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Abstract

In this paper we study the problem of flipping

edges in triangulations of polygons and point sets.

We prove that if a polygon Qn  has k  reflex vertices,

then any triangulation of Qn  can be transformed to

another triangulation of Qn  with at most O(n + k 2 )

flips. We produce examples of polygons with two

triangulations T  and T© such that to transform T  to

T© requires O(n2 )  flips. These results are then

extended to triangulations of point sets. We also

show that any triangulation of an n  point set always

has 
n − 4

2
 edges that can be flipped.

1. Introduction

Let Pn = {v1 , ..., vn} be a collection of points on

the plane. A triangulation of Pn  is a partitioning of

the convex hull Conv(Pn ) of Pn  into a set of

triangles T = {t1 , ..., tm} with disjoint interiors in such

a way that the vertices of each triangle t i  of T  are

points of Pn . The elements of Pn  will be called the

vertices of T  and the edges of the triangles t1 , ..., tm

of T  will be called the edges of T . The degree d(vi )

of a vertex vi  of T  is the number of edges of T  that

have vi  as an endpoint. We say that an edge e  of T

can be flipped if e  is contained in the boundary of

two triangles ti  and t j  of T  and C = ti ∪ t j  is a

convex quadrilateral. By flipping e  we mean the

operation of removing e  from T  and replacing it by

the other diagonal of C . See Figure 1.

Given a collection of points Pn = {v1 , ..., vn} we

define the graph GT (Pn ) , the graph of triangulations

of Pn , to be the graph such that the vertices of

GT (Pn )  are the triangulations of Pn , two

triangulations being adjacent if one can be obtained

from the other by flipping an edge.
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Two triangulations of a point set. The second one is

obtained from the first by flipping edge xy.

Figure 1

Given two triangulations T © and T " of Pn , we

say that they are at distance k  if there is a sequence

of triangulations T0 = T ©,...,Tk = T "  such that Ti+1

can be obtained from Ti  by flipping an edge of it,

i = 0,..., k −1. This is equivalent to saying that if we

consider T © and T " as vertices of GT (Pn )  their

distance in it is k . We will also say that T © can be

transformed into T " by flipping k  edges.

Triangulations of polygons with or without

holes, the flipping of edges in them and their

corresponding graphs of triangulations are defined in

an analogous way. Throughout this paper, Pn  will be

used to denote point sets and Qn  will always denote

polygons. The vertices of Qn  will always be assumed

to be labeled v1 , ..., vn  in the clockwise direction.

Triangulations of point sets and polygons on

the plane have been studied intensely in the literature
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both because of their intrinsic beauty and for their use

in many problems, such as image processing [22],

mesh generation for finite element methods [2, 9, 23,

29], scattered data interpolation [15, 18] and many

others such as computer graphics, solid modeling and

geographical information systems [1, 3, 4, 17, 19,

20, 21, 25, 27, 28]. In this paper we study

triangulations of point sets, polygons and polygons

with holes on the plane.

It is well known that if a polygon Qn  is

convex, then the diameter of GT (Qn )  is at most

2(n − 3) . Graphs of triangulations of convex

polygons have been studied in [8, 24]. If Qn  is a

convex polygon on n vertices, GT (Qn )  is isomorphic

to the rotation graph RG(n-2). The vertex set of

RG(n-2)  is the set of all binary trees with n - 2

vertices, [24].

It is also known that the graph of triangulations

of a simple polygon Qn  with n  vertices is connected

[3, 6, 11, 12, 13, 17] and that its diameter is at most

O(n2 ) [8]. Some further result on the  graph of

triangulations of convex polygons have been obtained

in [8].

In Section 2 we give a new and simple proof

that the graph of triangulations of a polygon, with or

without holes, is connected. Next we show that there

are polygons with 2n vertices such that the diameter

of their graph of triangulations is O(n2 ) . We would

like to remark here that our proofs do not use

Delauney flips at all. A similar result to ours,

concerning triangulations of point sets appears in [6],

however, the flips used there are only use Delauney

flips. In fact, from the results of our paper, we

conclude that Delauney flips or triangulations are not

an essential tool in the study of triangulations; they

may even hinder their study! We then develop two

algorithms that transform any triangulation T  of Qn

into any other triangulation T ©. The number of flips

required by our first algorithm is at most the number

of edges of the visibility graph of Qn . Our second

algorithm uses at most cn + k 2  flips where k  is the

number of reflex vertices of Qn .

