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The deep sub micron process technology and application convergence increases the design challenges in System-on-

Chip (SoC). The traditional bus based on chip communication are not scalable and fails to deliver the performance 

requirements of the complex SoC.

The Network  on  Chip (NoC)  has  been  emerged  as  a  solution to  address  these  complexities  of  a  efficient,  high 

performance, scalable SoC design. The Aethereal NoC provides the latency and throughput bounds by pipelined time-
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which is not beneficial for decreasing process geometry and increasing clock frequency. This thesis work focuses on 
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clock defines the timing for TDM, which is not beneficial  for decreasing process geometry and 

increasing clock frequency.

This  thesis  work  focuses  on  the  aelite  NoC architecture.  The  aelite  NoC offering  guaranteed 
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 1. Introduction

 1. Introduction

System  on  Chip  (SoC)  complexity  grows  with  deep  sub  micron  technology  enabling  multiple 

intellectual property (IP) blocks exist on a single chip. The different traffic types in the same design 

due to application convergence forces the resources to be shared. The time to market pressure and 

IP reuse strategies demand scalable interconnects.

Traditionally  buses  have  been  implemented  for  interconnection  between  IP  blocks  in  complex 

SoCs. Buses do have poor separation between computation and communication. Thus they cannot 

adapt to the system architecture changes. The change in the system architecture has impact on the 

bus architecture, which has to be redesigned [6]. In Deep sub-micron process technologies, buses 

dominate in terms for silicon area, speed, and performance [7]. These deep sub micron effects have 

made the global synchrony hard or expensive in terms of area and power to maintain. The shrinking 

size  and  increasing  clock  frequency  poses  problem  for  designers  to  have  a  single  global 

synchronous clock [5].

These considerations have moved data communication from shared buses to the packet switching 

networks. The Network on Chip (NoC) addresses the problems of complex System on Chip (SoC) 

with multiple cores and memories. The NoC characteristics are: 

• Decouple  computation  from  communication  through  layered  architecture  that  helps  to 

optimize them independently [1].

• User  defined  network  topology  and  flexible  configuration  based  on  the  application 

requirements [1].

• Effective reuse of resources [1].

• Structure and manage global wires in deep sub micron technologies [9].

• Good wire utilization through sharing, reduction of global wires [8].

• Scales better than buses [4]. 

• Solves  SoC  timing  convergence  problem  through  (GALS)  Globally  Asynchronous  and 

Locally Synchronous design style [5].

• Utilizes less silicon area than multi layer bus [6]. 

 1.1 Problem Description

The Aethereal  NoC has three major  components  Routers,  Network Interface and links between 

them. In the Aethereal NoC guaranteed services (time –critical) and Best effort services (non-time-

critical)  are  offered to  IP modules  based on their  connections  and requirements.  The real  time 
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application has cores demanding time related guarantees.  These guarantees are provided by the 

TDMA slot reservations in the Network interfaces (NI) which are run time reconfigurable [10]. The 

components have logical notion of synchronicity in NoC, such that they all remain in same fixed 

duration slot. This results in a contention free routing. The single global clock supports the global 

synchronicity in Aethereal NoC for both NoC and IP Blocks.

The SoC design has major problems with the timing closure and power dissipation [5]. One of the 

major reasons is the use of centralized single global clock across the chip. The clock distribution of 

the global clock over large area with negligible skew consumes lot of power. Secondly longer wire 

has more wire delay, which becomes a performance bottleneck [11]. In Clock lines, it contributes to 

clock skew. The placement and routing has more workload to tackle these timing closure problems. 

Thus the Synchronous design does not scale well with the increasing process and design complexity 

[12, 13].

The hard real time embedded application depends not only on the logical or functional correctness 

but also on their timing constraints. The multiple cores or blocks in a complex SoC have their own 

specific performance requirements such as minimum throughput and maximum latency demanding 

the guaranteed services.

 1.2 Contribution

The Aelite NoC is the lighter version of the Aethereal NoC offering guaranteed services only. The 

Guaranteed services are the lossless,  in order delivery of the uncorrupted data  with guaranteed 

throughput  and  bounded  latency  [3].  In  comparison  with  the  Aethereal  NoC,  Aelite  NoC 

architecture provides higher performance of about 1.2 X the frequency and lesser design complexity 

contributes 4X the lesser area.

The problems with the Synchronous design and application convergence has made SoC to favour 

multiple clock domains and to relax the strict requirements of the clock skew. The mesochronous 

architecture helps to have different clocks, which are the derivative of the global clock in a system. 

These clocks have constant clock frequency with unknown phase differences. It avoids the problem 

of distributing clock with minimum or negligible skew and clock tree balancing between different 

blocks of the chip.

