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Systems of linear equations are employed almost universally across a wide range of

disciplines, from physics and engineering to biology, chemistry, and statistics. Traditional

solution methods such as Gaussian elimination are very time consuming for large

matrices, andmore efficient computational methods are desired. In the twilight of Moore’s

Law, quantum computing is perhaps the most direct path out of the darkness. There are

two complementary paradigms for quantum computing, namely, circuit-based systems

and quantum annealers. In this paper, we express floating point operations, such as

division and matrix inversion, in terms of a quadratic unconstrained binary optimization

(QUBO) problem, a formulation that is ideal for a quantum annealer. We first address

floating point division, and then move on to matrix inversion. We provide a general

algorithm for any number of dimensions, and, as a proof-of-principle, we demonstrates

results from the D-Wave quantum annealer for 2 × 2 and 3 × 3 general matrices. In

principle, our algorithm scales to very large numbers of linear equations; however, in

practice the number is limited by the connectivity and dynamic range of the machine.

Keywords: quantum computing, matrix inversion, quantum annealing algorithm, linear algebra algorithms, D-wave

1. INTRODUCTION

Systems of linear equations are employed almost universally across a wide range of disciplines, from
physics and engineering to biology, chemistry, and statistics. An interesting physics application is
computational fluid dynamics (CFD), which requires inverting very large matrices to advance the
state of the hydrodynamic system from one time step to the next. An application of importance
in biology and chemistry would include the protein folding problem. For large matrices, Gaussian
elimination and other standard techniques becomes too time consuming, and faster computational
methods are therefore desired. As Moore’s Law draws to a close, quantum computing offers the
most direct path forward; it is also perhaps the most radical path. In a nutshell, quantum computers
are physical systems that exploit the laws of quantum mechanics to perform arithmetic and logical
operations much faster than a conventional computer. In the words of Harrow, Hassidim, and
Lloyd (HHL) [1], “quantum computers are devices that harness quantum mechanics to perform
computations in ways that classical computers cannot.” There are currently two complementary
paradigms for quantum computing, namely, circuit-based systems and quantum annealers. Circuit-
based systems exploit the deeper properties of quantum mechanics such coherence, entanglement,
and non-locality, while quantum annealers mainly take advantage of tunneling between metastable
states and the ground state. In [1], HHL introduces a circuit-based method by which the inverse
of a matrix can be computed, and [2, 3] provide implementations of the algorithm to invert 2× 2
matrices. Circuit-based methods are limited by the relatively small number of qubits that can be
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entangled into a fully coherent quantum state, currently of order
50 or so. An alternative approach to quantum computing is
the quantum annealer [4], which takes advantage of quantum
tunneling between metastable states and the ground state. The
D-Wave Quantum Annealers have reached capacities of 2000+
qubits, which suggests that quantum annealers could be quite
effective for linear algebra with hundreds to thousands of degrees
of freedom. In this paper, we express floating point operations
such as division and matrix inversion as quadratic unconstrained
binary optimization (QUBO) problems, which are ideal for
a quantum annealer. We should mention that our algorithm
provides the full solution the matrix problem, while HHL
provides only an expectation value. Furthermore, our algorithm
places no constraints on the matrix that we are inverting, such as
a sparsity condition.

The first step in mapping a general problem to a QUBO
problem begins with constructing a Hamiltonian that encodes
the problem in terms of a set of “logical” qubits. Next, because of
the limited connectivity of the D-Wave chip, it will be necessary
to “embed” the problem onto the chip, first by mapping each
logical qubit to a collection or “chain” of physical qubits and
then by determining parameter settings for all the physical
qubits, including the chain couplings. We have implemented
our algorithms on the D-Wave 2000Q and 2X chips, illustrating
that division and matrix inversion can indeed be performed on
an existing quantum annealer. The algorithms that we propose
should ideally scale well for large numbers of equations, and
should be applicable to a matrix inversion of relatively high order
(although probably not exponentially higher order as in HHL).
Currently, the scaling that may be achieved is limited by the
connectivity and dynamic range of the chip.

Before examining the various algorithms, it is useful to review
the basic formalism and to establish some notation. The general
problem starts with a graph G = (V , E), where V is the vertex set
and E is the edge set. The QUBO Hamiltonian on G is defined by

HG[Q] =
∑

r∈V

Ar Qr +
∑

rs∈E

Brs QrQs (1.1)

with Qr ∈ {0, 1} for all r ∈ V . The coefficient Ar is called the
weight at vertex r, while the coefficient Brs is called the strength
between vertices r and s. It might be better to call (1.1) the
objective function rather than the Hamiltonian, as HG is a real-
valued function and not an operator on aHilbert-space. However,
it is easy to map (1.1) in an equivalent Hilbert space form,

ĤG =
∑

r∈V

Ar Q̂r +
∑

rs∈E

Brs Q̂rQ̂s (1.2)

where Q̂r|Q〉 = Qr|Q〉 for all r ∈ V , and |Q〉 ∈ H for Hilbert
space H. The hat denotes an operator on the Hilbert space, and
Qr is the corresponding Eigenvalue of Q̂r with Eigenstate |Q〉.
Consequently, we can write

ĤG |Q〉 = HG[Q] |Q〉 (1.3)

and we use the terms Hamiltonian and objective function
interchangeably. By the QUBO problem, we mean the problem

of finding the lowest energy state |Q〉 of the Hamiltonian (1.2),
which corresponds to minimizing Equation (1.1) with respect
to the Qr . This is an NP-hard problem uniquely suited to a
quantum annealer. Rather than sampling all 2#V possible states,
quantum tunneling finds the most likely path to the ground state
by minimizing the Euclidian action. In the case of the D-Wave
2X chip, the number of distinct quantum states is of order the
very large number 21000, and the ground state is selected from
this jungle of quantum states by tunneling to those states with a
smaller Euclidean action.

The Ising model [5] is perhaps the quintessential physical
example of a QUBO problem, and, indeed, it is one of the
most studied systems in statistical physics. The Ising model
consists of a square lattice of spin-1/2 particles with nearest
neighbor spin–spin interactions between sites r and s, and when
the system is immersed in a nonuniform magnetic field, this
introduces coupling terms at individual sites r, thereby producing
a Hamiltonian of the form

HG[J] =
∑

r∈V

Br 6r +
∑

rs∈E

Jrs 6r6s (1.4)

where 6r = ±1/2. The Ising problem is connected to the QUBO
problem by 6r = Qr − 1/2.

For floating point division to R bits of resolution, the graph G

is in fact just the fully connected graph KR. In terms of vertex and
edge sets, we write KR = (VR, ER), and Figure 1 illustrates K8 and
K4. The left panel shows the completely connected graph K8,
with vertex and edge sets

V8 = {0, 1, 2, · · · , 7} (1.5)

E8 = {{0, 1}, {0, 2}, · · · , {0, 7}, {1, 2}, · · · , {1, 7}, · · · , { 6, 7} }

(1.6)

while the right panel shows the K4 graph,

V4 = {0, 1, 2, 3} (1.7)

E4 = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}}. (1.8)

Just as 8-bit is called a word, 4-bit is called a nibble. As we
will also see, the dynamic range of the D-Wave is most directly
suitable to K4, and the connectivity of K4 consequently gives a
quantum nibble.

