Flipping Edges on Triangulations

F. Hurtado, M. Noy Departamento de Matemática Aplicada II, Universitat Politécnica de Catalunya, Barcelona, Spain

Abstract

In this paper we study the problem of flipping edges in triangulations of polygons and point sets. We prove that if a polygon Q_{n} has k reflex vertices, then any triangulation of Q_{n} can be transformed to another triangulation of Q_{n} with at most $O\left(n+k^{2}\right)$ flips. We produce examples of polygons with two triangulations T and $T^{\mathbb{C}}$ such that to transform T to $T^{\mathbb{C}}$ requires $O\left(n^{2}\right)$ flips. These results are then extended to triangulations of point sets. We also show that any triangulation of an n point set always has $\frac{n-4}{2}$ edges that can be flipped.

1. Introduction

Let $P_{n}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a collection of points on the plane. A triangulation of P_{n} is a partitioning of the convex hull $\operatorname{Conv}\left(P_{n}\right)$ of P_{n} into a set of triangles $T=\left\{t_{1}, \ldots, t_{m}\right\}$ with disjoint interiors in such a way that the vertices of each triangle t_{i} of T are points of P_{n}. The elements of P_{n} will be called the vertices of T and the edges of the triangles t_{1}, \ldots, t_{m} of T will be called the edges of T. The degree $d\left(v_{i}\right)$ of a vertex v_{i} of T is the number of edges of T that have v_{i} as an endpoint. We say that an edge e of T can be flipped if e is contained in the boundary of two triangles t_{i} and t_{j} of T and $C=t_{i} \cup t_{j}$ is a convex quadrilateral. By flipping e we mean the operation of removing e from T and replacing it by the other diagonal of C. See Figure 1.

Given a collection of points $P_{n}=\left\{v_{1}, \ldots, v_{n}\right\}$ we define the graph $G_{T}\left(P_{n}\right)$, the graph of triangulations

J. Urrutia
Department of Computer Science, University of Ottawa, Ottawa, On. Canada

of P_{n}, to be the graph such that the vertices of $G_{T}\left(P_{n}\right)$ are the triangulations of P_{n}, two triangulations being adjacent if one can be obtained from the other by flipping an edge.

Two triangulations of a point set. The second one is obtained from the first by flipping edge $x y$.

Figure 1
Given two triangulations T^{\complement} and T^{*} of P_{n}, we say that they are at distance k if there is a sequence of triangulations $T_{0}=T^{\oplus}, \ldots, T_{k}=T^{\prime \prime}$ such that T_{i+1} can be obtained from T_{i} by flipping an edge of it, $i=0, \ldots, k-1$. This is equivalent to saying that if we consider $T^{\mathbb{C}}$ and $T^{\prime \prime}$ as vertices of $G_{T}\left(P_{n}\right)$ their distance in it is k. We will also say that T^{\complement} can be transformed into $T^{\prime \prime}$ by flipping k edges.

Triangulations of polygons with or without holes, the flipping of edges in them and their corresponding graphs of triangulations are defined in an analogous way. Throughout this paper, P_{n} will be used to denote point sets and Q_{n} will always denote polygons. The vertices of Q_{n} will always be assumed to be labeled v_{1}, \ldots, v_{n} in the clockwise direction.

Triangulations of point sets and polygons on the plane have been studied intensely in the literature
both because of their intrinsic beauty and for their use in many problems, such as image processing [22], mesh generation for finite element methods $[2,9,23$, 29], scattered data interpolation $[15,18]$ and many others such as computer graphics, solid modeling and geographical information systems $[1,3,4,17,19$, $20,21,25,27,28]$. In this paper we study triangulations of point sets, polygons and polygons with holes on the plane.

It is well known that if a polygon Q_{n} is convex, then the diameter of $G_{T}\left(Q_{n}\right)$ is at most $2(n-3)$. Graphs of triangulations of convex polygons have been studied in [8, 24]. If Q_{n} is a convex polygon on n vertices, $G_{T}\left(Q_{n}\right)$ is isomorphic to the rotation graph $R G(n-2)$. The vertex set of $R G(n-2)$ is the set of all binary trees with $n-2$ vertices, [24].

It is also known that the graph of triangulations of a simple polygon Q_{n} with n vertices is connected $[3,6,11,12,13,17]$ and that its diameter is at most $O\left(n^{2}\right)$ [8]. Some further result on the graph of triangulations of convex polygons have been obtained in [8].

