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Abstract: This is a conceptual work about the form-�nding

of a hybrid tensegrity structure. The structure was obtained

from the combination of arch-supported membrane sys-

tems and diamond-type tensegrity systems. By combin-

ing these two types of structures, the resulting system fea-

tures the “tensile-integrity” property of cables and mem-

brane together with what we call “�oating-bending” of

the arches, a term which is intended to recall the words

“�oating-compression” introduced by Kenneth Snelson, the

father of tensegrities. Two approaches in the form-�nding

calculations were followed, the Matlab implementation of

a simple model comprising standard constant-stress mem-

brane/cable elements together with the so-called stick-and-

spring elements for the arches, and the analysis with the

commercial software WinTess, used in conjunction with

Rhino and Grasshopper. The case study of a T3 �oating-

bending tensile-integrity structure was explored, a struc-

ture that features a much larger enclosed volume in com-

parison to conventional tensegrity prisms. The structural

design of an outdoor pavilion of 6 m in height was carried

out considering ultimate and service limit states. This study

shows that �oating-bending structures are feasible, open-

ing the way to the introduction of suitable analysis and

optimization procedures for this type of structures.
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1 Introduction

This paper focuses on a conceptual work about the form-

�nding of a hybrid tensegrity structure. Hybrid tensegrity

systems have been considered several times in the litera-

ture with noteworthy studies, such as, the cocoon method

by Sakantamis and Popovic Larsen [1], the tensegrity-

membrane structure obtained numerically by Shigematsu,

Tanaka, and Noguchi in 2008 [2], and the tensairity concept

proposed by Luchsinger, Pedretti, and Reinhard in 2004 [3].

The present hybrid tensegrity structure was obtained

from the combination of arch-supported membrane sys-

tems and diamond-type tensegrity systems. As shown in

Figure 1, the diamond pattern highlighted in the tenseg-

rity module, recalls the shape of a simple arch-supported

membrane.

In the �rst attempt to combine these two structures, the

classic triangular tensegrity prism, or T3, “patched” with

three arch-supportedmembranes, was considered. Figure 2

shows the transformation process and, in the last image,

the resulting system, in which three arches are suspended

against each other by membranes and cables, forming a

free-standing system. The obtained structurewas shaped as

Figure 1: An arch-supported membrane structure (left) and a

diamond-type tensegrity system (right).

Figure 2: From left to right, successive conceptual transformations

of a T3 tensegrity module resulting in a structure with floating

arches, cables, and membrane.
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a continuous surface with two types of singularities, which

correspond to the curves occupied by cables and arches.

This new system features the “tensile-integrity” of cables

and membrane, together with what we called “�oating-

bending” of the arches, a term which is intended to recall

the words “�oating-compression”, often mentioned by Ken-

neth Snelson, the father of tensegrities, to refer to the con-

structions he realized [4]. It is worth observing that the

arches are subjected to shear and torsion, in addition to

compression and bending. Moreover, arches are not active-

bending, i.e., their con�guration at rest is curved and un-

dergoes small deformations at the prestressed equilibrium

state.

In the form-�nding calculations two approaches were

followed. The �rst one is the implementation in Matlab

of a simple model comprising standard constant-stress

membrane and cable elements, and the so-called stick-

and-spring elements for the arches. The model refers to

Arcaro’s implementation for the membrane elements [5],

and to Favata, Micheletti, Podio-Guidugli, Pugno [6] for

the implementation of stick-and-spring elements. The sec-

ond approach followed in the form-�nding calculations

is that of performing the analyses with the commercial

software WinTess [7, 8], used in conjunction with Rhino

and Grasshopper to obtain a parametric mesh of the struc-

ture. The structural design of an outdoor pavilion of 6 m

in height was carried out considering ultimate and service

limit states.