Let us remark about our summation conventions. Rather than
summing over the edges,

H[Q] =
∑

r∈VR

Ar Qr +
∑

rs∈ER

Brs QrQs (1.9)

=

R−1
∑

r=0

Ar Qr +

R−1
∑

r=0

R−1
∑

s>r

Brs QrQs (1.10)

we find it convenient to sum over all values of r and s taking Brs
to be symmetric. In this case, the double sum differs by a factor
of two relative to summing over the edge set of the graph,

H[Q] =

R−1
∑

r=0

Ar Qr +

R−1
∑

r=0

R−1
∑

s=0

1

2
Brs QrQs. (1.11)
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FIGURE 1 | The left panel shows the fully connected graph K8, and the right panel shows the corresponding graph K4. To perform a calculation to 8-bit accuracy

requires the connectivity of K8. We take the vertex and edge sets of K8 to be V8 = {0, 1, 2, · · · , 7} and E8 = {{0, 1}, {0, 2}, · · · , {0, 7}, {1, 2}, {1, 3}, · · · , { 6, 7} }. To

perform a calculation to 4-bit accuracy requires K4 connectivity, and, similarly, the vertex and edge sets for K4 are V4 = {0, 1, 2, 3} and

E4 = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}}.

Furthermore, for r = s, there will be a linear contribution from
the idempotency condition Q2

r = Qr , so that

H[Q] =

R−1
∑

r=0

[

Ar +
1

2
Brr

]

Qr +

R−1
∑

r=0

R−1
∑

s6=r,s=0

1

2
Brs QrQs.(1.12)

We can write this as

H[Q] =

R−1
∑

r=0

Ãr Qr +

R−1
∑

r=0

R−1
∑

s6=r,s=0

B̃rs QrQs. (1.13)

2. FLOATING POINT DIVISION ON A
QUANTUM ANNEALER

2.1. Division as a QUBO Problem
In this section we present an algorithm for performing floating
point division on a quantum annealer. Given two input
parameters m and y to R-bits of resolution, the algorithm
calculates the ratio y/m toR bits of resolution. The corresponding
division problem can be represented by the linear equation

m · x− y = 0, (2.1)

which has the unique solution

x = y/m. (2.2)

Solving (2.1) on a quantum annealer amounts to finding
an objective function H(x) whose minimum corresponds to
the solution of Equation (2.2). Although the form of H(x) is
not unique, for this work we employ the simple real-valued
quadratic function

H(x;m, y) =
(

mx− y
)2

(2.3)

wherem and y are continuous parameters. For an ideal annealer,
we do not have to concern ourselves with the numerical range

and resolution of the parameters m and y; however, for a real
machine such as the D-Wave, this is an important consideration.
For a well-conditioned matrix, we require that the parameters
m and y possess a numerical range that spans about an order
of magnitude, from approximately 0.1–1.0. This provides about
3–4 bits of resolution: 1/20 = 1, 1/21 = 0.5, 1/22 = 0.25,
and 1/23 = 0.125. The dynamic range and the connectivity both
impact the resolution of a calculation.

To proceed, let us formulate floating point division as a
quadratic unconstrained binary optimization (QUBO) problem.
The algorithm starts by converting the real-valued number x in
(2.3) into an R-bit binary format, while the numbers m and y
remain real valued parameters of the objective function. For any
number χ ∈ [0, 2), the binary representation accurate to R bits of
resolution can be expressed by [Q0.Q1Q2 · · ·QR−1]2, where Qr ∈

{0, 1} is value of the r-th bit, and the square bracket indicates the
binary representation1. It is more algebraically useful to express
this in terms of the power series in 2−r ,

χ =

R−1
∑

r=0

2−r Qr . (2.4)

In order to represent negative number, we perform the
binary offset

x = 2χ − 1 (2.5)

where x ∈ [−1, 3). The objective function now takes the form

H(χ) = 4m2χ2 − 4m(m+ y)χ + (m+ y)2. (2.6)

The constant term (m + y)2 can be dropped when finding the
minimum of (2.6), but we choose to keep it for completeness.

1Since the infinite geometric series
∑∞

r=0 2
−r sums to 2, the finite series is <2. In

binary form we have [1.11 · · · ]2 = 2 and [1.11 · · · 1]2 < 2. Working to resolution

R is like calculating the R-th partial sum of an infinite series.
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Equation (2.4) provides a change of variables χ = χ[Q] (where
Q is the collection of the Qr), and this allows us to express (2.3)
in the form

H[Q] =

R−1
∑

r=0

Ar Qr +

R−1
∑

r=0

R−1
∑

s6=r,s=0

Brs QrQs. (2.7)

In the notation of graph theory, we would write

H[Q] =
∑

r∈VR

Ar Qr +
∑

rs∈ER

1

2
Brs QrQs (2.8)

where VR = {0, 1, 2, · · · ,R − 1} is the vertex set, and ER is the
edge set. We often employ an abuse of notation and write rs ∈ ER

to mean {r, s} ∈ ER. Thus, instead of B{r,s}, we write Brs. Since
the order of the various elements of a set are immaterial, we
require Brs to be symmetric in r and s. Rather than summing
over the edge sets rs ∈ ER, we employ the double sum

∑

r 6=s,
which introduces a relative factor of two in the convention for
the strengths Brs. The goal of this section is to find Ar and Brs in
terms ofm and y.

Note that we can generalize the simple binary offset (2.4) if we
scale and shift χ ∈ [0, 2) by

x = cχ − d (2.9)

so that x ∈ [−d, 2c − d). When d > 0 and c > d/2, the
domain of x always contains a positive and negative region, and
the precise values for d and c can be chosen based on the specifics
of the problem. For Equation (2.9), the objective function takes
the form

H(χ) = 4m2c2 χ2 − 4mc (m+ y)χ + (md + y)2. (2.10)

For simplicity of notation, this paper employs the simple binary
offset (2.5), although our Python interface to the D-Wave
quantum annealer employs the generalized form (2.10).

Equation (2.4) allows us to express the quadratic term in χ as

χ2 =

R−1
∑

r=0

R−1
∑

s=0

2−r−sQrQs =

R−1
∑

r=0

R−1
∑

s6=r,s=0

2−r−sQrQs +

R−1
∑

r=0

2−2rQr

(2.11)

where we have used the idempotency condition Q2
r = Qr along

the diagonal in the last term of (2.11). Substituting the forms (2.4)
and (2.11) into (2.6) yields the Hamiltonian

H[Q] =

R−1
∑

r=0

4m 2−r
[

m 2−r − (y+m)
]

Qr

+

R
∑

r=0

R−1
∑

s6=r,s=0

4m2 2−r−s QrQs (2.12)

and the Ising coefficients in (2.7) can be read off:

Ar = 4m 2−r
[

m 2−r − (y+m)
]

(2.13)

Brs = 4m2 2−r−s r 6= s. (2.14)

Because of the double sum over r and s in the objective function
in (2.12), the algorithm requires a graph of connectivity KR. The
special cases of K8 and K4 have been illustrated in Figure 1. To
obtain higher accuracy than the KR graph allows, we can iterate
this procedure in the following manner. Suppose we start with
y0 = y and are given a value yn−1 with n > 1; we then advance
the iteration to yn in the following manner:

solve mxn = yn−1 for xn to R bits (2.15)

calculate the error yn = yn−1 −mxn. (2.16)

Now that we have the value yn, we can repeat the process to find
yn+1, and we can stop the iterative procedure when the desired
level of accuracy has been achieved.