In Section 2 we give a new and simple proof that the graph of triangulations of a polygon, with or without holes, is connected. Next we show that there are polygons with $2 n$ vertices such that the diameter of their graph of triangulations is $O\left(n^{2}\right)$. We would like to remark here that our proofs do not use Delauney flips at all. A similar result to ours, concerning triangulations of point sets appears in [6], however, the flips used there are only use Delauney flips. In fact, from the results of our paper, we conclude that Delauney flips or triangulations are not an essential tool in the study of triangulations; they may even hinder their study! We then develop two algorithms that transform any triangulation T of Q_{n} into any other triangulation T^{\complement}. The number of flips
required by our first algorithm is at most the number of edges of the visibility graph of Q_{n}. Our second algorithm uses at most $c n+k^{2}$ flips where k is the number of reflex vertices of Q_{n}.

In Section 3 we study triangulations of point sets on the plane. Our main result in that section is to prove that any triangulation of a point set P_{n} of n points on the plane contains at least $\frac{(n-4)}{2}$ edges that can be flipped. Our bound is tight. We would like to remark here for those readers familiar with regular triangulations that our results are for arbitrary triangulations of point sets, not for regular triangulations. We recall that regular triangulations are known to have at least $n-2$ flips; moreover some of the flips allowed for regular triangulations are not allowed in our case.

2. Triangulations of Polygons

We start this section by giving a simple proof that the graph of triangulations $G_{T}\left(Q_{n}\right)$ of a simple polygon Q_{n} is connected and that the diameter of $G_{T}\left(Q_{n}\right)$ is at most the number of edges of the visibility graph of Q_{n}.

Let T be a triangulation of a polygon Q_{n}, and v_{i} and v_{j} be vertices of Q_{n} such that the line segment $v_{i} v_{j}$ connecting them is not an edge of T. We say that $v_{i} v_{j}$ can be inserted in T by flipping $k-1$ edges if there is a sequence of triangulations $T_{1}=T, \ldots, T_{k}$ such that $v_{i} v_{j}$ is an edge of T_{k} and T_{i+1} can be obtained from T_{i} by flipping an edge of it, $i=1, \ldots, k-1$. We say that a vertex v_{i} of Q_{n} is exposed if it lies in the convex hull of Q_{n}. Consider the two vertices v_{i-1} and v_{i+1} of Q_{n} adjacent to v_{i}. The shortest polygonal chain joining v_{i-1} to v_{i+1} totally contained in Q_{n} will be denoted by $P_{i-1, i+1}$

The visibility graph of Q_{n} is the graph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$. Two vertices v_{i} and v_{j} of Q_{n}
are adjacent in the visibility graph of Q_{n} if the line segment joining them is contained in Q_{n}. We now prove:

Lemma 2.1: Let Q_{n} be a simple polygon, v_{i} an exposed vertex of Q_{n} and T a triangulation of Q_{n}. Then it is always possible to insert all the edges of $P_{i-1, i+1}$ into T using exactly as many flips as the number of edges of T, not in $P_{i-1, i+1}$, that intersect $P_{i-1, i+1}$.

Proof: Suppose that at least one edge e of $P_{i-1, i+1}$ is not in T. Consider the polygon P_{e} formed by the union of all triangles of T intersected by e and the chain of vertices of P_{e} joining the endpoints of e. At least one of these vertices, say w, is a convex vertex of P_{e}, and thus the edge joining v_{i} to w can be flipped decreasing the number of edges of T that intersect e by one. Our result follows (see Figure 2).

Figure 2
We can now prove:

Theorem 2.1: The graph of triangulations $G_{T}\left(Q_{n}\right)$ of a simple polygon is connected. Moreover, the diameter of $G_{T}\left(Q_{n}\right)$ is at most the number of edges of the visibility graph of Q_{n}.

Proof: Let v_{i} be an exposed vertex of Q_{n}, and T_{1} and T_{2} two triangulations of Q_{n}. By Lemma 2.1 we can insert in each of T_{1} and T_{2} all the edges of $P_{i-1, i+1}$ to obtain two new triangulations $T_{1}^{\mathbb{C}}$ and T_{2}^{\odot} of
Q_{n}. Delete from Q_{n} the subpolygon bounded by the vertices of $P_{i-1, i+1}$ and v_{i}. This will result in a collection of simple polygons with disjoint interiors. Each of these polygons has two triangulations induced by $T_{1}^{\mathbb{C}}$ and T_{2}^{\odot} respectively and fewer vertices than Q_{n}. Our result now follows by induction on the number of vertices of Q_{n}. Our argument actually gives a diameter of twice the number of edges of the visibility graph of Q_{n}. A simple modification to it will give the claimed bound; the details are left to the reader.

