ2)-2U(m+1)
=2
by m >4 (4.9(ii))). O

1
6. POSSIBLE SINGULARITIES ON AN EXTREMALNBD X D C ~P

The main purpose of this section is to limit the possible combination of
singularities of types (IA)-(III), (IAY)-(I1") using invariants i pd), wp(0),
and wp(d).

The results are summarized in (6.7). Easy cases (6.7.1)-(6.7.3) will be treated
in §7 and the delicate case (6.7.4) will be treated in §9.

We consider imprimitive points first, since they are much easier to treat.
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(6.1) Theorem. Let X > C ~P' be an extremal nbd with an imprimitive point
P. Then
(1) P is of type (IAY) or (II') (i.e. not of type (ICY)),
(i) X D C has at most one more singular point, and
(i) if wp(0) < 2/3 or siz, > 2 (in particular if P is of type (11V)), then
P is the only singular point of X on C.

Proof. By (1.13), X O C has no other imprimitive points. Since L-deforma-
tion (4.7) at a type (IAY) or (II') point P produces an extremal nbd Y D D
with an ordinary type (IA") point Q such that sizg =siz,, w,(0) = wp(0),
and Y D D is isomorphic to X D C outside small nbds of Q and P, we
may replace X O C with an L-deformation at P. Also by replacing X > C
with an L-deformation at other points, we may assume that X O C has only
ordinary points (4.7), hence has only points of type (IA), (IA"Y ), (IC), (IC v ),
(II).

(i) Assume that X D C has a type (IC') point P. Then by wj(1) = 2
(5.7), X > C has another singular point Q such that wé(l) < -1 (2.3.3).
By ip(1) = 2 (5.7), we have i,(1) = 1 by (2.3.3) and (2.15). Thus Q is
not of type (IC) by (5.5(i)), and not of type (III) by (4.9(ii)), hence of type
(IA). By wé(l) < -1, we have w,(0) > 1/2 (5.2(iii)), which contradicts
wp(0) + wQ(O) <1 (2.3.3) because w,(0) > 1/2 (5.7). Hence P cannot be a
type (IC”) point.

(i) Assume that X D C has two more singular points ¢ and R. Then by
(2.3.3) and (2.15), we have i,(1) = iQ(l) = Ip(1) = 1 and no other singular
points. Hence Q and R are not of type (IC) by (5.5(i)). By w,(0) > 1/2 (4.2),
we see w,(0), wg(0) < 1/2 by (2.3.3). Then we see wé(l) =we(l) =1, by
(4.9(1)) for type (III) points, and by (5.1(ii)) with d =1 for type (IA) points.
We also have wy(1) > ip(1)—1=0 by (5.6(i)). Hence wp(1)+w,(1)+wg(1) >
2, which contradicts (2.3.3).

(iii) Assume that w,(0) < 2/3 or siz, > 2 and that X O C has another
singular point Q. Then i,(1) > 2 by (5.6(i1)) or (4.10), and w;(l) > ip(l) —
I > 1 (5.6(1)). Thus by (2.3.3) and (2.15), one sees that P and Q are the only
singular points, iQ(l) =1 and wé(l) < 0. Thus Q is a type (IA) point as in
(i). Then by wQ(O) <1-wp(0) < 1/2 (4.2), we have w(*z(l) =1 by (5.1(i1))
with d = 1. This is a contradiction. O

(6.2) Theorem. Let X D C ~ P! be an extremal nbd. Then

(1) X has at most three singular points on C and at least one of them has
index > 1, and

(ii) if X has three singular points on C, then they consist of a type (III)
point, a type (I1A) point of index 2, and a type (IA) point (say, P) of
odd index (say, m > 3) and size 1 such that wp(0) = (m—1)/(2-m).
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Proof. By (6.1), we may assume that X O C is locally primitive. By (2.3.3), we
have 3 ,i,(1) < 3. Since i,(1) >0 forall pe C and i,(1) > 1 for singular
P by (2.15), one sees that X has at most three singular points on C. For (i),
it is enough to derive a contradiction assuming that X > C has only type (III)
singular points. Applying L-smoothing (4.7) repeatedly at type (III) points of
X D C, one obtains a locally primitive extremal nbd Y > D ~ P! such that
Y is smooth. By (2.3.2), one has deggrl) @ =1 because ip(1) =0 for smooth
points P. Thus degND/Y = —deggrll)é’ = —1 and the space of embedded
deformation of D in Y has dimension > x(ND/Y) =2 —1=1. This means
that D moves inside Y while it is the only reduced compact subvariety of
dimension > 1 in its small enough neighborhood. This is a contradiction and
(1) is proved.

We will prove (ii). Let P, Q, R be the singular points with indices k£, m,
n, respectively. As in the proof of (i), one has i,(1) = iQ(l) = ip(l) =1 and
deggrlcﬁ = —2. We note that X O C has no points of type (IC) by (5.5(i)).
Thus P, O, R are of type (IA), (IB), (IIA), (IIB), or (III). We treat four cases
(modulo permutation of P, @, R).

(6.2.1) Case ordinary P, Q, R of type (IA), (1II), (II1), respectively. We will
derive a contradiction in this case. By wy(1)+ wé(l) +wp(1) <1 (2.3.3) and
wa(l) = wp(1) =1 (4.9(ii)), one has w,(1) < —1. Thus by (5.2(iii)), one has
wp(d) = —[d/2] + 6, , for d € [1,k]. Let d € [1,k] and let r € [0, 1] be
such that r =d (2) . By w,(d) = wi(d) = [(d + 1)2/4] (4.9(ii)), one has

2
l+d+deggriov=d+1+= (d+1)(d—2)+ [i] “5d,k—2[(d+l) ]

2 4
1 d+r d+1)>-(1-r)
=§d(d+1)+ 3 — 04— 3 =~0y
by (2.3.2). Thus we have
. d
Z(1+d+deggrcw):—1<0,
d=1

which contradicts (2.3.3).

(6.2.2) Case ordinary P, Q, R, all of type (IA) with w,(0) > wo(0) = we(0).
We will also derive a contradiction in this case. By w,(0) + w,(0) + w(0) <
1 (2.3.3), one has w,(0), wg(0) < 1/2. Hence by (5.1(ii)) with d =

one has iQ(Z) = ig(2) = 0. Hence by deggrlcé’ = -2 and (2.3.3), one has
deggre. @ > —3 and whence —6 + i,(2) + ip(2) + ig(2) > 3, ie. ip(2) > 3
by (2.3.2). Applying (5.2(i)) to P, one has a, = 1 under the notation of (5.2),
whence 3 < i,(2) =2+4,, by (5.2(iii)). Thus k =2 and deggrzcé’ = -3,
whence w,(0) = 1/2 and i,(d) = (d + 1)[d/2] for d > 2 by (5.3). One
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has WR(O) < (1-wy(0)/2= 1/4, and ip(3)=0 follows from (5.1(ii)) with
d = 2. From deggr‘éé’ =-d-1 (d =1,2), one has -4 < deggré@’ =
—=3-4+10p(3) +iy(3) + ix(3) = =8+ i,(3) by (2.3.2) and (2.3.3). Hence
wQ(O) <1-wp,(0)=1/2 and iQ(3) >4, whence m =3 and w,(0)=1/3 by
(5.1(11)) with d = 2. Thus iQ(d) = (d + 1)[d/3] for d > 2 by (5.3). From
We(0) < 1T —wp(0) —w,(0) = 1/6, one has i,(4) = iy(5) = 0. Thus by (2.3.2),
one has
deggr @ = —4-5+i,(4) +i,(4) = —20+ 10+ 5= -5,

deggry@ = —5-6+i,(5) +iy(5) = —30+ 12+ 6 = -12,

which contradicts deg gr4C @ +deg grSC @ > —5-—6 (2.3.3). So this case does not
ocCur.

(6.2.3) Case ordinary P, Q, R of type (1A), (1A), (III), respectively, with
wp(0) 2 w,(0). We will prove k =2, m=1 (2), and wy(0) = (m - 1)/2m
in this case. By wQ(O) < wp(0) and wp(0) + w,(0) < 1 (2.3.3), one has
w,(0) < 1/2 and hence wy(1) = 1 by (5.1(ii)) with d = 1. By wg(1) = 1
(4.9(if)) and wp(1) <1 - wé(l) — wg(1) = —1 (2.3.3), one has wp(1) = —1,
wp(0) = (k — 1)/k, wp(2) = —1 46, , by (5.2(iii)). Hence deggrlca) =
—1-wp(1) - wa(l) —we(1) = -2 (2.3.2) and deggrzc w > -3 (2.3.3), whence
-3< deggrzcw = -wp(2) - wé(2) — we(2) (2.3.2). By wg(2) = 2 (4.9(ii)),
one has wé(Z) <2-4,,. Weclaim k = 2. Indeed if k > 3, then
wo(0) < 1 - wp(0) = 1/k < 1/3 and one sees wé(2) = 3 by (5.1(i1)) with
d = 2, which contradicts w,(2) < 2-,,. Thus k = 2 is proved, and
hence wé(2) < 1 and wQ(O) < 1/2. By (5.1(ii)) with d = 2, one sees
wQ(O) =(m-1)/2m and m=1 (2).

(6.2.4) General case. We claim that X D C has no points of type (IB) or (IIB)
(resp. (IIA)). Indeed if otherwise, we may apply L-deformation (4.7) (repeat-
edly) at such points to produce a locally primitive extremal nbd Y > D with
only ordinary singular points which has at least four singular points (resp. one
point with index 4 and at least two more singular points), which contradicts (i)
(resp. (6.2.1)-(6.2.3)). Thus the claim is proved and X > C has only points
of type (IA) or (III) with i(1) = 1. When we apply L-deformation (4.7) re-
peatedly at these points to produce a locally primitive extremal nbd with only
ordinary singular points, each singular point deforms to exactly one singular
point of the same type with the same index, size, and w(0). Hence we are
done by (6.2.1)-(6.2.3). O

(6.3) Theorem. Let X O C =~ P! be an extremal nbd. Then X > C has no
type (IB) points.

Proof. We will derive a contradiction assuming that X O C contains a type (IB)
point P. We may apply L-deformation (4.7) repeatedly to X O C, and obtain
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an extremal nbd Y > D ~ P with only ordinary singular points which has at
least two points P and @ of type (IA) with the same index m (> 1) such
that w,(0) = wQ(O) . By (6.1) and (6.2), P and @ are the only singular points
of Y on D. By wy(0) =w,(0) < 1/2 (2.3.3), one has w,(1) =w,(1) =1 by
(5.1(i1)) with 4 = 1, which contradicts (2.3.3). Hence X D C has no type (IB)
points. O

(6.4) Theorem. Let X O C ~ P! be an extremal nbd. If X > C has a point P
of type (1IB), then P is the only singular point of X on C.

Proof. If X > C has singular points other than P, then one may apply
L-deformation (4.7) at type (IIB) point P to X O C to get an extremal nbd
Y 5 D ~ P' with at least three singular points, two of which have indices 2
and 4. This contradicts (6.2). O

(6.5) Theorem. Let X O C ~P' be an extremal nbd. Assume that X > C has
a type (IC) point P with index m. Then P is the only singular point of X on
C,andone has i,(1) =2 and wp(0)=(m~1)/m.
Proof. If X > C has an imprimitive point ¢ (# P), then we may pass to
the splitting cover (1.12) Y > D because the point over Q has index > 1
(1.16) and Y is locally primitive along an arbitrary irreducible component of
D (1.13), Hence we may assume that X > C is locally primitive.

Using L-deformation (4.7), one may assume that X O C has only ordinary
singularities. We note i,(1) > 2 (5.5(i)). We treat three cases.

(6.5.1) Case i,(1) > 3. We will derive a contradiction in this case. One has
ip(1) =3 and P is the only singular point of X on C by (2.3.3) and (2.15),
whence w,(1) < 1 by (2.3.3). This is a contradiction, because (5.5(i)) and
(5.5(i1)) show wp(1) >3 -1=2.

(6.5.2) Case ip(1) =2 and w,(0) # (m—1)/m. We will derive a contradiction
in this case. By (5.5(i1)) and (5.5(iii}), one has w;(l) =2 and i,(2) = 0. Hence
by (2.3.3) and i,(1) = 2, one sees that there exists exactly one more singular
point Q of X (say, with index n) on C, iQ(l) =1, deggrlcﬁ’ = -2 and
wa(l) < —1. We see that Q is not of type (IC) by (5.5(i)) and hence Q is of
type (IA) by (4.9(ii)). By (5.2(ii1)), one has wo(0) = (n=1)/n, i,(2)=2+4, ,,
and iQ(3) =4+, ,. By deggrlcﬁ = -2, one sees

~3<deggre @ = —6+i,(2) +i,(2) = -4+,

ol
by (2.3.2) and (2.3.3). Thus n =2, deggrzc(?’ =-3,and w,(0) < 1- w,(0) =
1/2. By (5.5(iv)) with d = 2, one has i,(3) = 0, and hence deggrzé’ =
—12+i,(3)+ iQ(B) = —8 by (2.3.2). This contradicts deggré@’ > —4 (2.3.3).

(6.5.3) Case ip(1) =2 and wp(0) = (m—1)/m. We will derive a contradiction
assuming that X has another singular point Q on C (Q is unique by (2.3.3)
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and (2.15)). Since P is of type (IC), one has m > 5, whence wo(0) <1 -
wp(0) < 1/5 (2.3.3). Since iy(1) =1 by (2.3.3), @ is of type (IA) or (III).
Let Q be of type (IA) (resp. (III)). Then by wo(0) < 1/5 and (5.1(i1)) (resp.
by (4.9(ii))) with d € [1, 3], one has wé(d) =d(d+1)/2 (resp. [(d + 1)*/4])
for d € [1,3]. By (5.5(ii)), one has w,(1) =1 —d,, s- Thus by (2.3.3), one has

1> w;(l) + w&(l) =2-6 whence m = 5. Hence by (5.5(v)) and (2.3.2),

50
one has K
3 3 3
Z(1+d+deggr‘éw)=Z—M2—+l—)—4—z.d_(d7+1_):—4<0
d=1 d=1 d=1
2 d(d+1) 2 [@+1)?
resp Z 3 —4—2 7 =-1<0].
d=1 d=1

This contradicts (2.3.3), and we are done. O

(6.6) Theorem. Let X D C ~P' be an extremal nbd. Assume that X > C has
a type (1A) point P of size > 1. Then P is the only singular point of X on
C, siz, =2, and w,(0) > 1/2.

Proof. As in the proof of (6.5), we may assume that X D C is locally primitive.
By using L-deformation (4.7), one may assume that X O C has only ordinary
singular points of type (IA) or (III) (6.5). Then i,(1) =siz, > 1 (4.10). Let
m be the index of P, and a,, ...,a, asin the definition of type (IA) in (4.2).
We treat three cases.

(6.6.1) Case i,(1) > 3. We will derive a contradiction in this case. By i,(1) >
3, one has ord(C“) #Z, and a, > 1, whence w;(l) > 2 by (5.2(ii)). Thus P
is the only singular point of X > C by ZQ# ip(1)+3 <3 (2.3.3) and (2.15),
while X D C must have some other singular point by ZQ# wa(l) +2<1
(2.3.3). This is a contradiction.

(6.6.2) Case ip(1) =2 and w,(0) > 1/2. We will first derive a contradiction
assuming that X O C has another singular point Q. By ER#,Q ip(1)+2+
z'Q(l) <3 (2.3.3) and (2.15), P and Q are the only singular points of X > C
and iQ(l) = 1. One has wQ(O) <1 -w,(0) <1/2 by (2.3.3). Then one sees
that wé(l) =1 by (5.1(i1)) if Q is of type (IA), or by (4.9(ii)) if Q is of
type (III). Since i,(1) = 2, one has w,(1) > i, (1) =1 =1 by (5.2(i)), as in
(6.6.1). Thus we have w;(l) + wé(l) > 2, which contradicts (2.3.3). Hence P
is the only singular point in this case. We can see w,(0) = (m —a,)/m # 1/2
(4.9(1)). Indeed if otherwise, one sees m = 2a, and a, =1 by (a,,m) =1,
whence i,(1) = 1 (4.9(11)), which contradicts the hypothesis (6.6.2). Hence
wp(0) > 1/2, which was to be proved in this case.

(6.6.3) Case ip(1) = 2 and wp(0) < 1/2. In this case, we will also de-
rive a contradiction. By (5.4), we have 4, = 2 and w,(1) > 2. Hence by
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204p wa(1)+2 <1 (2.3.3), X D C has another singular point Q (say, of index
n) such that w,(1) < —1. By Y _p o ig(1)+2+i5(1) <3 (2.3.3) and (2.15),
we see that X O C has no other singular points, iQ(l) =1, deg grlcﬁ =-2.
Now we claim

(6.6.4)
n=2, a,=(m+1)/2, wy(2)=3, deggr‘éwz—d—l d=1,2).

Since wa(l) < -1, Q is a type (IA) point by (4.9(ii)), whence
wo(0)=(n—1)/n, wo(l)=-1, w5(2)=—1+62'n

by (5.2(ii1)). By w;(l) > 2 (5.4(ii)) and w;,(l) + w&(l) <1 (2.3.3), one has
w;(l) =2 and deggrlcw = -2 (2.3.3). Hence deggrzcw > -3 by (2.3.3). If

> 3, then wp(0) < 1-w,(0) =1/n < 1/3 (< 2/5), whence wp(2) > 5
5.4(ii)) and we have a contradiction —3 < -wp(2) ~w,(2) < -5+1~4, , <
—4 from (2.3.2). Hence n = 2 and wy(2) = 0, and (2.3.2) implies -3 <
deggrzcw = —wp(2), ie. wp(2) < 3. Thus by (5.4(ii)), one sees wy(2) = 3,
a,=(m+1)/2, and deggrzc w = —3. This proves our claim (6.6.4).

By (2.3.4), one has gr.@ ~ @(-1)** and gl w ~ #(-1)%“*" for d €
[0,2]. Applying (4.8)to X D C>Q (with b, =b, = k =1 and index 2), one
sees that

=

~

B,: Sz(grlc g)® gr% w— grzc w
(cf. (2.2)) is described at Q (by notation of (4.8)) as
(Byg: O @rvv,/Q= Y ow'v/q,

i+j=2 i+j=2
where ¢ is the uniformizing parameter of & o - Hence it induces an injection

7,: 8’ (@10 0) @ e 0 ® F(Q) — g @
which is an isomorphism at @ and hence an isomorphism outside P. We
will study y, near P to derive a contradiction. Let (x) and ¢ be normalized
£-coordinates at P, and we will use (X",P”) s (C”,P”) ,and wt (= Ct- wt)
in the sense of §2. From now on we use a instead of a, = (m + 1)/2 for
simplicity of notation. We note a,m = 1 (2) by (5.4(i)) and a > 3. One
has &, p, > C{r*, 1} (2.7) and gr;, @ (resp. gy @) has p, -semi-invariant
free &Gy py-basis 4 and B (resp. C) near P' so that wtd = 2a = 1,
wtB = a; = -2 (m) (resp. wtC = a (m) by (2.10)). This is because
(C” , P”) is a complete intersection F, = F; =0 in (X” , P”) , where wtF, = 2a,
wtFy, =a; (m) (4.5.1). Hence grlcé’ =ﬁc(tm_lA)eaﬁc(t2B) near P by (4.8),
where ™' = (1) and P e Ocy py - We recall that g, , = C{t"} is the
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subring of p -invariants of &, ,,. Since grlcﬁ ~ (—1)6’2 , one can choose
a splitting into invertible sheaves

grlcﬁzL@M

sothat L~@(-1), M ~&(-1), L&C(P) =C(P)(t" '4),and M®C(P) =
(C(P)(tzB) , where C(P)=¢/t@ . Thus L and M have bases L and M near
P so that

(6.6.5) L={""4+4""B and M= uzz’"“A +1'B

for some 4,u € C{t"}. Since " =" ()" e g, ps » we will replace
B with ut*™ >4+ B so that one may set x =0 in (6.6.5). Let N be an G-
basis of N = gre (=~ &(-1)) near P so that N = t" “C near P, where

"= (e o, pv - We will show that y, induces an isomorphism

(6.6.6) L°®N(2P+Q) ® LEM@N(P+Q) & M’ ®N(Q) > grew

which will contradict H l(grzc w) = 0 because the source is isomorphic to & &
g(-1)®@(-2). By (4.8) and a > 3 above, one has

2 R((2i+V)a=2j) i pJ
goo= P o A'B'C
i.j>0, i+j=2

=64 Col 1 ABC 01" BC
near P by direct calculation, or by

R((2i+1)a—-2j)=m -U((2i+ a—-2j) - ((2i + 1)a - 2j)
=({+1ym—-(2i+Da+2j
=m-a-i+2j=a-1-i+2j,

where we used U((2i+ 1)a—2j)=1i+1 by (5.4(ii)) and 2a=m + 1. Then

M= 2C + 24°ABC + A" B 0),

'V
L-M-N=1"("4BC + " B*C),
M N a+3B2C

and t—szz—]\—f L. M-N, M°N form an O-basis for grzcw near P.
Smce L'M’N is abasisat P of components L' ®M’®N(Q) of S2(grlcé’)®

grcw ®Z(Q), v, induces homomorphisms L'eM @ N(iP + Q) — ng
(i,j€Z,, i+ j=2), which give splitting (6.6.6).