2.2. Embedding KR Onto the D-Wave
Chimera Architecture
The D-Wave Chimera chip consists of coupled bilayers of micro
rf-SQUIDs overlaid in such a way that, while relatively easy to
fabricate, results in a fairly limited set of physical connections
between the qubits. However, by chaining together well chosen
qubits in a positively correlated manner, this limitation can
largely be overcome. The process of chaining requires that we (i)
embed the logical graph onto the physical graph of the chip (for
example K4 into C8) and that we (ii) assign weights and strengths
to the physical graph embedding in such as a way as to preserve
the ground state of the logical system. These steps are called graph
embedding and Hamiltonian embedding, respectively.

Let us explore the connectivity of the D-Wave Chimera chip in
more detail. The D-Wave architecture employs the C8 bipartate
Chimera graph as its most basic unit of connectivity. This unit cell
is illustrated in Figure 2, and it consists of 8 qubits connected in a
4× 4 bipartate manner. The left panel of the figure uses a column
format in laying out the qubits, and the right panel illustrates
the corresponding qubits in a cross format, where the gray lines
represent the direct connections between the qubits. The cross
format is useful since it minimizes the number intersecting
connections. The complete two-dimensional chip is produced
by replicating C8 along the vertical and horizontal directions, as
illustrated in Figure 3, thereby providing a chip with thousands
of qubits. The connections between qubits are limited in two
ways: (i) by the connectivity of the basic unit cell C8 and (ii)
by the connectivity between the unit cells across the chip. The
bipartate graph C8 = (V8,B8) is formally defined by the vertex
set V8 = {1, 2, · · · , 8}, and the edge set

B8 =
{

{1, 5}, {1, 6}, {1, 7}, {1, 8}, {2, 5}, {2, 6}, {2, 7}, {2, 8},

{3, 5}, {3, 6}, {3, 7}, {3, 8}, {4, 5}, {4, 6}, {4, 7}, {4, 8}
}

. (2.17)

The set B8 represents the connections between a given red qubit
and the corresponding blue qubits in the figures. The red and
blue dots illustrate the bipartate nature of C8, as every red dot
is connected to every blue dot, while none of the blue and red
dots are connected to one another.
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FIGURE 2 | The left panel illustrates the bipartate graph C8 in column format, while the right panel illustrates the corresponding graph in cross format, often called a

Chimera graph. The gray lines represent direct connections between qubits. The cross format is useful since it minimizes the number intersecting connections. The

use of red and blue dots emphasize the bipartate nature of C8, as every red dot is connected to every blue dot, while none of the red and blue dots are connected to

one another. The vertex set of C8 is taken to be V8 = {1, 2, · · · , 8} and edge set is B8 = {{1, 5}, {1, 6}, {1, 7}, {1, 8}, {2, 5}, {2, 6} · · · {7, 8}}.

FIGURE 3 | The left panel shows the connectivity between four C8 bipartate Chimera zones, and the right panel illustrates how multiple C8 graphs are stitched

together along the vertical and horizontal directions to provide thousands of possible qubits. A limitation of this connectivity strategy is that red and blue zones cannot

communicate directly with one another, as indicated by the black crossed arrows. The purpose of chaining is to allow communication between the red and blue qubits.

We will denote the physical qubits on the D-Wave chip by qℓ.
For the D-Wave 2000Q there is a maximum of 2,048 qubits, while
the D-Wave 2X has 1,152 qubits. For the example calculation in
this text, we only use 10–50 qubits. The physical Hamiltonian or
objective function takes the form

H[q] =
∑

ℓ

aℓ qℓ +
∑

ℓ6=m

2bℓm qℓqm (2.18)

where we have introduced a factor of 2 in the strength to account
for the symmetric summation over r and s. We will call the
qubits Qr of the previous section the logical qubits. To write a
program for the D-Wave means finding an embedding of the
problem for logical qubits onto the physical collection of qubits

qℓ. If the connectivity of the Chimera graphs were large enough,
then the logical qubits would coincide exactly with the physical
qubits. However, since the graph C8 possesses less connectivity
than K4, we must resort to chaining on the D-Wave, even for
4-bit resolution. Figure 4 illustrates the K4 embedding used by
our algorithm, where, as before, the left panel illustrates the
bipartate graph in column format, and the right panel illustrates
the corresponding graph in cross format.

In Figure 4, we have labeled the physical qubits by ℓ =

1, 2, 3 · · · 8, and we wish to map the problem involving logical
qubits Qr Qs Qt onto the four physical qubits q5 q1 q6 q2. The
embedding requires that we chain together the two qubits 1-6
and 3-8, respectively. We may omit qubits 4 and 7 entirely. As
illustrated in Figure 5, the physical qubits q1 and q6 are chained
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FIGURE 4 | The K4 embedding onto C8 used in our implementation of 4-bit of division on the D-Wave. The blue lines represent normal connections between qubits,

while the red double-lines represent chained qubits, that is to say, qubits that are strictly correlated (and can thereby represent a single logical qubit at a higher level of

abstraction). The qubits 1–6 are chained together, as are the qubits 3–8.

FIGURE 5 | The left panel shows three logical qubits Qr , Qs, Qt with connectivity between r-t and t-s. The box surrounding qubit t means that it will be modeled by a

linear chain of physical qubits, as illustrated in the right panel. The labeling is taken from Figure 4 for qubits 5-1-6-2, where Qr is mapped to q5, Qs is mapped to q2,

and Qt is split between q1 nd q6. Qubits q1 and q6 are chained together to simulate the single logical qubit Qt, while qubits Qr and Qs map directly onto physical

qubits q5 and q2.

together to simulate a single logical qubit Qt , while qubits q5
and q2 are mapped directly to the logical qubits Qr and Qs,
respectively. Qubit q5 is assigned the weight a5 = Ar and the
coupling between q5 and q1 is assigned the value b51 = Brt .
Similarly for qubit q2, the vertex is assigned weight a2 = As, and
strength between q2 and q6 is b26 = Bst . We must now distribute
the logical qubit Qt between q1 and q6 by assigning the values
a1, a6 and b16. We distribute the weight At uniformly between
qubits q1 and q2, giving a1 = At/2 and a6 = At/2. We must
now choose b16. To preserve the energy spectrum, we must shift
the values of the weights a1 and a6. We can do this by adding a
counter-term Hamiltonian

HCT = a q1 + a q6 + 2b16 q1q6 (2.19)

to the physical Hamiltonian. The double lines in Figures 4, 5
indicate that two qubits are chained together. This means that
the qubits are strictly correlated, i.e., when q1 is up then q6 is up,
and when q1 is down then q6 is down. This is accomplished by
choosing the coupling strength b16 to favor a strict correlation;
however, to preserve the ground state energy, this also requires
shifting the weights for q1 and q6. For q1 = q6 = 0 we have
HCT = 0. We wish to preserve this condition when q1 = q6 = 1,
which means 2a + 2b = 0. Furthermore, the state q1 = 1 and
q6 = 0 must have positive energy, which means a > 0. Similarly
for q1 = 0 and q6 = 1. We therefore choose a1 = a6 = α >