To prove the second part of our result, we simply notice that each edge of the visibility graph of Q_{n} incident to v_{i} may be used twice; the first time while inserting $P_{i-1, i+1}$ into T_{1} and the second time when we insert T_{2} into $P_{i-1, i+1}$. Once we delete v_{i} from Q_{n} these edges are not used again, and our result follows.

The bound on the diameter of $G_{T}\left(Q_{n}\right)$ given in Theorem 2.1 can, in general, be bad. For example, when Q_{n} is a convex polygon, the visibility graph of Q_{n} has $O\left(n^{2}\right)$ edges, while the diameter of $G_{T}\left(Q_{n}\right)$ is at most $2(n-2)$. On the positive side, if the visibility graph of Q_{n} has few edges, Theorem 2.1 gives us an efficient method to transform one triangulation into another one. Notice that if the visibility graph of Q_{n} has few edges, it has many reflex vertices. Thus the question of studying the tradeoffs in the diameter of $G_{T}\left(Q_{n}\right)$ and the number of reflex vertices of Q_{n} becomes relevant. We address this question now.

We start by producing a polygon Q_{n} with $2 n$ vertices such that the diameter of $G_{T}\left(Q_{n}\right)$ is exactly $(n-1)^{2}$.

Consider the polygon with $2 n$ vertices $Q_{2 n}=\left\{p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right\}$ such that $\left\{p_{1}, \ldots, p_{n}\right\}$ lie on a convex curve, $\left\{q_{1}, \ldots, q_{n}\right\}$ lie on a concave curve
and the line joining p_{i} to $p_{j}, 1 \leq i<j \leq n$ leaves all the elements of $\left\{q_{1}, \ldots, q_{n}\right\}$ below it, and all the elements of $\left\{p_{1}, \ldots, p_{n}\right\}$ lie above any line joining q_{i} to $q_{j}, 1 \leq i<j \leq n$; see Figure 3 .

Figure 3
We now show that there are two triangulations of $Q_{2 n}$ such that to transform one into the other requires exactly $(n-1)^{2}$ flips. This will prove our result.

Consider any triangulation T of $Q_{2 n}$. We assign a code to T as follows:

Each triangle t_{i} of T has either two vertices in $\left\{p_{1}, \ldots, p_{n}\right\}$ or two vertices in $\left\{q_{1}, \ldots, q_{n}\right\}$. In the first case, assign a 1 to t_{i}; in the second case, t_{i} is assigned a 0 . See Figure 3.

If we read the numbers assigned to the triangles of T from left to right, we obtain an ordered sequence of 0 's and 1 's; this sequence is the code assigned to our triangulation.

The triangulation of Q_{10} presented in Figure 3 receives the code 01011100 . It is clear that each triangulation of $Q_{2 n}$ is thus assigned a sequence containing $n-10$'s and $n-1$ 1's. Clearly, each sequence of $n-10$'s and $n-11$'s also defines a unique triangulation of $Q_{2 n}$, and thus we have a one-to-one correspondence between the set of
triangulations of $Q_{2 n}$ and the set of binary sequences containing $n-1 \quad 1$'s and $n-10$'s. Flippings of triangulations can be easily identified within this encoding. An internal edge of a triangulation T can be flipped if the triangles of T containing it have been assigned a 1 and a 0 . Moreover, a flip of T corresponds to a transposition in the code of T of a 0 with a 1 !

Consider the triangulations T_{1} and T_{2} of $Q_{2 n}$ that receive the encodings $11 \ldots 100 \ldots 0$ and $00 \ldots 011 \ldots 1$. It is now clear that to transform T_{1} to T_{2} we need $(n-1)^{2}$ flips. We have just obtained:

Theorem 2.2: The diameter of $G_{T}\left(Q_{2 n}\right)$ is exactly $(n-1)^{2}$.

We close this section by proving that if Q_{n} is a polygon with k reflex vertices, then the diameter of $G_{T}\left(Q_{n}\right)$ is $\Omega\left(n+k^{2}\right)$, i.e. the diameter of the graph of triangulations of a polygon depends heavily on the number of its reflex vertices; the number of convex vertices of Q_{n} hardly matters at all! We now prove:

Theorem 2.3: Let Q_{n} be a simple polygon with k reflex vertices. Then the diameter of $G_{T}\left(P_{n}\right)$ is at most $O\left(n+k^{2}\right)$.

Several lemmas, definitions and observations will be needed before we can prove Theorem 2.2.