Thus we have a contradiction and case (6.6.3) does not occur. This proves
(6.6). O
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Summarizing the results in this section, we have

(6.7) Theorem. Let X D C =~ P' be an extremal nbd. Then we have three
cases:

(i) Case X has only one point P with index > 1. Then

(6.7.1) P isof type (1A), (IA), (IAY), or (I1Y), and X > C has at most one
more singular point, which is a type (III) point, or

(6.7.2) P isof type (IC) or (IIB), X > C has no other singular points,
(i) Case X has P of index > 1 and Q of index 2. Then

(6.7.3) P,Q areoftype (IA), siz, =1, X O C has at most one more singular
point, which is a type (III) point,

(iii) Case X has points P, Q of index > 2. Then

(6.7.4) P, Q are of type (1A), (IIA), or (IAY), and are of size 1, and X > C
has no other singular points.

Proof. First, X O C has a point with index > 1 by (6.2), no type (IC" ) points
by (6.1) and no type (IB) points by (6.3).

Case (i). If P is of type (IA), (IIA), (IAY), or (II"), then X > C has at
most one more type (III) point by (6.2), whence we have {6.7.1). If P is of
type (IIB) or (IC), then X D C has no other singular points by (6.4) or (6.5),
whence we have (6.7.2).

In other cases, X O C has no type (IC) (resp. (IIB), (II')) points by (6.5)
(resp. (6.4), (6.1(iii)) and w,(0) = 1/2 (4.9(1))).

Case (i1). X D C has at most one more type (III) point by (6.2), and Q
is of type (IA) because it is of index 2 (4.2). Thus wQ(O) = 1/2 (4.9(1)) and
wp(0) < 1 - wQ(O) = 1/2 by (2.3.3). Hence P cannot be of type (IIA) or
(IA"Y) and it is a type (IA) point with size 1 by (6.6).

Case (iii). X has no other singular points by (6.2). One sees that type (1IA)
points have size 1 by definition and type (IA) (resp. (IA ")) points have size |
by (6.6) (resp. (6.1)). O

7. EXISTENCE OF “GOOD” ANTI(BI)CANONICAL DIVISOR (EASY CASE).

The main purpose of this section is to prove the existence of “good” members
in |-K,| or |-2K,| when extremal nbd X > C ~ P' has at most one point
of index > 2 (i.e. cases (6.7.1)-(6.7.3)). We start with quoting

(7.1) Theorem (Reid [R4, (6.3)]). Let (X, P) be a 3-fold terminal singularity.
Then general members of | — K| passing through P have only rational double
points at P .

Following the same idea, one can show the following by a simple explicit
calculation for ¢4 type points. We note that one can reduce (7.2) for arbitrary
3-fold terminal singularities to (7.1) by Kawamata’s method in [Ka2, §8].
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(7.2) Proposition. Let (X, P) be a 3-fold cA-type terminal singularity of index
m > 2. Let T be a general member of | — 2K, |, and (Y,Q) — (X,P) the
double cover with branch locus T . Then (Y, Q) has only a canonical singularity.

(7.2.1) Remark. We note that a normal Gorenstein singularity (Y, Q) is a
canonical singularity iff it is a rational singularity [El2, Fl, SB].

Proof. Let (x,y,z,u) (resp. ¢) be an £-coordinate system (resp. £-equation)
for (X,P) such that wtx + wty = 0, wtu = wt¢ (m) (la.5). Then the
preimage of T has a semi-invariant equation ¥ = Azt 4 ,and (Y,Q) is
the g, -quotient of (Y”, Q”): =’ - vw=0cC (fCS,O), where v is an extra
coordinate with wtv = wtz (m) (cf. (2.10)). Since (Y ,@Q) is an isolated
singularity by Bertini’s Theorem and Gorenstein by the adjunction formula, we
only have to show that (Y”, Q”) has only canonical singularities. We treat three
cases.

(7.2.2) Case m = 4 and wt¢$ =2 (4). We may assume that wt(x,y,z,u,¢,v)
=(3,1,1,2,2.1), ¢ =x"+ 2" — f(y,u), where f(y,u) € (y*,y*u.u®) by
consideration of wt (la.6). Since y = Axt+u+ (2 e ), (Y'0oh
is an isolated hypersurface singularity x4z f(y,v2 — iz’ - <~} =0 in
xyzv-space. Thus it is a ¢4 point, and hence is canonical (1a.2(ii)).

m

(7.2.3) Case ¢ = xy + f(z,u), wtzl = wtx (m). We note f € (z",u)
by consideration of wt and f(0,u) # 0 by u-axis ¢ (X”,P“) (la.6). Since
wt 22 #£0, wty, wtz by m > 2, we may write v = h-{x — g(y,z,u)}
for some ¢ and /4 such that A(0) # 0, g € (y,z)z, and z° appears in g
by Weierstrass Preparation Theorem. Since g and /4 are unique by Weier-
strass Preparation Theorem and since y is semi-invariant, ¢ and A4 are also
semi-invariant. Then A~ 'v? + g = x, and replacing v by vh'* | one may
write (Y”,Qu) as a hypersurface F(y,z,u,v) = (v2 —g)y+ flz,u) =0 in
yzuv-space. Choosing a general y , one may assume that the plane curve

c(F)y. z,u)= (v = g,(y.2,00}y - f(.0) =0 C P(v,z,v)

has only ordinary double points, where (e.g.) g, denotes the degree n part of
g. Since f(0,u)+# 0, it is enough to prove

(7.2.3.1) Sublemma. Assume that a hypersurface singularity

(V,R): F(y,z,u,v)E(vz—g(y,z,u))Y+f(z,u)=OC (<C4,O)

such that g € (y,z)z, fecC+ (23,u), and f(0,u) # 0, has only canonical
singularities outside {R}. If ¢(F) =0 C P(y,z,v) is a plane curve with only
ordinary double points, then V has only canonical singularities.

We prove this by induction on k = ord f(0,u). If Kk =0,1, then F =0

is smooth, and if kK = 2, then R is a c4 or ¢D point by its normality
and hence canonical (1a.2(ii)). Assume k > 3. The exceptional divisor D
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of the blow-up o: V — V of V at R lying in P(y,z,u,v) is defined by
c(F)(y.,z,u) +a’ =0 (A € C), and it is easy to see that D has at most
A -type singularity outside (0 :0:1:0). Thus V is normal and has only
rational singularities outside the point R corresponding to (0:0: 1 :0) above.
Let y=y/u, Zz=z/u, v=v/u and g = g(?u,?u,u)u_z, f= f(zu,u)u_3,
and F= (¥2=%)+f. Then g€ (7.2)*, F€C+ (2, u), ord f(0,u) =k -3,
and ¢(F)(¥,Z,¥) = ¢(F)(¥,Z,v). Thus V has only rational singularities
by the induction hypothesis, and (}',R) is a canonical singularity because

Ky = o'K , as is easily seen, for example, by
G*Resdy/\dzpdu/\dv ZResdy/\dz;\du/\dv,

and the claim (7.2.3.1) is proved.

(7.2.4) Case ¢ = xy + f(z,u), wt 2 % wtx, wty (m). This case is quite
similar to (7.2.3). It is easily reduced to the following

(7.2.4.1) Sublemma. Assume that a 3-fold (V,R) C (<C5 ,0) defined by
F=xy+f(z,u)y=0and G= v2+g(x,y,z,u) =0 such that g € (x,y,z)z,
feC+ (z3 ,u), and f(0,u) # 0, has only canonical singularities outside {R} .
Then V has only canonical singularities if we assume the following condition
(%), for A=0 and 1.

Condition (*),: xy +Au* =0 and c(G)(x,y,z,v) = v+ &(x,y,z,0)
= 0 define a surface S, in P(x,y,z,u,v) with at most A_-type singularities
outside (0:0:0:1:0).

The proof is similarly done by induction on k& = ord f(0, u).

(7.2.4.2) It remains to see that (), and (), are satisfied by general G (or
T €|-2K]). Since S, is the cone over the curve Z C P(x,y,z,v) defined by
xy =0 and ¢(G) =0, (%), is equivalent to the assertion that Z has at most
ordinary double points. Thus («), is certainly satisfied by general G because
it is satisfied by G = v* + ,u22 (ueCT-{0}).

On the other hand, S, is a double cover of the surface W C P(x,y,z,v)
defined by ¢(G) = 0 with branch locus Z. Thus one can see that S, has
at most A4__-type singularities for general G by the fact that W has at most
A__-type singularities when z appears in G, as follows. If £ € S, does not lie
over apointin Z, then S| — W is étale at ¢, whence S| has at most A -type
singularity at { because so does W everywhere. If { € S| lies over { € Z,
then the Cartier divisor ({v =0},¢) of (§,,&) is the ramification divisor and
isomorphic to (Z,{). Since (Z,{) has at most an ordinary double point as
above, (S,,&) has at most an A__-type singular point. Thus the case (7.2.4) is
finished, and (7.2) is proved. O

(7.3) Theorem. Let X D C ~ P! be an extremal nbd. Assume that X > C
has at most one point of index > 2 (& X D C isin one of (6.7.1), (6.7.2),
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(6.7.3)). We have three cases by (6.7) :

(7.3.1) a point P is of type (IA), (1A), (1AY), or (I1V), and no other point of
index >1 (& (6.7.1)),

(7.3.2) a point P is of type (IC) or (IIB), and no other singular point (<
(6.7.2)), and

(7.3.3) P,Q areof type (IA), index Q =2, siz, = 1, and no other points of
index > 1 (& (6.7.3)).

Then (i) in case (7.3.1), general members (D,P) of | — Ky pl satisfy
DnC ={P}, D e|~-K,| and that D has only rational double points as
singularities, and

(i1) in case (7.3.2) or (7.3.3), general members (D, P) of l—ZK(X | satisfy
DNC ={P}, D €|~2K,| and that the double cover Y of X with branch
locus D has at most canonical singularities.

Proof. Let (x) = (x,,...,x,) and ¢ be normalized ¢-coordinates and ¢ an
£-equation of X D C at P asin (4.2). Let a,,...,a, be as in (4.2). Then
elements of &(—K,) (resp. @(-2K,)) at P are of the form ! (resp.
fQ_z), where f is a semi-invariant in @,, ,, such that wt f = wtQ (resp.
2wtQ) and Q = Resdx, Adx, Adxy A dx4/é$.

In case (7.3.1), P is of type (IA), (IIA), (IA"), or (IIV), whence wtQ =
wtx, (m) by wtx,x; =0 and wtx, = wté (4.2). Then a general f with
wtf=wtQ (m) is Ax,+--- and (D,P) €| ~Kixp | defined by f satisfies
(mD)-C = a,P,and D isa Q-Cartier Weil divisor of X . One has D ~ —K
as elements of CI(X, P) because witQ l=wt (mod m), whence D+ K,
isin PicX with (D + K, - C) =0 because (K, -C) = -1+ w,(0) = —a,/m
(2.3.2). Thus D € |- K,| (1.3(ii)), whence we are done by (7.1).

We note that, in the remaining cases, X D C is locally primitive. In case
(7.3.2), let P be of type (IC) (resp. (IIB)). Then one has a, =2, a,=m -2,
a;=m, a, =1 (m) (resp. (a,,...,a,) = (3,2,5,5)) by (4.9(11)), (5.5(1))
and (6.5) (resp. definition). Hence wtQ =a, =1 (m), and a general [ with
wtf=2wtQ=2 (m) is Ax, +--- by a, =2 (resp. ix, +--- by a, = 2)
with A€ C*. Thus (D,P) € '_2K(x,p | defined by f satisfies (mD)-C = 2P,
and D is a Q-Cartier Weil divisor of X. One has D ~ -2K, as elements
of CI(X,P), whence D+ 2K, isin PicX with (D + 2K, - C) = 0 because
(Ky - C) = =1 +wp(0) = ~1/m by (2.3.2) and (6.5) (resp. (4.9(ii))). Thus
D €| - 2K,| (1.3(ii)). We note that P is of cA-type, by (1a.6) and m > 5
(part of definition) if P is of type (IC), and by definition otherwise. Hence we
are done by (7.2).

Let us consider (7.3.3). First we note that wQ(O) = 1/2 by (4.9(1)) and index
Q =2. Then wy(0) = (m—a,)/m <1—-w,(0)=1/2 by (2.3.3) and (4.9(1)),
whence 2a, > m. This means m > 3 since m > a, (4.2). On the other
hand, one has a,a, < m by siz, = U(a,a,) = 1. Hence a; = 1. One has
wtQ = a, by (2.10), and a general f with wtf =2wtQ =2a,-m (m) is
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x4 ux @4 (A,ueC). Thus (D,P)€|-2K, | defined by f
satisfies (mD)-C = (2a, — m)P, and D is a Q-Cartier Weil divisor of X .
We note that D and —2K, are Cartier divisors outside {P} because index
Q =2. Thusby D ~ -2K, aselements of CI(X, P), one sees D ~ —-2K, in
PicX by
(=2Ky - C) = =2(=1+ wp(0) + w,(0))

=-2(-1+(m-a,)/m+1/2)

= (2a, - m)/m.
Hence D €| - 2K, |. We need to show that P is of cA-type (1a.6). Indeed if
P is not of cA-type, then by m > 3 we see that P is of cD-type and m = 3
(1a.6). Thus by (4.11), we have w,(0) = 2/3, which contradicts w,(0) < 1/2.
Thus P is of cA-type. 0O

8. J-FILTRATION AND LIFTING STRUCTURE

We need to introduce several notions for the arguments in the next section.
The main ingredients are rather simple commutative algebra lemmas (8.3) and
(8.11), and other parts are formal arguments to obtain the main (8.12) from
these.

We note that Reid’s notion of width in {R1, (5.3)] is different from our width
in (8.2).

(8.1) Let X be an analytic normal 3-fold and C C X a reduced curve such
that no irreducible components of C are contained in the singular locus of X .

(8.1.1) Lemma, Let ¥ = 5, > D --- D, be a chain of coherent sheaves
on X . Then we have equivalent conditions :
(a) & is _|-saturated for all i €[1,n],

(b) & is S-saturated for all i € [1,n], and

(c) & is Z-saturatedfor all i,je€[0,n] with j<i.
Proof . First it is obvious that (c¢) = (a),(b). When n = 2, (a) = (¢) and
(b) = (c) amount to saying the following:

(*) When & is S -saturated, .%, is .| -saturated iff .} is #j-saturated.

Thus n = 2 case is easily checked. Indeed for every closed point P € X, we

have
Hom(C(P), #,/S;) =~ Hom(C(P), A /F)
from the exact sequence
0= A)S = A4S = F/F =0
and Hom(C(P), 7 /%) =0.
(a) = (c) Thisis proved by induction on j—i by virtue of the exact sequence
0= S5 = 5[5, = 5,1 = 0
and the above (x).
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(b) = (c) This is proved by the above (x) and the exact sequence

0= F/F =+ S/ T, = 3%, = 0. O

(8.2) Definition. Let &~ =) 5.5 D .- D, be a chain of coherent sheaves
on X . We say that it is saturated if the equivalent conditions in (8.1.1) hold.
We call the chain & D Sat,, ] D --- D Sat,, ., the saturation of the chain
% DD 'Sﬂn .

Let J C &, be a sheaf of ideals. We say that J is C-laminal (or laminal, if
there is no danger of confusion) if J has no embedded primary components,
I.= VvJ,and I D(z) 2 J for an arbitrary irreducible component D of C (cf.
(2.2)). The width of J is the smallest d € N such that J > I.%, and J is said
to be of pure width d if the D-primary component of J is a D-laminal ideal
of width 4 for each irreducible component D of C.

Let J be a C-laminal ideal of pure width 4 and let . be a coherent
@y-module. For n€Z_, let g =[n/d] and r =n—dq (note r €[0,d - 1]).
Let F'(#,J) = Sat, (J'1.  +J"™h&7, g (%, J) = F'(&, D) /F"™(&,0).
One easily sees that
(8.2.1) Lemma. F"(&,,J)-F" (¥, J)c F"™*" (% ,J).

Proof. Let g = [n/d], r = n—dg, and q = [n'/d], r = n' —dq . Then
g =[(n+n')/d] is given as ¢" = g+ q +¢& for some ¢ =0,1, and r"’ =
(n+n')—dq" isgivenas r" =r +r' —ed. It is enough to see

U4 A AL W0 Ll S L Vol b S s
C C C

If ¢ = 0, then this is obvious because ¢” = ¢g+¢ and r' =r+r . If
g=1,thenweuse I, J. Indeed J'I. -J1. =" "1, cu’1.",
JUS g =g cJ1 by r" =r+7r —d < r, and the rest is

similar. 0O

(8.2.2) Then
F=FF,J)>- - dF (L. J)>F* (& )

is called the J-filtration, and gr(@.J) = @, 8 (@.J) is a graded
O-algebra and gr (¥, J) =@, ' (. J) isa graded gr’ (@, J)-module.
For s € &, the width of s with respect to J (denoted by width, s) is given
by width,s =inf{i € Z_ | s € Fi(Y,J)}. It is easy to see but worthwhile
to note that F'(#,,J) = I, F(@,,J) = J, g’(@,J) = gr).J, and in
particular the usage of width, s is compatible with width of J.
For n = gd + r as above, one has a natural homomorphism

YD) St @ ) e g (@ ) eure S — g ().
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We construct a 0-sequence

0

E(J):0—gr'(@.0)® AL g’ () 2L Ker[grh @ 25 o' (@, )] — 0,
c c

together with the remarks: If d = 1, then J = I., F'(¥,J) = F'.%,
P T) = yé(Y) (§2), and we set o, = 0 and B, = A, = id, and E(J)
is exact. If d > 2, then « ;s By, 7, are naturally induced homomorphisms,
E(J) is a O-sequence by ICd c J and I(Cz) +JC FZ(@’,J) , and we note that
Ker 8, and grl(é’,J) are of rank 1.
(8.3) Proposition. Under the notation and assumptions of (8.1), assume that
(uv)=I.p (=180, ,) andlet d > 1. Then

(i) J = (ud, v) is a C-laminal ideal of pure width d in a nbd of P, and

one has the following for all n > 0 :

F'@ . Dp= > (v),
i,j>0, i+dj>n
and o
g (@, J), = GB Op pu'v’.
i,j>0, i+dj=n

Thus E(J) is exact and 7" (& ,J) is isomorphic at P, and
(ii) let J be a C-laminal ideal of pure width d in a nbd of P € C. Then
WV =Jp (=J8F, ) iff veET,.

Proof . (i) Since (C, P) is Cohen-Macaulay, sois (X, P). Hence (u,v): (X, P)
— (€?,0) is flat since it is equidimensional. Since K, =, yion @ V))C{u, v}
contains some power of maximal ideal (u,v), it is (u,v)-primary. Thus by
flatness, K,&, , has no embedded primes. Then following the definition, one
easily sees F'(@,,J), = K,y p. Ttis clear that K, /K, | =D, 4, cu'v,
whence one sees the assertion on gr' (&, J) p by flatness of (X, P) — (C2 ,0),
and y"(ﬁX,J)P is an isomorphism for all » > 0. If d > 2, then one sees
g (@, ))p=Cp pu, gre(J) =Op U’ €6, v, g0 =0, ud®0O, v, and
Ker 8, =@, v, whence E(J) is exact.

(ii) The only-if part is obvious. Assume that v € J,. By (i), (ud ,v) has no
embedded primes at P, and (ud, v) C J, by the definition of width. Thus it is
enough to prove (ud Vg = Jo for close enough points Q@ € C — {P}. Let Q
be a point such that X and C are smooth at Q, whence u and v form a part
of coordinates at Q. Then JQ/ (v)Q is a divisorial ideal of a smooth surface

({v = 0},Q) and one easily sees JQ/(v)Q = {(u,v)/(v)}é = (ud,v)Q/(v)Q,
whence J, = (ud,v)Q. o

(8.4) Definition-Corollary. Let the notation and assumptions be as in (8.1). Let
J be a C-laminal ideal of pure width d. We say that J is a nested complete
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intersection (nested c.i., inshort) at P if (u,v)=1., and (ud,v) =Jp for
some u and v, and that J is locally a nest c.i. on a subset if J is a nested c.i.
at each point of the set. Then

(i) let P € C. Then J is a nested c.i. at P iff (C,P) is a complete
intersection in (X, P), Ima, =Ker g, , and grl(é’,J) is a locally free
O--module at P, and

(i1) J is locally a nested c.i. on an open dense subset of C. In particular,
Ker 8, is the ngC @-saturation of Ima .