0 and b16 = −α, where α is an arbitrary parameter. This is
illustrated in Table 1. A more complicated case is the linear chain
ofN qubits as shown in Figure 6. The counter-term Hamiltonian
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is taken to be

HCT =

N
∑

m=1

atm qtm +

N−1
∑

m=1

btm,m+1 q
t
mq

t
m+1. (2.20)

Note that HCT vanishes when qm = 0 for all m = 1 · · ·N. And
conversely, we must arrange the counter-term to vanish when
qm = 1. The simplest choice is to take all weights to be the same
and all couplings to be identical. Then, to preserve the ground
state when the qr = 1, we impose

atr =
At

N
+

2(N − 1)

N
α (2.21)

btr,r+1 = −α (2.22)

with α > 0 and r = 1 · · ·N. The first term in atr distributes
the weight At uniformly across all N nodes in the chain. The
second set of terms btr,r+1 ensures that the qubits of the chain
are strictly correlated. The counter-term energy contribution is
positive when the linearly chained qubits are not correlated,
therefore anti-correlation is always penalized. Table 2 illustrates
the spectrum of the counter-term Hamiltonian for three qubits.
We may need to choose large values of α, of order 20 or more, to
sufficiently separate the states. The uniform spectrum of 4 states
with HCT = a in Table 2 arises from a permutation symmetry in
q1, q2, q3.

To review, note that a linear counter-term is represented in
Figure 6. We add a counter-term to break the logical qubits into
a chain of physical qubits that preserve the ground state. Let
us consider the conditions that we place on the Hamiltonian
to ensure strict correlation between the chained qubits. We
adjust the values of Ar and Brs to ensure that spin alignment is
energetically favorable. By slaving several qubits together, we can
overcome the limitations of the Chimera connectivity. As a more
complex example, consider the four logical qubits of Figure 7
connected in a circular chain by strengths B12, B24, B43, and B31.
Suppose the weights are A1, A2 A3, and A4. Figure 8 provides an
example in which each logical qubit is chained in a linear fashion
to the physical qubits.

TABLE 1 | For two qubits the counter-term Hamiltonian is

HCT (q1,q6) = a q1 + a q6 + 2bq1q6.

q1 q6 HCT

0 0 0

0 1 α

1 0 α

1 1 0

The lowest energy state is preserved for b = −α and a = α where α > 0. We will split the

weight At uniformly across the N chained physical qubits, thereby giving a contribution

to the physical Hamiltonian Ht
16 = At/2 + α q1 + α q6 − 2α q1q6. The energy spectrum

ensures that the two qubits are strictly correlated.

3. MATRIX INVERSION AS A QUBO
PROBLEM

In this section we present an algorithm for solving a system of
linear equations on a quantum annealer. To precisely define the
mathematical problem, letM be a nonsingularN×N real matrix,
and let Y be a real N dimensional vector; we then wish to solve
the linear equation

M · x = Y. (3.1)

The linearity of the system means that there is a unique solution,

x = M
−1 · Y (3.2)

and the algorithm is realized by specifying an objective function
whose ground state is indeed (3.2). The objective function is not
unique, although it must be commensurate with the architecture
of the hardware. If the inverse matrix itself is required, it
can be constructed by solving (3.1) for each of the N linearly
independent basis vectors forY. It is easy to construct a quadratic
objective H(x) whose minimum is (3.2), namely,

H(x) =
(

Mx− Y
)2

=
(

Mx− Y
)T

·
(

Mx− Y
)

. (3.3)

In terms of matrix components, this can be written as

H(x) = xTMT
Mx− xTMTY− YT

Mx+ YTY

TABLE 2 | For a three qubit chain the counter-term Hamiltonian is

HCT (q1,q2,q3) = a q1 + a q2 + a q3 + 2bq1q2 + 2bq2q3, where a = 4α/3 and

b = −α.

q1 q2 q3 HCT

0 0 0 0 0

0 0 1 4α/3 a

0 1 0 4α/3 a

0 1 1 2α/3 a/2

1 0 0 4α/3 a

1 0 1 8α/3 2a

1 1 0 2α/3 a

1 1 0 0 0

The degeneracy in energy of value a arises from a permutation symmetry in q1 → q2 →

q3 that preserves the form of the counter-term Hamiltonian.

FIGURE 7 | Four logical qubits Q1, Q2, Q3, Q4 in a circular loop with

connection strengths B12, B24 B43, and B31.
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=

N
∑

ijk=1

MkiMkj x
ixj − 2

N
∑

ij=1

YjMji x
i + ‖Y‖2. (3.4)

Note that ‖Y‖2 is just a constant, which will not affect the
minimization. In principle all constants can be dropped from
the objective function, although we choose to keep them for
completeness. One may obtain a floating point representation of
each component of x = (x1, · · · , xN)T by expanding in powers of
2 multiplied by Boolean-valued variables qir ∈ {0, 1},

χ i =

R−1
∑

r=0

2−rqir (3.5)

xi = 2χ i − 1. (3.6)

As before, the domains are given by χ i ∈ [0, 2) and xi ∈ [−1, 3),
and upon expressing x as a function qir , we can recast (3.4) in
the form

H[q] =

N
∑

i=1

R−1
∑

r=0

air q
i
r +

N
∑

i=1

N
∑

i6=j=1

R−1
∑

r=0

R−1
∑

s=0

b
ij
rs q

i
rq

j
s. (3.7)

The coefficients air are called the weights and the coefficients b
ij
rs

are the interaction strengths. Note that the algorithm requires a
connectivity of KNR for arbitrary matrices.

Let us first calculate the product xixj in (3.4). From (3.5) and
(3.6), we find

xixj =

(

2

R−1
∑

r=0

2−rqir − 1

)(

2

R−1
∑

r′=0

2−r′qir′ − 1

)

= 4
∑

rr′

2−(r+r′)qirq
j
r′ − 4

∑

r

2−rqir + 1 (3.8)

= 4
∑

r 6=r′

2−(r+r′)qirq
j
r′ + 4

∑

r

2−2rqir − 4
∑

r

2−rqir + 1

(3.9)

where we have used the idempotency condition (qir)
2 = qir in

the second term of (3.9). While the second form is one used by
the code, it is more convenient algebraically to use the first form.
Substituting (3.8) into the first term in (3.4) gives

H1 ≡
∑

ijk

MkiMkj xixj (3.10)

=
∑

ijk

MkiMkj

{

4
∑

rr′

2−(r+r′)qirq
j
r′ − 4

∑

r

2−rqir + 1

}

(3.11)

= 4
∑

ir

∑

js

∑

k

2−r−sMkiMkj q
i
rq

j
s − 4

∑

ir

∑

k

2−rMkiMki q
i
r

FIGURE 6 | Generalization of Figure 5 to a chain of N linear qubits. The right panel illustrates the chain coupling parameters used to create strict correlations of the

physical qubits within the chain.