Two vertices v_{i} and v_{j} of a polygon Q_{n} are called c-connected if they are visible and the vertices v_{i+1}, \ldots, v_{j-1} of Q_{n} are all convex, addition taken $\bmod n$. If in addition, v_{i} and v_{j} are reflex vertices of Q_{n}, we call v_{i} and v_{j} consecutive reflex vertices of Q_{n}.

Let $v_{i} v_{j}$ be the line segment joining vertices v_{i} and v_{j}. If $v_{i} v_{j}$ is such that, for each edge e of T intersecting $v_{i} v_{j}$, the end vertex of e below $v_{i} v_{j}$ is a convex vertex of Q_{n}, or for each edge e of T
intersecting $v_{i} v_{j}$ the end vertex of e above $v_{i} v_{j}$ is a convex vertex of Q_{n}, we call $v_{i} v_{j}$ a proper diagonal of T.

The following lemma will prove useful to us:

Lemma 2.1: Let $v_{i} v_{j}$ be a proper diagonal of a triangulation T of a polygon Q_{n}. Then if $v_{i} v_{j}$ is intersected by t edges of $T, v_{i} v_{j}$ can be inserted in T using at most $2 t$ flips.

Proof: Let $v_{i} v_{j}$ be a proper diagonal of T. Assume without loss of generality that for each edge e of T intersecting $v_{i} v_{j}$, the end vertex of e below $v_{i} v_{j}$ is a convex vertex of Q_{n}. See Figure 4.

Figure 4
Let $Q_{i, j}$ be the subpolygon of Q_{n} obtained by joining all the triangles of T intersected by $v_{i} v_{j}$ and consider the triangulation $T^{\mathbb{C}}$ of $Q_{i, j}$ induced by T in $Q_{i, j}$. Suppose that $v_{i} v_{j}$ is intersected by t edges of $T^{\mathbb{C}}$, $t \geq 1$. We now show that $v_{i} v_{j}$ can be inserted in $T^{\mathbb{C}}$ by flipping at most $2 t$ edges. To show this, it is enough to show that by flipping at most two edges of $T^{\mathbb{C}}$ we can obtain a new triangulation of $Q_{i, j}$ in which $v_{i} v_{j}$ is intersected by $t-1$ edges. Let u_{1}, \ldots, u_{m} be the vertices of $Q_{i, j}$ between v_{j} and v_{i} in the clockwise direction. At least one of these vertices, say u_{l}, is a convex vertex of $Q_{i, j}$; otherwise, v_{i} and v_{j} would not be visible in Q_{n}. If in $T^{\mathbb{C}} u_{l}$ is adjacent to exactly one element in the chain v_{i+1}, \ldots, v_{j-1}, then the edge
connecting them in $T^{\mathbb{C}}$ can be flipped, reducing by one the number of edges that intersect $v_{i} v_{j}$. If u_{l} is adjacent to at least 3 vertices of $Q_{i, j}$ in v_{i+1}, \ldots, v_{j-1}, say v_{s-1}, v_{s}, v_{s+1}, then we can flip the edge $u_{l} v_{s}$ inserting $v_{s-1} v_{s+1}$ and our result follows. Suppose then that u_{l} is adjacent to exactly two vertices, say v_{s} and v_{s+1} in v_{i+1}, \ldots, v_{j-1}. See Figure 5.

Figure 5
Notice that since u_{l} is convex, we can flip $u_{l} v_{s+1}$. Next flip $u_{l} v_{s}$, and the number of edges intersecting $v_{i} v_{j}$ has gone down by one! Our result now follows.

A polygon Q_{n} is called a spiral polygon if the vertices of Q_{n} can be labeled $v_{1}, \ldots, v_{s}, v_{s+1}, \ldots, v_{n}$ such that v_{1}, \ldots, v_{s} are reflex vertices of Q_{n} and v_{s+1}, \ldots, v_{n} are convex vertices of Q_{n}. We now prove:

Lemma 2.2: Let Q_{n} be a spiral polygon. Then the diameter of $G_{T}\left(Q_{n}\right)$ is at most $2 n-6$.

Proof: We define a special triangulation T_{0} of Q_{n} as follows: First join $p_{0}^{\odot}=v_{n-1}$ to all the vertices of Q_{n} visible from it. Let p_{1} and $p_{1}^{\mathbb{C}}$ be the last reflex and convex vertices visible from p_{n-1} respectively. See Figure 6. Join p_{1} and $p_{1}^{\mathbb{C}}$ and iterate our construction until we obtain a triangulation of Q_{n}. See Figure 6. We now claim that any triangulation of Q_{n} is at distance at most $n-3$ from T_{0}. Let T be any triangulation of Q_{n}. If v_{n-1} is adjacent in T to all the vertices visible from it, our result follows by induction. Otherwise, it is not difficult to see that T
contains an edge that can be flipped, increasing the degree of v_{n-1} by one. Once v_{n-1} is connected to all the vertices of Q_{n} visible from it, the edge $p_{1} p_{1}^{\llbracket}$ must be present in the current triangulation of Q_{n}. Since each flip adds one diagonal of T_{0} and T_{0} has $n-3$ diagonals, our result now follows.