Proof. (1) If d =1 then this is obvious; if d > 2 then the only-if part is done
in (8.3(i)). If (C,P) isaci. in (X,P), then gr.@ =~ I./I.> is locally free
of rank 2 at P. From the other assumptions, Ima, ~ Ker 8, and Im §, are
invertible at P . Thus there exist v € J, and u € I ;, such that Ima; = v
and Im B, =@, u in anbd of P. Then (u,v) =1., by Nakayama’s lemma,
and (8.3(ii)) proves our claim.

(ii) Let d > 2. Since grlcéa (resp. Ima,, Kerfg,, gr'(@’,J)) is of rank
2 (resp. 1,1,1) on each irreducible component of C, one sees that E(J) is
exact on an open dense subset. O

(8.5) Corollary. Let the notation and assumptions be as in (8.1). Let J be
a C-laminal ideal of pure width d and * a torsion-free @,-module which is
locally free of rank p on an open set of X containing an open dense subset of
C.Let n>0. Then
(i) y"(&,J) is injective at smooth points of C, and
(i) y"(&,J) is isomorphic on an open dense subset of C consisting of
points at which . is locally free and J is a nested c.i. In particular,
gr' (&, J) is pure of rank p[n/d}+p (ie. ofthesame rank p(n/d]+p
on each irreducible component of C).

Proof . The assertion (i) follows from (ii) since the source of y"(.%,J) is free
at smooth points. The first part in (ii) follows from (8.3(i)) and (8.4(ii)), and
the second from the first. O

(8.6) Definition-Corollary. Under the notation and assumptions of (8.5), as-
sume that d > 2, and let q = [n/d], and r = n —qd. Then E(J) induces a
saturated filtration (or chain)

g (P, N) =g (P . N)D > D g (P N> g (P, 1) =0

such that gr"'(#.J) = @ g"(F,1)/® g (F.J) is a torsion-free
O-module of pure rank p for i € [0,q] and there is a naturally induced map
(1 €[0,q])

YT grl(é’,J)g’(dm) ® (Ima1)®(q_i) ®gr25’ — g ().
For an arbitrary i € [0, q], one has
(i) y"‘i(Y,J) is injective at smooth points of C, and
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(ii) Ima, = Ker 8, and y""'(&,J) is an isomorphism on the open dense
subset of C consisting of the points P at which & is a locally free
O@y-module and J is a nested c.i. Furthermore, if u,v are the elements
in @y p asin (8.4), then we have

o gr' (¥, J) = u® gr"_id(&”,J) forie[0,q].

Proof. By (8.4(ii)), Kera, and Ima, are pure rank 1 &.-modules fitting in

the exact sequence 0 — Kera; — gr% J—Imoa; —»0. Let @' be the subsheaf
of gr"(%”,J) given as the saturation of the image of the map

(Kera,)® @ 7 (g (@, 1) @ gr' (@, ))¥ @10 — g1"(F,J)

induced by y"(%*,J) for i €[0,q]. Then @' is a saturated @-submodule of
pure rank (¢ + 1 —1)p by (8.5). Since the sequence

(Kera,) @S gl (@,7) 2 7 g (@, ) — $77 (Im o) /Sat(0) — O

constructed in the obvious way is a 0-sequence (Sat(0) is the saturation of 0)
and exact on an open dense subset of C, one has

S (@ (@, 7)) /Sat(Im(8(i))) ~ 7' (Im a,) /Sat(0).
Thus by the right exactness of the tensor functor, one has
(Kera,)® © S '(Ima,) @ gr' (@, )% @grp.. — @' /@™

Using the map A,: grl(@’,J)m — Kera, induced by E(J), we have
y" (S, J) . The rest follows from (8.4) as in (8.5), except that the last equality
follows from (8.3(i)). O

(8.7) Remark. If X c C ~ P' is an extremal nbd and J is a C-laminal ideal
of width d, then for ¥ = &, ,w,, one sees that gr'(,J) is a locally free
O--module of rank [n/d]+ 1. Let n € Z_. Asin (2.3.3) and (2.3.4), one sees
that

XFNS DIF(F,0) = 3 (deger’(#,7) +[e/d]+1) 2 0,

1<e<n
and that if deggr®(%’,J) < ~[e/d] -1 for all e €[1,n], then
for e €[1,n] and deggr(¥#,J) > —[e/d]—1 for e=n+1.

(8.8) Let (X, P) be the germ of a 3-fold terminal singularity of index m and
C Cc (X, P) areduced curve. Let nt: (Xu,P“) — (X, P) be the u,-canonical
coverand C*'=7#""!(C Jrea C (X ' P"). Meanings of these symbols will be fixed
in paragraphs (8.8)-(8.8.6).
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Let .’ be a coherent sheaf (on X ,or X ”) . A subquotient of ¥ is a coherent
sheaf . endowed with an identification .2 = .# /4", where .# and /" are
coherent subsheaves of .%°. The subquotient .& is said to be ¥ -saturated if
& O M DN is saturated. An isomorphism theorem says that an arbitrary
subquotient .7 of .¥ is a subquotient of ., and if furthermore . is -
saturated, then .7 is .%-saturated < % is %’-saturated (8.1.1). Therefore we
may simply say, for instance, . is saturated if there is no danger of confusion.

Let SSQ() be the small category of saturated subquotients of .%, where
Hom(A4#, /A, # |V") consists only of the natural map if .#, C.# and 4] C A
(or & if otherwise). If & isa u, -sheaf on X", then SSQ(~ . m,,) is the full
subcategory of SSQ(S”) consisting of .# /.4 such that .# and ./ are p,-
stable subsheaves of ..

Let . be a coherent sheaf on X such that % D 0 is saturated. By an

e-structure of & at P (or, of &, = ®7, ,), we mean a coherent sheaf .~ d

on X' with B,,-action endowed with an isomorphism 5”{”0} ~ % (cf. (2.5))

such that .%* 5 0 is saturated. We note that @) has a trivial ¢-structure
Oy Dy .

(8.8.1) Lemma-Definition. Let .5 be a coherent sheafon X with an £-structure
P > P, Then there is a 1-1 correspondence between SSQ(S) and
SSQ(F* , m,,) :
1if
SSQ(.%) = SSQ(F . i ),

m
quo

where lif and quo are exact functors such that lifoquo = id and quoolif =id,
and are defined for subsheaves # and #*' as lif(#) = Sat,,(Oy,#) and

quo(.# ”) = /f{“o} =#'NS, where Oy M is the subsheave of & generated by

n'* M . For each saturated subquotient # of 7, if(#) and lif(#) > # are
called the canonical lifting of .# and the induced ¢-structure of A . (If there
is a danger of confusion, -1if(A) will be used. )

Proof. Tt is clear that lif and quo for subsheaves satisfy lif o quo = id and
quo o lif = id, because n' is étale outside P'. Therefore the definition of lif
(similarly of quo) extends to subquotients .# /%" by exactness: lif(./#/4") =
lif () )1if(#). O

(8.8.2) Proposition-Definition. Let ., .# and ¥ be coherent sheaves on X
with e-structures & c L4, # c 4, and ¥ Cc V. Then
(i) the restriction map

res: Hom”m_ﬂxu (/1“,/1/“) — Hom,, (4 ,.7)

defined by res(qS”) = ¢| , isan injection. If an &y-homomorphism ¢: MH — N
extends to a p,,-Oy,-homomorphism e 4 Y Y in this sense, we say that
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¢ is an ¢-homomorphism and that ¢u is the canonical lifting of ¢, since it is
unique,

(1) we say that an £-homomorphism ¢ is an ¢-surjection ( resp. £-isomor-
phism, £-injection) if the canonical lifting & is a surjection (resp. isomor-
phism, injection). Then ¢ is an injection iff it is an £-injection, and ¢ is a
surjection ( resp. isomorphism ) if it is an £-surjection (resp. £-isomorphism),

(iii) if # = & F is a splitting by O,-submodules &/ , % C A , then it
is called an ¢-splitting and written as M = & &B if #* = 1if (¥ ) & lif (F),

(iv) let w: &L — H and ¢: # — N be L-homomorphisms. Then &:0—

¥
Yl BN >0isa 0-sequence iff its canonical lifting £*: 0 —» &% £
MF Lo 0 is a O-sequence. We say that & is f-exact (resp. £-split)

if & is exact (resp. split) as a sequence of p,,-@,-homomorphisms. Then &
is exact (resp. split) if it is L-exact (resp. {-split). We note that these are
compatible with the definitions in (ii) and (iii), and

(v) let ¢: M — N be an L-homomorphism. If ¢ is an €-surjection (resp.

L-injection and A" D ¢(A) is saturated ), then Ker¢ (resp. Coker¢) has an
induced ¢-structure and 0 — Ker¢p - A4 — 4 — 0 (resp. 0 - A — N —
Coker¢ — 0) is £-exact.
Proof. (i) The map res is well defined because ¢”(/% ) C ﬂ/{%} =4. Ttis
injective because .#" > 0 is saturated and ¢>”| Xi-(Pt} = (n”[X_{P})*¢ if ¢ =
res(¢") , which follows from the fact that X* — {P"} — X — {P} is a finite étale
u,,-Galois covering.

(ii) If Ker¢' # 0 then Supp(Ker¢') ¢ {P'} by P' ¢ Ass(#"), whence
Supp(Ker¢) ¢ {P} by flat descent. Thus ¢ is an ¢-injection if it is an injection.
Other assertions are obvious because u,, is linearly reductive.

(iv) Since res(cj;’1 o t//”) = ¢oy,onesees oy =0« ¢” o y/” =0 by (i). This
proves the first assertion, and others follow from the linear reductivity of u,, .

(v) By the assumptions, Ker¢ (resp. Coker¢) is a saturated subquotient of
A whence has an induced ¢-structure. Since 0 — Kerd)z M= S0
(resp. 0 - A& ot Cokenj)ﬁ — 0) is exact, the assertion follows by
(iv). O

(8.8.3) Definition. Let .# be a coherent sheaf on X with £-structure .# C
A If s'li, ,sf e M are u,,-semi-invariants generating /4 ' as &, -module
at P', we say that {s?, ,sf} is an £-basis of A4 at P (or, of .4, ).

Let Y be a closed subscheme of X such that P ¢ Ass(&,) and let Y' =
lif(Y) . Then it is easy to see that .# is an &@,-module iff .# "isan @, ,-module.
We say that .# is an {-free @, -module at P iff # ' is a free &y ,-module at

P' . If # isan f¢-free @,-module at P, then an {-basis of .# at P is said to
be £-free if it is a free &,,-basis. We say that an ¢-free &,-module is £-trivial
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if it has an ¢-free {-basis consisting of u, -invariants. We note that £-trivial
¢-free &,-modules are free, but in general, there is no implication between
freeness and {-freeness in either direction. Therefore, we call a free £-free @,-
module at P a gf-free &,-module. We call ¢-free (resp. gf-free) &,-modules
at P of rank 1 ¢-invertible (resp. g€-invertible) &,-modules at P .

(8.8.4) Let Y, Y be as above, and Z a closed subscheme of Y such that P ¢
Ass(Z). Let &, # , &/ be &,-modules at P with {-structures & C Z
HCcH, vyt Welist the following obvious operations together with

easy comments.
(&) HEN C(#EN) isan @,-module at P with ¢-structure defined by

AN = & N

We note that this is compatible with ¢-splitting in (8.8.2(iii)), and we have
natural £-isomorphisms

(
(

1) (L OMON LD (MDN),
2) MEN =N SM.

Let x be an £-character (2.5) for X O C at P. Let £} [v], for v €Z, , be
the /-invertible &) -module with an ¢-basis e, on which u, acts by {(e,) =
x()’e, (L€ K,,) . Then ¢-free &,-module .# of rank r is determined by wt
(say, v, ...,v, mod m) of its £-free £-basis, that is there is an £-isomorphism
M = L& - &F[v,]. Hence there are at most (7') ¢-free rank r
@y-modules. We note that .# is gf-free iff £ [v,] is gé-free for all i €[1,7]
by (8.8.2(ii)), and that .# is £-trivial iff v, =0 (mod m) for all i €[1,r].
(Q) AN C (HRN )* is an &,-module at P with {-structure defined by

DL D

(A SN) = (A ®,, ) /Sat g 45 (0).

It is a biadditive functor in the obvious sense, and we have natural Z-isomor-

phisms.

(®.0) MO, ~ M (T, denotes the ¢-trivial Fy),
(®.1) (LRIMMIN LI (MIN),

(®.2) MIN =N M,

(®.3) LRIMON )~ (L RIMD (L RN,

and easy comments

(®.4) F®a is L-surjective if a: £ — A is f-surjective,

(®.5) FRE is t-exactif & is ¢-free and & is f-exact,

(8.6) #R isan ¢-free &y -module at P of rank r-s if .# and ./ are
{-free &,-modules at P of rank r and s,

(8.7) #RF, isan ¢-free &,-module at P if .# is an {-free &,-module
at P,
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(®.8) AN ~M @ as T,-modules if £ is ¢-trivial, and

(®.9) the natural &,-homomorphism .# ®, ./ — #&/ is an isomor-
phism outside P . N _

(®®) t-invertible &,-module .#®" ¢ (#®")" at P is defined for n € 7
and ¢-invertible &,-module .# at P by (#®")" = (#*)®". We have natural
£-isomorphisms

(®®.1) Z " = F ] (nez,vel,),
(éé}Z) /l®a é %®b ~ %®(a+b) (a,b c Z),
whence ¢-invertible &,-modules (7,&8.#°%") at P (&.7) satisfy
(®8.3) @, M) ~0,& #"") (nem)
by (®1), (®2) and 4,80, ~, (®.0). We note by (8®.1) that

(3R.4) #% is p-rivial if a =0 (mod m),
whence we see by (®.8) that

(B8.5) (BN )" ~ (#®™)®" @ (#®™)®" as @,-modules for n € Z, if
A is also an {-invertible &),-module at P .

(det) f-invertible &, -module det.# C (det.# )* at P is defined for ¢-free
¢@y-module .# at P by (det//)ﬁ :detﬁxn M.

(S) ¢-free &,-module S"(#) c S"(#)* at P is defined for n € N and
¢-free @,-module # at P by S"(#)' =S" o0 (A ") (symmetric nth power).

If # and ¥ are {-free &, -modules of rank 2 and 1 respectively, then we
have a natural ¢-isomorphism for n € N

(§.1 ) @t(gn(%) N) ~ (&a%)mmm/z W aranl
(8.8.5) If furthermore dim ¥ =1 and ./ is g{-free, then one can define local

degree gl deg(# , P) € Z_ as follows: let s, ...,s, (resp. s1 .,sf) be a free
basis (resp. an £-free bas1s) of # at P. Then s, = Z fist (i€ [1,7]) and

o
g= det(fij) is a semi-invariant by s, A---As, = g(sl A /\sr) , whence g” €
Oy p. Then gldeg(# ,P) =len, (@, ,/( g™)), which is obviously independent
of choice of £-basis and basis.

If we set B(Y, P) = Max{q/deg(-#,[v], P) | v € Z, , -Z,[v]: g¢-free}, then
gl deg(# ,P) < B(Y,P)-r for arbitrary gf-free .# of rank r.

We note that if Y is a smooth curve at P and if .#Z isa gf-free (i.e. {-free)
@.-module at P with an ¢-free ¢-basis (s;’, ,sf) , then

ql deg(# , P) ZR -wts

(cf. (2.8)).
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As a corollary to these definitions, we have

(8.8.6) Corollary. Let J be a C-laminal ideal of width d and % ¢ %" an
{-free @y-module at P. Then

(1) O = Oy-lif(O,) (thatis ' = lif(C)), J*' = Oy-if(J) isa C*-laminal
ideal of width d , we have equalities of subquotients

FYF TN = ZIAfF (7, T), g'(F TN = g (., )
and hence £-isomorphisms
F' % N=F"@,J)®8% and g (¥, . J)~g"(@,))RF
forall n > 0. If furthermore d > 2, then similarly we have
g (P TN = Flifg (L)), g (P ) g (@, )) 8 S

forall n, i (8.6), and

(ii) homomorphisms a,,, B,,, A, (8.2.2), Y"(F'.JY) (and y"'(F*, T
if d > 2) are p,-homomorphisms “lifting” «o,, B,. A,, y"(¥.J) (and
y"'i(y,J) if d > 2) in the obvious sense. In particular, o, is an £-homomor-
phism, B, is an (-surjection, KerB, € SSB(@,), Kerp,, = lif(Ker g,),
Y(F ) =y@ . (and y"(F ., J) =" @, IR if d >2).

Proof. Equalities in (i) are for saturated subquotients and they hold outside P!
((8.3(i)) and (8.6(ii))) where n' is étale. Therefore they hold in a nbd of P’.
The meaning of “lifting” in (ii) is the following commutative diagram

0—gr'@ N)® 24 o)) 24 Ker [grlc LIR grl(ﬁ,J)] -0
l o e
0—gr'(@, 7% 28 g% (h) 25 Kerfgrl, @ 225 o' (0, J%) — 0
where B, is surjective. The rest follows from the construction and defini-
tion. O

(8.9) Definition. Let X D C be an extremal nbd and Y C X a closed subspace
without embedded or isolated points. Let P, ..., P, € X be points of indices
mg,...,m, (>1) such that X —{P, ..., P} has no points of indices > 1,
and Y is given the induced ¢-structure at these points. A coherent ¢, -module
is said to be f-coherent if it is given (-structure at each of P, ..., P,. If an
£-coherent ¢7,-module .# is locally free of rank r on Y=Y —-{P,....P}
and ¢-free (resp. gf-free) at each P, then we say that .# is a locally ¢-
free (resp. ql-free) &,-module of rank r, and we may also say that .Z is
an f-invertible (resp. gf-invertible) &,-module if r = 1. Local definitions
of & and ® for ¢-coherent &,-modules (cf. (®.9) in (8.8.4)), powers for ¢-
invertible sheaves, S" and det for ¢-free @,-modules (8.8.4) patch with the
corresponding operations on Y°, and thus these operations give ¢-coherent
@,-modules. Formulae in (8.8.4) extending the usual ones to ¢),-modules with
¢-structures at P,’s extend further to ¢-coherent @, -modules since they coincide
with the classical ones on the punctured nbds. Therefore we will quote the local
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formulae in (8.8.4) in global setting by abuse of language. For example, grg w =~
@’Céwx is an /-invertible &.-module by (®.7) in (8.8.4) and (8.8.6(i)).

The notion of ¢-homomorphism, (-injection, £-surjection, £-isomorphism,
£-splitting, and {-exactness for £-coherent sheaves are defined in the obvious
way since these are local properties. An f-exact sequence 0 — & — # —
A — 0 is (globally) £-split if .# has a coherent subsheaf % giving an ¢-
splitting # = Im(¥ — #)3% .

We note that ¢-structure ( £-coherence, ... ) does not depend on choice of
above P, ..., P, aslongas X —{P, ..., P} has no points of indices > 1.

(8.9.1) Proposition-Definition. Assume further that Y is a complete pure
1-dimensional closed subscheme of X . Then

(i) if # isalocally L-free &,-module, then (&Et% )é" is gf-invertible and

as Oy-modules for all n,u € N such that \cm{m,, ..., m} | u. Then we define

ldeg, # = idegﬂ&&%)m €Q

which is independent of choice of such n, where deg, is the usual degree for
Oy -invertible sheaves. We note that | deg . (gr‘é w)=(w,-C), and

[deg,(# ® V) =Ideg, # +1deg, V'
if #/ and N are of rank 1, and
Ideg, (# & S" M) =1n(n+1)Idegy # + (n+1)ldeg, ./ (n20)
if # isofrank 2 and A& is of rank 1,
(ii) let QL(Y) =Z® (D, ;<, ZP})/ (T, i<, Z(1 — m,P})), then
deg: QL(Y) — Q; deg (Z+ZziPiu) =Z+Zzl./m[
is a well-defined homomorphism. For a locally qt-free @,-module # , let

t
qly(#) = degy # + _ ql deg(# , P)P} € QL(Y),

i=1

then ldeg, # = deg(qly(#)); and ql (ARN) = gl (#) + gl (¥ for
gt-invertible # and N such that # QN is ql-invertible, and

0</deg, # —deg,.# <r »_ B(Y,P)/m,

1<i<t

(¢f (8.8.5)) if # isof rank r, and
(iii) if ¥ ~ P and XY is locally primitive, then

TL: QL(Y)—Z; TL (z +3° z,.P,.”) =z-Y Uf-z,)
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is well defined, where U, is defined for (X,P,) D> (Y,P,) asin (2.8). Further-
more, if # and NV are L-invertible ,-modules, then deg, # = TL(ql,(A#)),
whence

deg, <%§a§>/1/§b> =TL(a gly(#)+bql,(¥)) (a,be).