The better solution to the problem of running at the same clock frequency for both IPs and NoC is 

to partition the design into synchronous blocks each running at their native frequency. The data is 

exchanged asynchronously using handshakes. The GALS architecture promises these solutions. The 

Asynchronous clock bridging on the NoC edges between IPs and NI, also inside NoC between NI 

and Router.
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The clocking rate of individual blocks need not have any dependencies with the other blocks or the 

master clock. The blocks such as routers and network interfaces (NI) run synchronous locally and 

communicate asynchronously with each other. The same applies for NIs and IPs. It mitigates the 

problems associated with redesigning due to timing closure issues in the back end design.
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 2. Aethereal NoC

The Aethereal NoC provides guaranteed services (GS) such as uncorrupted, lossless, ordered data 

delivery,  with  guaranteed  throughput  and  bounded  latency  [1].  Every  IP  core  has  its  own 

performance  requirements  in  real  time  applications  such  as  minimum throughput  and  bounded 

latency. The Best effort services (BE) are introduced to increase the network resource utilization. 

The  GS-BE  architecture  can  concurrently  support  the  real  time  communication  which  uses 

guaranteed services and non-real time communication using best effort services. The GS has higher 

priority over BE services [14]. The Aethereal NoC properties can be highlighted as:

• Decoupling computation (IP) from Communication (NoC)

• Backward compatibility with existing bus protocols.

• Supports real time applications.

• Flexible topologies according to the design requirements.

• Run-time reconfigurable system.

The major components of the Aethereal, the Network Interface (NI) and Router are interconnected 

based on the topology selection and configuration. The services are mapped according to the traffic 

demands as connection, which have 2 channels to send and receive data packets. The packets access 

the shared resources. Resource conflict arises when two packets try to access the same resource at 

the same time. This leads to unpredictable behaviour by the either dropping the packet or delaying 

them. Guaranteeing throughput and latency needs to address this issue by reserving and releasing 

the shared resources.

The links are used and shared by a connection for a fixed duration using Pipelined TDM circuit 

switching  [1].  Each  link  is  multiplexed  in  time,  thus  single  link  can  carry  several  flows.  The 

arbitration to access  a  link is  controlled by TDM slot  table,  which results  in  a contention free 

network [10]. The contention free routing is implemented by TDM based slot table in the Network 

interface (NI). The data packets are organised as flits. The TDMA has fixed timeslots for every flit. 

The shared resources are reserved for a flit for a particular time slot and released at the end of the 

slot. This result in no two flits will conflict to use a resource at the same time. The time period (T) 

of a slot is the time taken for the flit size words (N) at each hop. In other words, the propagation 

delay  of  the  router.  So,  in  a  time  period  T  of  a  slot,  N  words  can  be  transferred.  The  NoC 

components such as Routers and Network Interface (NI) consume and deliver flit size words in one 

time slot. The slot table algorithm depends on the specific application and design. It is run time 

programmable. All components should be globally synchronous to occupy the same fixed time slot 

to avoid contention. For every hop the slot table advances one slot. So, every component should 
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synchronize  with  their  neighbours  for  every  slot.  This  global  synchronicity  is  achievable  by 

distributing a single centralized global clock. However for larger design it  has problems due to 

global clock skews and wire delays. The simple solution is to run the design at lower frequencies to 

avoid timing closure issues. Also, the slot synchronization could be implemented in a distributed 

manner using synchronous data flow model [discussed later in section 5].

A TDMA Slot table is used to allocate bandwidth for different flows. Throughput is guaranteed by 

the number of slots reserved for a connection. Slot corresponds to the bandwidth. Total bandwidth = 

N* Bi, where N = No. Of slots for a connection; Bi = Slot Bandwidth. The latency is bounded by 

the waiting time until  the reserved slot arrives and the number of routers or hops to reach the 

destination [1].

 2.1 NI – Network Interface

NI converts the IP protocols such as AXI, DTL, OCP etc., to packets. It has two parts: NI- Shell and 

NI –Kernel

NI-Shell – Implements connections based on the application demands and take care of the protocol 

compatibility between NoC and IP cores.

NI- Kernel – Implements channel, packetizes messages, manages the end-to-end flow control and 

Clock Domain Crossings (CDC) to the IPs.

NI  Kernel  communicates  with  NI  shells  through  FIFO  ports.  Each  port  can  have  number  of 

connections to allow differentiated services. A peer-to-peer connection has two channels, request 

and response channel. Each channel has two queues (Input and output) in each NI-Kernel (Source 

and  destination).  The  Guarantees  are  provided  for  a  connection  by  reserving  a  slot  for  that 

connection in the Slot Table Unit (STU), configuring for end-to-end flow control in the respective 

credit registers and routing information in connection table. The end to end flow control ensures 

that no data is sent unless there is sufficient space at the destination buffer. Hence buffer overflow is 

avoided.

 2.2 Router

The router routes the data from source to destination ports based on the packet header. The NI 

programmable registers embed the route description or path details in the packet header and the 

packets reach their destination by source routing. The Router decodes the packet header for the 

routing information and forwards them accordingly. The two classes of traffic Best effort services 

(BE) and guaranteed services (GS) have two separate queues or channels inside router. The link is 

shared between these channels based on priority.  The GS packets have higher priority over BS 

packets. During absence of GS packets, the BS packet uses the link. Thus the router needs to have 
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the scheduler and local link level flow control.  The local link level flow control is necessary to 

check the space availability in the BE queues of the neighbouring router.

In the current prototype of Aethereal NoC we use the centralized configuration where:

• Routers do not need to be configured.

• Source routing is used with packet headers having the routing information.

The contention is avoided when two packets trying to access the same resources at same time [10].