FIGURE 8 | A possible mapping of the logical qubits in Figure 7 onto the physical device. Each logical qubit is modeled by a linear chain of strictly correlated qubits.
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+
∑

ijk

MkiMkj.

(3.12)

The second term in (3.4) can be expressed as

H2 ≡ −2
∑

ij

YjMji xi = −2
∑

ij

YjMji

(

2
∑

r

2−rqir − 1

)

(3.13)

= −4
∑

ij

∑

r

2−rMjiYj q
i
r + 2

∑

ij

YjMji. (3.14)

Adding H1 and H2 gives

H = 4
∑

ir

∑

js

∑

k

2−r−sMkiMkj q
i
rq

j
s − 4

∑

ir

∑

k

2−rMkiMki q
i
r

(3.15)

− 4
∑

ij

∑

r

2−rMjiYj q
i
r + 2

∑

ij

YjMji +
∑

ijk

MkiMkj. (3.16)

The QUBO coefficients for logical qubits are therefore

air = 4 · 2−r
∑

k

Mki







2−rMki −

(

Yk +
∑

j

Mkj

)







(3.17)

b
ij
rs = 4 · 2−(r+s)

∑

k

MkiMkj. (3.18)

In the programming interface, the coefficients are addressed with
a 1-dimensional linear index, while the parameters in 3.17 and
3.18 are defined in terms of the 2-dimensional indices i and r,
where i = 0, 1, · · · ,N − 1 and r = 0, 1, · · · ,R − 1. Now,
we define a 1-1 mapping between these indices and the linear
index ℓ = 0, 1, · · · ,N · R − 1. This is just an ordinary linear
indexing for 2-dimensional matrix elements, so we choose the
usual row-major linear index mapping,

ℓ(i, r) = i · R+ r (3.19)

Mℓ = Mir . (3.20)

The inverse mapping gives the row and column indices as below,

iℓ = ⌊ℓ/R⌋ (3.21)

rℓ = ℓ mod R (3.22)

where ⌊n⌋ is the greatest integer less than or equal to n. The
expression “ℓ mod R” is ℓ modulo R. This is a 1-1, invertible
mapping between each pair of values of i and r in the matrix
index space to every value of ℓ in the linear qubits index space.
We can simply replace sums over all index pairs i, r by a single
sum over ℓ, provided we also rewrite any isolated indices in i and
r as functions of ℓ via their inverse mapping.

We may summarize this observation in the following
formal identity. Given some arbitrary quantity, A, that depends

functionally upon the tuple (i, r), and possibly upon the
individual indices i and r, it is trivial to verify that

A[(i, r), i, r] =

N·R−1
∑

ℓ=0

A[ℓ, iℓ, rℓ] δi,iℓδrrℓ (3.23)

where ℓ, iℓ, and rℓ are related as in Equations (3.19)–(3.22). This
identity is useful for formal derivations. For example, we may use
it to quickly derive the binary expansion of xi in terms of logical
qubits. Inserting (3.23) into (3.6) gives,

xi = 2

(

R−1
∑

r=0

2−r
N·R−1
∑

ℓ=0

qℓ δi iℓδr rℓ

)

− 1

= 2

N·R−1
∑

ℓ=0

2−rℓ qℓ δi,iℓ − 1. (3.24)

Clearly, xi has non-zero contributions only for those indices
corresponding to i = iℓ = ⌊ℓ/R⌋, that is, only from those
qubits within a row in the qir array. Also, those contributions are
summed along that row, i.e.,, over rℓ = ℓ mod R. This equation
will be used to reconstruct the floating-point solution, x, from the
components qℓ of the binary solution returned from the D-Wave
annealing runs. The weights and strengths now become

aℓ = 4 · 2−rℓ
∑

k

Mk iℓ







2−rℓMk iℓ − (Yk +
∑

j

Mkj)







(3.25)

bℓm = 4 · 2−(rℓ+rℓ′ )
∑

k

Mk iℓ Mk im . (3.26)

For a 2 × 2 matrix to 4-bit accuracy, we need K8 (4 × 2 = 8),
and to 8-bit accuracy we need K16 (8 × 2 = 16). We have
invertedmatrices up to 3×3 to 4-bit accuracy, which requiresK12

(3× 4 = 12). For an N × N matrix with R bits of resolutions, we
must construct linear embeddings of KRN . We could generalize
this procedure for complex matrices.

4. CALCULATIONS

4.1. Implementation
The methods above were implemented using D-Wave’s Python
SAPI interface and tested on a large number of floating-point
calculations. Initially, we performed floating-point division on
simple test problems with a small resolution. Early on, we
discovered that larger graph embeddings tended to produce
noisier results. To better understand what was happening we
started with a K8 graph embedding to represent two floating-
point numbers with only four bits of resolution. Since the D-
Wave’s dynamic range is limited to about a factor of 10 in the scale
of the QUBO parameters, we determined that we could expect
no more than 3–4 bits of resolution from any one calculation in
any event. However, our binary offset representation (3.5) implies
that we should expect no more than 3 bits of resolution in any
single run. Indeed, using the K8 embedding, we were able to get
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exact solutions from the annealer for any division problems that
had answers that were multiples of 0.25 between −1.0 and 1.0.
Problems in this range that had solutions that were not exact
multiples of 0.25 resulted in approximate solutions, effectively
“rounded” to the nearest of ±0.25 or ±0.75. At this point we
implemented an iterative scheme that uses the current error,
or residual, as a new input, keeping track of the accumulated
floating-point solution.

The iteration method has been implemented and tested
for floating-point division, but we have not yet implemented
iteration for matrix inversion. That can be done by using the
previous residual (error) as the new inhomogeneous term in the
matrix equation. We plan to implement an iterative method in
the matrix inversion code eventually. However, we already have
good preliminary results on matrix inversion that suggests that
this should work reasonably well, at least for well-conditioned
matrices. Currently, we are able to solve 2 × 2 and 3 × 3 linear
equations involving floating-point numbers up to a resolution of
4 bits, and having well-conditioned matrices, exactly for input
vectors with elements defined on [−1, 1] and that are multiples
of 0.25. Using an example matrix that is poorly-conditioned,
we find that it is generally not possible to get the right answer
without first doing some sort of preconditioning to the matrix.
But, more importantly, we were able to obtain some insight about
why ill-conditioned matrices can be difficult to solve as QUBO
problems on a quantum annealer, which gives some hints about
how to ameliorate the problem. We will discuss these results,
and the effects of ill-conditioning on the QUBO matrix inverse
problem below.

4.1.1. Note on Solution Normalization and Iteration
Allowing both the division and linear equation QUBO solvers
to work for arbitrary floating-point numbers, and to allow for
iterative techniques, requires normalizing the ratio of the current
dividend and the divisor, or the residual and matrix, to a value
in a range between −1 and 1. For the division problems, we
wanted to avoid “dividing in order to divide,” so we normalized
each ratio using the difference between the binary exponents
of ⌊divisor⌋ and ⌊dividend⌋. These can be found just by using
order comparisons, with no explicit divisions. Adding 1 to this
yields an “offset”—the largest binary exponent of the ratio—
to within a factor of 2 (±1 in the offset), which is sufficient
for scaling our QUBO parameters as needed. The fact that our
QUBO solutions are always returned in binary representation
provides a simple way to bound the solution into a range solvable
with the annealer by simply shifting the binary representation
of the current dividend by a few bits (using the current offset),
which is why we refer to the solution exponent as an “offset.”
In this way, the solution can easily be guaranteed to be in the
correct range without having to perform any divisions in Python.
The “offset” is accumulated and used to construct the current
approximation to the floating-point solution on each iteration.
The iteration process continues until the error of the approximate
solution is less than some tolerance specified by the user.