Figure 6
Suppose next that Q_{n} has k reflex vertices labeled $v_{i_{1}}, \ldots, v_{i_{k}}$ such that $i_{1}<\ldots<i_{k}$. For each $j=1, \ldots, k$ let R_{j} be the shortest polygonal chain contained in Q_{n} joining $v_{i_{j}}$ to $v_{i_{j+1}}$, addition taken \bmod k. Finally let $R=R_{1} \cup \ldots \cup R_{k}$. See Figure 7.

The following lemma, which is easy to prove, is given without proof:

Lemma 2.3: Any edge joining two vertices of Q_{n} intersects at most two edges of R. Moreover if e is an edge of R and T is any triangulation of Q_{n} either e is an edge of T or e is a proper diagonal of T.

We now prove the last lemma we need to prove Theorem 2.2, namely:
Lemma 2.4: Let T be any triangulation of Q_{n}.
Then all the edges of R can be inserted in T using at most $4(n-3)$ flips.

Proof: Let T be any triangulation of Q_{n}, and w be any edge of T. Then by Lemma 2.4, w intersects at most two edges of R. Since T has $n-3$ edges, the
number of intersections between the edges of T and those of R is at most $2(n-3)$. However since all the edges of R are proper edges of T, each of these intersections can be removed by flipping at most two edges. Thus flipping at most $4(n-3)$ edges, we insert in T all the edges of R.

Figure 7
We can now finish the proof of Theorem 2.2.

Proof of Theorem 2.2. Let T and $T^{\mathbb{C}}$ be any two triangulation of Q_{n}. By Lemma 2.4, by flipping at most $4(n-3)$ edges, we can transform each of them into triangulations T_{1} and $T_{1}^{๔}$ respectively of Q_{n} such that each of them contains all the edges of R.

Notice that the edges of R induce a partition of Q_{n} into a set of polygons of either one of these two types:
a) At most k convex or spiral polygons $Q^{1}, \ldots, Q^{m}, m \leq k$ bounded by edges of Q_{n} and edges of R
b) A set of polygons R_{1}, \ldots, R_{s} bounded by the edges of R such that the total number of edges of these polygons is at most k.

Notice that the total number of edges bounding Q^{1}, \ldots, Q^{m} is at most $n+k$. Both of T_{1} and $T_{1}^{\mathbb{C}}$ induce triangulations of Q^{1}, \ldots, Q^{m} which may be different. Since each Q^{1}, \ldots, Q^{m} is a spiral or a convex polygon, by Lemma 2.2 the triangulations induced by
T_{1} in Q^{1}, \ldots, Q^{m} can be transformed into those induced by $T_{1}^{\mathbb{C}}$ in Q^{1}, \ldots, Q^{m} using at most $2((n+k)-3)$ flips. Since the total number of edges bounding all the polygons in R_{1}, \ldots, R_{s} is at most k, then by Theorem 2.1 or [8] the triangulations induced in them by T_{1} and T_{1}^{\complement} can be transformed into each other with at most $O\left(k^{2}\right)$ flips. Our result now follows.

3. Triangulations of Point Sets

In this section we study triangulations of point sets on the plane. Our main goal is to answer the following question: Given a triangulation T of a collection $P_{n}=\left\{v_{1}, \ldots, v_{n}\right\}$ of n points on the plane, how many edges of T can be flipped? We show:

Theorem 3.1: Any triangulation of a collection P_{n} of n points on the plane contains at least $\frac{(n-4)^{n}}{2}$ diagonals that can be flipped. The bound is tight.

Some definitions will be needed before we can prove Theorem 3.1. Let T be a triangulation of P_{n}. Let us divide the set of edges of T into two subsets, $F(T)$, consisting of all the edges of T that can be flipped, and $N F(T)$, which contains those edges of T that are not flippable. Clearly all the edges of T contained in the boundary of $\operatorname{Conv}\left(P_{n}\right)$ are not flippable. We orient the edges of $N F(T)$ as follows according to the following rules:

R1) If e is an edge of the convex hull of P_{n}, orient it in the clockwise direction around the boundary of the boundary of the convex hull $\operatorname{Conv}\left(P_{n}\right)$ of P_{n}.