We say that an expression { = z+ ), ziPiu of { € QL(Y) is normalized if
U(-z,)=0 forall i.
Proof . (i) The first assertion follows from (®®.5) in (8.8.4). By £-isomorphism
grg W =~ ﬁcéwx in (8.9), one also has

ldegc(grg w) = 1 deg (T ® w,)® = 1deg . ® (@,%) = (w, - C).

The last two assertions follow from the definition by (£ &4 )g“ ~ (A ®u ) ®
(7®"), and (®&.5) and (S.1) in (8.8.4).
(ii) The definition of g/ deg(.# , P,) shows

]

(%) 0 ; mi - gl deg(# , P,) = len,, Coker |(det.#)®* — (det.#)®*

!

for locally gé-free .# if m; | p. By summing up (+), ,,...,(x), ,, one
has /deg, # = deg(ql,(#)). Let .# and .#° be gl-invertible @,-modules
such that .#®.7" is g¢-invertible. By (®®.5) in (8.8.4) and (x) , ; + (¥) , ; —
(*)lgﬂ,‘i , one has

u ~
%(ql deg(# , P,) + ql deg(V", P,) — ql deg(# @ 4", P)))

[

= len,, Coker{(.# ® /)™ — (# & #)®"].
Let a, be the length of £/ Q4 /# ® .4 at P,. Then
deg, # @ N =degy, £ QN +a,+-- +a,,

and
gl deg(# , P)) + gl deg(.#", P,) = ql deg(# ® N, P) +a,m,.

Thus
aly(#) +qly (W) = degy M @ N + > (ql deg(# , P,) + gl deg(V', P,)) P!

=deg, # ® N + Y (gl deg(# & N, P) +a,m,)P}
=degy £ ®N +> a,+ ) qldeg(# &N, P)P
i i

=gl (HBN).

The last assertion follows from (8.8.5).
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(i) 7L is well defined by U;(m;+z) = 1+U,(z) (z € Z) forall i (2.8(iii)).
By (8.8.5) and the definition of R, for (X,P,) D> (Y, P,), (2.8) shows that

U,(~ql deg(# , P)) = 0
for all i, whence TL(q/,(#)) = deg, .# . The rest follows from (ii). O

(8.10) Definition-Corollary. Let (X, P) D C be the germ of a 3-fold terminal
singularity of index m > 1 and a reduced curve, and let (X', P*) be the canonical
cover. Let J be a C-laminal ideal of pure width d, and J Y the canonical lifting
of J at P. Ifan (-basis {s,s,} of I. at P satisfies (sld,sz) =J" ar P,
we say that the ordered (-basis (s,,s,) is a (1,d)-monomializing £-basis of
I.D>J at P, andthat J is (1,d)-monomializable at P if such (s, ,s,) exists.
We note that width,, s, = 1 and width,, s, =d by (8.3(i)).

Assume that J is (1,d)-monomializable at P and let . be an (-free
Oy-module at P. Let n € Z_, q = [n/d], r = n—qd, and let i be an
arbitrary integer in [0,q]. Then

(i) gr'(&.J), grOCY, grlcﬁ, gr@, 1), g@,J), Ker 8, are {-free
O--modules at P with their induced (-structures (8.8.6(ii)), and

f i b
gr' (. J) ~ ( @ OcsS, szj) ®ﬂcu5ﬂ ,

i+dj=n
(81 @) = Opus, © O s,
g (@, J) =CL,s, ifd>2,
d d
gr (@ J)ﬁ =008, ©CrS,,

Orys, ifd>2,
0 ifd=1,

(i) y"(&.J) induces an £-isomorphism

V() 8@ (@) & (&' (@) Bere S — g (7)),
(iii) if d > 2, then we have an isomorphism
gr""‘(5”,J)11 ~ ﬁcusldi”szq_i B0, S,
whence y"'(.%,J) induces an £-isomorphism

7 D) (@) S(Ker 8,57 @ e — ™ (1),

Indeed (i) and (ii) are immediate corollaries to (8.3) and (8.8.6) via the
definitions in (8.8). For (iii), we also use (8.6).

(8.10.1) Remark. If m =1 in (8.10), then J is (1,d)-monomializable at P
iff J is a nested c.i. at P.
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(8.11) Definition-Proposition. Let (X, P) D C be the germ of a 3-fold terminal
singularity of index m > 1 and a reduced curve defined by ideal 1. and let

(X”,P”) be the canonical cover. Let C*, I, be the canonical lifiings of C, I
at P. Let {s,,s,,e} bean t-basis of I. at P, b and d integers > 2, and

S € Oy, asemi-invariant such that f=fmod I, is a nonzero divisor of &,
For n> 0, let

Zy= Y (s e oxr = Y (5/¢s) 0.,

i+bj+dk>n i+bj+dk>n
i+j+e>2
%/_ i j k @
n= Z (s, €78, ) -
i+bj+dk>n
0<i<b

Assume that fe — slb €%, at P'. Then one has

1) J' = % is a C'-laminal ideal of pure width d, wt fe = bwts, (m),
width,,s, = 1, width,, s, = d, width,, e = b, and furthermore for all n > 0,

wehaveF(é’X,J) Z, = %,

n._n o J. ok
Ol (@ )~ @ Oases,,
i+bj+dk=n
0<i<b, 0<j k

and an isomorphism of graded &, o pr-algebras with p_-action
. . —_ b
8y pi 8 O ) py == Oe pul S, S, EV(JE - S,"),
sending s,, s,, e to S,, S,, E, respectively. In particular,
Ima, =2, g (@ J') = s,
(¢f (8.8.6(i1)) for a,,),

(ii) if we further assume
(a) d>b and fe—sl - hs, e'%m
be ,%’bH) then gr‘C, @ is a free O,-module with a free basis {s, e} (resp.
{sl .8,} ) and Ker B, is an invertible sheaf (cf. (8.8.6(ii))) and

for some unit h (resp. (b) fe —

Ima,, =f. Kerf,, (resp. Kerg,,),

ie Kerf,, =0G.e (resp. Ous,),

(iii) let J be a C-laminal ideal of width d and let J* =1ifJ . Then J* =%,
iff s,€J '

If the condition in (iil) holds and if (a) (resp. (b)) in (i) holds, then we
say that the ordered ¢-basis (s,,s,.e) isa (1,d,b)-monomializing ¢-basis of
the first (resp. second) kind of I. > J at P, and that f is the attached semi-
invariant. We say that J is (1,d,b)-monomializable at P and I. > J at P
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(or simply P) is of the first kind ( resp. the second kind ) if such an ¢-basis
exists.

) and 7, %, _, C %, ,wehaveanat-

b+1 n+l°’

Proof. (i) Since slb = fe (mod.7,,,
ural surjection
I @ ﬁcﬂsllejszk = T Fpiy
i+bj+dk=n
0<i<h, 0<j k

from a free &,-module of rank [n/d]+ 1. Let us fix an arbitrary N € N for
the moment. If Q' e C* - {P”} is a point close to P' such that f(Q”) #0,
then e € ZHdeb(sl"sZk) by Nakayama’s lemma. Thus I, ,, = (s,,s,) and
Ty o1 = Livaron(8'5") . By (83(), %,/%,,, is free of rank [n/d]+1 at
o', Z, s a C'-laminal ideal of pure width d at Q', and Z, = F" (O, )
for all n € [0, N] if Q" is close enough to P'. Hence (Keryn)Q,, =0, and
Kery, =0 by Kery, C Sat(0) =0 (n€[0, N]). Hence y, is an isomorphism
for all n € [0, N] and we note \/7,1 =1I., forall n>1. Hence &,,/%, has
no embedded primes for all » € [0, N], whence .7, = Sat(%,) (= J”) is a
C'-laminal ideal of pure width d and %, = Sat(Z,) = F"(&,,.J") forall ne
[0, N] because (7)), = F'(O,, ,ﬁ”)Qn at nearby points Q" (# Pn) Hence it
holds forall n > 0 and 6}2 isa p, -isomorphism forall n» > 0, because N was
chosen arbitrarily. Hence Z, =%, +1+$f forall n>0,and Z, =%, +n,+%
forall n,n" > 0. If n' is large enough then 7, C 1.7, and Z, = %
by Nakayama’s lemma By ¢ ( ) f ( ), we have wtfe = bwts, (m).
Since d > 2 and ngn J'h= gr (@’,J") has a free basis {sz,sld_b[d/b] . e[d/b]}
by 5ﬂ , we see that Imaﬂ =05, if d#b by d-bld/b]+[d/b] >2. If
d=b,then fe—s"¢ #,,, implies e € 1% by b > 2, whence a,(e)=0
and Ime,, = C,sz anyway. The rest is obvious.

(ii) The assertion on the free basis is straightforward. By (8.4), Kerfg,, =
Sat(Ima,,) and (ii) follows from (i).

(iii) The only-if part is obvious by definition. By (8.8.6), J ' isa C'-laminal
ideal of width d . Assume that s, € J " Llet Q' e C'- {P”} be a point close
to P' such that f(Q") # 0. Then one has Icy gv = (5y.5,), and the same
argument as in the proof of (8.3(ii)) can be used to get J ”Qn = (%) i - Then

J'=Sat(J*) = Sat(%Z,) =.%,. O

(8.11.1) Remark. Let the notation and assumptions be as in (8.11(i)). Let .
be a locally ¢-free &, -module and J = quo(Jﬁ) (8.8.1). Then

(i) if f is a unit then (s,,5,) isa (1,d)-monomializing ¢-basis of I. D> J
at P,
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(ii) using (8.6) and (8.8.6), one sees that gr" (%, J), gr‘éy, M =gr (@.,J),

g(@,J), & =Kerf,, g"'(¥,J) are ¢-free @, -modules at P with the de-
scriptions
ot { Oy (P first kind),
a GesS, (P second kind),
M= COrys,,
o’ (@,0) = 0,5, 0 0,5 70

4 1 —i [(di+r)/b]  (di+r)=bl(di+r)/b]
grnl(ﬁ”]) :ﬁcnszq le i+r 5, i+r i+r '

and that »"’(5%#,J) (n>0) induces an £-isomorphism

?"'i(Y,J): 22 & 9?“ & F2 g gr(éy — gr"‘i(y,.l)
for i € [0,q], where ¢ = [n/d] and r = n - qd , e = [(di+r)/b]l—(q—1)
(resp. e; = [(di +r)/b]) if P is of the first (resp. second) kind, and &, is an
¢-invertible & .-module at P given by

——1 —1
Dp=Ouf )" C 9;11 =S

This is because s,, s, are ¢-free ¢-bases of M, FLRDEY (resp. A ,.Z ),
and sld1+r = (f 6,)[(d1+r)/b} . Sldt+r—b[(d1+r)/b] . and

(iii) if there is a global curve C extending (C, P) (cf. (8.9)), one can triv-
ially extend &, to an {-invertible ¢.-module & on global C so that the unit
section 1 of &, extends to a global section of & and generates & outside

P . By construction, one sees /deg. < = m~ " len O/ Jﬂl)@c) .

(8.12) Theorem. Let X D C =~ P' be an extremal nbd and let J be a

C-laminal ideal of pure width d and let P, ..., P € C be such that X is
smooth and J is a nested c.i. at arbitrary points of C—{P,, ..., P}. Weassume
that there exists s € [0,d] (s = 0 if d = 1) such that J is

(l,d,bj)-monomializable Jor some bj. (resp. (1,d)-monomializable) at P,
forall j <s (resp. j>s+1). We also assume that there exists s' € [0, s]
such that P, is of the first (resp. second) kind if je({1.s'] (resp. [s'+1,5]).
For each j < s, let 9,* be the (-invertible & .-module obtained as & at Pj
in (8.11(iii)). Let &* be a locally (-free @ -module of rank p. Let n€Z_,
g =1[n/dl, r = n—qd, and let i be an arbitrary integer in [0,q). Then
gr' (&, J), gr%y, grd(ﬁ,J) are locally (-free @.-modules of rank qp + p,
p, 2, respectively, and

(i) if d =1, then J =1, gt'"(F.J) = g7, gr'(@.J)) = grlcé’, and
(S 1) induces an (-isomorphism

V(5 1e): " (a1 @) S gre s — e 7.
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and one has | deg,. grlcﬁ >0, and
(ii) if d > 2, then # =gr'(@,J), & =Ker B, (8.2.2), and gt (F,J)
(8.6) are (-invertible G -modules, B, induces an £-exact sequence
O—ég——vgrlcﬁ—n/f—ﬂ),

and y"’[(y,J) (8.6) induces an (-isomorphism

'f"’i(y,J) %®(dz+r (®9 ®e,) ®g§(q—i) @ gr(éy N grn'i(y,J),
Jj=1

where e; = [(di + r)/bj] — (g —1) (resp. [(di + r)/bj]) for je[t,s'] (resp.

je[s' +1,s)), and one has

Ideg. . # + %ldegc_?—fz ( d) ldeg-Z; +Z ldegC9 >0,
b

where S (resp. ') is over P; of the first (resp. second) kind.

Proof. The assertions follow mostly from (8.10), (8.11), (8.11.1). For (i), we
only need to show /deg_ grlcé’ > 0. By (8.9.1) and 7"(@X,IC) , one has

deg,gry @ < ldeg.gr.@ = in(n+ 1)l deg, grlC o.
Thus /deg, grlcéo > 0 by (8.7). For (ii), we need to prove the last inequality.

We note that /deg.Z; > deg. &, 2 0 (8.9.1) since <Z; has a nonzero global
section (8.11(iii)). Thus by (8.9.1) and 5”’%@},]) , one has

deg.gr""' (@, J) < [ deg " (@ .J)
<(di+r)ldeg. # +(q — i)ldeg. L

/

+Zdl+rd 9 Z —tldegC9

] j=1
and summing these up for i = O, ..., g {(=[n/d]), one has

deg,gr'(@,J)
c

n’
—2—3 (ldegcﬁ—i-dldegCi”%-Zb ldegC9 Zdldegcg) +0(n),

where O(n) is a term bounded by (constant) -n as n — oo. Thus again by
(8.7), we are done. O

(8.13) Let X be an analytic 3-fold with only terminal singularities and C a
smooth curve in X defined by ideal 7. Let J be a C-laminal ideal of width
d>2. Let

0—g”(@,)) - gred — g’ %@, 7) =0

be the £-exact sequence given in (8.6).
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Assume that it has a splitting
(8.13.1) e =g (@, )) 07

into invertible sheaves on C, where ., is a subbundle of grg J of rank 1 and

hence ,‘ZJ has an induced ¢-structure as a gr% J-saturated subsheaf of gr‘éJ
(8.8.1). We note that (8.13.1) is not necessarily an £-splitting. Let K be a
C-primary ideal of &, such that J > K D F'J and K/FlJ =,?J. Let P be
apointon C, (X”,P”) the canonical cover of germ (X, P), and C'c (x*, P“)
the canonical lifting of C. Then we can study K in the following four cases.

(8.14) Proposition. Assume that J is a nested c.i. at P (of width d > 2 as
above). Then K is a nested c.i. at P of width d + 1 such that F (@ ,K), =

F':(ﬁ,J)P for. i <d. Thus K is a C-laminal ideal of width d + 1 such that
F (@ ,K)=F'"@,J) for i <d, whence B, =B, and Ker B, =Kerp,.

Proof. The ideal I has a basis {u,v} at P such that J, = (u?,v). Then
<, is generated by w = v + au® for some a € Oy p by (8.3(1)), whence
I, = (u,w), J, = (ud,w), and K, = (ud“,w) (8.3(ii)), and the equality
holds by (8.3(i)). Thus K, is a C-laminal ideal of width d + 1. Since d > 2,
grl(é’,J) = grl(ﬁ,K) = (u,v)/(uz,v), whence B, = Bi: grlcé’ — grl(é’,J)
because they are naturally induced maps (8.2.2). 0O

Learning that K is a C-laminal ideal of width 4 + 1, we see

(8.14.1) Corollary. F'J/F'K = gr®*'"'Y(@,K) and the natural map K — J
induces an ¢-isomorphism gr’t'°(@ K) = K/F'J = Z.

Proof. Since gr®*""!(@,K) is a g2 K-saturation of (I“*' + F'K)/F'K in
gre K via y*'"'(@,K) (8.6(ii)) and since I*' ¢ F'J by width J = d,
we see grd“'l(é’ Ky c F lJ/F 'K, which are both grOC K-saturated submod-
ules of gr%K of rank 1. Hence grd“'l(ﬁ,K) = FIJ/FIK. Since J, X,
F'J are Oy-saturated submodules of @, and since £, = K + F lJ/F 'Jisa

J/F ! J-saturated submodule of JIF 'J, the two expressions K/F ' and K +
F'J/FIJ induce the same £-structure on .2, by (8.8.1). O

(8.15) Proposition. Assume that (C*,P") is smooth and that I > J has a

(1,d)-monomializing £-basis (s,,s,) at P. There exists a semi-invariant o €

Oy py SUCh that wto = wts, —dwts,, or —wts, +dwts, (mod m) and such
Xt,P 2 1 2 1

that

(8.15.1) if grod = g’ (@, J) © F, (8.13.1) is an ¢-splitting at P, then

(5,8, + asld) isa (1,d + 1)-monomializing £-basis for I DK at P, and
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8.15.2) if grind =gr’(@.J)® %, (8.13.1) is not an ¢-splitting at P, then
c J

O0<orda < oo, and (s,,as, +sld,s2) isa (1,d+1,d)-monomializing {-basis
of the first kind for I > K at P with attached semi-invariant —« and relation

d d
(—a)s, — s, =—(s, +as, ).

Proof. Since C' is smooth, we see that if(Z)) = &, (ﬁs1 + 7sld) for some
semi-invariants  (# 0), ¥ € &, by (8.10(iii)), and that ., defines an
¢-splitting iff ord # < ordy. In case of (8.15.1) (resp. (8.15.2)), we take a semi-
invariant representative o € @y, ,, of 7.8 (resp. B-7'). Since s, +asld
(resp. as, +sld) belongs to K, (8.10) (resp. (8.11)) applies. O

{(8.16) Proposition. Assume that (C”,P“) is smooth, that I > J has a
(1,d,b)-monomializing ¢-basis (s,,s,.e) at P with attached semi-invariant
S, and that gr%J =g’ Y@, ) ® .2, (8.13.1) is an ¢-splitting at P. Let
g =1[d/b) and r =d — gb. Assume that I > J is of the first (resp. second)
kind at P.

Then there exists a semi-invariant o € Oy, p, Such that wta = wts, —
rwts, —qwte (mod m) and (s,.s,+as,"e? e) isa (1,d+1,b)-monomializ-
ing £-basis of the first (resp. second) kind for I D K at P with attached
semi-invariant f .

Proof. By (8.11(i)), there exists @ € @, such that .Z, = &,(s, + as|e?).
Let s, =5, + as, e’ for some semi-invariant representative o of @, whence
s, € K. Let fe - sf = g(s,,s,,e) be the relation given in (8.11(ii)). Then
fe—s."=g(s,,s;—as, ¢’ ) is the relation for a (1,d + 1, b)-monomializing
¢-basis (s,,s;,e). If (s,,s,,€) is of the first kind, then g +r >2 by d> b,
whence (s,,s;,e) is of the first kind. If (s,,s,,¢) is of the second kind, then
g(s,.5,.e) € (sl,sz,e)2 and g(s;.s;, —as,¢’ e) € (sl,s3,e)2. The rest is
similar. O

9. EXISTENCE OF “GOOD” ANTICANONICAL DIVISOR (DELICATE CASE).

The main purpose of this section is to treat the delicate case (6.7.4), and our
main result is (9.10).

Unless otherwise mentioned, we will work under the notation and assump-
tions of the following (9.1) throughout this section.

(9.1) Let X o C =~ P' be an extremal nbd with 2 points P, P’ of indices
m,m' > 3. Then by (6.7), this is case (6.7.4);

(%) X D C has no other singular points, and P, P’ are of size |
and of type (IA), (IAY), or (IIA).
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Since X D C has only one imprimitive point (1.13), we will assume that P’ is
a primitive point. Let 77 and s be the subindex and the splitting degree of P .
We note that m = sm, and that s =1 iff P is primitive.

Let I C @, be the sheaf of defining ideals of C in X . Let ' (X”,P”) —
(X, P) (resp. n: (Xb,Pb) — (X, P")) be the canonical cover and (C”,P”) =
7r_l(C)red (resp. (Cb,Pb) = nb_l(C)red). Let I' (resp. Ib) be the canoni-
cal lifting of I at P (resp. P'). Let x = (xy,....xy) and ¢ (resp. x' =
(x;, ,x;) and ') be normalized ¢-coordinates (2.6) at P (resp. P') such
that a, = C*-ord x, (resp. a, = C’-ordx) with i € [1,4] as in (4.2). We will
use ord = C"-ord, wt = C“-wt, ow = C”-ow, R, U for X > C at P (resp.
ord = Cb—ord, wt = Cb-wt, ow' = Ct'-ow, R', U for X > C at P') in the
sense introduced in (2.5) and (2.8).