In Section 3 we study triangulations of point

sets on the plane. Our main result in that section is

to prove that any triangulation of a point set Pn  of n

points on the plane contains at least 
(n − 4)

2
 edges

that can be flipped. Our bound is tight. We would

like to remark here for those readers familiar with

regular triangulations that our results are for arbitrary

triangulations of point sets, not for regular

triangulations. We recall that regular triangulations

are known to have at least n − 2  flips; moreover

some of the flips allowed for regular triangulations

are not allowed in our case.

2. Triangulations of Polygons

We start this section by giving a simple proof

that the graph of triangulations GT (Qn )  of a simple

polygon Qn  is connected and that the diameter of

GT (Qn )  is at most the number of edges of the

visibility graph of Qn .

Let T  be a triangulation of a polygon Qn , and

vi  and vj  be vertices of Qn  such that the line

segment viv j  connecting them is not an edge of T .

We say that viv j  can be inserted in T  by flipping

k −1 edges if there is a sequence of triangulations

T1 = T , ...,Tk  such that viv j  is an edge of Tk  and

Ti+1 can be obtained from Ti  by flipping an edge of

it, i = 1,..., k −1. We say that a vertex vi  of Qn  is

exposed if it lies in the convex hull of Qn . Consider

the two vertices vi−1 and vi+1 of Qn  adjacent to vi .

The shortest polygonal chain joining vi−1 to vi+1

totally contained in Qn  will be denoted by Pi−1,i+1

The visibility graph of Qn  is the graph with

vertex set {v1, ..., vn}. Two vertices vi  and vj  of Qn
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are adjacent in the visibility graph of Qn  if the line

segment joining them is contained in Qn . We now

prove:

Lemma 2.1: Let Qn  be a simple polygon, vi  an

exposed vertex of Qn  and T  a triangulation of Qn .

Then it is always possible to insert all the edges of

Pi−1,i+1  into T  using exactly as many flips as the

number of edges of T , not in Pi−1,i+1 , that intersect

Pi−1,i+1 .

Proof: Suppose that at least one edge e  of Pi−1,i+1  is

not in T . Consider the polygon Pe  formed by the

union of all triangles of T  intersected by e  and the

chain of vertices of Pe  joining the endpoints of e . At

least one of these vertices, say w , is a convex vertex

of Pe , and thus the edge joining vi  to w  can be

flipped decreasing the number of edges of T  that

intersect e  by one. Our result follows (see Figure 2).

vi

i+1v i-1v

w

Figure 2

We can now prove:

Theorem 2.1: The graph of triangulations GT (Qn )

of a simple polygon is connected. Moreover, the

diameter of GT (Qn )  is at most the number of edges

of the visibility graph of Qn .

Proof:  Let vi  be an exposed vertex of Qn , and T1

and T2  two triangulations of Qn . By Lemma 2.1 we

can insert in each of T1  and T2  all the edges of

Pi−1,i+1  to obtain two new triangulations T1
© and T2

© of

Qn . Delete from Qn  the subpolygon bounded by the

vertices of Pi−1,i+1  and vi . This will result in a

collection of simple polygons with disjoint interiors.

Each of these polygons has two triangulations

induced by T1
© and T2

© respectively and fewer vertices

than Qn . Our result now follows by induction on the

number of vertices of Qn . Our argument actually

gives a diameter of twice the number of edges of the

visibility graph of Qn . A simple modification to it

will give the claimed bound; the details are left to the

reader.

To prove the second part of our result, we

simply notice that each edge of the visibility graph of

Qn  incident to vi  may be used twice; the first time

while inserting Pi−1,i+1  into T1  and the second time

when we insert T2  into Pi−1,i+1. Once we delete vi

from Qn  these edges are not used again, and our result

follows.

The bound on the diameter of GT (Qn )  given in

Theorem 2.1 can, in general, be bad. For example,

when Qn  is a convex polygon, the visibility graph of

Qn  has O(n2 )  edges, while the diameter of GT (Qn )

is at most 2(n − 2). On the positive side, if the

visibility graph of Qn  has few edges, Theorem 2.1

gives us an efficient method to transform one

triangulation into another one. Notice that if the

visibility graph of Qn  has few edges, it has many

reflex vertices. Thus the question of studying the

tradeoffs in the diameter of GT (Qn )  and the number

of reflex vertices of Qn  becomes relevant. We address

this question now.