R2) If e is not in $\operatorname{Conv}\left(P_{n}\right)$ let $C=t_{i} \cup t_{j}$ be the quadrilateral formed by the union of the two triangles t_{i} and t_{j} of T containing e in their common boundary. See Figure 8(a). Since C is not convex, it follows that one of the end vertices of e, say v_{i}, is a reflex vertex of C while the other end vertex of e,
say v_{j}, is a convex vertex of C. Orient e from v_{j} to v_{i}; see Figure 8(b).

(a)

(b)

Figure 8.
Let v_{i} be any vertex of T. We now define $d^{-}\left(v_{i}\right)$ to be the number of edges $v_{i} v_{j}$ of T that cannot be flipped and that are oriented from v_{j} to v_{i}. Notice that $d\left(v_{i}\right)$ is the total number of edges of T incident with v_{i}, whereas $d^{-}\left(v_{i}\right)$ involves only edges of T that cannot be flipped. We now prove:

Lemma 3.2: Let v_{i} be any vertex of T. Then $d^{-}\left(v_{i}\right) \leq 3$. Moreover if $d\left(v_{i}\right) \geq 4$ in T then $d^{-}\left(v_{i}\right)$ is at most 2 .

Proof: It is clear that if v_{i} is in $\operatorname{Conv}\left(P_{n}\right)$ then $d^{-}\left(v_{i}\right)=1$. Suppose then that v_{i} is in the interior of $\operatorname{Conv}\left(P_{n}\right)$. Two cases arise:
a) $\quad d\left(v_{i}\right)=3$ in T. In this case, it is easy to verify that all the edges of T incident with v_{i} are nonflippable and are oriented towards v_{i}. It follows that $d^{-}\left(v_{i}\right)=3$.
b) $\quad d\left(v_{i}\right)>3$ in T. In this case it is trivial to verify that no more than two edges of T can be oriented towards v_{i}.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1: Let P_{n} be a point set on the plane, T a triangulation of P_{n} and let S be the set of elements of P_{n} with degree 3 in T that are not
in the convex hull of P_{n}. We now prove that T contains at least $\frac{(n-4)}{2}$ edges that can be flipped.

By adding a point w in the exterior of $\operatorname{Conv}\left(P_{n}\right)$ and joining it to all the vertices of $\operatorname{Conv}\left(P_{n}\right)$, we obtain a proper triangulation of the plane with $n+1$ points which by Euler's Theorem contains $3 n-3$ edges. Let us classify the edges adjacent to w as non-flippable edges and orient them from w to their other vertex in $\operatorname{Conv}\left(P_{n}\right)$. Next orient all non-flippable edges of T according to R1) and R2). Notice that with these orientations, $d^{-}\left(v_{i}\right)=2$ for all the elements of P_{n} of in $\operatorname{Conv}\left(P_{n}\right)$.

Remove from T all the elements of S. Notice that we will remove exactly $3|S|$ edges of T which are not flippable. Furthermore, notice that what remains is still a triangulation $T^{\mathbb{C}}$ of $P_{n}-S+\{w\}$, which by Euler's formula contains exactly $2\left(\left|P_{n}-S\right|+1\right)-4=2(n-|S|)+2 \quad$ triangles. Moreover, any elements v_{i} of $P_{n}-S+\{w\}$ that are not on the convex hull of P_{n} have degree at least 4 in T, and thus by Lemma 3.2 have $d^{-}\left(v_{i}\right) \leq 2$ in T.

Let Q be the set of vertices of $P_{n}-S+\{w\}$ that have $d^{-}\left(v_{i}\right)=2$. Then by Lemma 3.2, we can associate to each element v_{i} of Q in the interior of $\operatorname{Conv}\left(P_{n}\right)$ a different triangle $t\left(v_{i}\right)$ of $T^{\mathbb{C}}$ which is also a triangle in T. See Figure 9.

To each vertex v_{i} of $T^{\mathbb{\pi}}$ in the convex hull of P_{n} we can also associate a different 'triangle' of $T^{\mathbb{C}}$ among those having w as one of their vertices. That is, to each vertex of $T^{\mathbb{C}}$, except w and the vertices of T with $d^{-}\left(v_{i}\right)<2$, we can associate a different triangle of $T^{\mathbb{C}}$ that contains no element of S. Let m be the number of vertices of T that are on the boundary of $\operatorname{Conv}\left(P_{n}\right)$ or have $d^{-}\left(v_{i}\right)=2$. Since T^{\complement} has $2(n-|S|)+2$ triangles, it follows that $|S| \leq 2(n-|S|)+2-m$. It is easy to verify that the
number of edges of T that can be flipped is minimized when all of the vertices v_{i} of $P_{n}-S$ not in $\operatorname{Conv}\left(P_{n}\right)$ have $d^{-}\left(v_{i}\right)=2$.