We note that if P (resp. P') is of type (IA) and a, = 1 (resp. a, = 1),
then one may permute x, and x, (resp. x, and x;) (cf. (4.2)).

We make a preliminary observation at P, which applies also to P’ modulo
obvious changes.

(9.1.1) Lemma. Under the above notation and assumptions, assume that
(C', P" is smooth (resp. P is ordinary (4.5)). Let & be a torsion-free
Oc-module of rank 2 with (-structure (resp. & = grg I). Then
(i) & isa qt-free O.-module at P (8.8.3), and
(i) for an arbitrary splitting & = @5, ® O.s, near P, there exists u € C
with the following property.

For an arbitrary s, € & @ 0. p with 54(P) = us (P)+s,(P) (€& &C(P)),
there exists an (-free -basis {u,,u,} of & at P such that s, € Oy p,u, and
S3€Ocy pilly -

In particular, &s, is an (-invertible @.-module at P (with its induced
¢-structure (8.8.1)) with an €-free £-basis u, at P, and & = @.5,80,.s, is an
¢-splitting at P.

Proof . (i) is obvious because & T @.,-free of rank 2 (8.8.6) by the assump-
tion. Let {v ,v,} be an ¢-free £-basis of £ at P such that s, = f,;v, + f,,v,
(i = 1,2) and ord f;, < ord f,, where f,.j are semi-invariants in &g, p, -
Then we have

(9.1.2) Claim. R(wtv,), R(wtv,) <m, and if
(z,w) € £(Ch-wi(v,) - C*-wt'(v,)) + Z,(7,0) CZ X Z,,

satisfies z > 0 (cf. (2.8)), then (z,w) € ow(C").

Indeed, if (C*, P*) is smooth then (9.1.2) follows from ow(C*) ~Z, (2.5).
If P is ordinary, then one sees that P is of type (IA) or (IAY) and that
siz, = 1 by () in (9.1), where the claim follows from (4.5.2).
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By the choice of f ;» we see that
a * S— . . .
(9.1.3) ow f;; € Clow (v,) + Z,(m,0) forall i, j (2.8(i)),

(9.1.4) for each i €1,2], owfij = C”-ow*(vj) for some ;.
This is because @.s; is an & -saturated submodule of & . Then we will prove

(9.1.5) Claim. owf, —ow/f, € Z ,(m,0), and if ordf, > ordf, then
u, =s,/f,, and u, =s,/f,, form an ¢-free £-basis for & at P.

Proof of Claim. Since ord f,, < ord f}, by the choice of v » we have ord f|, =
R(wtv)) or ord f, < ord f}, = R(wtv,) by (9.1.4), whence ord f;;, < 7 in
either case by (9.1.2), and ow f,, = C”-ow*(vl) by (9.1.3). Thus ow/f,, —
ow f,, € Z (m,0) C ow(C”) as claimed. Assume now ord f,; > ordf], asin
(9.1.5). Then ord f,, > 7 + R(wtv,) (9.1.3), whence ow f,, = C*-ow"(v,) by
(9.1.4). Thus ord f}, —ord f;, = ord f, — R(wtv;) > 0 and ord f,, —ord f,, =
ord f,, — R(wtv,) >0 by R(wtv,) <m (9.1.2), and one sees ow f, —ow f,,,
ow f, —ow f), € ow(C") by (9.1.2) and (9.1.3). Since fl.j have representatives
of the form
(invariant unit) - (monomial in x)

in @y, py (cf. (2.7)), this implies that f,/f,,, fy)/fyy € Ocips and

(fyy/f)(P) = 0 by (2.7) and u, = v, + (f,,//;,)7, and u, = (f,,/ )y, +V,
form an ¢-free ¢-basis of & at P and the claim follows.

(9.1.6) Since ow f,, —ow f}, € ow(Cn) , there exists u € C such that

ord(uf,, + f,;) > ord f, (2.7).

If 5, € &R0 , satisfies s,(P) = us,(P)+5,(P), then & = 5,005, near P
and the coefficients f;;, and f;, in s, = f;,v, + f3,v, satisfy ord f3; > ord f}, .
Hence we can apply (9.1.5) to s,,s,. O

(9.1.7) Corollary. Assume that (C”,P“) and (Cb,Pb) are smooth (resp. P
and P' are ordinary). Let & be a torsion-free £-coherent O-module of rank
2 (resp. é”:grg I). Then
(i) & isalocally L-free @.-module of rank 2,
(ii) every &-saturated invertible O.-submodule & of & (2.2) is an
L-invertible @.-module with its induced €-structure, and
(ili) if & = % @ # is a splitting into invertible &.-modules such that
deg.Z > deg.# , then we have an (-splitting & = % & {(id,,. f)(#)}
for some fe€Hom(Z,#), where (id,,,f): M - L OM =& .

Proof . (i) and (ii) follow from (9.1.1(i)) and (9.1.1(ii)), respectively. For (i1},
we see that .# " ®.% is generated by global sections and dim H 0 (A RFL)>2
by deg.¥ > deg.# , whence (iii) follows from (9.1.1(i1)). O

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FLIP THEOREM AND MINIMAL MODELS FOR 3-FOLDS 219

(9.1.8) Corollary. Assume that (C*, P") and (C’, P") are smooth. Let £, %,
M be L-free O .-modules of rank 2, 1, 1, and let
0 F =& —=H# -0
be an t-exact sequence. Then
(i) for a point Q such that qldeg(., Q) > qldeg(#,Q), an arbitrary
splitting & = o/ at Q is an £-splitting at Q, and
(i1) if (a) deg.Z > deg.#, or
(b) deg.? > deg# — 1 and gqldeg(.X, Q) > qldeg(.#,Q) for
Q=P and P,
then the sequence is £-split.

Proof . As for (ii), (a) follows from (9.1.7), and (b) follows from (i). As for
(1), it is enough to prove that a splitting & = .2 & ./ at P is an {-splitting
at P assuming that g/ deg(¥", P) > qldeg(# ,P). Let {u , u,} be an £-free
¢-basis for & at P such that u, is an /-free {-basis for .27 at P. Then
R(wtu;) > R(wtu,) (8.8.5) by the assumption. We note that .#" is generated
by fiu, + fu, such that f,f, € &, p, are semi-invariants with ord f; >
R(wtu,) and ord f, = R(wtu,). Thus f,/f, € O, py and {u, (fi/f,)u, +u,}
is an ¢-free ¢-basis for & at P,and & = &4 . 0O

(9.2) Under the notation and assumptions of (9.1), assume that P and P’
are ordinary. Then they are of type (IA) or (IAY) and i,(1) = siz, = 1,
ip(l) =sizp, =1 by (x) in (9.1) and (4.10). Hence deggrlcé’ = -1 (2.3.2)
and grlcé’ ~ @ @& @(-1), since Hl(grlcé’) = 0 (2.3.4). We note that the
subsheaf & C grlcé’ such that ¥ ~ & is unique and that .¥ is an ¢-
invertible &.-module, and let u, (resp. u'l) be an ¢-free ¢-basis of £ at P
(resp. P') (8.8.3).

(9.3) Theorem. Assume that P and P’ are ordinary asin (9.2). Then (Cﬂ,P”)
and (C",Pb) are smooth (whence P and P' are primitive), wtu, = -1 (m),
and wt' u'1 = —1 (m'). Furthermore, a, = a'1 =1 after necessary permutations
are made as in (4.2).

9.3.1) Remark. By (4.5.1), an £-free £-basis of gr1 @ at P has wt=sa,a,,
o 142
—a, (mod m).If P is of type (IAY), then we treat it as a separate case:
(9.3.ipr) §22,

and then consider locally primitive X D C as follows.

We note that if g, = 1, then one may permute x, and x; (9.1), by which
a,a, = a, and a, are permuted. We also note that if a, = m—1, then
a,a, = a, . Thus one may assume either (i) wtu, =a,a, and 2<a,<m-12,
or (ii) wtu; = a,, and the same remark applies to P'. Therefore there are
three cases (modulo permutation of P and P’):

(93a) wtu, =aa,, a,#=xl (m); wt/ullzalla;, a;¢:t1 (m),
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(9.3.b) wiu, =aa,, a,#+£l(m); wtu =a,(m'),
and
(9.3.¢) wtu, = a, (m); wt' u'1 = a; (m").

Proof. We will prove (9.3) by showing that only (9.3.c) is possible and that
a, = ai = 1. Since gréé’ =X ®(—-1) and & ~ & (9.2), one may choose
subbundle .# ~ & (-1) of grlcé’ such that grlcé’ =% ®.# is an {-splitting
(9.1.7(ii1)). Let u, (resp. u'z) be an ¢-free ¢-basis of .# at P (resp. P').

(9.3.2) Let J be the C-laminal ideal of width 2 such that J/I® =% . Since
J/ @ = & , the surjection «: gr%J — J/1 ) = & induced by identity is an
¢-surjection by (8.8.1). Thus we have equalities Ima, = Kerf, = .27 with
¢-structure by (8.4(i1)) and an ¢-isomorphism grl(é’ ,J) =~ .# . In particular J
is a nested c.i. outside {P, P’} by (8.4(i)).

Let J* (resp. Jb) be the canonical lifting of J at P (resp. P'). We may
replace u,,u, € I ”/1”(2) (resp. u'] ,u'2 el b/Il’(z)) with their representatives so
that we may assume u, € J® and u, € I (resp. u'l e J’ and u'2 el ). Thus one
sees I' = (u,,u,) and J'= (ul,uzz) (resp. I = (u'l,u'z) and J' = (u/l,u'zz))
by (8.3), and (u,,u,) (resp. (u'z,u'l)) is a (1, 2)-monomializing ¢-basis for
I>J at P (resp. P'). Hence

0</deg. 4 + %ldegcff

(9.3.3) = (~1+ - RWtwy) + LR (w'1dy))
1 /
+3 (%R(wtul) + LR (wt’ “1))
by (8.12). By (2.3) and (4.9(i)), one has
(9.3.4) 1 <a, ! +a;-m'"l

(9.3.5) Case (9.3.ipr). We will disprove this case. Since siz, = ip(1) = 1,
we have w,(0) > 2/3 by (5.6(ii)). Whence w,,(0) < 1/3 by (2.3.3) and
a'l =1 by (5.1(i)). Since siz, = siz,, = |, we see that {R(wtu,), R(wtu,)}
= {m - sa,a,,a,} and a, < mM - sa;a, by (4.5.2) and that {R'(wt'u'l),
R'(wt' u'z)} ={m' - a;, 1} and 1 <m' — a;. Then (9.3.3) gives

J— ! !
m-—sa. a m —a
052<—l+ L2 4 ,2>+
m m

< Tn—_l(—2sa|a2 +a, +3a,),

Q

== +
m

1
ml

! (9.3.4) is used in the second inequality.

where 1/m' < (m' - a})/m' <a,-m
Hence we have a contradiction:
0< —2sala2 +a, + 3a2 < -4aa,+a + Z’a2

=a,(l-4a,)+3a,<1-(1-4a,)+3a,=1-a,<0
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by s> 2, a,,a, > 1. Thus case (9.3.ipr) does not occur, and P is a primitive
point and 77 = m in the rest of proof of (9.3).

(9.3.6) Case (9.3.a). We will disprove this case. By U(a,a,) =1 and U'(a'la;)
=1, one has R(wtu ) = m—a,a, and R'(wt' u'l) = m'—a'la; , and by definition
one has R(wtu,) =a, and R'(wt' u'z) = a; . Thus (9.3.3) reduces to

!

1 1 ’
0< —a (2—a2)+;n—,a1(2—a2),

2m !
which implies a, = a; = 2, because az,a'2 > 2. By a, # £1 (m) and
(a,,m) = 1, one sees that m > 5, and similarly m' > 5. This contradicts
(9.3.4).

(9.3.7) Case (9.3.b). We will disprove this case. We have R(wtu,) =m —a,a,
and R(wtu,) =a,, R'(wt'u}) = d| and R'(wt'u})) = m' —aid,, and m > 5
as above. Thus (9.3.3) reduces to

(9.3.7.1) 1>a,(a,—2)/m+a;(2a,— 1)/m’.
(9.3.7.2) Claim a; = 1. Firstby a, # =1 and a, < m, one has m > a,+2 and
l=m/m2>2/m+a,/m> 2/m+1—-a;/m' by (9.3.4), whence 0 > 2/m—a;/m'.
By (9.3.7.1), one has

1> (a,—2)/m+d,(2a;, - 1)/m’ > 1 -ay/m’ —2/m+a;(2a, ~ 1)/m’,
where we used (9.3.4) in the second inequality, whence

2/m— a;/m' > —Za;/ml + a’l(2a; -1)/m'.

Hence one has
0>2/m—ay/m' > -2a,/m' +a(2a, - 1)/m’ = {(a; - 1)(2a; — 1) — 1}/m’.

Whence 0 > (a'1 - 1)(2a'2— 1)-12> (a'1 -1)-1 =a'l — 2. Thus a'l =1 and
(9.3.7.2) is proved.

(9.3.7.3) Claim a, = 1. We first consider the case m = 5. If a; > 2, then
a,=a,=2 by R(wtu,) =5-a,a, >0, which contradicts 5€ a,Z_+a,Z_ .
Thus g, =1 if m=35. Let us assume m > 6 and a, > 2. Then by (9.3.7.1),
one has

1>2(a, - 2)/m+ (2ay - 1)/m' >2—4/m—1/m’,
where (9.3.4) is used in the second inequality. Thus by m > 6, one has 1/m’ >
1—4/m > 1/3, which contradicts our assumption m’ > 3. Hence a =1if
m > 6, and (9.3.7.3) is proved.
(9.3.7.4) Thus (C“,P”) and (C",P") are smooth, whence U(z) = [z/m] and
U'(z) = [Z'/m'] (z € Z) and TL(z + z'P* + szb) =z+4 [z”/m] + [zb/m']
(cf. (8.9.1(iii)) for definition). One also sees ¢l.(Z) = (m — az)Pn + P’ and
gl (#)=—1+P'+ (m' —a,)P" by (8.8.5) (cf. (8.9.1(ii)) for definition).
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(9.3.7.5) Claim 2a'2 < m'. We will derive a contradiction assuming that 2a; >
m'. We note that if 2a; =m' then m' =2 and a; =1 by (a;,m') =1.
This contradicts m’ > 3, and we have 2a; — 1> m'. Hence by (9.3.7.1), we
have a, = 2 and Za'2 =m' +1, whence m' =1 (2). Then (9.3.4) reduces
to 1 <2/m+ (m' +1)/2m',ie. 1 < 4/m+ 1/m'. Since m > 5, one has
m <5by I/m>1—-4/m>1/5. Thusby m" =1 (2) and m’ > 1, one
has m' = 3, whence m = 5 by 4/m > 1 —1/3 = 2/3. Since a, = 2 and
a; = (m'+1)/2 =2, one sees gl (Z) = 3P'+ P’ and gl (A) = -1 +P 4P
(9.3.7.4). Hence subquotients of Fl(@’,J)/F“(ﬁ,J) fit in exact sequences (8.6)
g (@ J)=gr' °(@.J).

0—g’ (@, 0)— g’ (@, J)—g’’@,]) -0,

0—gr'(@,0) gl (@, ])—g (@, ])—0.

Since J is a nested c.i. outside {P, P’} and (I,2)-monomializable at P and
' (9.3.2), we can apply (8.12(ii)) (with d =2, s =5 =0) to get

l .0

(@.J)~ (n=1,4¢=0,r=1)
”(ﬁ J):,E” (n=2,q=1, r=0)
21(@, J):/%éz
30(@,J).~: LM (n=3,g=1,r=1)

ey =t

because gl (FOM) = ql(FL) + gl (#) = =1 + 4P* + 2P", gl (#%*) =
24l(A) )

= -2+ 2P' + 2P, and ¢l (#®) = 3¢l (#) = -2 + 3P* are normalized
expressions (8.9.1). Hence y(F'(@.J)/F*(@,J)) = —1 < 0, which is a con-
tradiction to Hl(é’) =0 asin (8.7). Thus (9.3.7.5) is proved.

(9.3.7.6) By (9.3.7.5), one has gl (M) =2l (M) = —142P" + (m' —2d))P’

and deg..# ®2 — _1. Thus the &,.-module exact sequence
C c

O——»/f®2agr2..1——>$—>0
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is split, and gr(é J contains a unique subbundle .Z, such that .¥; — .# and

groc J =% ® .7, as O.-modules.
Let K be the C-primary ideal such that J > K D> F'J and K/F 'y =
.?3. Then K is a C-laminal ideal of width 3 which is a nested c.i. outside

{P,P'}, and we have ¢-isomorphisms Ker g = Ker f, =.% and grl(ﬁ,K) =
gr'(@,J) =~ # by (8.14). We see that gro.J = %, &.#% is an ¢-splitting at
P' by (9.1.8(i)), because g/ deg(#®* P") = m' - 2d, > gldeg(Z,P") = 1
by (9.3.7.4) and 2a; < m' (9.3.7.5). Hence the (1,2)-monomializing ¢-basis
(uy,uy) of 1 >J at P’ lifts to a (1,3)-monomializing ¢-basis (denoted by
the same (u'z,u'l) , by abuse of language) of 7 > K at P’ (8.15.1). Let
—az k+2 2
(Z)p =206 p= (™, + "0y,
where 4 i1s a unit and 0 < kK < oo. If kK = 0 (resp. kK > 1), then u,,

v = /vc;”_'”_zu1 + uzz,ul form a (1, 3,2)-monomializing ¢-basis of the first

kind (resp. (u,,u,) liftstoa (1, 3)-monomializing ¢-basis denoted by the same
(u,,u,), by abuse of language) of I D K at P by m—a, > 2 and (8.15), where
Xl =t by a, =1 (9.1). One can see £-isomorphisms

,,Z] — gr3,0(é;'K) 23 ég@(_ﬁ)

by (8.14.1) (with d = 2) for the first equality and by (8.12(i1)) (with d =n =3,
g=1, r=1=0) for the second, where ¢ =1 (resp. 0) and & is as defined
in (8.11.1): n ( )

Dp=Cp p CDp =0Opy pit :

(note m>m-—a,-22>0).
(9.3.7.7) Claim a; = 1. Indeed by (9.3.7.6) and (8.12), one has
0<ldeg..# + ildeg..Z +e(5— §)m(im—a,—2)
under the notation of (9.3.7.6). Thus in any case, we have
0< (1/m~ay/m')+ ((m—a)/m+1/m)/3+ (m—a,~2)/6m,
whence m'(3(m — a,) +4) > 2m(3a, — 1). Thus one sees
m——lazm, <m< 3(m_?2)+4 /
a, 2-(3a,-1)
where (9.3.4) was used for the first inequality. Whence follows {3(m —a,) +
4} -d) > 2(3d, - 1)(m — a,), hence 4d), > (m — a,)(3a, — 2) > 2(3a, - 2) by
m—a,>2, whence a, = 1. Thus (9.3.7.7) is proved.
(9.3.7.8) By (8.12(ii)) (with d =n =3, g=i=1, r=0), we see gr“(@’,K)
= #%°82% . Hence by % = grr%(@.K) (9.3.7.6), we have an f-exact
sequence

02T — gt K - % -0,
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where deg..#®°&2® = -1 and deg..%, = 0 by

gl (A% &%) =3{-1+ P +(m' - )P} + ¢(m —a, - 2)P*
= {~1+43P + (m' = 3)P’} +e(m—a, - 2)P*
=1+ {3+e(m—a,-2}P" +(m' - 3)P",
9l (L) =ql L —e(m—a, - 2)P!

={(m-a,)-em-a, - 2)}Pn + P,
where 0 < 3+ée(m—-a,-2)<mand 0 < (m—-aqa,)-em—-a,-2) < m
by 2 < a, < m~ 2. Hence the exact sequence splits, and we write grgK =
A28T% & Z, as &, .-modules.

Let H be a C-primary ideal such that K > H > F'K and H/F'K =% .
Then H isa C-laminal ideal of width 4 which is a nested c.i. outside {P,P'},
and we have {-isomorphisms Kerf, = Kerf, = ¥ and gr1 (@,H) =
gr' (@ ,K) ~# by (8.14).

(9.3.7.9) Claim grOCK = #232% ® % is an (-splitting at P if ¢ = 1.

Indeed since g/ deg(#®’°@F ,P) = m+ 1 —a, > 2 = gldeg(Z,, P), it is an
£-splitting at P by (9.1.8(1)).