We start by producing a polygon Qn  with 2n

vertices such that the diameter of GT (Qn )  is exactly

(n −1)2 .

Consider the polygon with 2n vertices

Q2n = {p1, ..., pn , q1, ..., qn} such that {p1, ..., pn} lie

on a convex curve, {q1, ..., qn} lie on a concave curve
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and the line joining pi  to pj , 1 ≤ i < j ≤ n  leaves all

the elements of {q1, ..., qn} below it, and all the

elements of {p1, ..., pn} lie above any line joining qi

to qj , 1 ≤ i < j ≤ n ; see Figure 3.
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Figure 3

We now show that there are two triangulations of

Q2n  such that to transform one into the other requires

exactly (n −1)2  flips. This will prove our result.

Consider any triangulation T  of Q2n . We

assign a code to T  as follows:

 Each triangle ti  of T  has either two vertices in

{p1, ..., pn} or two vertices in {q1, ..., qn}. In the first

case, assign a 1 to ti ; in the second case, ti  is

assigned a 0. See Figure 3.

If we read the numbers assigned to the triangles

of T  from left to right, we obtain an ordered sequence

of 0's and 1's; this sequence is the code assigned to

our triangulation.

The triangulation of Q10  presented in Figure 3

receives the code 01011100. It is clear that each

triangulation of Q2n  is thus assigned a sequence

containing n −1 0's and n −1 1's. Clearly, each

sequence of n −1 0's and n −1 1's also defines a

unique triangulation of Q2n , and thus we have a one-

to-one correspondence between the set of

triangulations of Q2n  and the set of binary sequences

containing n −1 1's and n −1 0's. Flippings of

triangulations can be easily identified within this

encoding. An internal edge of a triangulation T  can

be flipped if the triangles of T  containing it have

been assigned a 1 and a 0. Moreover, a flip of T

corresponds to a transposition in the code of T  of a 0

with a 1!

Consider the triangulations T1  and T2  of Q2n

that receive the encodings 11...100...0 and

00...011...1. It is now clear that to transform T1  to

T2  we need (n −1)2  flips. We have just obtained:

Theorem 2.2: The diameter of GT (Q2n ) is exactly

(n −1)2 .

We close this section by proving that if Qn  is a

polygon with k reflex vertices, then the diameter of

GT (Qn )  is Ω(n + k 2 ), i.e. the diameter of the graph

of triangulations of a polygon depends heavily on the

number of its reflex vertices; the number of convex

vertices of Qn  hardly matters at all! We now prove:

Theorem 2.3: Let Qn  be a simple polygon with k
reflex vertices. Then the diameter of GT (Pn )  is at

most O(n + k 2 ) .

Several lemmas, definitions and observations

will be needed before we can prove Theorem 2.2.

Two vertices vi  and vj  of a polygon Qn  are

called c-connected if they are visible and the vertices

vi+1, ..., vj−1  of Qn  are all convex, addition taken

mod n. If in addition, vi  and vj  are reflex vertices

of Qn , we call vi  and vj  consecutive reflex vertices

of Qn .

Let viv j  be the line segment joining vertices vi

and vj . If viv j  is such that, for each edge e  of T

intersecting viv j , the end vertex of e  below viv j  is a

convex vertex of Qn , or for each edge e  of T
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intersecting viv j  the end vertex of e  above viv j  is a

convex vertex of Qn , we call viv j  a proper diagonal

of T .

The following lemma will prove useful to us:

Lemma 2.1: Let viv j  be a proper diagonal of a

triangulation T  of a polygon Qn . Then if viv j  is

intersected by t  edges of T , viv j  can be inserted in

T  using at most 2t  flips.

Proof: Let viv j  be a proper diagonal of T . Assume

without loss of generality that for each edge e  of T

intersecting viv j , the end vertex of e  below viv j  is a

convex vertex of Qn . See Figure 4.

v
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v
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Figure 4

Let Qi, j  be the subpolygon of Qn  obtained by joining

all the triangles of T  intersected by viv j  and consider

the triangulation T© of Qi, j  induced by T  in Qi, j .