4.2. Results for Division
First, we present some examples for division without iteration.
We used a K4 graph embedding for expanding the unknown x

up to a resolution of four bits. However, using the binary offset
representation we can only get a true precisions of three bits. We
solved the simple division problem,

x =
y

m
. (4.1)

4.2.1. Basic Division Solver
Table 3 gives an extensive list of tested exact solutions returned by
the floating-point annealing algorithm on the D-Wave machine
using the K4 graph embedding with an effective binary resolution
of 3, corresponding to the multiples of 0.25 in the range [−1, 1].
The “Ground State” column lists the raw binary vector solutions,
corresponding to the expansion in Equation (2.5). It is easy to
check from Equations (2.5) and (2.4) that these give the floating-
point solutions found in the corresponding “D-Wave Solution”
column. In all of these cases, values of α ≥ 0.5 yielded the
solution exactly; however, α is set to 20.0 here because that gives
a better approximate solution for the inexact divisions, and faster
convergence for the iterated divisions. It does not change the
solutions for the exact cases.

Table 4 lists some illustrative division problems on [−1, 1]
that do not have solutions which are multiples of ±0.25,
and they are therefore not solved exactly by the quantum
annealing algorithm to 3 bits of resolution. Note that the energies
are different for the ground states because the Hamiltonians
are somewhat different for these problems. The “rounding”

TABLE 3 | Exact quantum annealed division problems to 3-bit resolution.

y m x, Exact x, D-Wave Ground state Energy α

DIVISION PROBLEMS WITH EXACT D-WAVE SOLUTIONS

1.00 1.0 1.00 1.00 [1,0,0,0] −2.0 20.0

0.50 0.5 1.00 1.00 [1,0,0,0] −2.0 20.0

1.00 −1.0 −1.00 −1.00 [0,0,0,0] 0.0 20.0

−1.00 1.0 −1.00 −1.00 [0,0,0,0] 0.0 20.0

0.50 −0.5 −1.00 −1.00 [0,0,0,0] 0.0 20.0

−0.50 0.5 −1.00 −1.00 [0,0,0,0] 0.0 20.0

0.75 1.0 0.75 0.75 [0,1,1,1] −1.53125 20.0

−0.75 1.0 −0.75 −0.75 [0,0,0,1] −0.03125 20.0

0.75 −1.0 −0.75 −0.75 [0,0,0,1] −0.03125 20.0

0.50 1.0 0.50 0.50 [0,1,1,0] −1.125 20.0

−0.50 1.0 −0.50 −0.50 [0,0,1,0] −0.125 20.0

0.50 −1.0 −0.50 −0.50 [0,0,1,0] −0.125 20.0

0.25 1.0 0.25 0.25 [0,1,0,1] −0.78125 20.0

−0.25 1.0 −0.25 −0.25 [0,0,1,1] −0.28125 20.0

0.25 −1.0 −0.25 −0.25 [0,0,1,1] −0.28125 20.0

0.25 0.5 0.50 0.50 [0,1,1,0] −1.125 20.0

−0.25 0.5 −0.50 −0.50 [0,0,1,0] −0.125 20.0

0.25 −0.5 −0.50 −0.50 [0,0,1,0] −0.125 20.0

0.00 ± 1.00 0.00 0.00 [0,1,0,0] −0.5 20.0

0.00 ± 0.75 0.00 0.00 [0,1,0,0] −0.5 20.0

0.00 ± 0.50 0.00 0.00 [0,1,0,0] −0.5 20.0

0.00 ± 0.25 0.00 0.00 [0,1,0,0] −0.5 20.0
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TABLE 4 | “Rounded” quantum annealed division solutions to 3-bit resolution.

y m x, Exact x, D-Wave Ground state Energy α

DIVISION PROBLEMS WITH APPROXIMATE D-WAVE SOLUTIONS

0.90 1.0 0.90 1.00 [1,0,0,0] −1.8 20.0

−0.90 1.0 −0.90 −1.00 [0,0,0,0] 0.0 20.0

0.80 1.0 0.80 0.75 [0,1,0,0] −1.6875 20.0

−0.80 1.0 −0.80 −0.75 [0,0,0,1] −0.01875 20.0

0.70 1.0 0.70 0.75 [0,1,0,0] −1.44375 20.0

−0.70 1.0 −0.70 −0.75 [0,0,0,1] −0.04374 20.0

0.60 1.0 0.60 0.50 [0,1,1,0] −1.275 20.0

−0.60 1.0 −0.60 −0.50 [0,0,1,0] −0.075 20.0

0.40 1.0 0.40 0.50 [0,1,1,0] −0.975 20.0

−0.40 1.0 −0.40 −0.50 [0,0,1,0] −0.175 20.0

0.30 1.0 0.30 0.25 [0,1,0,1] −0.84375 20.0

−0.30 1.0 −0.30 −0.25 [0,0,1,1] −0.24375 20.0

0.20 1.0 0.20 0.25 [0,1,0,1] −0.71875 20.0

−0.20 1.0 −0.20 −0.25 [0,0,1,1] −0.31875 20.0

0.10 1.0 0.10 0.00 [0,1,0,0] −0.6 20.0

−0.10 1.0 −0.10 0.00 [0,0,1,1] −0.4 20.0

0.30 0.9 0.3̄ 0.25 [0,1,0,1] −0.88542 20.0

−0.30 0.9 −0.3̄ −0.25 [0,0,1,1] −0.21875 20.0

1.0 7.0 0. ¯142875 0.25 [0,1,0,1] −0.64732 20.0

−1.0 7.0 −0. ¯142875 −0.25 [0,0,1,1] −0.36161 20.0

here occurs naturally in the quantum annealing algorithm as
the annealer settles into the lowest energy ground state that
approximates the solution. The last four problems are “challenge”
problems for the iterated division solver.

4.2.2. Iterated Division Solver
Table 5 lists a few example division problems returned from the
iterated quantum annealing solver. These are problems selected
from both Tables 3, 4 to illustrate the nature of the solutions
returned for both cases. These problems were iterated to an
error tolerance of 1.0 × 10−6. The four “challenge” problems
from Table 4 can now be solved with the iterative method. The
ground state is no longer given since the solution is generally
the concatenation of multiple binary vectors for every iteration.
Instead, the number of iterations is listed in the last column.
Note that some of the energies are the same for the solutions of
different problems. We have also left out an “Energy” column
since it was only calculated for the partial solution from the
last iteration.

4.3. Results for Matrix Equations
Note that we have occasionally been somewhat loose in calling
this “matrix inversion” since we are technically solving the linear
equation, rather than directly inverting the matrices. However,
for the problems considered here, we may simply obtain the
solutions to the equations using trivial orthonormal eigenvectors,
such as (1, 0) and (0, 1), in which case the inverse of the matrix
will just be the matrix having those solutions as columns.