(9.3.7.10) The (1, 3, 2)-monomializing £-basis (u,,v, u,) of the first kind (resp.
(1, 3)-monomializing ¢-basis (u,,u,)) induces a (1,4, 2)-monomializing ¢-
basis (u,,v,u,) of the first kind with the same attached semi-invariant (resp.
(1,4, 3)-monomializing £-basis of the first kind or (1,4)-monomializing ¢-
basis as in (9.3.7.6)) for I > H at P by (8.16) (resp. by (8.15)). At P, one
has
k'+m'~3 13
(Zx)p =Zp zﬁc',P'(/‘,tlull +"T ),

where 4’ isaunitand 0 < k' < oo. If k' > 1 or m' > 4, then grgK =

Z, & #28D® is an e-splitting at P' and H is (1,4)-monomializable at
P’ (8.15.1). If (k',m') = (0,3), then we have a (1,4, 3)-monomializing ¢-
basis ), v' = p'xu| + >, u| of the first kind for I > H at P' (8.15.2),
where we note x;|Cb =t by a; =1 (9.1).

Thus we have by (8.12)

0<Ideg .t +}ldege & + (4= Hi(m—a, -2+ (- 1) &

(resp. 0 < /deg..# + Yldeg. Z + (- 3) A(m—-a,-2)+¢ (1 - 1) ml) :

where ¢ =1 or 0 according as (k', m') = (0, 3) or otherwise.
If m' > 4, then we have ¢ =0, and in either case, we get

1 1 1/m-a 1 m-a,—2
<|—-—= - 24 - - -
o_(m m,)+4( - +m,)+ g
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whence m < (2m - 2a, + 2)m’ /3. Using (9.3.4), one sees
(m—a,)m' <m < (2m - 2a,+2)m'/3

whence m—a, < (2m-2a,+2)/3,i.e. m—a, <2. This implies m—a, =1,
which contradicts a, # £1 (m).
If m' = 3, then in either case, we get

1 1 1 /m—-a, 1 m—a,—2 1
°$<7n"§)+z( m +§>+ am 136

whence m < 9(m —a, +1)/4. Thus by (9.3.4), we have

3m-a,) <m<9(m—a,+1)/4,

and 4(m—-a,) <3(m—-a,+1),i.e. m—a, <3. Thus m-a,=2 by a, # +1
(m). Then one has 6 < m < 27/4 = 6.75, which is a contradiction. Thus
(9.3.b) does not occur.

(9.3.8) Case (9.3.c). Our purpose here is to prove a, = a; =1 and smoothness
of (C”,Pu) and (Cb,Pb). By symmetry of P and P', we may assume a;/m' >
1/2 in view of (9.3.4). Since siz,, = 1, we have m' > a\a, > aym'/2.
Thus a; = 1. We will prove @, = 1 by deriving a contradiction assuming
a, > 2 till end of (9.3.8.8). We have ¢/.(¥) = alPu + P and gl (A) =
~1+ (m—a,a,)P" + (m' — a,)P". Thus (9.3.3) reduces to

! /
(9.3.8.1) 0< (~1+m“"1“2+'" ‘,“2)+l<ﬂ+;)_
m m 2 m

m

Using (9.3.4), we rewrite it as

0<—g—&+£2-+l<ﬁ+—17).
m m 2\m m

that is
(9.3.8.2) L(2a,a,-2a,—a)) < L.
(9.3.8.3) Claim a,=1. If a, > 2, then

(2a,a, - 2a,-a,)—a,=(2a,-3)a,—a; >4a, —6—a, 20,

whence we have 1/m’ > a,/m. Then (9.3.4) implies 1 < a,/m + ay/m’ <
1+ a;) /m' < 1, which is a contradiction and a, =1 is proved.

(9.3.8.4) Claim a, = 2. By a, = 1, (9.3.4) implies 1/m > (m' — ay)/m’ >
1/m’. (9.3.8.2) implies 1/m’ > (a, — 2)/m, whence 1 > a, —2. By the
hypothesis a, > 2, we have a, = 2.

(9.3.8.5) Since a, = 1 and a; =1, (C”,P”) and (C",Pb) are smooth, whence

U(z)=[z/m] and U'(z)=[z/m'] (ze€),
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and
TL(z + 2'P' + 2’P") = z + [Z}/m] + [2'/m'].
One also sees ¢/.() = 2P'+ P, gl (A) = -1+ (m— 2)P'+ (m' — a;)P",
and gl.(gryw) = =1+ (m — 1)P* + (m' —a))P’ (2.10) and (8.9.1).
(9.3.8.6) Claim m > 5. Since a; = 2 is prime to m and m > 1, it is

enough to derive a contradiction assuming m = 3. Then (9.3.4) implies 3(m' —
a2) < m'. Thus by (9.3.8.5) and the add1t1v1ty of gl., we can calculate the

values of ql for subquotients w®3®'®%®’ (i,7j20,4>2i+j>0) of
Fl{w,J)/F* (w,J) as follows:

PPt (m —al+ )PP NG L +20m" + ay) P! = gr'(w,J)
1] ! / 2
“\1 + 2P+ (2m’ - 24, + I)INHP"H(M —a)P’ = grt(w,J)
. \3+ 2P+ 4(m’ —a))P" = g (w,J)

as in (9.3.7.5). The expressions are normalized except for qlC(a)é/Z ®3) =
~3+2P" 4+ 4(m’ - a})P’; it is not normalized only when 4(m’' — aj) > m'
and its normalized form in this case is —2 + 2P' + (3m’ — 4a;)Pb. Thus
x(Fl(w,J)/F4(w,J)) = —~1 or -2, which contradicts (8.7). Hence m > 5.

(9.3.8.7) By m > 5, we see qlc(%m) =—1+(m-4)P' +2(m - a’z)Pb and
degC///@’2 = ~1. Thus

0——*/[®2—»gr2J—>3—>0

splits as &.-modules and gr% J contains unique submodules isomorphic to ¥,

whence we write as grg J=#%e Z .

Let K be the C-primary ideal such that J > K D F'J and K/FlJ =
,‘ZJ. Then K is a C-laminal ideal of width 3 which is a nested c.i. outside

{P.P'}, and we have ¢-isomorphisms Ker f, = Ker#, =% and gr' (@, K) =
grI (@,J)~ A by (8.14). We see that grgJ =7 @& #%% is an ¢-splitting at

P’ (9.1.8) because gl/deg(.Z,P') =1 < qldeg(%®2,P') = 2(m' - a;) by
m(m' —a;) < m' (9.3.4). Hence the (1,2)-monomializing ¢-basis of 1 D J at
P’ lifts to a (1, 3)-monomializing ¢-basis of / > K at P’ (8.15). Let

2 k+m—4 2
(Z)p =Cp plut u + ™" Uy,

where 4 isaunitand 0 < k < oco. If (k,m)=(0,5) (resp. (k,m) # (0.5)),
then u,,v = px,u, + u22, u, forma (1,3,2)-monomializing ¢-basis of the
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first kind with attached semi-invariant ux, (resp. (u,,u,) lifts to a (1,3)-
monomializing £-basis) of I > K at P (8.15), where we note x,|., = ¢ by
a, =1 (9.1). Thus by (8.12(ii)) and (8.11(iii)), we have

Ogldegc/ﬁ—%%ldegc,‘f%- (% - %) 7{;—

( m-—2 m'—a'z) 1(2 1) €
=|-1+ +—2+ 3=+ =)+ =,
m m 3\m m 6m
where ¢ =1 (resp. ¢ = 0). Combining this with (m' — a'z)m <m' (9.3.4), we
have
(9.3.8.8) (8 —¢e)(m' —ay)m < (8 —&)m' < m{6(m’ - aj) +2}.
Thus (8 — &)(m' — a;) < 6(m' — a;) + 2, whence m' — a'2 = ¢ = | because
m' — a; >1and ¢ =0,1. Hence m =5 by ¢ = 1. Then (9.3.8.8) implies

7-5<7-m' <5-8, which is impossible. Thus we have shown a, = a'l =1 in
case (9.3.c), and we are done. O

(9.4) Theorem. Let the notation and assumptions be as in (9.1). Then P and
P' are type (1A) points.

Proof . It is enough to derive a contradiction assuming that P is of type (IIA)
or (IA"). Indeed it would imply that P is of type (IA) and hence P’ is also of
type (IA) by symmetry of P and P’. Before we start the calculation leading to
a contradiction, we will replace X O C with some nearby extremal nbd since
it is enough to disprove the latter.

(9.4.1) By replacing X D C with its L-deformation at P’ (4.7), we may assume
that P’ is ordinary (hence of type (IA)). Then (Cb , Pb) is smooth and a; =1
modulo necessary permutations as in (4.2). Indeed a further L-deformation of
X D C at P would have only ordinary points, whence (C ’, Pb) is smooth and
a; = 1 modulo permutations by (9.3).

Then P is a type (IIA) point. Indeed if it is of type (IAV), then replacing

X D C with its L-deformation (4.7) at P, we have an extremal nbd X >
C ~P' with ordinary P, P’ of indices > 3 such that P is imprimitive, which
contradicts (9.3).
(9.4.2) By replacing X D> C with its L'-deformation at P (4.12.2(ii)), we may
take an {-coordinate system y = (y,,...,y,) and an {-equation ¥ for (X, P)
such that wty, =a, (i€[1,4]), C' is the y,-axis, ¢ =y, y, + )/32 + y43 {we
note that there exists no singularity other than P, P’ by (6.2)). Hence i p1)=1
by (2.16). Thus by i,,(1) = siz,, = 1, we have deggrlcﬁ = -1 (2.3.2) and
grlcﬁ ~@ &&(-1). Then & C grlcﬁ such that . ~ @ is unique, and &
is an £-invertible @.-module (9.1.7).

We note that p, € I"(z), and {y,,y,} is an {-free ¢-basis of grlcé’ at
P such that R(wty,;) = R(a;) = 1 and R(wty,) = R(a,) = 2 (4.2). Let
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YWY+ fyy) (s, fy €8¢y pi) beabasisof Z at P. Then gl deg(-Z, P) = 1
if £, is a unit (2 if otherwise) by (8.8.5).

(9.4.3) We consider the case g/deg(.¥,P) # 1 (otherwise this process is not
needed). In this case, we see ord f, = 1 as above. Let X, D C, be the twisted
extensions (1b.8.1) of the trivial deformation

(X,P)D(C,P) by (y,(f3¥3+ fuVs+4V3).¥,¥3).

Then deg grlCA @ = —1 by (2.3.2) since the deformation is locally trivial. Then
1? deforms as I;Z) by (1b.8.3(i)). Since -, is generated by y, (f,y;+ f,7,)
- deforms as an invertible subsheaf .#] of I,/I ;2) such that .#] is generated
by y,((f;+A)y;+ f,y,) at P, (= P) and .Z is the trivial deformation of %
in X; .= X, (1b.8.3(ii)). Then replacing X D C by nearby extremal nbd
X; D C,, we may assume g/ deg(., P) =1, anyway.

(9.4.4) Thus we may assume g/ deg(-Z, P) = 1. We also see g/ deg(.¥,P') =1
or R'(a;) by (9.3.1) and (8.8.5) because a; =1 (9.4.1). Hence if g/ deg(.Z, P")
> 1, then we can apply a process similar to (9.4.3), and thus we may also assume
gldeg(#,PY=1.

(9.4.5) Since we have deggrlcé’ =—1 and grlC@’ 2> .% ~ @, we have a split-
ting grlcﬁ = ®@(—1) and hence an {-splitting grlcé’ = Z&MA for some
submodule .# =~ #(~1) (9.1.7(iii)). By (9.4.4), we have gl.(%) = P' + P’
and g/.(#) = -1 + 2P + (m' - a;)Pb (8.8.5) and (9.4.2). Since process
(9.4.3) and (9.4.4) does not change (X,P) D (C,P), we may use (y) given
in (9.4.2). Since gl/deg(-¥,P) = 1, £ has an {-free (-basis y, + fy,y,
at P (9.4.2), where f is an invariant in C{y}. If we set y;' =Y+ V),

and y;’ =Y, = 2fy;y, — f2y1y42, then (yl,y;',y;',y‘,) is an £-coordinate
system with similar properties (e.g. ¥ = »,¥5 + »5~ + »,”). Thus choosing
(¥1,Y5.V3.¥,) asnew (y,.¥,.¥;.¥,), we may simply assume that y, is an
¢-free £-basis of & at P.

(9.4.6) Let J be a C-laminal ideal of width 2 such that J/I @ = & . Then as
in (9.3.2), J is a nested c.i. outside {P, P’} and we have equalities Im o =
Ker 8, = % with {-structure and an £-isomorphism gr' (@,J)~ A . Also as
in (9.3.2), we can see that J is (1,2)-monomializable at ordinary point P’ by
the £-splitting gr%] = Ima Jé/l . Then (9.4..5) shows that (y,,y;,»,) is a
(1,2, 3)-monomializing £¢-basis of the second kind for / D J at P. Let & be
the £-invertible & .-module defined in (8.11.1(iii)) from (y,,y;,»,), then we

have a normalized expression ¢/.Z = P'. We now have an ¢-isomorphism
grn,i(w’J) o B0 & @RI & 8a-D) & grgw

forall n=2g+r >0 with r € [0,1] and i € [0,g] by (8.12) (with d =2,
t=2,s5=1,5=0 ). Now the way we derive a contradiction is very similar to
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(9.3.8.6). We note gl (grg @) = —1+3P"+(m' —a,)P’ (2.10) and (8.9.1), and
calculate the values of ¢/ for subquotients gr'”(w,J) (0 <i<|[n/2], n€
[1,3]) of Fl(w,J)/F4(w,J) as in (9.3.8.6) by (9.4.5) and additivity of g/ ..
We get
0 ~ 0
glc(er' (@, ) = gl (# & gre )
= gl (#) + gl (grg )
=1+ P 4+ 2(m - d))P’,
dlc(er’ (@, 7)) = gl (Z & gry w)

b
=(m —a,+ )P,
qlC(grz‘l(w,J)) =gl, </%®2 ® grg w)
= —2+3P +3(m' —d)P’,
qlC(gr3'0(w, I =gl (# &L & grg w)
= —14+2P 1 {2(m - a)) + 1} P,
gl (e (@,J)) = gl (%@ 2T Begr w)
= -242P +a(m’ - d))P’,
which are arranged as

(1 +m'—a;)Pb - l+1’”-1~2(m'—a;)}’b :>grl(w,J)

N 2P+ (1 +2m' - 2a;)N 24 3P 43’ —a))P’ = er(w.J)

24 2P 4 — )P = g (w. )

The expressions are normalized (8.9.1) because 4(m’'—a;) < m' by w,,(0) =
(m' —a,)/m' < 1-w,(0)=1/4 (2.3.3) and (4.9(i)). Thus
X(Fl(@.0)/F}(w.]) <0
(8.9.1(ii1)), which contradicts H' (w) =0 as in (8.7) and we are done. O

(9.4.7) Corollary-Definition. Points P and P' are type (IA) points such that
a, = a/1 =1 (after necessary permutations are made as in (4.2)), and ¢(P) < m

and ((P') < m', where we define {(P) = lenp,,lt'(z)/lziz and ¢(P") =
len,, I"(z)/li’2 .

We note that P is ordinary iff £(P)=0.

Proof. By symmetry between P and P’, we need to check the assertions only
for P and P'. We will derive a contradiction assuming that g, = | cannot be
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achieved, that is either (i) 1 <a, <m—1,or(ii) a, = m—1 and a, > 1. Since
it is enough to disprove nearby extremal nbds, we may replace X O C with
some nearby extremal nbd. So we may replace X O C with an L-deformation
Y > D at P (4.7), and further with an L-deformation at P’ of Y > D. In
this process a,’s are not changed since P and P’ are of type (IA). Thus our
X D C has two ordinary points P, P’ with indices m,m’ > 3 such that (i)
l<a, <m-1,or(ii) ag=m~-1 and a, > 1. This contradicts (9.3). Thus
a, = 1 and similarly a’l =1 (modulo necessary permutations). If £(P) > m,
then an L'-deformation of X > C at P (4.12.2) is locally primitive and has
at least one point of type (III) besides P and P’ of indices m,m’ > 3. This
contradicts (6.2), and hence ¢(P) < m. Thus we are done. O

(9.4.8) Corollary. We have i (1) = i,,(1) = 1 and an isomorphism grlcé’ o~
gaed(-1).

Proof . By (2.16), we have i,(1) =ip,(1)=1. Thus deggrlcéa = —1 by (2.3.2).
Hence we have gr.@ ~@ ®@(-1) by H'(gr.#) =0 (2.3.4). O

(9.5) Let the notation and assumptions be as in (9.1). Then P and P’ are of
type (IA) and we may assume a, = a'1 = 1. Then grlcé’ ~@ &&(—1), hence
there exists exactly one submodule .¥ of grlcé’ such that & ~ @ ., and it is
grlc @-saturated. We note by (9.1.7(ii)), -2 is an f-invertible &.-module.
Though the following is formulated only for P, it also applies to P’ modulo
obvious changes.
(9.5.1) Definition-Lemma. Let q(P) = gl deg(-Z, P). Then thereexists c € &,
with o(1) =1 such thatlé(P) = R(a,4), 4(P) = R(a,y). and {¥,). V,3)}
is an (-free L-basis of gr. & at P.
Proof. There exists an £-coordinate system (y) = (y,,...,y,) and an
¢-equation ¢ at P such that C' = y,-axis, wty, = a;, (i € [1,4]), and
¢ = yle(P)yam mod (yz,y3,y4)2 for some ¢ € &, such that g(1) = 1
(2.16). Then £(P) = R(aa(4)) by ¢(P) < m (2.16), and {ya(z),ya(3)} 1S an
£-free {-basis of grlcﬁ at P. Thus g(P) =R(aa(2)) or R(am)). O

We will define deformation processes of X O C which are more delicate
than the ones in (4.7). We begin with a general description.

(9.6) Let the notation and assumptions be as in (9.5). We will choose an
£-coordinate system (y) = (y,,...,»,) and an {-equation ¢ at P such
that C' = y,-axis and wty, = a;, (m) (i € [1,4]), and invariant u ,u, €
(3,3, ¥4,)C{y} such that grlc @/(u,,u,) is of finite length and . is gen-
erated by 4, at P. We will choose an invariant y € (y,,y;,»,)C{y} such
that

(9.6.1) gcd{¢,w}=1 and Sing{¢ =y =0} y,-axis C {0},
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and
(9.6.2) (X,, P,) is terminal if 0 < || < 1,

where ¢, = ¢ + Ay, and (X,,P) = ({¢;, = 0},0)/p,, O (C,,P) =
(y,-axis,0)/m,, (A€ C). We note

(9.6.3) Remark. (y) isan £-coordinate system for X, O C at P, = P, whence
(a,,...,a,) remain the same for P,.

Then we can apply (1b.3) as in step (L) in §1b, and following step (LG) in §1b,
let X, O C, be the twisted extension of (X,,P,) D (C,,P,) by u = (u,,u,).
We note that X, O C, (= C) may be identified with X > C outside a small
nbd of P, :

=CnX

A,out’

X

A,out

0, 8] x
=X—X<[ uﬂ<]6 V) DC}.out
where f,7,0 € C are as in (1b.8.1). Then by step {(G) in §1b, we have nearby
extremal nbds X; D C;, = C, where X, is anbd of C, in X,. Though we
have not yet explicitly constructed Xf D C,, we can say the following.

(9.6.4) Lemma. For an arbitrary small enough 4, X f D C, isalocally primitive
extremal nbd with exactly two singular points P, and Pl' , Which are of type (IA)
and have indices m and m'. Let I, be the sheaf of defining ideals of C, in X,,
then the coherent sheaves grI (@.1)) on C, form a flat family with parameter
A, and - deforms as submodules &£, (~ ) of grl(é’ ,1,) such that

=.C-falc)\,oun =g|co,out and QCZ;»@@CA;PA =@>C)‘,P>\u1.
In particular we have £(P,) = £(P") and q(P)) = q(P').

Proof. By smoothness of (C " P”) , we have local primitiveness of X;1 >C, in
a nbd of P, (1b.3.1), whence local primitiveness of X, D C, follows by the
definition of twisted extension. It is clear that X; D C, has two singular points
P, and P, withindices m, m' (> 3), whence X; has no other singular points
on C; by (6.2). They are of type (IA) by (9.6.3) and triviality of deformation
near P'. Thus deggr' (#,1,) = —1 by (9.5), and gr' (@, 1,)’s form a flat family
by (1b.8. 3(')). The assertions on .Z follow from (1b.8.3(ii)). We see that
Z(PA') = £(P") by X out = "Xgou» and that q(P)) = q(P') by L« ="%
after the previous identification. 0O

(9.7) Proposition-Definition. In each of the following five cases (a)-(e), there
exists a deformation X, > C, as described above such that {(P,) and q(P,)
satisfy the conditions (cf (9. 6 3)).

(a) £(P)=R(ay)>1, q(P)=1=¢£(P)=1, q(P)=R(a,) >1,
(b) £(P)=R(ay)>1, q(P)=0=£(P) =0, q(P)=R(a,)) > 1,
(c) £(P)=1, g(P)=R(ay)) > 1=£(P, )=0, q(P, ) R(ay) > 1,
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(d) €¢(P)=1, q(P)=0=¢£(P)=0, q(P) =1,
and if a,=m— 1, then
(e) £(P)=q(P)=1=¢£(P)=q(P) =1 and P, has axial multiplicity 2.
We call all these processes (or X, D C,) the LG-deformations of X > C
at P.