Figure 9

In this case, since we can associate to each element of $P_{n}-S$ a different empty triangle of T^{\complement}, we can easily verify that $|S|=n-|S|-2$, that is,
(1) $n=2|S|+2$.

Since $\quad T^{\mathbb{C}}$ contains $3\left(\left|P_{n}-S\right|+1\right)-6=3\left|P_{n}-S\right|-3$ edges and each vertex of $P_{n}-S$ has $d^{-}\left(v_{i}\right)=2$, the number of flippable edges of T (i.e. those edges of that are not oriented in $T^{\mathscr{C}}$) is exactly :
(2) $k=(3(n-|S|)-3)-2(n-|S|)=n-|S|-3$.

Using (1) and (2) we get $k=\frac{n-4}{2}$ which concludes the first part of our proof.

We now show that our bound is tight. We give two different examples. Our first example is obtained as follows: Take any collection of m points that are the vertices of a convex polygon P_{m} on the plane, together with any triangulation of it. Next add to the interior of each triangle of this triangulation an extra vertex adjacent to the three vertices of each triangle. If the convex polygon has m vertices, our final point set has $2 m-3$ points, and the only edges that can be flipped are the $m-3$ edges used to triangulate P_{m}. Trivially if $n=2 m-2, m-3=\frac{n-4}{2}$.

More interesting examples with $3 n+(n-2)=4 n-2$ points in which exactly $\frac{(4 n-2)-4}{2}=2 n-3$ edges can be flipped will now be presented.

Consider a regular polygon R_{n} with n vertices. For every edge e of R_{n} place a point p_{e} in the interior of R_{n} on the perpendicular through the mid point of e and at distance ε from it. Join the end vertices of e to p_{e} and using all the new points construct a second regular polygon $R_{n}^{\mathbb{C}}$ with n vertices contained in R_{n}. Triangulate the interior of $R_{n}^{\mathbb{C}}$ and add a point to the interior of each triangle t of this triangulation of R_{n}^{\complement} adjacent to all the vertices of t. Now in the middle of each edge of $R_{n}^{\mathbb{C}}$, add a new vertex at distance $\delta<\varepsilon$ and join it to the vertices of the triangle containing it. This construction is illustrated for a square in Figure 10. It is not hard o see that the only edges of the triangulation we just defined that can be flipped are the edges of $R_{n}^{\mathbb{C}}$ plus the edges of the triangulation of $R_{n}^{\mathbb{C}}$. These are exactly $2 n-3$ edges and since this construction will yield exactly $4 n-2$ points our result follows.

We conclude this section by showing that some of our results for polygons presented in Section 2 can be easily generalized to point sets. We prove first:

Theorem 3.2: There are collections $P_{2 n}$ of $2 n$ points on the plane such that the diameter of $G\left(P_{2 n}\right)$ is greater than $(n-1)^{2}$.

Proof: Let $P_{2 n}$ be the set of vertices of the polygon $Q_{2 n}$ presented in Section 2. Notice that any
triangulation of $P_{2 n}$ will necessarily include the edges of $Q_{2 n}$. Our result now follows by extending the triangulations of $Q_{2 n}$ at distance $(n-1)^{2}$ to triangulations of $\operatorname{Conv}\left(P_{2 n}\right)$.

4. Polygons with holes

To finish this paper, we notice that the proof of Theorem 2.1 can be easily modified to show that the graph of triangulations of point sets and polygons with holes is connected. Theorem 2.3 can also be easily modified to work for polygons with holes. To avoid being repetitive, we leave the details of these proofs to the reader. Thus we have:

Theorem 4.1: The graph of triangulations of a point sets or polygons with holes on the plane is connected.

Theorem 4.2: Let Q_{n} be a simple polygon with k reflex vertices and admitting holes. Then the diameter of $G_{T}\left(P_{n}\right)$ is at most $O\left(n+k^{2}\right)$.