The linear equation algorithm was implemented and used
to solve several 2 × 2 and 3 × 3 matrices on the D-Wave

TABLE 5 | Iterated quantum annealed division problems to resolution 1.0× 10−6.

y m x, Exact x, D-Wave α Iterations

ITERATED DIVISION PROBLEMS ON THE D-WAVE ANNEALER

0.25 1.0 0.25 0.25 20.0 1

−0.25 1.0 −0.25 −0.25 20.0 1

0.50 1.0 0.50 0.50 20.0 1

−0.50 1.0 −0.50 −0.50 20.0 1

0.75 1.0 0.75 0.75 20.0 1

−0.75 1.0 −0.75 −0.75 20.0 1

0.80 1.0 0.80 0.799999 20.0 5

−0.80 1.0 −0.80 −0.799999 20.0 5

0.70 1.0 0.70 0.700000 20.0 5

−0.70 1.0 −0.70 −0.700000 20.0 5

0.10 1.0 0.10 0.999999 20.0 5

−0.10 1.0 −0.10 −0.999999 20.0 5

0.30 0.9 0.3̄ 0.333333 20.0 10

−0.30 0.9 −0.3̄ −0.333333 20.0 10

1.0 7.0 0. ¯142875 0.1248751 20.0 7

−1.0 7.0 −0. ¯142875 −0.1248751 20.0 7

quantum annealer. Floating-point numbers are represented using
the same offset binary representation as was used for the division
problems. There are thus 4 qubits per floating-point number.
As in the previous section, this gives an effective resolution of
3 bits for floating-point numbers defined on [−1, 1]. In this case,
however, we employed the normalization technique discussed in
the division iteration to allow solutions with positive and negative
floating-point numbers with larger magnitudes than 1. But, in
these matrix problems we still use solution values with relatively
small magnitudes and within an order of magnitude of each
other for all solution vector elements. All of the cases shown
here are matrix equations with exact solutions, in which case the
values of the solution vector elements are multiples of 0.25. We
are therefore optimistic that the iterative solver for the matrix
inversion could be implemented fairly quickly.

In general, every qubit representing part of a floating-point
number may be coupled to every other qubit representing
part of the same number. In turn, every logical qubit may
be connected to every other logical qubit, which implies that
every qubit in the logical qubit representation of the problem,
may be coupled to every other logical qubit in the problem.
Therefore, the linear solution algorithm is implemented using a
K8 graph embedding to solve 2 × 2 matrix equations, having a 2
dimensional solution vector with 4 qubits per element, and using
a K12 graph embedding to solve 3× 3 matrix equations, having a
3 dimensional solution vector with 4 qubits per element.

Most of these solutions involve well-conditioned matrices;
however, one does not generally find a feasible solution when
using an ill-conditioned matrix. This is illustrated in two cases,
one with a of a 2 × 2 matrix another with a 3 × 3 matrix. We
were able to obtain the correct solutions by preconditioning these
matrices before converting to QUBO form, however the 3 × 3
matrix, still had a nearly degenerate ground state and required a
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very large chaining penalty α to get the correct solution. This is
analyzed and discussed in detail below.

4.3.1. Simple Analytic Problem
Recalling equation (3.1), we shall obtain solutions x of the
following matrix equation,

M · x = Y, (4.2)

using values of M and Y listed in Matrix Test Problems. Here
we present the first two tests as an example. Consider the
following matrix:

M =

(

1
2

3
2

3
2

1
2

)

. (4.3)

We can solve Equation (3.1) for M, with the following two
Y vectors:

Y1 =

(

1
0

)

, Y2 =

(

0
1

)

. (4.4)

The exact solutions are

x1 =

(

− 1
4
3
4

)

, x2 =

(

3
4

− 1
4

)

. (4.5)

We may obtainM−1 simply as

M
−1 =

(

− 1
4

3
4

3
4 − 1

4

)

(4.6)

In the next section we summarize all of the solutions obtained by
the DWave for all of our test problems.

4.3.2. QUBO Solution Results
The solutions for the 2× 2 linear solves are presented in Table 6.
Notice that all of the test problems are presented with α = 20.0
except for the last two. This was done to illustrate the effect of
preconditioning for the ill-conditioned case. However, for this
example, the difference disappeared above α = 2.0, and both
began to give incorrect answers below α = 1.5. This is in contrast
to the 3 × 3 matrix solution cases, which are evidently more
sensitive to condition number than the 2× 2 tests.

The 3 × 3 matrix solutions are presented in Table 7. Note
that we have not included the 12 digit binary ground states
here because they take up too much room in the table and are
not particularly illuminating. Problems 2(f ) and 2(g) are the ill-
conditioned matrix test and its preconditioned equivalent. For
α = 20.0 both versions of the poorly-conditioned problem gave
only D-Wave solutions with broken chains. One only begins to
get solutions with unbroken chains at a value of α above 1000, but
those solutions are generally wrong and basically random until
one gets to a very high α. We discuss this in greater detail in the
following section.

TABLE 6 | 2× 2 Matrix equation solutions to 3-bit resolution.

Test Exact solution D-wave solution Ground state Energy α

DIVISION PROBLEMS WITH APPROXIMATE D-WAVE SOLUTIONS

1(a) (−0.25, 0.75) (−0.25, 0.75) [0,0,1,1,0,1,1,1] −2.167 20.0

1(b) ( 0.75,−0.25) ( 0.75,−0.25) [0,1,1,1,0,0,1,1] −2.167 20.0

1(c) ( 1.00, 1.00) ( 1.00, 1.00) [1,0,0,0,1,0,0,0] −0.444 20.0

1(d) (−1.00, 1.00) (−1.00, 1.00) [0,0,0,0,1,0,0,0] −1.889 20.0

1(e) ( 1.00,−1.00) ( 1.00,−1.00) [1,0,0,0,0,0,0,0] −1.650 20.0

1(f ) ( 1.00, 0.00) ( 1.00, 0.00) [0,0,0,0,0,1,0,0] −2.125 20.0

1(g) ( 0.25,−0.50) ( 0.25,−0.50) [0,1,0,1,0,0,1,0] −0.925 20.0

1(h) ( 0.25, 0.25) ( 0.25, 0.25) [0,1,0,1,0,1,0,1] −2.03125 20.0

1(i) ( 2.00, 1.00) ( 2.00, 1.00) [1,1,0,0,1,0,0,0] −2.450126 20.0

1(j) ( 2.00, 1.00) ( 2.00, 1.00) [1,1,0,0,1,0,0,0] −2.532545 20.0

1(i) ( 2.00, 1.00) ( 2.50, 0.75) [1,1,1,0,0,1,1,1] −2.887689 1.5

1(j) ( 2.00, 1.00) ( 2.00, 1.00) [1,1,0,0,1,0,0,0] −2.951557 1.75

TABLE 7 | 3× 3 matrix equation solutions to 3-bit resolution.