• All routers go from current slot to next simultaneously using a synchronous global clock.

• Filling slots such that the sets of simultaneous GS connections are contention free.

 2.3 Limitations of GS-BE architecture

* Global Synchronous Clock: Currently GS-BE architecture runs at global clock frequency, there by 

synchronizing with IP cores and NoC. This lacks scalability with the design complexity, high on-

chip data rates and reducing process technologies. [as explained in section 1]

* Area: The GS-BE architecture in Aethereal has both BE and GS channel in the router parallel 

occupying more area when compared with GS- only Aelite.  The Best effort  packet queues and 

round robin scheduler with local link level flow control increases the complexity and size of the 

router.

*  Performance:  The  Best  effort  blocks  cannot  guarantee  the  performance  explicitly  such  as 

guaranteeing the lower bounds on throughput and upper bounds on latency. The BE arbiter which 

performs  round robin scheduling is  in  the critical  path of the router.  This  limits  the maximum 

frequency it could run.

The GS traffic has resource reservation for the worst case. This results in under utilization of the 

resources  during  the  normal  case.  On  the  contrary,  combined  GS-BE  services  enhance  better 

resource utilization by using the unreserved or reserved but unused slots for the BE traffic. But it is 

not most favourable in the real time applications having strict requirements on the timing, area and 

frequency.

The GS-BE system can also be implemented by allocating the resources with guaranteed features 

only.  This  increases  the  number  of  GS only routers,  which has  positive  impact  on the  system 

occupying lesser area and running at higher frequencies. We get good performance normalised to 

cost.

7



 2. Aethereal NoC

8



 3. Aelite NoC - Guaranteed Services Only

 3. Aelite NoC - Guaranteed Services Only

In  the  Aethereal  NoC, all  components  survive  on a  single  centralized  global  clock,  which  has 

difficulties  in the back end placement  and routing in high performance complex SoC. The NI/ 

Router components must be cycle level synchronous, in other words the output data word from a 

component should reach its neighbour in the next clock cycle. The link delays due to longer wires 

are not addressed.

The aelite  NoC addresses these issues by providing only the guaranteed services with bounded 

latency and throughout. The clock is allowed to have skews or phase difference inside the NoC by 

using the mesochronous link architecture. The muliple clock domains could be implemented using 

the  asynchronous  wrapper,  which  introduces  globally  asynchronous,  locally  synchronous 

architecture.

The aelite NoC composed of network interfaces (Shell & Kernel), links and routers. The processors 

or  IP  modules  are  connected  to  each  other  and  with  their  memories  through  aelite  NoC.  It 

guarantees  the  minimum  bandwidth  and  maximum  latency,  end-to-end  flow  control,  FIFO 

scheduling. These services are needed to control the IP communication traffic. In the next section 

we discuss about the Aelite router architecture.

 3.1 Aelite Router

The Aelite router has major blocks such as: Header Processing Unit (HPU), GT queue, one hot 

encoder (OHE), GT reservation unit (GRU) and Switch..  The design supports 3 pipeline stages 

corresponding to the router latency of 3 cycles as drawn in figure 1.

9
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Figure 1: Aelite Router architecture

 3.2 GT queue

The Flits from the Network interface Kernel are buffered in the queue. From here, the Header-

processing  unit  (HPU)  fetches  the  word  using  valid  -  accept  handshakes.  The  Queue  size  is 

determined by depth * width based the design. The depth is number of flits to buffer in the queue 

that is normally one and width corresponds to the flit size.

 3.3 Header Processing Unit (HPU)

The GT queue FIFOs handshakes with HPU for every word transaction. Based on the input word, 

either header or payload of the words are treated accordingly using its finite state machine states.

Every word in a flit is accompanied with the control words denoting its validity (data_valid) and if 

it is End of Packet (eop). Where as in the Aethereal router where every word has its own tightly 

mapped control bits denoting different aspects such as GT/BE flit, number of valid words in a flit, 

and eop. Thus the HPU has to keep track of which word it process to decode the correct control 

message.

The aelite router has eliminated this complexity, which is necessary for the mixture of GT and BE 

traffics. The seperate bits (data valid and eop) for every word have relieved HPU from the router 

critical path.

Another advantage is the flit is not necessarily fixed to constant or fixed flit size ie.,3.
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The design has flexibility to adapt the variable flit size, which could even be configured at run time. 

Two FSM states of the HPU are Init and GT. The HPU remains in Init state when it processes the 

header of a flit and in GT state for the payload transactions.

Init  State:  The Packet  header  is  parsed in  this  state.  The header  of  the  packet  holds  the  path 

information with other useful details  like Control bits,  End to End flow control Credits,  Output 

Queue.

Example of header mapping:

For Data width of 32 bits, the above details are encoded as,

EOP : 33

Data Valid : 32  

End to end flow control credits : 31: 27

Destination Output queue : 26:22

Path : 21:0

GT state: The payload of the packet is analysed for their validity and End of packet. If end of 

packet has been reached the state goes back to init expecting a new packet header. If not, it forwards 

the payload to the router output ports indicated by their header. The payload of a packet is trails or 

follows the path mentioned in the header uninterrupted.

