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Abstract—A novel learning procedure, called FloatBoost, is proposed for learning a boosted classifier for achieving the minimum error

rate. FloatBoost learning uses a backtrack mechanism after each iteration of AdaBoost learning to minimize the error rate directly,

rather than minimizing an exponential function of the margin as in the traditional AdaBoost algorithms. A second contribution of the

paper is a novel statistical model for learning best weak classifiers using a stagewise approximation of the posterior probability. These

novel techniques lead to a classifier which requires fewer weak classifiers than AdaBoost yet achieves lower error rates in both training

and testing, as demonstrated by extensive experiments. Applied to face detection, the FloatBoost learning method, together with a

proposed detector pyramid architecture, leads to the first real-time multiview face detection system reported.

Index Terms—Pattern classification, boosting learning, AdaBoost, FloatBoost, feature selection, statistical models, face detection.
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1 INTRODUCTION

NONLINEAR classification of high-dimensional data is a
challenging problem. AdaBoost methods, introduced

by Freund and Schapire [1], provide a simple yet effective
approach for stagewise learning of a nonlinear classification
function. A classifier, or classification function, assigns the
input a class label, such as +1 or -1. While a good classifier is
difficult to obtainat once,AdaBoost learns a sequenceofmore
easily learnable “weak classifiers,”1 whose performances
may be poor but better than random guessing; and boosts
(combines) them into a “strong classifier” of higher accuracy.

Originating from the PAC (probably approximately
correct) learning theory [2], [3], AdaBoost provably achieves
arbitrarily good bounds on its training and generalization
errors [1], [4] provided that weak classifiers can perform
slightly better than random guessing on every distribution
over the training set. It is also shown that such simple weak
classifiers, when boosted, can capture complex decision
boundaries [5].

Relationships of AdaBoost to functional optimization and
statistical estimation have been established recently. It is
shown that the AdaBoost learning procedure minimizes an
upper error bound which is an exponential function of the
margin on the training set [6]. Several gradient boosting
algorithms are proposed [7], [8], [9], which provide new
insights into AdaBoost learning. A significant advance is
made by Friedman et al. [10]. It is shown that the AdaBoost

algorithms can be interpreted as stagewise estimation
procedures that fit an additive logistical regression model.
Both the discrete AdaBoost [1] and the real version [4]
optimize an exponential loss function, albeit in different
ways. The work [10] links AdaBoost, which was advocated
from themachine learningviewpoint, to the statistical theory.

1.1 Boosting Learning

The following two problems associated with AdaBoost
motivated us to investigate into a more effective boosting
learning algorithm: First, AdaBoost minimizes an exponen-
tial (or some other form of) function of the margin over the
training set [6]. This is for convenience of theoretical and
numerical analysis [10]. However, the ultimate goal in
applications of pattern classification is usually to minimize
a cost directly (usually linearly) associatedwith the error rate.
A strong classifier learned by AdaBoost is suboptimal for
applications in terms of error rate. This problem has been
noted, e.g., by [11], but no solutions have been found in the
literature.

Second, AdaBoost leaves a challenge of learning weak
classifiers to the practitioner’s choice. Learning the optimal
weak classifier, such as the log posterior ratio given in [4],
[10], requires estimation of densities in a feature space. This
by itself is a difficult problem, especially when the
dimensionality of the space is high. An effective and
tractable weak learning algorithm is needed.

In this paper, we propose a novel learning procedure,
called FloatBoost (Section 2), to bridge the gap between the
goal of conventional boosting learning (maximizing the
margin) and that of many applications (minimizing the error
rate) by incorporating Floating Search [12] into AdaBoost.
The idea of Floating Search is originally proposed for feature
selection [12]. An incorporation of the backtrack mechanism
from Floating Search into boosting learning allows deletions
of weak classifiers that are ineffective in terms of the error
rate. Because the deletions in backtrack are performed
according to the error rate, an improvement in classification
error is guaranteed. This leads to a strong classifier consisting
of fewer weak classifiers [13], [14].
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1. A weak classifier can be any simple classification function, for
example, a nearest-neighbor classifier, or a thresholded feature value, or a
likelihood ratio function, or a posterior ratio function. The face detection
system to be described in this paper is based on RealBoost where the
posterior ratio type of weak classifiers is used.
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We also formulate a novel statistical model for learning
weak classifiers (Section 3). A stagewise approximation is
formulated to estimate the posterior probabilities based on
effective features learned from an overcomplete feature set
(i.e., in a very high-dimensional feature space). Weak
classifiers are then defined as the logarithm of the posterior
ratio. This provides a solution to the second problem
discussed in the above.

1.2 Learning for Face Detection

The FloatBoost learning algorithm is applied to face detec-
tion. The boundary between the face and nonface patterns is
highly nonlinear because the face manifold due to variations
in facial appearance, lighting, head pose, and expression is
highly complex [15], [16]. The learning-basedapproachhas so
far been the most effective for constructing face/nonface
classifiers. See, e.g., [17], [18], [19], [20] (The reader is referred
also to a recentHandbook of Face Recognition [21] for subspace/
manifold modeling, statistical learning, face detection and
recognition, and other aspects of face recognition in theories,
algorithms, and applications).

