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Abstract 
 

Floating-point division is an important operation in 
scientific computing and multimedia applications. This 
paper presents and compares two division algorithms 
for an x86 microprocessor, which utilizes a 
rectangular multiplier that is optimized for multimedia 
applications. The proposed division algorithms are 
based on Goldschmidt’s division algorithm and 
provide correctly rounded results for IEEE 754 single, 
double, and extended precision floating-point numbers. 
Compared to a previous Goldschmidt division 
algorithm, the fastest proposed algorithm requires 
25% to 37% fewer cycles, while utilizing a multiplier 
that is roughly 2.5 times smaller.  
 
 
1. Introduction 
 

In an x86 microprocessor, the floating-point unit 
(FPU) has undergone considerable change in recent 
years.  Much of this change is due to the advent of 
Streaming SIMD Extensions (SSE) [1]. These 
extensions, mainly driven by multimedia applications 
(3D graphics, video, etc.), have added complexity to 
recent FPU designs. Prior to the addition of SSE, the 
FPU in x86 microprocessors only had to support x87 
scientific floating-point instructions.  In x87 mode, the 
FPU performs arithmetic operations on 80-bit 
extended-precision floating-point numbers, and then 
rounds the results to 32-bit single, 64-bit double, or 80-
bit extended precision floating-point numbers [2].  
Floating-point arithmetic in x86 microprocessors 
complies with the specifications given in the IEEE-754 
Standard for Binary Floating-Point Arithmetic [3].   

With the growing importance of multimedia 
applications, the FPU is now required to support both 
x87 instructions and SSE instructions. In 1999, Intel 
introduced SSE instructions that perform multiple 
floating-point arithmetic operations on single-precision 
floating-point data types [1]. For example, a single 

SSE instruction, DIVPS, performs four single-
precision floating-point divide operations. A few years 
later, SSE2 introduced new instructions for parallel 
double-precision operations.  Recently, SSE3 added 
horizontal arithmetic and asymmetric arithmetic 
operations, but no new data formats.  Multimedia 
applications are placing a greater emphasis on SSE 
performance over x87.  Hence, the FPU workload is 
shifting from engineering and scientific computing to 
multimedia applications. 

We are designing an FPU that utilizes a 27-bit by 
76-bit rectangular multiplier, in which the length of the 
multiplier operand is less than the length of the 
multiplicand operand. This reduces the area of the 
multiplier, but requires multiple passes through the 
multiplier to produce a full-precision result.  

Our multiplier is optimized for single-precision SSE 
instructions, which are widely used in multimedia 
applications [1, 4]. The multiplier can perform two 
parallel single-precision multiplies each cycle with a 
latency of two cycles. It can perform one double-
precision multiply every other cycle with a latency of 
three cycles or one extended-precision multiply every 
three cycles with a latency of four cycles. Compared to 
a fully-pipelined multiplier, the rectangular multiplier 
improves the latency of single precision multiplies and 
reduces the area of the FPU. It also has the potential to 
reduce power dissipation for multimedia applications. 
In addition to performing multiplication, the 
rectangular multiplier is used to perform division, 
square root, and elementary function computations.  

Due to its importance in scientific computing and 
multimedia applications, several algorithms for 
floating-point division have been developed [5].   
These algorithms can be divided into three main 
categories; digit recurrence, very high-radix, and 
functional iteration. Digit recurrence algorithms, such 
as restoring division, non-restoring division, and SRT 
division, compute a fixed number of quotient bits each 
iteration [6]. Very high-radix division algorithms, 
including accurate quotient approximations [7], the 
short reciprocal algorithm [8, 9, 10], and prescaling 
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and selection by rounding algorithms [11, 12], are digit 
recurrence algorithms that compute a large number of 
quotient bits (e.g., 8 or more) each iteration. Functional 
iteration algorithms, such as Goldschmidt’s algorithm 
[13] and Newton-Raphson iteration [14], typically 
obtain an estimate of the divisor’s reciprocal, and then 
use multiplication and subtraction to double the 
number of accurate quotient bits each iteration.   

In this paper, we present and compare two division 
algorithms for an x86 microprocessor with a 
rectangular multiplier. These algorithms are based on 
Goldschmidt’s division algorithm and provide support 
for single, double, and extended precision floating-
point numbers. The algorithms are also compared to 
the algorithm and implementation used on the AMD-
K7 FPU [15], which employ Goldschmidt’s algorithm 
to perform division, but uses a fully pipelined 
multiplier.  