Suppose that viv j  is intersected by t  edges of T©,

t ≥ 1. We now show that viv j  can be inserted in T©

by flipping at most 2t  edges. To show this, it is

enough to show that by flipping at most two edges of

T© we can obtain a new triangulation of Qi, j  in which

viv j  is intersected by t −1 edges. Let u1, ...,um  be the

vertices of Qi, j  between vj  and vi  in the clockwise

direction. At least one of these vertices, say ul , is a

convex vertex of Qi, j ; otherwise, vi  and vj  would not

be visible in Qn . If in T© ul  is adjacent to exactly

one element in the chain vi+1, ..., vj−1 , then the edge

connecting them in T© can be flipped, reducing by

one the number of edges that intersect viv j . If ul  is

adjacent to at least 3 vertices of Qi, j  in vi+1, ..., vj−1 ,

say vs−1, vs , vs+1 , then we can flip the edge ulvs

inserting vs−1vs+1 and our result follows. Suppose

then that ul  is adjacent to exactly two vertices, say

vs  and vs+1  in vi+1, ..., vj−1 . See Figure 5.
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Figure 5

Notice that since ul  is convex, we can flip ulvs+1.

Next flip ulvs , and the number of edges intersecting

viv j  has gone down by one! Our result now follows.

A polygon Qn  is called a spiral polygon if the

vertices of Qn  can be labeled v1, ..., vs , vs+1, ..., vn  such

that v1, ..., vs  are reflex vertices of Qn  and vs+1, ..., vn

are convex vertices of Qn . We now prove:

Lemma 2.2: Let Qn  be a spiral polygon. Then the

diameter of GT (Qn )  is at most 2n − 6 .

Proof: We define a special triangulation T0  of Qn  as

follows: First join p0
© = vn−1 to all the vertices of Qn

visible from it. Let p1  and p1
© be the last reflex and

convex vertices visible from pn−1  respectively. See

Figure 6. Join p1  and p1
© and iterate our construction

until we obtain a triangulation of Qn . See Figure 6.

We now claim that any triangulation of Qn  is at

distance at most n − 3 from T0 . Let T  be any

triangulation of Qn . If vn−1 is adjacent in T  to all

the vertices visible from it, our result follows by

induction. Otherwise, it is not difficult to see that T
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contains an edge that can be flipped, increasing the

degree of vn−1 by one. Once vn−1 is connected to all

the vertices of Qn  visible from it, the edge p1 p1
© must

be present in the current triangulation of Qn . Since

each flip adds one diagonal of T0  and T0  has n − 3

diagonals, our result now follows.

p
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v s
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p
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p
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Figure 6

Suppose next that Qn  has k  reflex vertices

labeled vi1
, ..., vik

 such that i1 <...< ik . For each

j = 1,..., k  let Rj  be the shortest polygonal chain

contained in Qn  joining vi j
 to vij+1

, addition taken

mod k. Finally let R = R1∪...∪Rk . See Figure 7.

The following lemma, which is easy to prove,

is given without proof:

Lemma 2.3: Any edge joining two vertices of Qn

intersects at most two edges of R. Moreover if e  is

an edge of R and T  is any triangulation of Qn  either

e  is an edge of T  or e  is a proper diagonal of T .

We now prove the last lemma we need to prove

Theorem 2.2, namely:

Lemma 2.4: Let T  be any triangulation of Qn .

Then all the edges of R can be inserted in T  using at

most 4(n − 3)  flips.

Proof: Let T  be any triangulation of Qn , and w  be

any edge of T . Then by Lemma 2.4, w  intersects at

most two edges of R. Since T  has n − 3 edges, the

number of intersections between the edges of T  and

those of R is at most 2(n − 3) . However since all

the edges of R are proper edges of T , each of these

intersections can be removed by flipping at most two

edges. Thus flipping at most 4(n − 3)  edges, we

insert in T  all the edges of R .

Figure 7

We can now finish the proof of Theorem 2.2.

Proof of Theorem 2.2. Let T  and T©be any two

triangulation of Qn . By Lemma 2.4, by flipping at

most 4(n − 3)  edges, we can transform each of them

into triangulations T1  and T1
© respectively of Qn  such

that each of them contains all the edges of R.

Notice that the edges of R induce a partition of

Qn  into a set of polygons of either one of these two

types:

a) At most k  convex or spiral polygons

Q1, ...,Qm , m ≤ k  bounded by edges of Qn  and edges

of R

b) A set of polygons R1, ..., Rs  bounded by the

edges of R such that the total number of edges of

these polygons is at most k .