The system of Viola and Jones [22], [23]makes a successful
applicationofAdaBoost to facedetection, after earlierworkof
Tieu and Viola [24] and Schneiderman [25]. There, AdaBoost
is adapted to solve the following three fundamental problems
in one boosting procedure: 1) learning effective features from
a large feature set, 2) constructing weak classifiers each of
which is based onone of the selected features, and 3) boosting
the weak classifiers into a stronger classifier. Their system is
the first real-time frontal-view face detector which runs at
about 14 frames per second for a 320� 240 image [22].
However, this work, like [17], [18], [19], [20], deals primarily
with frontal faces.

In [26], Liu presents a Bayesian Discriminating Features
(BDF) method. The input image, its 1D Harr wavelet
representation, and its amplitude projections are concate-
nated into an expanded vector input of 768 dimensions.
Assuming that these vectors follow a (single) multivariate
normal distribution for face, linear dimension reduction is
performed toobtain thePCAmodes. The likelihooddensity is
estimated using PCA and its residuals, using the Bayesian
techniques presented in [27]. The nonface class is modeled
similarly. A classification decision of face-nonface is made
based on the two density estimates. The BDF classifier is
reported to achieve result which compares favorably against
the state-of-the-art face detection algorithms, such as the
Schneiderman-Kanade method. It is interesting to note that
such good results are achievedwith a singleGaussian for face
and one for nonface, and the BDF is trained using relatively
small data sets—600 FERET face images and nine natural
(nonface) images, and the trained classifier generalizes very
well to test images. However, more details are needed to
understand the underlying mechanism.

The ability to deal with faces of varying head poses
(termed “multiview” faces hereafter) is important for many
real applications because statistics show that approximately
75 percent of the faces in home photos are nonfrontal [28]. A
reasonable treatment for multiview face detection and
recognition in the appearance-based framework is the
view-based method [29], whereby difficulties in explicit
3D modeling are avoided. Feraud et al. [30] adopt the view-
based representation for face detection. Wiskott et al. [31]
build elastic bunch graph templates for multiview face

detection and recognition. Gong et al. [32] study the
trajectories of faces in linear PCA feature spaces as they
rotate, and use kernel support vector machines (SVMs) for
multipose face detection and pose estimation [33], [34].
Huang et al. [35] use SVMs to estimate facial poses.

In the system of Schneiderman and Kanade [36], multi-
resolution information is used for different levels of awavelet
transform. The algorithm consists of an array of five face
detectors in the view-based framework. Each is constructed
using statistics of products of histograms computed from
examples of the respective view. It takes 1 minute for a
320� 240 image over only four octaves of candidate sizes as
reported in [36].2 While great success has been achieved for
frontal-view face detection, much engineering work is
needed for real-time multiview face detection.

Here, we present a multiview face detection system
(Section 4) as an extension to the work of Schneiderman and
Kanade [36] andViola and Jones [22], [23]. The systemapplies
the FloatBoost algorithm for learning face/nonface classifiers
and uses a coarse-to-fine, simple-to-complex architecture
called detector-pyramid [13] for efficient computation in the
detection of multiview faces. This work leads to the first real-
time multiview face detection system in the world. It runs at
200 ms per image of size 320� 240 pixels on a Pentium-III
CPU of 700 MHz.

Experimental results are presented in Section 5 to
demonstrate FloatBoost learning and its use for face
detection. Comparisons between FloatBoost and AdaBoost
clearly show that FloatBoost yields a stronger classifier
which consists of fewer weak classifiers than AdaBoost yet
achieves lower error rates. Effectiveness of the detector-
pyramid for multiview face detection is also demonstrated.

2 FLOATBOOST LEARNING

In this section, we give a brief review of the AdaBoost
learning algorithm, in the notion of RealBoost [4], [10], as
opposed to the original discrete AdaBoost [1]. Then, we
present the FloatBoost learning procedure.

For twoclassproblems,asetofN labeledtrainingexamples
is given as ðx1; y1Þ; . . . ; ðxN ; yNÞ, where yi 2 fþ1;�1g is the
class label associated with example xi 2 IRn. A stronger
classifier is a linear combination ofM weak classifiers

HMðxÞ ¼
X

M

m¼1

hmðxÞ: ð1Þ

In the real version of AdaBoost [4], [10], the weak classifiers
can take a real value, hmðxÞ 2 IR, and have absorbed the
coefficients needed in the discrete version (hmðxÞ 2 f�1;þ1g
in the latter case). The class label for x is obtained as
HðxÞ ¼ sign½HMðxÞ�, while the magnitude jHMðxÞj indicates
the confidence. Every training example is associated with a
weight, which approximates the distribution of the samples.
During the learning process, the weights are updated after
each iteration in such a way that more emphasis is placed on
hard examples which are erroneously classified previously.
Such a reweighting process is important for the original
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2. During the revision of this paper, Schneiderman and Kanade [37]
reported an improvement in the speed of their system, using an coarse-to-
fine search strategy together with various other heuristics (reusing Wavelet
Transform coefficients, color preprocessing, etc.). The improved speed is
5 seconds for an image of size 240� 256 using a Pentium II at 450MHz.