Similarly to the case of conventional tensegrity sys-

tems, possible applications could regard deployable and

temporary structures, with the advantage of having a much

larger enclosed volume, without having the struts placed

internally to the convex hull of the system, as in the case

of the traditional tensegrity prism (Figure 3). This study

shows that �oating-bending structures are feasible, and

that they may provide interesting architectural and engi-

neering solutions, opening the way to the introduction of

suitable analysis and optimization procedures for this type

of structures.

The paper is organized as follows. In Section 2, the

Matlab implementation of the simple membrane/stick-and-

Figure 3: Side (a) and top view (b) of the modi�ed T3. Top view of

the classical T3 (c).

spring model is brie�y presented, together with the form-

�nding results obtained by minimization of the total poten-

tial energy. Section 3 describes the form-�nding analysis

and the structural design performed with WinTess, with

reference to the case of an outdoor pavilion. A discussion of

results and possible design possibilities follows in Section

4, while our conclusions are given in Section 5.

2 Membrane and stick-and-spring

elements for form-�nding

A simple model for form-�nding is described in this section.

An equilibrium con�guration for the modi�ed T3 module

was found by minimizing the total elastic energy consider-

ing linearly elastic elements in a large displacement regime.

Calculations were carried out using Matlab. Membrane el-

ements were implemented following [5], while stick-and-

spring elements following [6].

More speci�cally, the structural model is given by the

quintuplet S = (N,E,W,Z,M), consisting of: (i) a set N of

points, called nodes, of the Euclidean space; (ii) a collection

E of edges, i.e., two-elements subset of N; (iii) a collectionW

ofwedges, i.e., three-elements subsets of N, (iv) a collection

Z of z-edges, i.e., four-elements subsets of N; (v) a collection

M of triangular membrane elements, identi�ed by three-

element subsets of N. The edges connecting nodes i, j ∈ N

is denoted by ij ∈ E and has length lij. We say that ijk ∈ W,

with i, j, k ∈ N, is the wedge that has head node i and tail

nodes j and k, with ϑijk the angle∠jik, while ijkh ∈ Z is the

z-edge on the chain of four nodes i, j, k, h ∈ N, with Θijkh

the dihedral angle between the two planes containing i,j,k

and j,k,h respectively. Furthermore, a membrane element

m ∈ M has volume vm, constant elasticity tensor Cm, and

vector of strain components ϵm, uniform on the element

and depending only on its nodal positions, as de�ned in [5].

In the stick-and-spring model each arch is composed of

bars hinged together, with rotational elastic springs which

respond to bending and torsion deformations of the arch,

as shown in Figure 4.

Figure 4: The three types of spring elements considered to model

the arches in the stick-and-spring model, associated to edges,

wedges, and z-edges.
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The elastic energy Π of the system S has �ve contri-

butions: the energy of triangular, uniform stress/uniform

strain, membrane elements, composing the membrane

patches; the energy of bar, axial-only, elements for cables;

the energy of the three types of spring elements attached

to the arches, accounting for their extension, bending, and

torsion deformations. The elastic energy is then given by

the following expression

2Π (p) =
∑

m∈M

vmCmϵm (p) · ϵm (p) +
∑

ij∈E

κij
(

lij (p) − l0ij
)2

+
∑

ijk∈W

λijk
(

ϑijk (p) − ϑ0ijk
)2

+
∑

ijkh∈Z

µijhk(Θijkh (p) − Θ0ijkh)
2
,

where p denotes the vector containing all the nodal position

vectors, κij, λijk, µijhk denote the spring constants of edges,

wedges and z-edges respectively, and l0ij, ϑ0ijk, Θ0ijkh de-

notes the values at rest of the edge length, and the angles of

wedges and z-edges respectively. Edges with di�erent prop-

erties account for the two types of contributions of cables

and extension spring, which are both included in the sec-

ond summation in the expression above. The current length

of edge ij is lij = |pi − pj|, with pi, pj the position vectors

of i and j. On denoting by nij = (pj − pi)/lij the unit vector

pointing from node i to node j, the current wedge angle

is determined by the relation |nij||nik| cos ϑijk =
(

nij · nik
)

.