Some of our goals in developing these algorithms 
include (1) the algorithms should have a small impact 
on the architecture and performance of the multiplier, 
(2) they should be able to efficiently utilize the 
rectangular multiplier and high-speed reciprocal 
approximations, (3) they should have low latencies and 
not require unnecessary passes through the rectangular 
multiplier, (4) they should be optimized for single-
precision numbers, but also be able to efficiently 
support double and extended-precision numbers, and 
(5) they should produce correctly rounded results, as 
specified in the IEEE 754 Standard for Binary 
Floating-Point Arithmetic.  

The main contribution of this paper is the 
presentation of two new division algorithms that are 
designed to be implemented with a rectangular 
multiplier and provide support for x87 and SSE 
datatypes. The algorithms presented in this paper are 
based on Goldschmidt’s division algorithm and are 
able to utilize the rectangular multiplier and high-speed 
reciprocal approximations. Our algorithms have low 
latencies, especially for single-precision numbers. 
Compared to very high-radix algorithms, our 
algorithms require fewer modifications to the 
multiplier architecture. They have lower latencies than 
equivalent Newton-Raphson-based division 
algorithms, since there are fewer dependencies 
between multiplications.  

The remainder of this paper is organized as follows: 
Section 2 gives an overview of Goldschmidt’s division 
algorithm. Section 3 presents the design of a 27-bit by 
76-bit rectangular multiplier that provides high-
performance single-precision multiplications and is 
extended to implement the proposed division 
algorithms. Section 4 discusses a previous 
implementation of Goldschmidt’s division algorithm 
on the AMD-K7 FPU, and describes our proposed 

division algorithms. Section 5 compares the division 
algorithms, and Section 6 gives our conclusions. 

In the following sections, upper case variables 
denote operands and lower-case variables denote bits 
within those operands. Individual bits are indexed by 
their bit position with the more significant bits having 
lower indices. For example, X = x0.x1… xn-1 has the 
value: 
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When bits i through j of X are accessed, we use the 
notation X[i:j], where X[i:j] = xixi+1 … xj-1xj for i < j.    
 
2. Goldschmidt’s division algorithm 
 
Goldschmidt’s division algorithm is also known as 
division by multiplicative normalization, division by 
convergence, and division by series expansion. It has 
been implemented in the IBM 360/91 [16], the 
TMS390C602A [17], the IBM S/390 G4 [18], and the 
AMD-K7 microprocessor [15]. Various publications 
describe Goldschmidt’s division algorithm [19, 20, 
21], its error analysis [22], and its implementation 
using pipelined multipliers [23, 24]. 

Goldschmidt’s division algorithm, computes the 
quotient Q = A/B by starting with an initial 
approximation to the divisor’s reciprocal; X0 ≈ 1/B. It 
then multiplies X0 by the dividend, A, and divisor, B, to 
obtain: 
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After this, m iterations are performed, where:  
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Finally, Nm is multiplied by Rm to obtain Q. Each 
iteration requires two multiplications and one 
subtraction (or complement operation) and 
approximately doubles the number of accurate bits.  

If X0 has an absolute error of 
0Xε and computations 

are performed without rounding error then:  
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In the next iteration: 
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In general, when Ni is close to A/B, Di+1 and Ri+1 
converge towards 1.0 and Ni+1 converges towards A/B. 
Each iteration roughly doubles the number of accurate 
bits in the quotient approximation, Ni.  

Since Ri is close to 1.0, not all of the bits of Ri are 
needed to compute Ni and Di. If k

Ri

−<≤ 20 ε , Ri has 

the form 1.0…0rk+1rk+2 … rn-1. If 02 <≤− −
iR

k ε , Ri 
has the form 0.1…1rk+1rk+2 … rn-1. Consequently, the k 
most significant bits of Ri are not needed when 
computing Ni and Di. Using the substitution R’i = Ri - 
1, Equations (4) to (6) can be rewritten as: 
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Although this approach requires extra additions to 
implement Equation (13) and (14), it has the advantage 
that '

iR  is close to zero, which lets ii NR ×'  and 

ii DR ×' be computed with less precision.  Instead of 
computing 1

'
1 1 ++ −= ii DR directly, hardware computes 

Ri as the one’s complement of 1+iD and then computes: 

)17(]:[},'0{
2]:[

)16(]:[},'0{
2]:[

1

1

jkRDkD
jkRDDD

jkRNkN
jkRNNN

iii

k
iiii

iii

k
iiii

×+=
××+=

×+=
××+=

−
+

−
+

 

These computations multiply the appropriate bits from 
Ri by Ni or Di right shifted by k bits and then adds this 
product to Ni or Di, respectively.  