Test Exact solution D-wave solution Energy α

DIVISION PROBLEMS WITH APPROXIMATE D-WAVE SOLUTIONS

2(a) ( 0.25,−0.5, 1.0) ( 0.25,−0.5, 1.0) −15.5625 20.0

2(b) ( 0.25,−0.5, 0.0) ( 0.25,−0.5, 0.0) −12.5625 20.0

2(c) ( 0.25, 0.0,−0.5) ( 0.25, 0.0,−0.5) −13.5 20.0

2(d) ( 1.0, 0.25,−0.5) ( 1.0, 0.25,−0.5) −15.6875 20.0

2(e) ( 0.0, 0.25,−0.5) ( 0.0, 0.25,−0.5) −12.75 20.0

2(f ) ( 0.0, 0.25,−0.75) broken chains N/A 20.0

2(g) ( 0.0, 0.25,−0.75) broken chains N/A 20.0

2(f ) ( 0.0, 0.25,−0.75) ( 1.75, 1.25, 0.75) −58.188 2200.0

2(g) ( 0.0, 0.25,−0.75) ( 0.0, 0.25,−0.75) −557.437 2200.0

4.4. Discussion
The algorithms described here generally worked quite well for
these small test cases, with the exception of the ill-conditioned
3 × 3 matrix. The ill-conditioned cases clearly demonstrate not
only the limitations of quantum annealing applied solving linear
equations, but the limitations of quantum annealing in general.
Consider the two ill-conditioned tests presented here. When
translated to a QUBO problem, the Hamiltonian spectra for these
tests contain many energy eigenvalues very close to the ground
state energy. When these are embedded within a larger graph
of physical qubits they result in a very nearly degenerate ground
state, typically with thousands of states having energies within the
energy uncertainty of the ground state over the annealing time, τ ,
given by

1E =
h̄

τ
. (4.7)

Consider a set of excited states with energy, En for n > 0, with
n = 0, corresponding to the ground state with energy denoted by
E0, and with En ordered by energy. The quantum annealer near
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the ground state evolves adiabatically whenever

E1 − E0 ≫
h̄

τ
(4.8)

This is the adiabatic condition for quantum time evolution [6].
However, when this condition is badly violated, which can occur
dynamically since the instantaneous energies (eigenvalues of H)
are time dependent, the time evolution for the system near
the ground state deviates significantly from adiabatic behavior,
resulting in a highly mixed superposition of those eigenstates
states close in energy to the ground state. Now, the energy
spectra corresponding to poorly conditioned matrices have a
large number of eigenstates sufficiently near the ground state to
strongly violate the adiabaticity condition. Furthermore, these
states, in general, will have no correlation to the solution
encodings for any particular problem (e.g., the offset binary
floating-point representation). For example, they are not, in
general, related in any meaningful way to Hamming distance.
Therefore, these problems effectively cannot resolve the true
ground state and tend to give nearly random lowest energy
"solutions" when the final state is measured on any individual
annealing run. Since there are so many of these states for ill-
conditioned problems, a very large number of “reads” (annealing
runs) may be have to be specified to sufficient sample the
solution space to find the true ground state. Thus, we determined
that the condition number of a matrix has a strong effect
on the ability to solve a linear equation using a quantum
annealer, as it influences the shape of the energy surface near the
ground state.

The preconditioning method we used was very simple
and was probably too crude to be practical for arbitrary
matrices. However, the intent here was simply to test the
effects of preconditioning on the quantum annealing solutions.
We have been studying this issue and believe it may be
possible to precondition such problems to solve them more
efficiently on a quantum annealing machine. We suspect that
a related preconditioning method may be applicable to more
general QUBO problems suffering from similar spectral density
pathologies in order to better separate the ground state energy,
thereby allowing more practical solution on a quantum annealer.
This is work in progress. We plan to further develop and test
those ideas in the future.

MATRIX TEST PROBLEMS

The problems we solved to test our quantum annealing algorithm
to solve equation (3.1) are listed below. Note that, although the
QUBO Bij matrix is symmetric by construction, the matrix M
need not be symmetric.

1. Test Problems with 2× 2 Matrices

Test 1(a):

M =

(

0.5 1.5
1.5 0.5

)

, Y =

(

1.0
0.0

)

, x =

(

−0.25
0.75

)

Test 1(b):

M =

(

0.5 1.5
1.5 0.5

)

, Y =

(

0.0
1.0

)

, x =

(

0.75
−0.25

)

Test 1(c):

M =

(

2.0 −1.0
−0.5 0.5

)

, Y =

(

1.0
0.0

)

, x =

(

1.0
1.0

)

Test 1(d):

M =

(

1.0 2.0
0.5 0.5

)

, Y =

(

1.0
0.0

)

, x =

(

−1.0
1.0

)

Test 1(e):

M =

(

3.0 2.0
2.0 1.0

)

, Y =

(

1.0
1.0

)

, x =

(

1.0
−1.0

)

Test 1(f ):

M =

(

1.0 0.5
1.0 −0.5

)

, Y =

(

1.0
1.0

)

, x =

(

1.0
0.0

)

Test 1(g):

M =

(

0.0 −2.0
−2.0 −1.5

)

, Y =

(

1.0
0.25

)

, x =

(

0.25
−0.5

)

Test 1(h):

M =

(

0.0 −2.0
−2.0 −1.5

)

, Y =

(

−0.5
−0.875

)

, x =

(

0.25
0.25

)

Test 1(i): Ill-conditioned problem with κ ≈ 25
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M =

(

1.0 2.0
2.0 3.999

)

, Y =

(

4.0
7.999

)

, x =

(

2.0
1.0

)

Test 1(j): Pre-conditioned version of 1(i) with κ = 5.0

M =

(

1.80026 1.6019
1.6019 4.19974

)

, Y =

(

5.2007
7.40013

)

, x =

(

2.0
1.0

)

2. Matrix Problems with 3× 3 Matrices

Test 2(a):

M =





0.0 −2.0 0.0
−2.0 1.5 0.0
0.0 0.0 1.0



 , Y =





1.0
0.25
1.0



 , x =





0.25
−0.5
1.0





Test 2(b):

M =





0.0 −2.0 0.0
−2.0 1.5 0.0
0.0 0.0 1.0



 , Y =





1.0
0.25
0.0



 , x =





0.25
−0.5
0.0





Test 2(c):

M =





1.0 0.0 0.0
0.0 0.0 −2.0
0.0 −2.0 −1.5



 , Y =





1.0
0.0
0.25



 , x =





0.25
0.0
−0.5





Test 2(d):

M =





1.0 0.0 0.0
0.0 0.0 −2.0
0.0 −2.0 −1.5



 , Y =





1.0
1.0
0.25



 , x =





1.0
0.25
−0.5





Test 2(e):

M =





1.0 0.0 0.0
0.0 0.0 −2.0
0.0 −2.0 −1.5



 , Y =





0.0
1.0
0.25



 , x =





0.0
0.25
−0.5





Test 2(f ): Ill-conditioned problem with κ ≈ 78

M =





−4.0 6.0 1.0
8.0 −11.0 −2.0
−3.0 4.0 1.0



 , Y =





0.75
−1.25
0.25



 ,

x =





0.0
0.25
−0.75





Test 2(g): Pre-conditioned version 2(g) with κ ≈ 1

M =





6.1795 11.8207 2.0583
15.673 −7.56717 −3.8520
−5.6457 7.96872 15.9418



 , Y =





1.4114
0.9972
9.9643



 ,

x =





0.0
0.25
−0.75
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