On denoting the unit normal to the plane containing nodes

i,j,k, by mijk =
(

nij × njk
)

/|nij × njk|, the current z-edge an-

gle is determined by the relation |mijk||mjkh| cosΘijkh =
(

mijk · mjkh

)

.

The form-�nding problem for a cantilevered arch was

�rst considered as prototypical example, obtaining an arch-

supported membrane pinned to ground at just three points,

as shown in Figure 5(a). Matlab calculations were then per-

formed for themodi�edT3prism. Starting from the classical

T3 con�guration, struts were replaced with arches, and the

equilibrium con�guration of membrane patches was found

considering them attached to the arch and bounding cables

�xed in space. Afterward, the constraints �xing arches and

cables were eliminated, leaving just six scalar constraints

to block rigid-body motions, and the form-�nding process

was repeated.

In each of these form-�nding problems, the value of

spring constants of edges, wedges, and z-edges forming the

arches was taken numerically much larger than the elastic

constants of membrane and cables, so that the equilibrium

shape of the arches remains close to the initial one. The

values of length and area at rest, respectively for cables

and membrane elements, were assigned suitably smaller

than those at equilibrium, while the spring elements for the

arches were considered at rest in the initial con�guration.

It is worth noticing that these quantities, together with

all the elastic constants, are virtual quantities which do

not need to correspond to any preliminary choice of ma-

terials. In particular, the spring constants were assigned

arbitrarily, and they were not obtained as lumped values of

an equivalent continuum. We are only interested in �nding

one con�guration where internal forces are in equilibrium,

assuming that such equilibrium forces can be successively

matched and assigned to di�erent values of spring con-

stants and rest lengths/areas.

As all the elements’ strain measures are expressed as

functions of nodal positions, these were taken as free vari-

ables and the built-in Matlab function fminunc was used

to perform the minimization procedure. Figure 5(b) shows

an image of the equilibrium con�guration found. It can

be noticed, by looking at the elastic energy of the mem-

brane, Figure 5(c), that the ridge cables redistribute and

balance the stress di�erence on the two adjacentmembrane

patches.

Lastly, the equilibrium solution resulting from Matlab

computations was checked with the Analysismodule of the

WinTess software by assigning a negligible self-weight to

all elements, a 2% prestrain to the membrane, rest lengths

equal to the equilibrium lengths computed in Matlab to

cables and arches, and by choosing cross-sectional dimen-

sions customarily. WinTess iterative calculations led to a

slightly di�erent equilibrium con�guration in a few itera-

tions (Figure 5d), thus providing a qualitative con�rmation

Figure 5:Matlab implementation: model of the cantilevered arch (a);

equilibrium con�guration of the modi�ed T3 module (b); colormap

of the elastic energy of the membrane, higher values at darker

colors (c). WinTess check: equilibrium con�guration of the same

system as obtained in WinTess (d).
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of the form found. We refer the reader to the next section

for more details on the WinTess calculation procedure.

3 Case study: form-�nding and

structural design of a

floating-bending pavilion

In this section, the case study of a modi�ed T3 composed

by steel tubes arches, steel cables and a polyester mem-

brane is presented. The prism has height equal to 6 m and

triangular base inscribed in a circle of 7.7 m in diameter,

while the arches span a length of 9.6 m with a rise of 2.8

m. Two distinct versions of the structure were considered:

the closed version, analogous to the system described in

the previous section, a modi�ed T3 with three-fold cyclic-

symmetry; the open version, where one of the patches was

replaced by tension ties in order to obtain a lateral opening

to access the space inside the structure (Figure 6).