AdaBoost. However, it is noted in recent studies [7], [8], [9]

that the artificial operation of explicit reweighting is

unnecessary because it can be incorporated into a functional

optimization procedure of boosting.
An error occurs when HMðxÞ 6¼ y, or yHMðxÞ < 0. The

“margin” of an example ðx; yÞ achieved byHMðxÞ 2 IR on the

training set examples is defined as yHMðxÞ. This can be

considered as a measure of the confidence of the prediction

made by HMðxÞ. The upper bound on classification error

achieved byHM can be derived as the following exponential

loss function [6]

JðHMÞ ¼
X

i

e�yiHM ðxiÞ ¼
X

i

e
�yi

PM

m¼1
hmðxiÞ: ð2Þ

AdaBoost constructs hmðxÞ by stagewise minimization of

(2). Given the current HM�1ðxÞ ¼
PM�1

m¼1 hmðxÞ, the best

hMðxÞ for the new strong classifier HMðxÞ ¼ HM�1ðxÞ þ

hMðxÞ is the one which leads to the minimum cost

hM ¼ argmin
hy

JðHM�1ðxÞ þ hyðxÞÞ: ð3Þ

The minimizer is derived as [4], [10]

hMðxÞ ¼
1

2
log

P ðy ¼ þ1jx;wðM�1ÞÞ

P ðy ¼ �1jx;wðM�1ÞÞ
; ð4Þ

where wðM�1Þðx; yÞ ¼ exp �yHM�1ðxÞð Þ is the weight after

iteration M � 1 for the labeled example ðx; yÞ and

P
�

y ¼ þ1jx;wðM�1Þ
�

¼
E wðx; yÞ � 1½y¼þ1�jx
� �

E wðx; yÞk xð Þ
¼

P

8y¼þ1 wðx; yÞ
P

8y wðx; yÞ
;

ð5Þ

where Eð�Þ stands for the mathematical expectation and 1½C�

is one if C is true or zero otherwise. P ðy ¼ �1jx;wðM�1ÞÞ is

defined similarly.

The AdaBoost algorithm based on the descriptions from
[4], [10] is shown in Fig. 1. There, the reweight formula in
Step 2.(3) is equivalent to the multiplicative rule in the
original form of AdaBoost [1], [4]. In Section 4, we will
present a statistical model for stagewise approximation of
P ðy ¼ þ1jx;wðM�1ÞÞ.

FloatBoost [13], [14] performs a backtrack after the
latest weak classifier hM is added by AdaBoost. The
backtrack deletes, from the set of learned weak classifiers
fhmjm ¼ 1; . . . ;Mg, those hm which do not help in terms
of the error rate, in order to improve on the overall
error rate.

The idea of backtrack is originally from Floating Search
[12]. It is aimed at dealing with the nonmonotonicity
problem (explained below) in sequential feature selection.
In the well-known sequential forward selection (SFS) and
sequential backward selection (SBS), features are added or
deleted one by one to improve the performance, which is
step-optimal only. An assumption for such a sequential
selection strategy to work well for the entire process is the
monotonicity, that is, adding or deleting a feature leads to
an improvement in the overall performance. The nonmo-
notonicity problem is such that adding an additional feature
may lead to a drop in the overall performance and there is
no way to correct this in later stages.

Several solutions are proposed. The plus-‘-minus-r [38],
[39] combines SFS and SBS to tackle this problem; there,
‘ features are addedordeleted, and then an r stepbacktrack is
performed, with ‘ and r fixed. The Floating Search procedure
[12] allows the number of backtracking steps to be controlled
instead of being fixed beforehand. Specifically, it adds or
deletes ‘ ¼ 1 feature and then backtracks r steps where r
depends on the current situation. This flexibility amends
limitations due to the nonmonotonicity problem. Improve-
ment on the quality of selected features is gainedwith the cost
of increased computation due to extended search. The
algorithm performs very well in several applications [12],
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Fig. 1. RealBoost algorithm.



[40]. Floating Search is further developed in [41] by allowing

more flexibility in the determination of ‘.
FloatBoost uses backtrack to remove unfavorable weak

classifiers from the existing classifiers, in order to achieve a

low error rate. The FloatBoost procedure is shown in Fig. 2. In

Step 2 (forward inclusion), given already selected weak

classifiers, the next bestweak classifier is added one at a time,

which is the same as in AdaBoost. In Step 3 (conditional

exclusion), FloatBoost removes the least significant weak

classifier from HM , subject to the condition that the removal

leads to an error rate that is lower than "min
M�1. These are

repeated until nomore removals can be done. The procedure

terminates when the risk on the training set is below J� or the

maximum numberMmax is reached.
With the conditional exclusion incorporated, FloatBoost

improves both feature selection and classifier learning. It
always results in fewer weak classifiers than AdaBoost to

achieve the same error rate ". Because deletions in backtrack

are performed according to the error rate, a lower error rate,
and reduced feature set are guaranteed.