(9.7.1) Remark. We put a table of possible values of ¢(P), g(P) with the
changes (a)-(e) described (cf. (9.5.1) and (9.6.3)).

¢(P)=0; q(P) = Ra) 1
(©) Qe T(d)

LP)=1; q(P) = (b) R(a,) 0

¢(P)=R(a)>1; q(P)= 0 \ ‘

The enclosed cases correspond to £(P) + ¢(P) > 1, and will be disproved in
(9.8).
Proof. (a) (resp. (b)) We can choose (y) in (9.6) such that

(P 2
¢ = y,( ’yz(yz,y3,y4)

and y,y, (resp. y,) generates .2 at P. Then we set u = (y,y,,y,) (resp.
(4,¥,,)) and choose a general invariant y = y, y,(resp. y,) mod (y,,y;, y4)2
such that g.c.d{¢,w} =1 and Sing{¢ = y = 0} C y,-axis. Thus (9.6.1) is sat-
isfied. Since y,y, (resp. y,) appears in ¢,, (1b.5(ii")) (resp. (I1b.5(ii'))) is
satisfied and (9.6.2) is satisfied. Let 0 <A< 1. Since ¢, =0 on X, we see

2
(9.7.2) -y, Py, /=y y, (resp.y,) modl’.

Thus y, + y,e(P)_lyz/A € 1}2) (resp. y, + yle(P)yz/A € IAZ), and ¢(P) =1
(resp. 0) (cf. (2.16(i))). Hence {y,,y,} (resp. {y,,y;}) is an {-free £-basis
of grl(é’,ll) at P, (cf. (9.5.1)). Using (9.6.4), we see that y, is an £-free
£-basis of Z] at P, by (9.7.2), whence q(P,) = R(a,).

(c) (resp. (d), (e)). Let b = R(a,). We can choose (y) in (9.6) such that ¢ =
V1V, (yz,y3,y‘,)2 and y,by2 (resp. y4,ylby2) generates . at P. Then
we set u = (ylbyz,y4) (resp. (y4,y,by2) > (ylbyzyy“)) and choose a general
invariant y =y, (resp. y4,y42) mod (yz,yJ,y“)3 such that g.cd.{¢, v} =1
and Sing{¢ = y = 0} C y,-axis. Thus (9.6.1) is satisfied. Since y,y, appears
in ¢, (1b.5(ii")) is satisfied and (9.6.2) is satisfied. Let 0 < A < 1. As in the
cases (a) and (b), we also see

(9.7.3) -y, v /A=y, (resp. y,,0) modI*?.
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It is thus similarly seen that £(P,) =0 (resp. 0,1), {y,,y;} (resp. {y,, 5},
{»,,¥,}) is an (-free £-basis of grlcﬁ at P, and ¢q(P,) = R(a,) (resp.
1,R(a,)). In case (e), we note that ¢, restricted to the fixed axis (y,-axis)
has a double zero, whence P, has axial multiplicity 2 (1a.5). O

(9.8) Theorem. We have ¢(P)=q(P)=1 and ¢(P')+q(P')=1.

Proof. By symmetry, it is enough to disprove ¢(P) + g(P) > 1. Since it is
enough to disprove a nearby extremal nbd of X > C, we will replace X D C
with its LG-deformation (9.7) at P or P’ for several times. We treat three
cases.

(9.8.1) Case £(P) = 0 and g(P) > 1. By replacing X > C with its
LG-deformation at P’ (9.7.1) for several times, we get a locally primitive
X D C with exactly two points P and P’ with indices m, m' (> 3) (9.6.4)
such that ¢(P') = 0. Since LG-deformation at P’ does not change “nbd” of
P (9.6.4), we have ¢(P) =0 and q(P) > 1. By definition of ¢(P) and ¢(P'),
P and P’ are ordinary. Hence this contradicts (9.3) and we are done.

(9.8.2) Case R(a,) > 1. By replacing X D> C with its LG-deformation at P
(9.7.1) for several times, we get X D C with £(P) =0 and ¢(P) > 1 asin
(9.8.1), whence we are done by (9.8.1).

(9.8.3) Case R(a,) = 1. Similarly to the previous case, we may assume that
¢(P) = q(P) = 1, P has axial multiplicity 2, and that P’ is ordinary, i.e.
£(P'Y=0. We have g(P') =1 by (9.8.1).

(9.8.3.1) Since grlcé’ =Z&7(—-1) (9.5), we have an ¢-splitting grlcé’ =
L&A for some submodule .# =~ @Z(—1) (9.1.7(iii)), which is hence an ¢-
invertible

&.-module (9.1.1). We have g/.(Z) = P*+P’ and gl (#) = —1+(m —a})P’
(9.5.1) because qldeg(l P) R(a,) =0 by ¢(P)=¢q(P) = R(az) R(a3) =
1 and g/ deg(# ,P') = R'(a;) by £(P")=0=R'(d}) and q(P')=1=R'(a;).
(9.8.3.2) Let y = (y,,...,y,) be an {-coordinate system and an {-equation
¢ at P such that C' = y -axis, ¢ = y,¥; (¥,.¥;.7,)° (2.16) and .Z is
generated by y,y, at P (9.1.1) (or cf. (9.4.5)). Since P has axial multiplicity
2, wesee d =y y;, + gy42 mod (y2,y3)2 + (¥, ¥3)¥, + y43, where g is an

invariant unit € C{y}. Thus by replacing y, by gil/ 2 V4, we may further
assume

2 3
G =y, + v, mod (¥,. 1) + (9, V) v + (9,):
(9.8.3.3) Let J be a C-laminal ideal of width 2 such that J/I® = % . Then

an argument very similar to (9.3.2) or (9.4.6) shows that J is a nested c.i. out-
side {P,P'}, that we have equalities Ima, = Ker §, = % with ¢-structure

and an {-isomorphism gr’(é’ ,J) ~ . # , and that J is (1, 2)-monomializable
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at ordinary point P'. We see by (9.8.3.2) that (y,.y,,y,) is a (1,2,2)-
monomializing ¢-basis of the second kind for 7 > J at P. Let & be the
¢-invertible & .-module defined in (8.11.1(iii)) from (y,, y,, y;), then we have

a normalized expression ¢/.& = P* . Hence we have an inequality
—ldeg. # < }ldeg. L + $ldeg. Z
by (8.12(ii)) (with d =2, t =2, s=1, s =0). This reduces to

N

’
a, 1/1 1 1111
— <~ — — _ = — < —
m’—2<m+m’>+2-m m ™t =
by m,m' >3, where we used /deg..# = —day/m’, Ideg. ¥ = 1/m+ 1/m’
(9.8.3.1), and Ideg.Z = 1/m. Thus 2a, < m' and we see 2a, < m' by

m' >3 and (a; ,m') = 1. Also by (8.12), we have £-isomorphisms
grz’o(@’,J):,S” d=2,n=2,q9g=1, r=0),
gt @, N9,

and an ¢-exact sequence
O—»%®2®9—+gr2J—+Z—>O.

We note that qlc(/Zmé@) =29l (M) + gl (D)=-1+ P!+ (m' - 2a;)Pb is
a normalized expression, and that the sequence is £-split as
gr% J = (%®2§9)é%

for some £, C gr%] ¢-isomorphic to . (9.1.8(ii)) by ¢/.(-Z¥) = P'+ P’ and
m' > 2a,.

(9.8.3.4) Let K be a C-primary ideal such that J > K 5 F'J and K/F'J =
<,. Then K is a C-laminal ideal of width 3 which is a nested c.i. outside
{P,P'}, and we have ¢-isomorphisms Ker By =Kerf, =2 and gr' (@.K)=
gr' (@,J) ~ # by (8.14). Then K is (1,3)-monomializable at P’ (8.15.1)
and the (1,2, 2)-monomializing £-basis (y,,y,,y;) for I D J at P liftstoa
(1,3,2)-monomializing ¢-basis (denoted by the same) (y,,y,,y;) (by abuse
of language) of the second kind for 7 D K at P with the same attached semi-

invariant by (8.16). Thus the invertible sheaf & for K is the same as the one
in (9.8.3.3). Then we have an inequality by (8.12(ii))

—ldeg. # < {ldeg. L + 3ldeg. 2,

which reduces to
!

1 a, 11 1 1 5 1
— <2<+ +—=——+—,
(9.8.3.5) m<m,_3<m+m,>+2_m S T 3

where the first inequality follows from w,(0) = 1/m < 1 — wp,(0) = a;/m'
(2.3.3) and (4.9(1)). Then we treat two cases.
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(9.8.3.6) Case m = 3. By (9.8.3.5), we have 1/3 < 5/18 + 1/3m’, whence
m' =3,4,5.1f m' =3, then a), =2 by (9.8.3.5), which contradicts 2a, < m'
proved in (9.8.3.3). We see that (9.8.3.5) reduces to 4/3 < a; <5-4/(6-3)+
1/3=13/9 if m' =4,and to 5/3 < a; <5.5/(6-3)+1/3=31/18 if m =5.
These are both impossible, and the case m = 3 cannot occur.

(9.8.3.7) Case m > 4. Since

s 15

< 23 1

1
6m 3w 6.4 3.3 72°3

we see that 3a, < m' by (9.8.3.5). Then we continue as in (9.8.3.3). By
(8.12(ii)), we have £-isomorphisms
er@ . K)=% (d=3,n=3qg=1,r=0),

g @ K=&,
and an {-exact sequence
0= AV BD » g’ K- F 0.

Since qlc(%még) =3ql(A)+ql . (Z) = —1+Pu+(m'—3a;)Pb is a normal-
ized expression, the sequence is also £-split as grg K=4%32 é,?K for some
submodule .Z;, £-isomorphicto .#° (9.1.8). Then as in (9.8.3.4), we can define
a C-laminal ideal H of width 4 such that K > H D F'K and H/F'K = %, .
We see that H is a nested c.i. outside {P,P'}; H is (1,4)-monomializable
at P’ (8.15); (¥4,¥,,¥5) lifts to a (1,4,2)-monomializing £-basis of the sec-
ond kind for I > H at P with the same attached semi-invariant; we have
¢-isomorphisms gr' (@, H)~# and Ker f,, ~.7 and the same & . Thus we

have
1 a 1 1 111 1 3 1
E<—,§Zldegc_‘i”+§ldeg69—z<g+?>+2.m—4'm+4m,

just as (9.8.3.5). Then by 1/m < 3/(4m) + 1/(4m’), we see 1/m < 1/m’,
whence a;/m' < 3/(4m) + 1/(4m’) < 1/m’. Thus a; = 0, which is a contra-
diction. Thus we must have ¢(P)+¢g(P) =1 and (9.8) is proved. O

(9.9) Let the notation and assumptions be as in (9.1). Then grlcﬁ =Z
&(-1), and by (9.1.1) there is a submodule .# ~ @(—1) such that gr.& =
F&# . Then by (9.8), gldeg(#,P) = R(a,) and gldeg(#,P') = R'(a3)
(9.5.1). In particular gl.(#) = —1+ (m —a,)P' + (m' —a,)P’. Thus by (2.10)
and grg w~&(—1), we have
(9.9.1) Proposition. There is an £-isomorphism M =~ grgw.

Indeed .# ’—‘»’grg w is an £-isomorphism because

gl deg(# ,Q) =ql deg(gr% w,Q) forQ=P, P
(cf. comment after (&.2) in (8.8.4)).
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(9.9.2) We note that w} has a structure of an {-invertible &,-module

w,\'@(—l)' Hence grg(w}) is ¢-isomorphic to

~  &(=1 ~ ®(~1 0 (-1
O, 802 V20,8 w0)® 7 = (gl w)® Y
by (8.8.6(i)) and (®®.3) in (8.8.4), whence we have a normalized expression
qlc(gr% w}) = —qlC(grg w)=—ql(#)=-1+ azP’i + a'sz. We also have an

£-isomorphism
1, * 1 5 o =5 (1) x
gro(wy) =~ (gr . O)Qwy =L @M ® I,
by (8.8.6(i)) and (8.8.4). Then

(9.9.3) Lemma. We have an isomorphism

H(w)/F’w}) ~ H'(F' 0}y /FPw}) ~ H(Z & #° o H'(@,),
and let

h: H(0}) — H' (@}, /F0}) —» H(@,) = C

be the projection to the factor H 0(ﬁc) . Then every global section s € H 0(wf‘,)
such that h(s) # O defines a zero locus (s), which is a normal surface with
only rational double points. ( To be precise, (s), is smooth outside {P, P'}, has
A,_-type (resp. A, -type) singularity at P (resp. P'), where w ( resp.
w') is the axial multiplicity of (X, P) (resp. (X,P"))).

Proof. The first assertion follows from Ho(grg(w})) ~ Ho(é’c(—l)) =0
(9.9.2). Let s € H'(w),) be such that h(s) # 0. Then s € H°(F'w}) by
Ho(grl w}) =0.

If Q # P, P, then the image of s(Q) in (gry. w})®C(Q) = Wy ®I./1.°®
C(Q) is nonzero because #(s) generates the subspace @ ® C(Q) ~ C. Hence
(s)o is smooth at Q.

By symmetry we need to consider (s), only at P*. By (9.5.1) and ¢(P) =
0,1, we can take an {-coordinate system y,, ..., y, such that C - y,-axis,
wty,=a; (m) (i€[1,4]), y, isan £-free £-basisof .# at P, y, (resp. y,)
isan ¢-free ¢-basisof .2 at P,and ¢ = y, (resp. y,y,;) mod (yz,y3,y4)2 if
£(P) =0 (resp. 1). Let 6 be an ¢-free ¢-basis of w} at P . By the assumption
h(s) # 0, &,-component of s, in the decomposition at P!

grl(a):‘,{)a = (¥ & #%Vg grg w)! By =Cpy(¥3.Y,)0 ®Cry y,0

generates &, y,0. Then s = f8 for some semi-invariant f € (y,, y;. y,)C{»y}
such that wtf = a, = wty, (m) and 9f/dy,(0) # 0. Thus there exist an
invariant unit ¥ € C{y} and a semi-invariant g € (y,,,)C{y,,y;.y,} such
that wtg=a, (m) and f=u-(y, - g) (Weierstrass Preparation Theorem).
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The zero locus (s)f) of s in the canonical cover (X u,P“) is thus isomorphic
to a hypersurface in (y,y,y,-space, 0) with defining equation w(y,,y;.»,) =
&(y,.8,¥5,¥,) € C{y,,y;,y,}. By the congruence relation on ¢, we have
w =y, (resp. y,y;) mod (yy,3,)°.

We will see that (s)g is a A,_,-type singularity. Indeed if y = y, then
the axial multiplicity w is 1 and (s)f) is smooth. We consider the case
¥ = y,y;. Since 0y/dy, = y; mod (y3,y4)2 has wt =a; 20 (m) and
oy/dy, =y, mod (y,,y,) has wt=a, #0 (m), we see dy/0y, =y, mod
(y32,y3y4,yly42) and 0y/dy, =y, mod (y,,y,»,) because wty, =0 (m).
Hence dy/0y, and dy/dy, generate the ideal (y,,y;) in a nbd of origin by
Nakayama’s lemma, and they define y,-axis. On the other hand, by wtg =a,
(m), we see £(0,0,y,) = 0 and y(0,0,y,) = ¢(0,0,0,y,) = v+,
where w is the axial multiplicity of (X, P) (la.5). Thus (s)f) is an isolated
singularity, and it is easy to see (s)f) is u,-isomorphic to a A4,_,-singularity
y,y;=1y," (by analytic approximation).

Hence ((s),,P) = (s)f)/um is isomorphic to a 4
z,z,=2,"",where z, =y, z;=y,", z,=y,. O

w—1

mw—1-type singularity:
(9.9.4) Theorem. The homomorphism
h: H(w') — H'(@G,) =C
defined in (9.9.3) is a surjection.
We will prove the theorem in several steps.

(9.9.5) Let J, be the C-laminal ideal of width 2 such that J,/I @ = # . Since
Jy, 1 2) , # are saturated subquotients of @, , the surjection J, — .# induces

a surjection of canonical liftings at P (and also at P’) by (8.8.1). Thus the
homomorphism o, for J =J, (8.2.2) is an {-surjection

a,: grg J,—> A
We will inductively define C-laminal ideals J, of width n.

(9.9.6) Lemma-Definition. Let J, be a C-laminal ideal of width n (> 2) such
that the homomorphism o, for J =J, (8.2.2) is an (-surjection

a,: grg J,— A
Then the (-exact sequence (8.8.2(v))
0 — Kera, —»gran —.H# -0

is £-split, that is gr% J, = (Ker an)é'a/ln Jor some submodule A, of grg J, such

that the induced map #, — # is an L-isomorphism. Let J,_ , be the C-
primary ideal such that J, > J, , D FlJn and JHI/FIJ,, = M#,. Then the
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natural (-surjections gr% i1 > #, (C grg J,) (cf (8.8.1) and £, — H#
induce an £-surjection
— M.

In particular, J, | is a C-laminal ideal, hence of width n+ 1.

0
an+l . ng Jn+l

Proof. We only need to prove ¢-splitness by induction on n. By inductive
construction of J, , we have .# = Kerf, and & = grl(ﬁ .J,) (8.2), where
B, =B, for J =J (8.2.2). Hence by E(J,) (8.2.2) and (8.4), we have an

n
injection O, ~.& ® _, Ker a, . Thus deg.Kera, > deg.# and the sequence
is £-split (9.1.8(i1)). O

(9.9.6.1) Let us fix a number ¢ € N which is divisible by axial multiplicities
of (X,P) and (X,P’). Let C(n) C X be the closed subscheme defined by
F™(@,J,). Then we have

(9.9.7) Key Lemma. Foranarbitrary n > 2, F™(&,J,) is equal to the symbolic
nth power J", J _[F™(&,J) isan t-invertible Oc(n1)-Module, and we have
an £-isomorphism

O(n): F*(wy, 1)/ F" (@}, J,) == 0y & (J,[F(F.J,)) = Oy,

e

nemm’ (

. . * n *
and inclusion F wy,J,)CJ, rwy.

Proof. Since w} is an /-invertible &,-module, we have natural f-isomor-
phisms by (8.8.6(i))

wy®J, ~F*wy.J,) and oy ®F“(@,J,)~F*w}.J,)

ne
inducing an ¢-isomorphism
F™(wy.J ) F"(wy.J),)~ 0y & (J,/F(@.J))
by (®.5) in (8.8.4), provided that J , > F™(&,J,) which is to be proved later.

(9.9.8) Let us first assume that ¥ = J /F™(&,J,) is an ¢-invertible
Oc(nry-module and F™(@,J,)=J," . Then F*(@,J,) c1? and a,, gives
the identification J, + ) 124 @ = 4, whence the identity map induces the
surjection ¥ — .# of saturated subquotients and it is an ¢-surjection (8.8.1).

Thus by (8.0) and (®.4) in (8.8.4), we have an /-surjection
0wy ®F ®C. — (wy QM =)0,

where the last £-isomorphism is due to (9.9.1). Then it is an £-isomorphism
(8.8.2(v)) by Kero = 0. Hence the Z-invertible é’c(n_l)-module w}éﬁ*’ has

an ¢-free ¢-basis with wt = 0 mod m (resp. m'), hence f-trivial at P (resp.
P'). Then we see that w}®F is an invertible O¢(n-1"module such that

(Wy®F)RO, ~ (0 ®F)® T, =)0,
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by (®.8) in (8.8.4). Since H'(Z

N n C(n—1)
w}@? - é’C( . Of invertible ﬁc(n_
o,

C(n—1

(9.9.9) It remains to show that F™“(@.J) = J,", J /F™(@,J) is an

£-invertible @’C(n_l)-module, and the last inclusion of (9.9.7) at each point
! . « .

Qe C. Let Q € C—{P,P}. By the surjectivity of a,,, let {u,,u,} be

a basis of grlc = I/I2 at P such that ﬁC.Qul =.#, and u, € J,,. Then by

(8.3(i)), wesee that J, = (u,,u,"), J,, = (u,,u,"),and F*(@,J)) = J," near

> Yne

) = 0, we have an isomorphism 8(n):

1y j-modules.  Since wy®F and

) are ¢-trivial at P and P', @(n) is an £-isomorphism.

Q. In particular, we have the global equality F™(@,J,) =J," since both are
C-primary. Furthermore, by u," € F*(¢#,J,), we see that J /F"(7.J,) ~
G/{(uy uy¥ )" u} = @’/Je"_1 . Thus the sheaf is invertible and the inclusion
at Q is obvious by F*(#,J,) =J".

(9.9.10) By symmetry, it is enough to consider at P. Let y = (y,,...,¥,)
and ¢ be an £-coordinate system and an ¢-equation at P such that Ct = Y-
axis, wty, =a, (m) (i€[l,4]), ¢ =y, (resp. y,y;) mod (yz,y3,y4)2 if
£(P) =0 (resp. 1), y, € J' . where J,fe is the canonical lifting of J,, at P.

ne’

We note that we used ¢-surjection «,, for the last condition. We treat two
cases.