The following design �ow was adopted. A parametric

geometricmodel of the T3 tensegrity prism,withmembrane

and curved beams, was obtained by using the Grasshop-

per code in Rhinoceros. The membrane was described as

a piece-wise conical continuous surface (Figure 6a), con-

taining the edge cables of the T3 and the three arches. The

Delaunay triangulation algorithm available in Grasshopper

was used to generate a mesh, starting from a regular grid

of points on the surface. Such mesh was then re�ned with

Figure 6: Snapshot of the WinTess model before form-�nding (a, b)

and after form-�nding (c, d) for the closed and open version of the

structure.

a chosen pattern of elements of equal area. The mesh ob-

tained in this way can be imported in the WinTess software

(Figure 6a, 6b) to perform the form-�nding analysis, using

the force-density method. The mesh was transformed in a

�nite-element model of the structure by taking advantage

of the WinTess interface.

In both the closed and the open versions, the WinTess

Form-�nding module was run choosing a ratio between the

force-densities of membrane and cables assigned equal

to 1/10. In this phase, all nodes on the arches were con-

strained to the ground, because the force-density-based

Form-�nding module of WinTess does not allow to �nd the

equilibrium con�guration of beams and arches, while this

is possible in the large-displacement iterative procedure

which was performed in the Analysis module of the soft-

ware. The con�gurations resulting from the WinTess form-

�nding calculation are shown in Figure 6(c, d). The form-

�nding procedure of the present structure was completed

in the Analysis module of WinTess, where constraints on

the arches were released, actual material properties were

assigned to all elements, and nonlinear iterative calcula-

tions were performed to �nd the equilibrium con�guration

under self-weight and prestress.

The modi�ed T3 module was dimensioned and veri�ed

under snow and wind loads, under ultimate limit states

(ULS) considering a wind reference speed of 97.2 km/h, a

snow load of 0.48 kN/m2, and the ULS coe�cients shown

in Table 1. This process led to the choice of materials and

sections shown in Table 2. The ratio between actual stress

and allowable stress for ULS in each element remains below

0.65 for cables and membrane, and below 0.86 for the tubu-

lar arches. Figure 7 (left) shows a diagram of the bending

moments of the arches, in kNm, together with the values

of the axial forces, in kN, of cables and arches for the open

structure. Maximum values of internal actions for the case

of ULS under self-weight and prestress, with and without

wind load are reported in Table 3. Bending moments of the

arches, and axial forces of cables and arches at the ULS

equilibrium con�guration under self-weight, prestress, and

Table 1: ULS coe�cients used in the analysis.

ULS coe�cients

loads materials

self weight 1.3 membrane 3

wind 1.5 cables 1.67

snow 1.5 tubes 1.65

internal pressure 1

prestress 1.1
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Table 2:Materials and section of the elements of the structure.

membrane elastic modulus strength

Ferrari Fluotop T2 702 (PVC) 400 kN/m 300/280 daN/5cm

cables diameter strength

6×19 �bre core galvanized steel wire rope 16 mm

arches diameter thickness

S430 steel circular tube 320 mm 20 mm

Table 3:Maximum values of internal actions for the ULS, for both the closed structure and the open structure, considering prestress (PS)

and self-weight (SW), with and without wind load (W).

closed structure open structure

PS+SW PS+SW+W PS+SW PS+SW+W

membrane

membrane stress (kN/m) 6.605 12.832 6.244 12.787

cables

axial force (kN) 27.635 56.000 27.754 65.553

arches

axial force (kN) −69.859 −120.07 −69.366 −113.661

bending moment (kN m) 248.09 401.213 250.156 415.957

shear force (kN) 59.475 92.264 63.642 106.985

torsion moment (kN m) 2.534 4.023 2.547 6.948

Figure 7: Bending moments of the arches, in kNm (left) and axial forces of cables and arches, in kN (right), at the equilibrium con�guration

under ULS with self-weight, prestress, and wind load.
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Figure 8: Artistic impression of the designed pavilion, top view and

side view.

wind load are shown in Figure 7. An artistic impression of

the �nal design is depicted in Figure 8.

4 Design of floating-bending

structures

The �oating-bending concept can be applied to many

diamond-type modules with di�erent number of bars [9].

The simplest system of this kind we can think of is the one

obtained by modifying the T2, also called tensegrity kite.