Figure 2: HPU-FSM states

Data_valid EOP Current State Status Next State

0 X Init Invalid Init

1 0 Init Parse header GT

1 1 Init No Payload Init

1 0 GT Payload continues GT

1 1 GT Packet Ends Init

HPU signals data validity (data valid) and its target port number to its successors.
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 3.4 One hot encoder - (OHE)

The high performance synthesizable switch favours the one hot encoder on both ASIC and FPGA 

[15]. The port number to which the word has to be delivered is sent to one hot encoder (OHE). The 

one hot encoder sets one bit in the state register for each state, in other words it uses one flip flop 

per state. So that only one flip-flop is turned on at any time. The one bit change during single 

transition helps to detect the single bit error. OHE simplifies the logic and interconnect between the 

logic. It results in faster design but utilize more area than using the tri-state buffers [15]

Example:

An Arity 5 router requires 5 flip-flops for one-hot encoding.

000 – 00001 

001 – 00010 

010 – 00100

011 – 01000

100 – 10000

101 – 00000 - Invalid state

110 – 00000 - Invalid state 

111 – 00000 – Invalid state

 3.5 GT reservation unit (GRU)

The encoded output of the OHE flows to the GRU. The valid words are identified by the data valid 

signal from HPU. These valid signals help GRU to mask the invalid port numbers. The valid output 

port numbers are passed on to the switch as switch select.

Example:

Arity 5 router, having valid words on ports 1 and 4.

Encoded GRU Inputs * GT_valid = Output_ports

(Transposed one hot outputs)

00000 * 10010 = 00000

00001 * 10010 = 00000

00110 * 10010 = 00010

01000 * 10010 = 00000

10000 * 10010 = 10000

12
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 3.6 Switch

The switch logic is an important part of the router. The processed data from HPU is switched to 

correct destination or router output ports using switch select values. The switch implementation has 

effect on the router performance and cost.

Example:

Port no.     Switch_data_in  Switch_Select  Switch_data_out

4 ddddd 00000 00000 <= o/p port 4

3 00000 00000 00000 <= o/p port 3

2 00000 00010 ddddd <= o/p port 2

1 ddddd 00000 00000 <= o/p port 1

0 00000 10000 ddddd <= o/p port 0

 3.7 Simulation results

Figure 3 shows the simulation results of the Aelite router.

Point A: The data word enters the router (Router_data_in). It get buffered in the queue.

Point B: The data word leaves the queue in the next clock cycle to HPU.

Point C: The header got parsed and ouput port numbers are determined. These port numbers are one 

hot encoded. These encoded port numbers are masked by the GRU and sent as switch select. The 

hpu ouput word reaches the switch as switch data input.

Point D: The data words are switched to the respective output ports based on the switch select 

signal. Thus a word takes 3 cycles to hop the router.

13
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Figure 3: Simulation results of Aelite router

14
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 3.8 Synthesis results

Arity Architecture Technology PVT Max. Freq.

(MHz)

Area

(um2)

5 Aethereal Cmos90nm Wccom 680.27 69935.779

5 Aelite Cmos90nm Wccom 826.45 17390.37

Table 1: Synthesis results comparison

Area : Aelite router occupies 4 X less area

Performance : Aelite router operates 1.2 X higher clock frequency.

 3.9 Limitations

The aelite NoC uses the sychronous global clock  which imposes limitations on the NoC operating 

frequency. The link between the routers can have one cycle delay which limits the placement of 

routers. The long links with delays larger than one cycle could be pipelined. In that case, the input 

register in the aelite router could be moved to their links.

To ensure the correct data transfer, low skew clock has to be maintained.  The NoC design that 

supports mesochronous links eliminates these problems with synchronous global clock.
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 4. Mesochronous NoC

The increasing  die  size  made  the clock  distribution  harder  for  future  multi-GHz design  due to 

interconnect  parasitic,  jitter,  clock  skew,  duty  cycle,  power  dissipation  etc.,  [16,17,18].  The 

Mesochronous  design  getting  more  attention  where  data  and  clock  travel  together  and  data  is 

realigned with the local clock phase of the receiver. The clock distribution problems are alleviated 

by allowing, every logic block running at the same clock frequency but with unknown phase shift.

 4.1 Mesochronous Link

The link between the network components of Aelite architecture has been used to transfer data 

signal (32 data bits, 2 control bits). The low link level flow controls between the routers are not 

necessary during transfer, as it does not have the best effort traffic. In other words, routers have 

only one virtual connection. The data synchronization is necessary when we allow different clock 

phase relationship inside the NoC. Thus the physical links are implemented as link buffers between 

the components for signal synchronization.

The Link buffers are bi-synchronous FIFOs or Embedded asynchronous FIFOs used for fixing the 

skewed phases. These link buffers could be allocated a time slot in the slot table unit where slot 

duration is the time taken for a flit to cross the link. The FIFOs are combined with a finite state 

machine (FSM), which is synced with the read clock. The link buffer is accessed once in every 3 

cycles by the reading or receiving router/NI. This is ensured by the FSM states. The FSM along 

with link buffers promises that a slot could be allotted for the link between the components. Thus 

the Guaranteed services are obtained by the allotting a slot for the link model.