Notice that the total number of edges bounding

Q1, ...,Qm  is at most n + k . Both of T1  and T1
©

induce triangulations of Q1, ...,Qm  which may be

different. Since each Q1, ...,Qm  is a spiral or a convex

polygon, by Lemma 2.2 the triangulations induced by
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T1  in Q1, ...,Qm  can be transformed into those

induced by T1
© in Q1, ...,Qm  using at most

2((n + k) − 3) flips. Since the total number of edges

bounding all the polygons in R1, ..., Rs  is at most k ,

then by Theorem 2.1 or [8] the triangulations induced

in them by T1  and T1
© can be transformed into each

other with at most O(k 2 )  flips. Our result now

follows.

3 . Triangulations of Point Sets

In this section we study triangulations of point

sets on the plane. Our main goal is to answer the

following question: Given a triangulation T  of a

collection Pn = {v1, ..., vn} of n  points on the plane,

how many edges of T  can be flipped? We show:

Theorem 3.1: Any triangulation of a collection Pn

of n  points on the plane contains at least 
(n − 4)

2
diagonals that can be flipped. The bound is tight.

Some definitions will be needed before we can

prove Theorem 3.1. Let T  be a triangulation of Pn .

Let us divide the set of edges of T  into two subsets,

F(T ), consisting of all the edges of T  that can be

flipped, and NF(T ), which contains those edges of T

that are not flippable. Clearly all the edges of T

contained in the boundary of Conv(Pn )  are not

flippable. We orient the edges of NF(T ) as follows

according to the following rules:

R1) If e  is an edge of the convex hull of Pn , orient

it in the clockwise direction around the boundary of

the boundary of the convex hull Conv(Pn )  of Pn .

R2) If e  is not in Conv(Pn )  let C = ti ∪ t j  be the

quadrilateral formed by the union of the two triangles

ti  and t j  of T  containing e  in their common

boundary. See Figure 8(a). Since C  is not convex, it

follows that one of the end vertices of e , say vi , is a

reflex vertex of C  while the other end vertex of e ,

say vj , is a convex vertex of C . Orient e  from vj  to

vi ; see Figure 8(b).

u

v

(a) (b)

Figure 8.

Let vi  be any vertex of T . We now define

d − (vi )  to be the number of edges viv j  of T  that

cannot be flipped and that are oriented from vj  to vi .

Notice that d(vi ) is the total number of edges of T

incident with vi , whereas d − (vi )  involves only edges

of T  that cannot be flipped. We now prove:

Lemma 3.2: Let vi  be any vertex of T . Then

d − (vi ) ≤ 3. Moreover if d(vi ) ≥ 4  in T  then d − (vi )

is at most 2.

Proof:  It is clear that if vi  is in Conv(Pn )  then

d − (vi ) = 1. Suppose then that vi  is in the interior of

Conv(Pn ) . Two cases arise:

a) d(vi ) = 3 in T . In this case, it is easy to verify

that all the edges of T  incident with vi  are non-

flippable and are oriented towards vi . It follows that

d − (vi ) = 3 .

b) d(vi ) > 3 in T . In this case it is trivial to

verify that no more than two edges of T  can be

oriented towards vi .

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1: Let Pn  be a point set on

the plane, T  a triangulation of Pn  and let S  be the

set of elements of Pn  with degree 3 in T  that are not
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in the convex hull of Pn . We now prove that T

contains at least 
(n − 4)

2
 edges that can be flipped.

By adding a point w  in the exterior of

Conv(Pn )  and joining it to all the vertices of

Conv(Pn ) , we obtain a proper triangulation of the

plane with n +1 points which by Euler's Theorem

contains 3n − 3 edges. Let us classify the edges

adjacent to w  as non-flippable edges and orient them

from w  to their other vertex in Conv(Pn ) . Next

orient all non-flippable edges of T  according to R1)

and R2). Notice that with these orientations,

d − (vi ) = 2 for all the elements of Pn  of in

Conv(Pn ) .

Remove from T  all the elements of S . Notice

that we will remove exactly 3 S  edges of T  which

are not flippable. Furthermore, notice that what

remains is still a triangulation T© of Pn − S +{w},

which by Euler's formula contains exactly

2( Pn − S +1) − 4 = 2(n − S ) + 2  t r i a n g l e s .

Moreover, any elements vi  of Pn − S +{w} that are

not on the convex hull of Pn  have degree at least 4 in

T , and thus by Lemma 3.2 have d − (vi ) ≤ 2  in T .