The modi�ed T2 module is shown in Figure 9(a, b), and it

resembles a sort of prestressed pillowcase. Figure 9(c, d,

e) shows a �ve-bar tensegrity module and two views of its

modi�ed �oating-bending version.

Figure 9: Floating-bending concept applied to di�erent diamond-

type modules with di�erent number of bars [9].

Other more elaborate examples can be found by look-

ing at Fuller’s balloon analogy, which recognizes how sta-

ble tensegrity systems have compression inside and ten-

sion outside. The complex tensegrity balloon we see in

Figure 10(a) can be derived from the seed structure shown

in Figure 10(b) [10]. It is worth observing that by sectioning

such a system, it is possible to obtain a shelter structure

to be anchored to the ground, as shown in the model of

Figure 10(c). This structure can also be transformed into a

�oating-bending system replacing struts with arches and

adding a membrane. We observe that the nice MOOM in-

stallation realized by Kazuhiro Kojima and C+A in 2011 [11]

can be regarded as a �oating-bending system with straight

beam elements.

Figure 10: The tensegrity balloon in (a) can be obtained as a gener-

alization of the seed structure in (b); (c) A section of the system in

(a) can be isolated and anchored to the ground [10]; 80×60×40cm

model realized by Davide Cadoni; (d) MOOM installation realized by

Kazuhiro Kojima and C+A in 2011 [11].

Figure 11(a) shows another type of tensegrity balloon,

one which was obtained by arranging struts in a weaving

pattern inside a triangulated cable net [12]. It is also pos-

sible to consider balloons with openings (Figure 11b) and,

similarly to the previous case, di�erent anchored structures

can be derived with sections (Figure 11c). A notable tenseg-

rity membrane structure recalling these principles is the

knitted tensegrity-membrane system presented at the Expo

of the IASS 2019 Symposium in Barcelona [13]. It is further

remarked that it is not yet clear whether it is possible or not

to transform a tensegrity system, which does not belong to

the diamond class, into a �oating-bending structure.

Figure 11: (a, b) Tensegrity balloons; (c) A section of the system

in (b) constrained to ground; (d) Knitted tensegrity-membrane

system presented at the Expo of the IASS 2019 Symposium in

Barcelona [13]. Notice that in the top pictures a sphere is drawn

inside the balloon for ease of visualization.
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5 Concluding remarks

Floating-bending tensile-integrity structures can be re-

garded as continuous prestressed surfaces with “cable”

and “arch” singularities. They can be derived from classical

diamond-type tensegrity systems and can be exploited as

deployable or transformable structures enclosing a larger

space as compared to usual tensegrity systems, especially

those with few struts. In this work, numerical form-�nding

and structural design calculationswere performed for these

types of structures for the �rst time, showing that �oating-

bending structures are feasible, and that they may provide

interesting architectural and engineering solutions.

The two form-�nding procedures employed here, the

one combining the stick-and-spring and membrane ele-

ments, and the WinTess procedure, are quite di�erent from

each other. In the �rst case, the elastic energy was mini-

mized in a large-displacement regime. In the second case,

the Form-�nding module of WinTess, based on the force-

density method, was employed to obtain the equilibrium

shape of membrane and cables, with arches �xed in space.

Subsequently, the Analysis module of WinTess, based on

the �nite-element method, was employed to �nd the pre-

stressed equilibrium con�guration under self-weight, with

arches free tomove/deform. In thiswork, the �rst procedure

constitutes a preliminary step to prove the feasibility of the

�oating-bending concept, while the second one provides

a powerful tool for designing a �oating-bending structure

in a practical case of interest. We defer to a separate study

the quantitative comparison between the performances of

the two procedures.

Regarding future work, one of the �rst issues to be

addressed is that of the existence of funicular arches, or

the minimization of bending and torsion. Buckling and

super-stability of this systems also need to be investigated.

Furthermore, a trade-o� analysis about structural e�ciency

and morphing capability, especially in comparison with

traditional tensegrity system, is also called for in further

investigations.
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