Figure 4: Link Model

The clocks can be skewed either positive or negative. The FIFOs fix these phase differences of read 

and write clock. The synchronised flits waits for the FSM handshakes or permission to enter the 

Router/NI. The read clock aligned FSM, fetches the flits for the components. It checks the FIFO for 

a flit and signals the Router/NI to accept the flit. The checking happens once in every 3 cycles. So 

we have three cycles for the link buffer to transverse the data words/ a flit.
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Allowing the clock skews of half a clock cycle, the propagation delay of the FIFO buffer not more 

than 2 and a half cycle, we can safely read the input flit aligned with the reading clock at state 0. 

The FSM has 3 states namely state 0,state1, and state2. When it is state0 it checks for the word in 

the link buffer. If word is available, FSM sends the read accept signal to the link buffer and signals 

router for data valid. During the state transition for every read clock cycle i.e. from State0 to State3, 

three words of a flit are fetched and passed on.

Figure 5: Clock cycle waveforms for both skews

Every flit must arrive the router/NI on its reserved slot to avoid contention during routing. The flits 

that arrive early or late made them scheduled at wrong slot. Therefore the words of a flit must be 

available on their respective FSM state or before. When it arrives earlier it has to wait for the FSM 

handshake (read accept). The word0 must present at FSM state 0 or 2 cycles earlier and word 1 and 

word2 must be forwarded in the following FSM states 1 and 2 consecutively without any delay.

It resembles a synchronous data flow actor which fires upon token arrival and produces the token at 

the output [as explained in next chapter]. The Link buffer should be sized such that it would not 

underflow or overflow under any circumstances. When the skews are bounded, sizing could be done 

by analysis [19,20].

The total time spent for link traversal will not exactly be 3 cycles from the global clock point of 

reference due to the clock skews or phase difference between writing and reading clocks. But the 

18



 4. Mesochronous NoC

FSM associated with the FIFOs absorbs this difference by reading the flit once in every 3 local 

clock cycles. Every component moves from one slot to another according to its local clock thereby 

accepting the new flit. The slot advancement differs between the components absorbing the phase 

differences between them. Thus the flits are realigned with the reading clock cycle and made flit 

synchronous.

Figure 6: Mesochronous Architecture

 4.2 Limitations

The Mesochronous adaptation of the Aelite NoC is simple, but the Mesochronous link architecture 

is only suitable for the design where all components have the same clock frequency with phase 

difference.  When  the  frequencies  are  different,  each  component  has  to  be  synchronised 

asynchronously and the components  should be patient  to  synchronise  every input  flits  upon its 

arrival.
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 5. Data Flow Model

In  the future,  many embedded product  will  be heterogeneous in  terms  of  cores,  memories  and 

interconnects.  The  resource  management  and  communication  and  synchronization  between  the 

components are crucial to meet the strict deadlines in the real time application domain.

A Firm real time embedded applications have hard deadlines in terms of throughput and latency. A 

predictable system needs to guarantee these timing requirements. The resource management of the 

system must be known for bounding the timing behaviour. The SDF model of computation can be 

used to model the behaviour and fulfils the requirements of a predictable system by using analytical 

techniques [21]. This chapter explains the Synchronous Data Flow Model of computation to design 

the flit synchronous Aelite NoC.

 5.1 Model

The SDF graph nodes or actors represent a specific functional computation. The communication 

channel or arcs between the actors represent the data path. Thus the data dependencies between the 

actors  are  revealed.  The actors  communicate  with each other  by tokens.  Tokens  represent  data 

containers.

Figure 7: Synchronous Data flow actors and tokens

An actor can perform its computation or in other words it can Fire when it has sufficient input 

tokens  available  on its  input  arcs.  A Firing rule  specifies  the number  of  tokens  consumed and 

produced by each actor.

The Firing has the following steps:

• Actor consumes a token from its input arcs

• Actor produces a token on its output queue after the execution time.
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The input arcs holds the sufficient number of initial tokens to avoid deadlock. Deadlock causes the 

actors to get stalled without sufficient tokens on its inputs to fire during execution. The act of firing 

the actors is controlled by the availability of the input tokens. This is called as Data Driven. The 

arcs are assumed to have unlimited capacity for SDF. Each actor fires whenever there are sufficient 

tokens at the input arcs. As a result of firing, the actor produces tokens in the output arcs.

An actor firing is atomic and cannot be interrupted. The Firing rule clearly specifies when an actor 

could be enabled, the number of tokens consumed and number of tokens produced. In SDF, if the 

actors consume and produce one token per firing, it is called as homogeneous SDF. Thus all actors 

have fixed rates or deterministic behaviour. The deterministic nature of the SDF helps to design the 

predictable system [22]

 5.2 Implementation

1 Packet 

1 Flit / Token

   1 Word

Word n Word 3 Word 2 Word 1 Word 0
33.....….....…….....0

Figure 8: Packet format

In SDF model, each actor can Fire independently or concurrently based on the arrival of the input 

tokens instead of the global clock signal. The components such as routers and NIs are modelled as 

actors. The delay caused in a channel doesn't affect the slot table allocation because the router and 

NI wait for the token to arrive in order to fire. Thus the Global synchronicity between the NoC 

components can be implemented in a distributed manner on the flit level or slot level not on clock 

cycles. This implementation of SDF model has no effect on the NoC design flow.