3 LEARNING WEAK CLASSIFIERS

The optimal weak classifier at stage M is derived as (4). It
can be expressed as follows, using P ðyjx;wÞ ¼ pðxjy; wÞ
P ðyÞ=pðxjwÞ:

hMðxÞ ¼ LMðxÞ þ T; ð6Þ

where

LMðxÞ ¼
1

2
log

pðxjy ¼ þ1; wÞ

pðxjy ¼ �1; wÞ
ð7Þ

T ¼
1

2
log

P ðy ¼ þ1Þ

P ðy ¼ �1Þ
: ð8Þ

The log likelihood ratio (LLR) LMðxÞ is learned from the
training examples of the two classes. The threshold T is
determined by the log ratio of prior probabilities. In practice,
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Fig. 2. FloatBoost Procedure. HM ¼ fh1; . . . ; hMg is the the set of the best M weak classifiers learned so far; "ðHMÞ the error rate achieved by
HMðxÞ ¼

PM
m¼1 hmðxÞ (or a weighted sum of missing rate and false alarm rate which is usually the criterion in detection problems); "min

m the minimum
error rate achieved so far with an ensemble of m weak classifiers.



T can be adjusted to balance between the detection and false
alarm rates (i.e., to choose a point on the ROC curve).

Learning optimal weak classifiers requires modeling
the LLR of (7). Estimating the likelihood for high-
dimensional data x is a nontrivial task. In this work,
we derive the likelihood pðxjy; wðM�1ÞÞ based on an
overcomplete scalar feature set Z ¼ fz01; . . . ; z

0
Kg and

make use of the stagewise characteristics of boosting
learning to approximate the likelihood based on effective
features learned stagewise. More specifically, we approx-
imate pðxjy; wðM�1ÞÞ by pðz1; . . . ; zM�1; z

0jy; wðM�1ÞÞ, where
zmðm ¼ 1; . . . ;M � 1Þ are the features that have already
been selected from Z by the previous stages, and z0 is the
feature to be selected. The set Z of candidate features
and a method for constructing weak classifiers based on
these features are described in the following.

A scalar feature z0k : x ! R is a transform from the
n-dimensional (400D if a face example x is of size
20� 20) data space to the real line. For multiview face
detection, three basic types of scalar features are used, as
shown in Fig. 3. For each face example of size 20� 20,
there are hundreds of thousands of different z0k for
admissible u; v; du; dv; du0dv0 values, so Z is an over-
complete feature set for the intrinsically low-dimensional
face pattern x. These block difference features have
scalar values which are extensions to the steerable filters
or Haar wavelets used in [42], [22]. These features can be
computed very efficiently [43] from the summed-area
table [44] or integral image [22]. Recently, Lienhart and
Maydt proposed an extended set of features for dealing
with in-plane rotations [45].

In this work, an optimal weak classifier (6) is associated
with a single scalar feature; to construct the best new weak
classifier is to choose the best corresponding feature. The
feature selection or weak classifier construction is based on
stagewise approximation of pðxjy; wðM�1ÞÞ.

We can approximate pðxjy; wðM�1ÞÞ by using the condi-
tional distributions of z1ðxÞ, z2ðxÞ, . . . , zM�1ðxÞ (the selected
features) and z0ðxÞ (one to be selected):

pðxjy; wðM�1ÞÞ � pðz1; z2; . . . ; zM�1; z
0jy; wðM�1ÞÞ

¼ pðz1jy; w
ðM�1ÞÞ pðz2jy; z1; w

ðM�1ÞÞ � � � ð9Þ

pðzM�1jy; z1; . . . ; zM�2; w
ðM�1ÞÞ

pðz0jy; z1; . . . ; zM�1; w
ðM�1ÞÞ: ð10Þ

When Z is an overcomplete basis set and the zm’s learned
by AdaBoost are weakly dependent, the above stagewise

approximation becomes increasingly accurate as M grows.

Note that the following holds

pðz0jy; z1; . . . ; zm�1jw
ðm�1ÞÞ ¼ pðz0jy; wðm�1ÞÞ ð11Þ

because wðm�1Þ is obtained in the entire history of w and

accounts for the dependencies on z1; . . . ; zm�1. Therefore,

we have

pðxjy; wðM�1ÞÞ � pðz1jy; w
ð0ÞÞ pðz2jy; w

ð1ÞÞ � � �

pðzM�1jy; w
ðM�2ÞÞpðz0jy; wðM�1ÞÞ:

ð12Þ

On the right-hand side of the above equation, all the

conditional densities are fixed except for the last one

pðz0jy; wðM�1ÞÞ. The densities pðz0ðxÞjy; wðM�1ÞÞ for the posi-

tive class y ¼ þ1 and the negative class y ¼ �1 can be

estimated using the histograms computed from the

weighted voting of the labeled training examples ðx; yÞ

with the weights wðM�1Þðx; yÞ.
LMðxÞ of (8) for the optimal weak classifier can be

estimated based on (12). Using the form of the approxima-

tion formula (12), we can define the following component

LLR’s for the target LMðxÞ:

~LLmðxÞ ¼
1

2
log

pðzmjy ¼ þ1; wðm�1ÞÞ

pðzmjy ¼ �1; wðm�1ÞÞ
ð13Þ

for the selected features, zm’s (m ¼ 1; . . . ;M � 1), and

L
ðMÞ
k ðxÞ ¼

1

2
log

pðz0kðxÞjy ¼ þ1; wðM�1ÞÞ

pðz0kðxÞjy ¼ �1; wðM�1ÞÞ
ð14Þ

for features to be selected, z0k 2 Z. Then, the target LLR

function can be approximated as

LMðxÞ ¼
1

2
log

pðxjy ¼ þ1; wðM�1ÞÞ

pðxjy ¼ �1; wðM�1ÞÞ
�

X

M�1

m¼1

~LLmðxÞ þ L
ðMÞ
k ðxÞ:

ð15Þ

Let

�LMðxÞ ¼ LMðxÞ �
X

M�1

m¼1

~LLmðxÞ: ð16Þ

The best feature is the one whose corresponding L
ðMÞ
k ðxÞ

best fits �LMðxÞ. It can be found as the solution to the

following minimization problem
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Fig. 3. Three types of simple Haar wavelet like features z0k defined on a face example x. Each block in x consists of u� v pixels. du; dv; du0; dv0 are the
distances between blocks. The number �1; 2 inside a block is the weight for the pixels in the block. A feature takes a value calculated by weighted
sum of the pixel values over the blocks in the window.



k� ¼ argmin
k;�

X

N

i¼1

�LMðxiÞ � �L
ðMÞ
k ðxiÞ

h i2

: ð17Þ

This can be done in two steps as follows: First, find k� for

which

ðL
ðMÞ
k ðx1Þ; L

ðMÞ
k ðx2Þ; . . . ; L

ðMÞ
k ðxNÞÞ ð18Þ

is most parallel to

ð�LMðx1Þ;�LMðx2Þ; . . . ;�LMðxNÞÞ: ð19Þ

This amounts to finding k for which L
ðMÞ
k is most correlated

with �LM over the data distribution, and set zM ¼ z0k� .
Then, we compute

�� ¼

PN
i¼1 �LMðxiÞLk�ðxiÞ
PN

i¼1½Lk�ðxiÞ�
2

: ð20Þ

After that, we obtain

~LLMðxÞ ¼ ��Lk�ðxÞ: ð21Þ

The strong classifier is then given as

HMðxÞ ¼
X

M

m¼1

~LLmðxÞ þ T
� �

¼
X

M

m¼1

~LLmðxÞ þMT: ð22Þ

4 MULTIVIEW FACE DETECTION SYSTEM

The face detection problem here is to classify an image of
standard size (e.g., 20� 20 pixels) as either face or nonface
(imposter). This is essentially a one-against-rest classifica-
tion problem in that everything not a face is a nonface.
Here, we present engineering solutions for multiview face
detection. A coarse-to-fine view-partition strategy is used
and this leads to a detector-pyramid architecture consisting
of several levels from the coarse level on the top to the fine
level at the bottom.

4.1 Dealing with Head Rotations

Our system deals with three types of head rotations in the
following ranges: 1) out-of-plane rotations in the rangeof� ¼
½�90;þ90� (in degrees), 2) in-plane rotations in the range of
� ¼ ½�45;þ45�, and 3) up-and-down nodding rotations
approximately in the rangeof ½�20;þ20�. Adetector-pyramid
is constructed to detect the presence of up-right faces, for a
certain range of out-of-plane rotations in � and in-plane
rotations in ½�15;þ15�. Thedesignof suchadetector-pyramid
will be described shortly. In-plane rotations are handled as
follows: 1) Divide � into three subranges �1 ¼ ½�45;�15�,
�2 ¼ ½�15;þ15�, and �3 ¼ ½þ15;þ45�. 2) Apply the detector-
pyramidon twoimages in-plane-rotatedby�30aswell on the

original image. This will effectively cover in-plane-rotations
in ½�45;þ45�. The up-and-down nodding rotations are dealt
with by tolerances of the face detectors to them.

4.2 Detector-Pyramid

The design of the detector-pyramid adopts the coarse-to-
fine and simple-to-complex (top-down in the pyramid)
strategy [46], [47], and generalizes the cascade structure of
Viola and Jones’s system [22] to suit the multiview case.

Coarse-to-Fine. The full range � of out-of-plane rotations
is partitioned into increasingly narrower ranges and, thereby,
the whole face space is divided into increasingly smaller
subspaces. Our current implementation of the detector-
pyramid consists of three levels. The partitions of the out-
of-plane rotation for the three levels are illustrated in Fig. 4.
Although there are no overlaps between the partitioned view
subranges at each level, a face detector trained for one view
can usually cope with faces in an extended view range.