Let Q  be the set of vertices of Pn − S +{w}

that have d − (vi ) = 2. Then by Lemma 3.2, we can

associate to each element vi  of Q  in the interior of

Conv(Pn )  a different triangle t(vi )  of T© which is

also a triangle in T . See Figure 9.

To each vertex vi  of T©in the convex hull of Pn

we can also associate a different 'triangle' of T©

among those having w  as one of their vertices. That

is, to each vertex of T©, except w  and the vertices of

T  with d − (vi ) < 2 , we can associate a different

triangle of T© that contains no element of S . Let m

be the number of vertices of T  that are on the

boundary of Conv(Pn )  or have d − (vi ) = 2. Since T©

has 2(n − S ) + 2 triangles, it follows that

S ≤ 2(n − S ) + 2 − m . It is easy to verify that the

number of edges of T  that can be flipped is

minimized when all of the vertices vi  of Pn − S  not

in Conv(Pn )  have d − (vi ) = 2.

T(v )i
iv jv

kv

T(v )i

jv

kv

iv

Figure 9

In this case, since we can associate to each

element of Pn − S  a different empty triangle of T©,

we can easily verify that S = n − S − 2 , that is,

(1) n = 2 S + 2.

Since T© contains 3( Pn−S +1) − 6 = 3 Pn − S − 3

edges and each vertex of Pn − S  has d − (vi ) = 2, the

number of flippable edges of T  (i.e. those edges of

that are not oriented in T©) is exactly :

(2)   k = (3(n − S ) − 3) − 2(n − S ) = n − S − 3.

Using (1) and (2) we get k =
n − 4

2
 which concludes

the first part of our proof.

We now show that our bound is tight. We give

two different examples. Our first example is obtained

as follows: Take any collection of m  points that are

the vertices of a convex polygon Pm  on the plane,

together with any triangulation of it. Next add to the

interior of each triangle of this triangulation an extra

vertex adjacent to the three vertices of each triangle. If

the convex polygon has m vertices, our final point

set has 2m − 3 points, and the only edges that can be

flipped are the m − 3 edges used to triangulate Pm .

Trivially if n = 2m − 2, m − 3 =
n − 4

2
.
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More  in te res t ing  examples  wi th

3n + (n − 2) = 4n − 2 points in which exactly
(4n − 2) − 4

2
= 2n − 3  edges can be flipped will now

be presented.

Figure 10

Consider a regular polygon Rn  with n  vertices.

For every edge e  of Rn  place a point pe  in the

interior of Rn  on the perpendicular through the mid

point of e  and at distance ε from it. Join the end

vertices of e  to pe  and using all the new points

construct a second regular polygon Rn
© with n vertices

contained in Rn . Triangulate the interior of Rn
© and

add a point to the interior of each triangle t  of this

triangulation of Rn
© adjacent to all the vertices of t .

Now in the middle of each edge of Rn
©, add a new

vertex at distance δ < ε  and join it to the vertices of

the triangle containing it. This construction is

illustrated for a square in Figure 10. It is not hard o

see that the only edges of the triangulation we just

defined that can be flipped are the edges of Rn
© plus

the edges of the triangulation of Rn
©. These are exactly

2n − 3  edges and since this construction will yield

exactly 4n − 2 points our result follows.

We conclude this section by showing that some

of our results for polygons presented in Section 2 can

be easily generalized to point sets. We prove first:

Theorem 3.2: There are collections P2n  of 2n

points on the plane such that the diameter of G(P2n )

is greater than (n −1)2 .

Proof: Let P2n  be the set of vertices of the polygon

Q2n  presented in Section 2. Notice that any

triangulation of P2n  will necessarily include the edges

of Q2n . Our result now follows by extending the

triangulations of Q2n  at distance (n −1)2  to

triangulations of Conv(P2n ).

4. Polygons with holes

To finish this paper, we notice that the proof of

Theorem 2.1 can be easily modified to show that the

graph of triangulations of point sets and polygons

with holes is connected. Theorem 2.3 can also be

easily modified to work for polygons with holes. To

avoid being repetitive, we leave the details of these

proofs to the reader. Thus we have:

Theorem 4.1: The graph of triangulations of a

point sets or polygons with holes on the plane is

connected.

Theorem 4.2: Let Qn  be a simple polygon with k

reflex vertices and admitting holes. Then the diameter

of GT (Pn )  is at most O(n + k 2 ) .
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