The arcs or communication channel between actors are implemented as FIFO buffers.

The tokens reside in these buffers before/after they are consumed and produced. The Initial tokens 

are the Empty token that has no valid data and initialized in the input buffers to avoid deadlock 

condition.

Every component will follow the same firing rule such as:

•An actor (Router/NI) fires when there is sufficient flits (N words) in the input buffer and sufficient 

space for the flits in the output buffer.

•As a result of firing, an actor (Router/NI) produces a flit (N words) in the output buffer.
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The  data  synchronization  has  issues  with  the  data  path  delay,  which  has  been  addressed  by 

pipelining  them or mentioning  them as the Multi  cycle  path in the synthesis  tools  or by using 

latency insensitive design. The bi-synchronous FIFO or embedded asynchronous FIFO could be 

used to fix the issues with clock phase and frequency.

 5.3 Analysis 

Every actor has bounded execution time i.e., the time span between the consumption of a input 

token and production of a output token. The execution time refers to their worst-case execution 

time. When we use the actors with fixed execution time, the overall worst-case throughput of the 

system can be determined by periodicity property and overall latency of the system is determinable 

using bounded ness property. [24] The SDF actors have fixed number of token consumption and 

production. The self-timed execution i.e. all actors fires as soon as firing rule is satisfied, enable us 

to determine the maximum throughput of the SDF graph [23].

Allocating the sufficient resources for each actor is necessary to fulfil the constraints. The resources 

can  be  utilized  for  a  fixed  amount  of  time  corresponding  to  the  slot  period.  The  token 

communication between actors has the transfer delay (t), where t = Token size / Bandwidth [24]. 

The predictable system must have all their task executions bounded. Each arc or the communication 

channel should have bounded storage capacity. It should never underflow or overflow. The optimal 

buffer sizing is necessary to have minimum buffer without affecting the timing requirements of the 

system.
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 6. Latency Insensitive Design

The  Application  convergence  has  made  present  and  future  chip  to  allow  higher  degrees  of 

heterogeneity in System on Chip (SoC). Each application can be mapped on any of the cores. The 

IP cores and modules run at their native frequency, independent of each other enabling them to 

process the data in parallel to meet the computational demands. Thus the synchronous system is not 

scalable for growing chip complexity in terms of size and performance requirements.

In Synchronous Distributed system, every component is modelled as an individual actor and they 

communicate via channels. Every actor must be functionally correct and able to run independently. 

Such a system must be prone to channel delay or latency insensitive. [26]

• Latency insensitive design is not affected by inter connect or channel delay.

• We  can  split  the  larger  design  into  modules  of  synchronous  blocks  handshaking 

asynchronously among themselves.

• The Synchronous blocks are made latency insensitive using wrappers.

• The time critical long wires or communication channel could be pipelined.

• When the actors and FIFO channels has fixed latency, the whole distributed system has a 

bounded  latency.  So,  for  any  chosen  architecture  we can  guarantee  the  throughput  and 

latency.

In an asynchronous system, each module or components operate not depending on the global clock. 

Each module can be modelled as a patient process whose behaviour is insensitive to the wire delays. 

The  data  must  be  latched  correctly  with  their  receiving  clock  to  avoid  the  Meta  stability.The 

communication  channel  can  be  modelled  as  bi-synchronous  fifos  or  Embedded  Asynchronous 

FIFOs, which will synchronise the data between read and write clock acting as a clock domain 

crossing.

The channel or interconnect delay between components is hard to predict on earlier phase of the 

design. The timing closure problem arises during placement and routing while dealing with longer 

wires and balancing the clock tree. In a synchronous data flow model, every actor fires when it has 

sufficient tokens on its input buffers. Each process is patient or stalled until all tokens arrive in all 

its input ports tolerating the channel delay.[27]

In our implementation of the model, every router & NI waits for a token or flits to perform an action 

and produces the token or flits.  By making the component to stall for every flit cycle to gather 

required  flits,  all  components  are  made  flit  synchronous  with  each  other.  The  varying 
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communication channel delay doesn’t alter the functionality of the Router/NI. The channel has been 

implemented as bi-synchronous fifo or embedded asynchronous fifos which helps the data to travel 

safely between different clock regions. Wrappers are designed to stall  the components for flits. 

Wrappers help each component to act like a stallable process. These processes communicate with 

communication channel using valid & accept handshakes.

 6.1 Skew Insensitive Design

The Skew insensitive design is needed in the case of mesochronous and asynchronous design.[28] 

The skew on the clock tree distribution is tolerated which helps the design to run at higher clock 

frequency. The difference between the arrival times of the clock signal across the chip is called as 

clock skew. While designing a system, the data propagation delay and the clock skew must be taken 

into consideration to avoid timing closure problems. The allowable clock skew is always less than 

the shortest data path, which allows us to have larger clock period or lower frequency.

The major components of NoC are NIs (Kernel + Shell), Routers and Link between them. Those 

links are implemented as FIFO buffers such as Embedded asynchronous FIFO, which exists in NXP 

library.  It is asynchronously micro-pipelined and has series of stages or cells communicating with 

each other by handshakes. The 

Read and write interfaces of the fifo are connected with read and write clocks along with their data.