The detector-pyramid architecture is illustrated in Fig. 5
for the detection of faces with out-of-plane rotation in
� ¼ ½�90;þ90�. (In-plane rotations in � ¼ ½�45;þ45� is
dealt with by applying the detector-pyramid on the images
rotated �30, as discussed earlier.) The figure shows a
detector pyramid of n levels. DLV denotes a detector which
detects faces of view range V at pyramid level L. The one,
D11, on the top is for the coarsest classification of faces in
the whole range of out-of-plane rotation. Those at the
bottom (level n) are for the finest classification. The current
implementation according to the partition of Fig. 4 consists
of 11 detectors. The final result is obtained after merging the
subwindows that pass the seven channels at the bottom
level. This is schematically illustrated in Fig. 6.
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Fig. 4. Out-of-plane view partition. Out-of-plane head rotations (row 1), the facial view labels (row 2), and the coarse-to-fine view partitions at the
three levels of the detector-pyramid (rows 3-5).

Fig. 5. Detector-pyramid for multiview face detection.



Simple-to-Complex. A vast number of subwindows
result from the scan of the input image. For the purpose
of efficiency, it is crucial to discard as many nonface
subwindows as possible at the earliest possible stage so that
as few subwindows as possible will be processed further by
later stages. Therefore, the detectors in the early stages are
simpler so as to reject a vast number of nonface sub-
windows more quickly with little computation, whereas
those in the later stage are more complex and spend more
time. Therefore, a detector, i.e., a block in the pyramid,
consists of a cascade of strong classifiers for efficient
classification, following the idea of Viola and Jones [22].

4.3 Summary of the System

Now, we summarize how to construct a detector pyramid
for multiview face detection: The full range of out-of-plane
rotation is partitioned into one (for the top level of the
pyramid) or several subranges (for the lower levels). The
detectors in the pyramid are learned independently of one
another, using face examples for the corresponding view
range and bootstrapped nonface examples. The learning of
a detector is done as follows:

1. A set of simple Haar wavelet features are used as
candidate features. There are tens of thousands of
such features for a 20� 20 window.

2. A subset of them are selected and the corresponding
weak classifiers are constructed, using FloatBoost
learning.

3. A strong classifier is constructed as a linear combina-
tion of the weak ones.

4. A detector is composed of one or several strong
classifiers in cascade.

The detector pyramid is then built upon the learned
detectors. More detailed specifications will be given in
Section 5.2.2.

5 EXPERIMENTAL RESULTS

The following experiments compare FloatBoost (FB) and
AdaBoost (AB) learning algorithms in their performances
for nonlinear classification and face detection.

5.1 Comparisons in Boosting Learning for
Classification

5.1.1 On Single Strong Classifiers

This set of experiments compares single strong classifiers
learned by using FB and AB algorithms in their classifica-
tion performance. While a cascade of stronger classifiers are
needed to achieve a very low false alarm rate for face
detection [22], [13], this is for the comparison on the
effectiveness of the two boosting learning algorithms, rather
than on overall system performance.

The data set is composed of face and nonface images of
size20� 20.A set of 5,000 frontal face images is collected from
various sources. The faces are croppedand rescaled to images
of size 20� 20. Another set of 5,000 nonface examples of the
same size are collected from images containing no faces. See
Fig. 7 for a random sample of face and nonface images. The
5,000 examples in each set are divided into a training set of
4,000 examples and a test set of 1,000 examples.

LI AND ZHANG: FLOATBOOST LEARNING AND STATISTICAL FACE DETECTION 7

Fig. 6. Schematic illustration of merging from different channels. From left to right: Outputs of frontal, left, right view channels, and the final result
after merge.

Fig. 7. (a) Face and (b) nonface examples.

Fig. 8. The false alarm error rates of FB and AB algorithms on frontal
face training and test sets, as a function of the number of weak
classifiers. Here, an FB or AB strong classifier is composed of up to
1,000 weak classifiers.



The performance is measured by the false alarm (FA) error
rate, given that the detection rate (DR) on the training set is
fixed at 99.5 percent. The FA curves for the training and test
sets for the two algorithms are shown in Fig. 8. The following
conclusions canbemade from these curves: 1)Given the same
number of learned features or weak classifiers, FloatBoost
always achieves lower error rates than AdaBoost for both
training and test data sets. For example, on the test set, the FB
false alarm rate with an ensemble of 1,000 weak classifiers is
0.427, asopposed to that of 0.485madebyAB.2)Even the false
alarm rate on the test set is almost consistently lower than that
of AB on the training set. 3) FB needs many fewer weak
classifiers than AB in order to achieve the same false alarm
rate. For example,ABneeds 800weak classifiers to achieve its
lowest FA rate of 0.481 on the test set, whereas FB needs only
230 to achieve the same performance. These clearly demon-
strate the strength of FloatBoost in statistical learning to
achieve good classification performance.

5.1.2 On Cascades of Strong Classifiers

This set of experiments compare classification performances
for cascades of 10 FB and AB strong classifiers. The training
face data is the same as used in Section 5.1.1. Nonface
images are collected by stagewise bootstrapping from
100,000 images containing no faces.