(9.9.11) Case £(P) =0. Again by (8.3(i)), (y;,¥,) isa (1,e)-monomializing
(resp. (1, ne)-monomializing) ¢-basis for I > J, (resp. I > J,,) at P. Thus
as in (9.9.9), the canonical liftings are calculated as Jf = (¥,.¥5), Jje =

(v,95™), and F"(@.J)" = (J})". Hence J/[F"(& ]} ~ 1" is
similarly checked. By F™(&, Jé,)n = J:" , the inclusion follows from the easy

(9.9.11.1) Sublemma. If J' K' Oy py are ideals generated by semi-invari-
antsand k € Z,,, then

(KY€ Uy Kiy (cf (29)).

Indeed for arbitrary semi-invariants u,, ..., u, €J  and v € K' such that
wtu, +--+wtu, +wtv =k (m), there exist a,b € [0, m] such that a < b
and ), wtu, = 3", wtu, (m), whence 3_ .., wtu, =0 (m). Then

(9.9.11.1) follows from

uu V= ( H u’) . (Hu’..nui-v) GJ{ﬁo}-K?k}.

a<i<b i<a b<i

(9.9.12) Case £(P)=1. By £(P) >0, X" is singular and we see that the axial
multiplicity w satisfies w > 1. Then we may rewrite ¢ = Yy (.95, y4)2
as

(glyl + g3)y3 =08 +y4w’
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where g, isan invariant unit, and g,, g; € (¥,, ¥3,y,)C{y} are semi-invariants

with wt = ~-a,,a, (m). Then (y,,y,,y;) isa (1, e, w)-monomializing (resp.

(1, ne, w)-monomializing) £-basis of the second kind for I > J, (resp. I D J,,)
ne/w

at P by (8.11(ii)). Since w | e, we have J! = (v,,%,7*), J! = (v,,»7"™),
and F™(@,J,)" = (y,, ¥{*)" by (8.11). Hence

Tl T™@ 0 = [{UD)": yy =@/ ()"
as in (9.9.11) and the inclusion follows from (9.9.11.1). Thus (9.9.7) is

proved. 0O

(9.9.13) For an arbitrary n € N, & factors through

*

h,,: H (0 /F*(wy,J,)) » H(@,)=C

by construction. By the construction of J , , we see that the image of the natural

map J,, — grlc @ is A# and the composite map
wy®J ,=F"“(wy.J,) - 0y /F(wy.J)~ oy &L

is an £-surjection of &,-modules (cf. (9.9.8)). Thus by (9.9.7), we get the
commutative diagram with a surjection n

HY(w'/F™ (. 1) = H@,)

I Ir

HO(F™ (@, I, ) [F™ (0}, J,)) —— H’(Op (1)

Whence 4, is surjective. Since the topology induced by {F™(wy,J,)},cy 18
equivalent to the usual one (9.9.7), we can apply [Gro, Théoréme (4.1.5)] to the
total contraction f: X — (Y, Q) of X 5 C to get

fiwy ®F, y.o = lim H (wX/F “(wy. J, L))
where ﬁ is the completion of é’}, 0 Since Kerh,, satisfies the Mittag-
Leffler condmon we have a surjection
[0y ®8;,~H(@,).

Hence % is a surjection, and (9.9.4) is proved. 0O
Thus by (9.9.3) and (9.9.4), we have the main result of this section.

(9.10) Theorem. Let X O C =~ P! be an extremal nbd with two points P, P’
with indices > 3. Then general members of | — K| are normal surfaces con-
taining C, smooth outside {P,P'}, with rational double points of A-type at
P,P.
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Hence the proof of (0.4.5) is completed and thus the Flip Theorems (0.4.1)
and (0.2.5) are proved and the results mentioned in §0 follow.

10. A SLIGHT GENERALIZATION OF (0.4.5) AND COMMENTS ON (la.7)

In this section, we state a slight generalization (10.2) of (0.4.5) and then make
comments on (1a.7).

The proof of (10.2) is basically the same as that of (0.4.5). Therefore, we
will only indicate changes to be made together with simple explanations.

(10.1) Let k be an algebraically closed field of characteristic 0 . Let C be a
connected reduced projective curve over £ and let X O C be a 3-dimensional
normal formal scheme along C which has only terminal singularities. We con-
sider the following condition:

(¢+) —K, isampleon C and H'(X,&,(L)) =0 for all Weil divi-
sors L on X such that nL ~0 or nK, for some n>0.

We note that (*) is satisfied by the formal schemes associated to extremal nbds
by (1.2.1) and (1.12). The following is the slight generalization of (0.4.5).

(10.2) Proposition. Let X O C be as in (10.1) satisfying the condition (x)
and such that C is irreducible. Then one of the following on the linear system
| —aK,| (a=1, or 2) holds.
(i) | = K| has a member D with only rational double points, or
(ii) |-2Ky| has a member D so that the double cover Z of X with branch
locus D has only canonical singularities.

For instance, this applies to a divisorial contraction of a 3-fold contracting
an irreducible divisor to a curve.

(10.3) Except for the obvious changes due to the fact that X O C is a formal
scheme along C rather than the germ of an analytic space along C, most
arguments use only the condition (x). The only nontrivial changes are the
following.

(10.4) Changes in §1. Let X D> C be as in (10.1) with the condition (*).
Since H'(X,&,) = 0 (), the description of Pic X (1.3) and CI*X (1.9)
for irreducible C are also proved by the same argument. By (x), the splitting
cover X' O C' (1.12) satisfies the condition:

(#%) ~K,, isample on C’ and H'(X',4,,) = H'(X',w,,) = 0.
Since (1.13)-(1.16) need only the property (*x), the results corresponding to
(1.13)—(1.16) hold, which are the results needed in later sections.

(10.5) Changes in §1b. A “nearby extremal nbd” for a parameter A should

be replaced by the generic deformation X, D C, over k((4)) which is to be
defined in a similar way. It is easy to see that X, D C, satisfies the condition

(%)
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(10.6) Changes to be made in §§6 and 7. The only place in this paper which
uses the property that the total contraction X — Y is an isomorphism outside
C 1is (6.2(1)) which asserts that X has index > 1. Therefore, for our formal
scheme X > C ~ P' with (%), (6.2(i)) should be changed to “ X has at most
three singular points in C ” and thus (6.7) should have an extra case (6.7.0)
where X is Gorenstein.

Hence §7 should treat the extra case (6.7.0), which is very easy: |- K, | has
a smooth member by (1.3) since (K, ) ~&(-1).

(10.7) It was after this paper had been written that the author learned that
[KSB] contained the complete classification of 3-fold terminal singularities
[KSB, Theorem 6.5] and settled

(10.8) Theorem (Kollar, Shepherd-Barron). Small deformations of 3-fold ter-
minal singularities are terminal.

(10.9) If we use it, the conditions (1b.3(ii)) and hence (1b.5) became unnec-
essary, and therefore the arguments for (1b.3), (4.7), (4.12), and (9.6) became
simpler but not much. Therefore the revision at this point does not seem worth
the trouble, and we decided not to revise the paper.

APPENDIX A. SUMMARY OF LOCAL CLASSIFICATION OF X D C> P

In this appendix, we will summarize the classification of the local structure
of an extremal nbd X > C ~P' ata singular point P .

(A.1) Let X O C ~ P' be an extremal nbd and P € C a singular point of X
of index m. Let n': (Xﬁ,P”) — (X, P) be the canonical cover of the germ,
and let C' = n"_l(C)red Cc X'. We note that (X”,P”) is at most an isolated
c¢DV singularity (hence embeddable in ((C4,0)) with p, -action which is free
on X' - P and that 7* is the B,,-quotient morphism.

There exists a set (y) = (¥,,¥,,Y;,5,) of p, -semi-invariant convergent
power series giving a p, -equivariant embedding of (X ' P”) into (C4,O) .

(A.2) Notation. Given a generating character y € Hom(um,C*) ~ Z, , We
write wt f = a fora p, -semi-invariant f if g(f) = x(g)"f forall g e B,
wi(f,, ..., f,) = (a,,...,a,) for p, -semi-invariant f, ..., [ if wtf = gq,
for all ;.

(A.3) Summary. By choosing the above (y) and y properly, we have the follow-
ing case-by-case description of c* > x' o (', in which g’s are
B,,-semi-invariant convergent power series in y with the specified weights such
that X' has at most an isolated ¢DV point at the origin. Each result is in
(4.2)-(4.4) unless otherwise mentioned.
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(IA) There exist positive integers a,, a,, o, B such that (aa,,m) = 1,
aa, + pa, =m, wi(y) = (a,,a,, —a,,0),

ct: yla’—y =y3=0,=0,

X (0 =0 )+ 8 Y3+ 849, =0,

where wt(g,, 8,.8,) =(-a,a,.a,,0).
(IB) This does not occur by (6.3).
(IC) wt(y)=(2,m-2,0,1) and m is an odd integer > 5,

Chy " =y =y =y, =0,

X'gy (0" =9, )+ v+ 8 v, =0,

where wt(g,,g,)=(4, - 1).

In this case, (y,,,, ) induces an embedding (Xﬂ 0) ~ ((C3 ,0) in which
Ct s given by y, m=2 y =y, = 0. The assertion on wt(y) is a combination

of (4.9.(1)), (5. ()) d (6.5).
(IIA) wit(y)=(1,1,3,2),
Chy ==y =9,=0,
X":gz-(yl—y2)+g3-y3+g4'y4=0’
where wt(g,. 8.8, =(1.3.0), &.8& & (¥)*, £(0)=0.
(IIB) wt(y)=(3,2,1,1), m=4,
iyl -yt =y =y,=0,
Xyt =0 gy v+ 8y, =0,
where wt(g;,g,)=(1,1), g3-y3+g4'y4¢(,1’)3-

(1) m=1
Cy -y, =y,=y,=0,

Xn:y|'(y|_y2)+g3'y3+g4'y4=0»

where g,(0) = g,(0) =
This will be proved at the end of (A.3).

(IAY) There exist positive integers a,, a,, w,w,, a, B,s, m such that s,
m>1, sm=m, a,<M/2, ca, + fa, =", aw + fw, =0 (m), w, =q,
(m) for i=1,2, (ww,, m)=1, wt(y) = (w,,w,, —w,,0),
c': -y =y,=y,=0,
Xu:gz'(y|a25“yzals)+g3'y3+g4'y4=01
where wt(g,,g;.8,) =(-sa,a,,a,,0); and 9g,/0y,(0)#0 or g, =1.
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(ICY) This does not occur by (6.1).
Iy wt(y)=(1,3,3,2), m=4,
iyl -yt =y=9,=0,
X":ylz—y22+g3-y3+g4-y4=0,
where wt(g,,g,) =(3,0) and g,(0)=0.

We note that the p -action on X - {0} is free in all the above cases by the
smoothness of X* — {0}.

Proof for case (111). The assertion on the equation of X ' is equivalent to i p(1)
=1 (2.16(ii)). If i,(1) > 1, then by a separating L-deformation (4.7) one
obtains an extremal nbd X' > C’ with two ordinary double points @, R on
C'. Since wé(l) = wg(1) =1 (4.9(ii)), X' has another singular point on C’
by ¥,cc We(1) 1 (2.3.3). It contradicts (6.2(ii)). O

(A.4) Remarks. (i) For the simplicity of the formulation, (y) above is different
from (x) which is used in (4.2). Our y, is x; in (4.2) for i=1,2 and it is
F, in (4.3) for i=3,4,

(i1) we note that (X ' 0) is smooth or a cA type point (1a.2), except in the
case (IA),

(iii) when X D C is as in (10.2) and not an extremal nbd, we still have the
same local results (cf. §10, especially (10.6)), and

(iv) we note that q,, @, in (IA V') need not be prime to m, as in an example
of X > C>P forwhich a, =3, a,=2, w =3+41-2=85, w, =2+41:3 =
125, a=13, f=1,5s=6, m=41, m=41-6=246.

APPENDIX B. POSSIBLE SINGULARITIES ON AN EXTREMAL NBD

In this appendix, we make a list of possible singularities of an extremal nbd
as a summary.

(B.1) Summary. Let X D C ~ P! be an extremal nbd. The following is the list
of all the possible singularities of X on C.

Case (1) (treated in (6.7.1) and (7.3.1)):

(a) a type (IA) point P and at most one type (III) point Q,

(b) a type (IIA) point P and at most one type (III) point Q,

(c) atype (IA") point P and at most one type (III) point Q,

(d) a type (I1'V ) point P (cf. (6.1(iii))).

In (1), a general member D €| — K| satisfies DN C = {P} (7.3) and has
only rational double points as singularities.

Case (2) (treated in (6.7.2) and (7.3.2)):

(e) a type (IC) point P, or

(f) a type (IIB) point P.
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Case (3) (treated in (6.7.3) and (7.3.3)):

(g) two type (IA) points P, Q and at most one type (III) point R such that
index Q@ =2 and P isatype ¢4 point of index > 3 and size =1 (cf. (7.3)).

In (2) and (3), a general member E € | — 2K, | is such that ENC = {P}
and such that the double cover of X, branched along £ and at @, has only
canonical singularities.

Case (4) (treated in (6.7.4) and in §9):

(h) two type (IA) points P, Q with indices > 3.

In (4), a general member D € | — K, | contains C, is smooth outside of
{P,Q}, and has rational double points of type 4 at P and Q (9.10).

(B.2) Remark. When X D C is as in (10.2) and not an extremal nbd, the
results are the same except that we have an extra case:

Case (5) (this is not an extremal nbd by (6.2(1))):

(i) at most one type (III) point P.
In this case (—K,-C) =1, &(-K,) is generated by global sections, and |- K |
has a smooth member (10.6).

This is the Gorenstein case as mentioned at (10.6) and the same argument as
in the proof of (IlI) of (A.3) shows that X has at most one type (III) singular
pointon C.

LIST OF NOTATION AND TERMINOLOGY

Numbers on the right show the paragraphs where the notations/symbols are

defined/explained.

W # (1.12), (1a.1), (1b.1), (2.4), (9.1)

bl b (9.1)

[(1 (1,d)-monomializable (8.10)
(1,d)-monomializing ¢-basis (8.10)
(1,d,b)-monomializable at P (8.11)
(1,d, b)-monomializing £-basis of the first kind (8.11)
(1,d, b)-monomializing ¢-basis of the second kind (8.11)
(c*, P (2.4), (9.1)
(c’, P (9.1)
(ct, ph (2.5)
(1), (1A), (IB), (IC) (4.2)
(1), (IIA), (IIB) (4.2)
(11 1) (4.2)
), 1A"). ac”) (4.2)
ar”) (4.2)

[0} O-sequence Conventions

[A] aq, (2.6), (4.2), (9.1)
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[B]
[C]

[D]

[E]

[F]

SHIGEFUMI MORI

‘
almost ordinary

attached semi-invariant

axial multiplicity

B(Y,P)

¢t

C*-ord

C'-ow

Clow*

C'-wt

C(n)

C-laminal

Cr*x

cA

canonical lifting (of a homomorphism)
canonical lifting (of a sequence)
canonical lifting (of a sheaf)
canonical singularity

cD

cDV point

cE

c(W,P)

g;ll(u) % (u) out(u)’gmid(u)
deg (deg: QL(Y) — Q)

det (e.g det.#)

Dp

E(J)

e

ex,(P(b,c))

extremal nbd

F,,F,,F,

FY&,J)

F'%

first kind

fixed axis

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



[G]

(H]
1]

]

(K]
(L]
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gr. g (= ®n20 grnc o)
gr (&, J)

gt (F,J)
g"(F,J)

gl = D0 gre

Bre

h: H(w)y) - H'(@,) =C
rr

ip(n)

imprimitive

index

induced ¢ — structure
Jn

J-filtration
L'-deformation
L-deformation
L-smoothing
LG-deformation
laminal

Ideg (e.g. /deg, A)
if

locally a nested c.i.
locally ¢-free

locally primitive
locally primitive at P
locally gf-free

Z

£ (e.g £(P))

£-basis

£-character
£-coherent
£-coordinate
£-coordinate system
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£-equation (1a.5)
£-exact (8.8.2), (8.9)
¢-free £-basis at P (8.8.3)
¢-free &,-module at P (8.8.3)
£-homomorphism (8.8.2), (8.9)
£-injection (8.8.2), (8.9)
£-invertible (8.8.3), (8.9)
£-isomorphism (8.8.2), (8.9)
£-split (8.8.2), (8.9)
£-splitting (8.8.2), (8.9)
£-structure at P (8.8)
{-surjection (8.8.2), (8.9)
£-trivial (8.8.3)
[M] minimal (2.6)
monomializable (8.10), (8.11)
monomializing (8.10), (8.11)
M The paragraph preceding (9.3.2), (9.4.5), (9.8.3.1), (9.9)
[N} nearby extremal nbd (1b.1)
nested c.i. (8.4)
nested complete intersection (8.4)
normalized expression (8.9.1)
normalized £-coordinates (2.6)
N Conventions
[O] ord (2.5), (9-1)
ord’ 9.1)
ord(C" (2.5)
ordered (£-basis) (8.10), (8.11)
ordinary (4.5)
ow (2.5). (9-1)
ow, (4.1)
ow' (9.
ow(Ch (2.5)
ow’" (2.8)
[P] P(b.c) (2.13.1)
primitive point (1.7)
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pure of rank (8.5)
pure width (8.2)
[Ql QL (eg QL(Y)) (8.9.1)
q (eg q(P)) (9.5.1)
ql (e.8 qly(A)) (8.9.1)
gl deg(# , P) (8.8.5)
ql-free (8.8.3)
gf-invertible (8.8.3), (8.9)
quo (8.8.1)
Q Conventions
[R] R (2.8),(9.1)
R (9.1)
rational singularity (1.0)
reduced (3.4.3), (3.5.1)
res (8.8.2)
[S] S(d) (5.2)
S8Q(¥). SSQ(& . u,,) (8.8)
S (e.g S"(A#)) (8.8.4), (8.9)
saturated submodule (2.2)
saturated chain (8.2)
saturated subquotient (8.8)
saturation of submodule (8.2)
saturation of chain (8.2)
second kind (8.11)
semi-Cartier divisor class group (1.5)
separating L-deformation (4.7
size, sizp (4.1.1)
splitting cover (1.12.1)
splitting degree (1.7)
subindex (1.7)
subquotient (8.8)
&, (symmetric group of degree n) (2.15.1)
[T} TL(TL: QL(Y)—Z) (8.9.1)
t (2.6), (9.1)
! (9.1)
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terminal singularity (1.0)
total contraction (1.1)
twisted extension (1b.8.1)
v v (2.8), (9.1)
o 9.1)
U, u'1 (9.2)
U, u'2 The paragraph preceding (9.3.2)
%(1x6x6> (16.7)
u

W] w,w (9.9.3)
wp(n) (2.2.1)
wp(m) = ("31) ip(1) = wp(n) (2.2.1)
width (of an element), width,s (8.2.2)
width (of a laminal ideal) (8.2)
wt (2.5), (9.1)
wt (9.1)
X1 X, i X miar Xoout (1b.8.1)
x(19) (1b.8.1)
X[D.d,¢] (1.11)
xX=(x;,...,%,) (2.6), (9.1)
X' = (%), xy) (9.1)
2 (U), 25, (1), Zoig (), 2 (1) (1b.8.1)
2 (15°) (1b.7)
z z,z,.z, Conventions
[T]1 [1 (round up) Conventions
[[]1 [ ](Gaussian symbol) Conventions
Lol (2.11)
[n] (e.g. M[n]forneZ,) (2.5), (8.8.4)

Rem : M[n] is defined in two places in equivalent ways.
[{] (o (e& M) (25)
[a] o (8.2.2)
a, (2.2.1)
a,: gred, — M (9.9.6)

Rem : The above two «,’s have nothing to do with each other.
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(Bl B, (8.2.2)
B, (2.2.1)
1 Y. T) (8.6)
Y (T (8.2.2)
NPT (8.10), (8.11.1), (8.12)
7P, T) (8.10), (8.12)
Ve (2.2)
[A] A, (8.2.2)
[61 4, j (Kronecker’s d) Conventions
S pr Oy (8.11)
[61 6(n) (9.9.7)
(] X PY-(X.P), 2 (X.P')— (X,P) (9.1)
n[D.d,¢] (1.11)
6] o:J'—J'"® (2.11)
(1] T: O ps = Tt p1 (2.5)
(@] @'gr(#.J) (8.6)
(¥l &, Conventions
u4~cover associated to [D, ¢] (1.11)
[@®] & (eg LBH) (8.8.2), (8.8.4), (8.9)
©] & % (ce Lo, & (8.8.4), (8.9)
CHT I (2.13.1), (3.4.3)
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