These interfaces synchronises the internal asynchronous control signals like read / write enable, 

empty / full signals with the read and write clocks. Thus it is possible to have clock signals with 

different  phase  and  /or  frequency  to  read  and  write  data  in  the  FIFO  [30].The  Embedded 

Asynchronous FIFO exhibits area efficient, low power and high-speed operation. (Refer table 2).

Register-based

Gray FIFO [31]

Bi-synchronous

FIFO [31]

Embedded  Asynchronous 

FIFO [30]

Depth*Width 16*32 16*32 32*37

Area (um2) 20364 13384 6554

Process technology Cmos 90nm Cmos 90nm Cmos 90nm

Table 2 : Synthesis results of different FIFO designs

The delay in the data path and clock skew affects the data transfer from one region to another. Thus 

the skew and transmission delay or wire delay between blocks cause synchronization problems in 

the time division multiplexing over the pipelined path. [29]. The Timing closure and clock tree 

distribution problems could be easily fixed using the GALS model. In which all components or 
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processes think locally and act  globally.  They have freedom to run at  different  phase and /  or 

frequencies.  The  above  mentioned  latency  insensitive  and  skew  insensitive  design  fixes  the 

synchronization issues in the real time embedded applications where multiple clock domains exists.
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 7. Globally Asynchronous Locally Synchronous (GALS) 

NoC

The Synchronous global clock needs more care to be taken and limited by the physical Size of the 

chip and the Maximum frequency it could run. The clock distribution has a major share in power 

consumption [5, 18]. For the high performance design these issues are mitigated by considering 

each  design  blocks  running  synchronous  locally  and  communicating  with  each  other 

asynchronously.

 7.1 GALS Design

The GALS architecture  is  helpful  in  designing  the  distributed  systems,  allowing the  blocks  as 

synchronous islands. To implement the latency and skew insensitive model the NI / Routers do have 

asynchronous  wrappers.  So  all  components  run  synchronously  locally  but  communicate 

asynchronously by means of handshakes.  These synchronous islands communicate  through link 

buffer such as embedded asynchronous FIFOs or bi-synchronous FIFOs used for clock domain 

crossing. For guaranteed services, each component must be slot synchronised with each other. This 

results in having asynchronous wrapper for every component, which buffers the token or flits from 

its neighbours.

 7.2 Asynchronous Wrapper

The Asynchronous wrappers has Port interface (PI) and Port interface Controller (PIC) as shown in 

figure 9. The NoC components communicate with each other via these wrappers and clock domain 

crossing link buffers.

Figure 9: Asynchronous wrapper
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 7.3 Port Interface (PI)

The Port interface (PI) acts as the interface between the Router/NI and link buffers as depicted in 

figure 10. It has FIFO buffers and counters. The FIFO buffers are used as the Input and output 

queues for the corresponding port. The counters are used to count the number of words enter or 

leave the input and output queues.

Figure 10: Port Interface (PI)

Figure 11 explains the functional block diagram of a port interface. The words or flits are collected 

in the Input and Output queues. Fill  and space counter act as their  corresponding counters. Fill 

counter  keep track of the number of words available  in  the input  queue.  Space counter counts 

number of free spaces available in the output queue. During flits transaction,  the filling counter 

increments when a word enters the input queue and decrements when it leaves. The space counter 

increments when a word leaves the output queue and increments when it enters the queue.

To achieve flit synchronicity, every component modelled as the stallable process such that it buffers 

the flits from all its neighbours. When there are sufficient number of words i.e. a flit (a flit = 3 

words) in the input queue and sufficient number of spaces for a flit in the output queue, the fire 

condition  is  satisfied.  When  all  port  interfaces  has  fire  condition  signal  enabled  high.  This 

guarantees the availability of flit in all its input queues and has sufficient spaces reserved for them 

in the output queues.

The router/NI can start accepting the flit. The signal Fire condition acknowledges this firing rule in 

the data flow model [as explained in chapter 5].
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Figure 11: Port Interface (PI) functional block diagram

 7.4 Port Interface Controller (PIC)

In the previous section – Data Flow model, we have discussed about the Initial Tokens to avoid 

deadlock. PIC instructs Port interfaces, when they have to generate the Initial tokens in their input 

queues.

 7.5 Tokens Generation:

The  initial  token  generation  are  taken  care  by  these  wrappers  instead  of  router  to  reduce  the 

complexity in the Header processing Unit (HPU).

The PI & PIC are responsible for token generation and token passing. Their action points are:

• Generates Initial “empty” tokens after reset

• Pass the tokens from the adjacent Link buffers.

To perform these actions, they have 2 states namely, Init or Initial state and Start or Normal state as 

shown in figure 12.
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Figure 12: Token states

INIT:

• Empty token generation.

• Word Counter is incremented each time a token is generated.

• When the  counter  reaches  the  flit  size  in  other  words  when the  flit  size  tokens  are 

generated, it moves on to start state. 

• The  Empty  token  valid  from PIC is  active  during  Init  state  after  reset.  This  signal 

enforces the port interface to produce sufficient Initial empty tokens in the PI - input 

queues.