To evaluate this, we trained and compared three cascade
face detectors: AdaBoost (AB-1), FloatBoost 1 (FB-1), and
FloatBoost 2 (FB-2). AB-1 is trained in such a way that it
achieves about 30 percent false alarm rate in each stage.
FB-1 has the same detection false alarm rates as AB-1 for
each stage but different numbers of weak classifiers. FB-2
has the same detection rate and the same numbers of weak
classifiers as AB-1 but different false alarm rate.

Table 1 compares the three cascade classifiers in terms of
the number of weak classifiers (WCs) for each stage and the
total number ofWCs, the detection (DR) and false alarm (FA)
rates for each stage, andoverall false alarmrate of the cascade.
The AB and FB-based classifiers here are trained to have
about the same target DR rates for the corresponding stages,
but allow different FA rates and numbers of WC. While the
rates in this table are for the training sets, the rates are for the
training sets and the error rates for test sets are generally
higher.ComparingFB-1withAB-1,we see that theFloatBoost
method needs fewer WCs than the AdaBoost method to
achieve about the same DR and FA. Comparing FB-2 with
AB-1, we see that FloatBoost can achieve a lower overall FA
than AdaBoost (3.95e-6 against 7.74e-6), given the same
number of WCs and DR. These further demonstrate the
adavantages of FloatBoost as opposed to AdaBoost.

A comment follows: Table 1 compares the results of the
cascades of strong classifiers, each cascade composed of up to
10 strong classifiers (10 stages), obtainedwithAB-1, FB-1, and
FB-2 settings, and these results are for the training set only.
Differently, Fig. 8 compares the single strong classifiers
(1 stage) learned by using AB and FB, and the results are for
both training and test data sets. These data sets are face icons
rather than large images, and these experiments are meant to
compare AB and FB learning algorithms. Performances of
resulting face detection systems (including both cascade of
strong classifiers and postprocessingmergers) performed on
large images are presented the next.

5.2 Comparisons of AB and FB-Based Systems

These experiments compare face detection systems per-
forming on large images, rather than 20� 20 icons used for
Table 1.
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TABLE 1
Comparison of Cascades of AB and FB Classifiers



5.2.1 Frontal Faces

For the training of the systems, about 3,000 frontal face
examples are collected from various sources and these faces
are subject to slight out-of-plane rotation in the range of
½�20;þ20�. They are aligned by setting the eye and mouth
coordinates to fixed positions. For each aligned face example,
a synthesized face example is generated by a random in-
plane-rotation in the range of ½�15;þ15�. This generates a
training set of 6,000 face examples. The 6,000 images are then
cropped and rescaled to the size of 20� 20. Sufficient nonface
examples are bootstrapped from 100,000 images containing
no faces.

Two sets of experiments are performed, one with the
MIT + CMU test set and the other with a home-brew test
set. The MIT + CMU test set, which was used in [17],
consists of 125 images containing 481 faces. For this data set,
four detectors are compared:

1. Floatboost (FB),
2. AB(20) (AdaBoost of Viola-Jones as implemented by

ourselves using training examples of size 20� 20),
3. AB(24) (AdaBoost with training examples of size

24� 24, as reported in [22]), and
4. CMU neural network-based system of Rowley et al.

[17] as the baseline system.

Table 2 compares the detection rates (DR) for the four
systems and the numbers of weak classifiers (#WC) for the
three boosting-based systems, given the numbers of false
alarms (#FA). The thresholds of FB, AB(20), and AB(24)
classifiers are adjusted to have the same numbers of false
alarms as reported in [17] on the MIT + CMU test set. Again,
the results show that FB can achieve higher detection rate,
given the same FA. Also, the FB-based system needs fewer
weak classifiers than the AB-based systems, about 66 percent
of that required by AB(20) and 42 percent of AB(24). If the

same number of features (i.e., WCs) are used and a target
detection rate is fixed, FB generally achieved lower FA rates
thanAB. Fig. 9 showsROC curves of the FB andAB(20) based
systems.The reader is also referred to [48] forperformancesof
other systems on the MIT + CMU data set.

In the second set of system experiments, the systems are
built using the samecascadedetectorsAB-1, FB-1, andFB-2 as
described in Section 5.1.2, without any tuning, and the tests
are performed using the home-brew face image set. This set
contains 463 faces in 296 pictures, most of which are taken
outdoors,with complex backgrounds and arbitrary illumina-
tion conditions. The comparison is shown inTable 3. FB-1 can
achieve a performance comparable to AB-1, with fewerweak
classifiers. FB-2, consisting of the same number of weak
classifiers as AB-1, can achieve a higher detection rate and
lower false alarm rate than the latter. These confirm the
conclusions made in Section 5.1.2. Fig. 10 shows some
FB-2 detection results.

5.2.2 Multiview Faces

This section demonstrates a multiview face detection system
based on the method presented in Section 4. More than
6,000 original face samples are collected for the training,
covering the out-of-plane rotation range ½�90;þ90�. A total
number of about 25,000multiview face images are generated
from the 6,000 by randomly shifting or rotating the original
images by a small amount.