References

[1] Arkin, E., M. Held, J. Mitchell and S. Skiena, "Hamiltonian triangulations for fast rendering", Algorithms-ESA '94, J. van Leeuwen, ed., Springer-Verlag, LNCS 855, 36-47.
[2] Barnhill, R.E., "Representation and approximation of images", in Mathematical Software III, J. Rice, ed., Academic Press, 1977, 69-120.
[3] Bern, M. and D. Eppstein, "Mesh generation and optimal triangulation", in Computing in Euclidean Geometry, D.Z. Du and F. K. Hwang, eds., World Scientific, 1992, 23-90.
[4] Garequet, G. and M. Sharir, "Piecewise-linear interpolation between polygonal slices", Proceedings of the 10th ACM Symposium on Computational Geometry, 93-102.
[5] Frey, W. H. and D. A. Field, "Mesh relaxation: a new technique for improving triangulations", Int. J. Numer. Meth. Eng. 31: 1121-1133, 1991.
[6] Fortune, S., "Voronoi diagrams and Delaunay triangulations", in Computing in Euclidean Geometry, D. Z. Du and F. K. Hwang eds., World Scientific, 1992, 193-234.
[7] Hansford, D., "The neutral case for the min-max triangulations", CAGD 7: 431-438, 1990.
[8] Hurtado, F. and M. Noy, "The graph of triangulations of a convex polygon", Report MA2-IR-94-13, Universitat Politècnica de Catalunya.
[9] Hurtado, F. and M. Noy, "Triangulations, visibility graphs and reflex vertices of a simple polygon", to appear in Computational Geometry, Theory and Applications.
[10] Ho-Le, K., "Finite element mesh generation methods: a review and a classification", Computer Aided Design 20: 27-38, 1988.
[11] Kirkpatrick, S., C. D. Gelatt and M. P. Vecchi, "Optimization by simulated annealing", Science 220: 671-680, 1983.
[12] Van Laarhoven, P. J. M. and E. H. L. Aarts, Simulated Annealing: Theory and Practice, Kluwer Academic Publ., 1987.
[13] Lawson, C. L., "Software for C^{1} surface interpolation", in Mathematical Software III, J. Rice, ed., Academic Press, 1977, 161-194.
[14] Lucas, J., D. Roelants van Baronaigien and F. Ruskey, "On rotations and the generation of binary trees", J. Algorithms 15: 343-366. 1993.
[15] Lai, M. J. and L. L. Schumaker, "Scattered data interpolation using C^{2} piecewise polynomials of degree six", Third Workshop on Proximity Graphs, Mississippi State University, 1994.
[16] Lucas, J. "The rotation graph of binary trees is Hamiltonian", J. Algoriths 9: 503-535, 1988.
[17] Okabe, A., B. Boots and K. Sugihara, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley \& Sons, 1992.
[18] Quak, E. and L. L. Shumaker, "Cubic spline fitting using data dependent triangulations", Computer Aided Geometric Design 7: 811-830, 1990.
[19] Saalfeld, A., "Joint triangulations and triangulated maps:, in Proc. 3rd Annual ACM

Symposium in Computational Geometry, (1987) 195-204.
[20] Schroeder, W., and M. Shephard, "Geometrybased fully automatic mesh generation and the Delaunay triangulation", International Journal for Numerical Methods in Engineering 24: 2503-2515, 1988.
[21] Schumaker, L. L., "Triangulations in CAGD", IEEE Computer Graphics and Applications", January 1993, 47-552.
[22] Shapira, M. and A. Rappoport, "Shape blending using the star-skeleton representation", to appear in IEEE Computer Graphics and Applications.
[23] Srinivasan, B., L. R. Nackman, J. M. Tang and S. N. Meshkat, "Automatic mesh generation using the symmetric axis transformation of polygonal domains", Proceedings of the IEEE 80(9): 1485-1501.
[24] Sleator, D. D., R. E. Tarjan and W. P. Thurstan, "Rotations distance, triangulations and hyperbolic geometry", J. Am. Math. Soc. 1: 647-682, 1988.
[25] Toussaint, G. T., "New results in computational geometry relevant to pattern recognition in practice", in Pattern Recognition in Practice II^ E. S. Gelsema and L. N. Kanal, eds., North-Holland, 1986, 135-146.
[26] Wang, T., "A C ${ }^{2}$-quintic spline interpolation scheme on triangulation", Computer Aided Geometric Design 9: 379-386, 1992.
[27] Watson, D. F. and G. M. Philips, "Systematic triangulations", Computer Vision, Graphics and Image Processing 26: 217-223, 1984.
[28] Yoeli, P., "Compilation of data for computerassisted relief cartography", in Display and Analysis of Spatial Data, J. Davis and M. McCullagh, eds., Wiley, 1975.
[29] Zienkiewicz, O. C. and R. L. Taylor, The Finite Element Method, McGraw-Hil, 1989.