START:

• The available spaces in the output queue and available words or token in the input queue 

are checked for firing rule in all Port interfaces around the router.

• If every link control has flit size tokens (empty /data) in the input queue and flit size 

spaces in the output queue then FIRE is ordered.

• The normal operation is resumed.

 7.6 Functional Description

Port interface controller receives the Fire condition signal from all the port interfaces (PI). When all 

the port interfaces has Fire signal high/active, the Port interface controller issue Fire signal high. 

The Fire signal from the PIC confirms that all the port interfaces has the firing condition satisfied. 

This is the valid in for the Router and read accept for the PI queues. The Token (data /empty) enters 

the router followed by the Fire signal.

The Router processes the Input flit and routes them to the corresponding output ports based on their 

header details. The consumed flits appear at the output queues after router latency cycles, indicated 

in figure 13. The router latency is 3 cycles representing the pipeline depth of the router’s data path. 

When the input registers are removed, the router has 2 cycles latency. The Fire signal (valid in) 

accompanying the input data is delayed or registered for router latency cycles and used to signal 

writes valid accompanying output data word. The Output data with write valid is used for writing 

data in the Output queues of the PIs. 

The PI and PIC guarantees that the Flits or tokens that are passed to the router, belong to the same 

flit cycle. By asserting the fire condition signal high, every PIs confirms that they have the flits 
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arrived and have spaces reserved for the output data from router. The collective fire condition or 

logical Anded fire condition is the Fire signal output from the PIC. It confirms the flits are passed 

synchronously from PI – input queue to router. Thus every router is synchronized at flit level.

Figure 13: Token Latency

Unlike the router, which has no data stalling inside the pipelined registers, the NI stalls the data 

before they get scheduled for every flit cycle. When a router or NI output port has no data to be 

sent, it sends empty token signalling the neighbour that it has advanced one slot in the slot table. 

This produces every output port a token either data or empty for every transaction. As we have seen 

the fire signal is the combined signal of all the fire condition from PIs. Without these empty tokens 

the adjacent router/Ni will wait for the token from all its neighbours and cannot fire immediately, 

this would cause the entire system to deadlock eventually.

 7.7 Simulation Results

Point  A:  The  flits  from  2  different  links  are  buffered  (w_wr_data_in0,  w_wr_data_in1)  and 

synchronised. As soon as the entire flit arrives, PI enable hign the fire condition (fire_condition). 

The router will not fire (fire) until it receives a flit in all its input. When the fire condition from both 

PIs are high, Port interface controller commands fire. It indicates the router that the firing condition 

is satisfied. The flit from the queue enters the router followed by the fire. We could see 3 words 

entering the router in the next 3 cycles (data_in0, data_in1).

Point B: The flit entering the router processed out (data_out0, data_out1) after router latency cycles. 

Here in this case it is two cycles. The ouput word gets stored in the output queue in the next clock 

cycle ready to be read (w_rd_data_out0, w_rd_data_out1).
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Point C & D:  The flit remains in the output queue until it receives the read accept handshake signal 

(w_rd_accept_out0,  w_rd_accept_out1) from the link buffer. The flit is released from the queue 

when the handshake is done.

Point D: The New flit entered in the input queue waits to be scheduled. Fire condition is not high 

because the output queue is not free, which is occupied by the last flit. As soon as the last flit leaves 

the output queue the fire condition goes high.
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Figure 14: Simulation results ofAsynchronous wrapper
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 7.8 Synthesis Results

The synthesis has been done on Cmos 90 nm process technology under the condition of worst case 

commercial (WCCOM). The total area of the arity 2 router with asynchronous wrapper architecture 

is 30325.590 um2. The Port interface has the FIFO queues of width 34 and depth 6.

Design Blocks Total area (um2)

PIC 229.39

Port Interface 13216.201

Router 3646.227

Combinationa 17.562

 7.9 Limitations

The flit synchronous Aelite NoC overall frequency is determined by the slowest component. The 

overall  frequency could be improved by implementing link width conversion in the component 

wrapper architecture.
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 8. Results Comparison

Figure 15. shows the trade-off between the target frequency and cell area of Arity 5 router with data 

width 32 bits using Cmos 90 nm technology.

Figure 15: Frequency and Cell area trade off

The maximum operating frequency and cell area scaling with different data width for arity 6 router 

are shown in figure 16 and figure 17. we could observe maximum frequency decreases linearly with 

the increasing word width. The area increases linearly with the increasing word width.. Thus the 

router offers larger throughput at a lower area. e.g. An arity 6 router offers 64 Gbyte/s at 0.03 mm2 

for a 64 bit word width.
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Figure 16: Maximum frequency for varying word width 

Figure 17: Total Cell area for varying word width 
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 9. Conclusion

 9. Conclusion

In comparison with Aethereal  NoC, Aelite  NoC offers only guaranteed services which has less 

complexity with less control signals due to the absence of link level flow control signals. It has 

better  performance 1.2 X the operating frequency and cheaper  having 4 X the lesser area.  The 

mesochronous architecture allows the clock phase differences inside the NoC and GALS design 

supports multiple clock domains on the same chip. This project would be extended for future work 

accommodating link width conversion in the each component wrapper architecture.
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PIC - Port Interface Controller 
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