The top level of the detector pyramid is trained with face
examples in the view range ½�90;þ90�. At the second level,
the face training set is divided into three view groups,
corresponding to the subranges of ½�90;�30�, ½�30;þ30�
and ½þ30;þ90�. At the third level, the full range of ½�90; 90�
is partitioned into nine view groups: ½�90;�70�, ½�70;�50�,
½�50;�30�, ½�30;�10�, ½�10;þ10�, ½þ10;þ30�, ½þ30;þ50�,
½þ50;þ70�, ½þ70;þ90�. The system consists of 13 detectors,
but only eight of them need be trained due to the symmetry
of the face, while the other side view detectors at the second
and third levels can be constructed by mirroring features
used in one side view detectors. This way, the number of
cascade detectors and the training time are reduced to about
ðK þ 1Þ=2 for each level where K is the number of view
groups for that level. These cascade detectors are trained
independently. However, we believe that using boot-
strapped nonface examples for training the detectors at
later levels could lead to an improvement.

The cascades are trained in the following way: The top-
level detector consists of a cascade of three strong classifiers,
using 5, 13, and 20 features, respectively. It rejects about
50 percent of nonfaces, while retaining 99 percent of training
faces. At the second level, each detector has a cascade of six
strong classifiers and Rejects about 97 percent of nonfaces
which passed through the top level, and retains 98 percent
train faces. At the bottom level, each detector is a cascade of
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TABLE 2
Comparison of Face Detection Rate on the MIT+CMU Test Set

Fig. 9. Comparison of detection rates of FB and AB (20) methods on the
MIT + CMU test set.

TABLE 3
Frontal Face Detection Comparison on Home-Brew Test Set
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Fig. 10. Results of frontal face detection obtained using the FB-2-based detector.

Fig. 11. Some multiview face detection results.



about 20 strong classifiers, and has a detection rate of about
94 percent and a false positive rate of about 4� 10�6.

The CMU profile face set [36] is used to test the algorithm.
(The database can be downloaded at http://vasc.ri.cmu.
edu/idb/html/face/profile_images/index.html.) This data
set consists of 208 images with 441 faces of which 347 are
profile views, which are not restricted in terms of subject
matter or background scenery. They were collected from
various news Web sites. Some results are shown in Fig. 11.

The detector-pyramid architecture is effective for
speeding up multiview face detection. For an image of
320� 240 pixels, there are a total of 70,401 subwindows to
be classified. The full-view detector at the top of the
pyramid needs 110 ms to process these subwindows, and
rejects about 50 percent of them. The second level needs a
total of 77 ms to process the remaining subwindows. The
third level needs only 15 ms to process the remaining
subwindows. So, the total time of the detector-pyramid
processing is about 202 ms. Because only a small fraction
of all the subwindows are processed by the third level, it
will not increase computation much when the full view
range is partitioned into smaller intervals. In contrast, the
view-based approach applying all the nine detectors
would cost 976 ms.

The system runs at 200 ms per image of size 320� 240

pixels on a Pentium-III CPU of 700MHz. This is the first real-
timemultiview face detection system in theworld. Some face
detection and tracking demos can be found at http://
research.microsoft.com/~szli/Demos/MV-FaceDet.html.

6 CONCLUSION AND FUTURE WORK

The contribution of this paper is summarized in the
following: 1) A novel learning procedure, FloatBoost, is
proposed to improve AdaBoost learning. 2) A novel
statistical model is provided for stagewise approximation
needed for learning weak classifiers. 3) The FloatBoost
learning algorithm is applied to face detection and a
detector pyramid architecture is presented for efficient
detection of multiview faces.

By incorporating the idea of Floating Search [12] into
AdaBoost [1], [4], FloatBoost learning results in a strong
classifier which needs fewer weaker classifiers than
AdaBoost to achieve a similar error rate, or achieves a
lower error rate with the same number of weak classifiers.
Real-time multiview face detection is achieved by incorpor-
ating the idea of the detector pyramid with the detectors
learned using FloatBoost.

The performance improvement brought about by Float-
Boost is achieved with the cost of longer training time, about
five times longer for the FloatBoost classifiers evaluated in
this paper. Several methods can be used to make the training
more efficient. For example, noticing that only exampleswith
large weight values are influential, Friedman et al. [10]
propose to select only exampleswith largeweights, i.e., those
examples which are wrongly classified by the previously
learned classifiers, and use them for the subsequent training.
Top examples within a fraction of 1� � of the total weight
mass may be used, where � 2 ½0:01; 0:1�.

Currently, the cascade structure is adopted in a face
detector. This is for computational efficiency in the run time.
However, the overall detection rate of a cascade detector is
approximately the product of the individual detection rates,

resulting in a drop in the overall detection rate. A possible

amendment is not to use cascade, but rather to use a single

strong classifier consisting of a long sequence of weak

classifiers. Such a “noncascade” detector should have many

“exits” for rejecting nonfaces subwindows whenever possi-

ble. The learning of such a noncascade classifier should

inherit sample weights learned previously, rather than

starting from fresh new weights as in cascade learning. Our

preliminary results show that this idea is effective.
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