 
3. Rectangular multiplier 
 

The rectangular floating-point multiplier used to 
implement our proposed division algorithms has two 
pipeline stages, as shown in Figure 1. The first stage, 
EX1, consists of a 27-bit by 76-bit tree multiplier that 
accepts the two numbers to be multiplied, along with a 
76-bit feedback term in carry-save format, and 
produces a 103-bit product in carry-save format. The 
second stage, EX2, consists of combined addition and 
rounding, result multiplexing, and forwarding to the 
register file and bypass networks.  

The multiplier supports a range of precisions with 
wider precision multiplies achieved by multiple passes 
through the first stage, EX1. It supports operations on 
single precision numbers with 24-bit significands, 

double precision numbers with 53-bit significands, and 
extended precision numbers with 64-bit significands. 
Similar to the AMD-K7 multiplier design [15], our 
multiplier also provides a variety of other 
multiplication sizes to facilitate accurate division, 
square root, and elementary function computations. 
The multiplication sizes supported include 24x24, 
25x24, 27x76, 53x53, 54x53, 54x76, 64x64, 68x68 and 
76x76. The multiplier also performs two single 
precision (dual 24x24) multiplications in parallel, 
which is frequently used in multimedia applications.  

  

 
 Figure 1. 27-bit by 76-bit multiplier 

 
For each pass through the multiplier, the appropriate 

27-bits of the multiplier operand are selected by the 
Unpack/Align Multiplexers. Two sets of radix-4 Booth 
encoders are required to support the dual 24x24 
multiply.  The Booth multiplexers produce fourteen 
81-bit partial products, which are reduced, along with 
the two 76-bit feedback terms, using a partial product 
reduction tree implemented using three levels of 4-2 
compressors. For the first pass, the feedback terms are 
all zeros. For subsequent passes, the feedback terms 
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are obtained from the upper 76-bits of the carry-save 
product from the previous pass. 

The rounding scheme implemented in the second 
stage, EX2, involves adding rounding constants to the 
carry-save product using 3-2 carry-save adders (CSAs) 
prior to the final addition [15]. The rounding is 
performed prior to normalization using two additions, 
with one addition assuming rounding overflow occurs 
and one addition assuming rounding overflow does not 
occur. A third addition computes the un-rounded 
significand [15]. An appropriate rounding constant is 
provided for each of the first two additions and is 
omitted for the un-rounded significand. Since for wider 
precision multiplies, the product generation is split 
over multiple cycles, the lower 27-bits are processed 
after each pass to compute the sticky bit and the carry-
in for the next pass. Table 1 shows the multiplier 
passes, latencies, and throughputs for supported 
multiplication sizes. 
 

Table 1. Multiplier passes, latencies, and 
throughput for supported multiplication sizes 
Multiplication 

Sizes 
Multiplier 

Passes 
Latencies 
(cycles) 

Throughputs 
(mults/cycle) 

Dual 24x24 1 2 2 
24x24, 25x24, 27x76 1 2 1 

53x53, 54x53, 54x76 2 3 1/2 
64x64, 68x68, 76x76 3 4 1/3 

 
4. Floating-point division algorithms 
 

The division algorithms presented in this paper are 
derived from the AMD-K7 Goldschmidt division 
algorithm [15], which was designed for a fully-
pipelined 76-bit by 76-bit multiplier. This section gives 
an overview of the AMD-K7 division algorithm [15]. 
It then presents our variations of Goldschmidt’s 
division algorithm that are designed for an x86 
microprocessor with the 76-bit by 27-bit rectangular 
multiplier presented in Section 3. The algorithms can 
be modified for other multiplier sizes.  

Figure 2 shows the version of Goldschmidt’s 
division algorithm implemented on the AMD-K7 and 
presented in [15]. This division algorithm only 
supports extended precision input operands with results 
rounded to single, double, extended, or internal 
precision. In Figure 2, A and B are the input operands. 
PC is the significand precision control, where PC is 24 
for single precision, 53 for double precision, 64 for 
extend precision, and 68 for internal precision. 
Division with an internal precision of 68 bits is used to 
compute certain elementary functions. RC is the 
rounding control, which indicates if the final result is 
rounded to nearest even, toward zero, toward minus 

infinity, or toward plus infinity. Qi is the initial 
quotient approximation and Qf is the final correctly 
rounded quotient. REM is a 2-bit variable that indicates 
the sign of the remainder and if the remainder is zero. 
The cycles shown on the right assume that the initial 
reciprocal estimate takes three cycles and each 
multiplication takes four cycles [15]. The division 
algorithm takes 16 cycles for single precision (PC = 
24), 20 cycles for double precision (PC = 53), and 24 
cycles for extended and internal precision (PC = 64 
and 68, respectively).  

 
Program: Goldschmidt’s Division Algorithm in the AMD-K7 
with a 76 by 76 Multiplier [15] 

Input = (A, B, PC, RC), Output = (Qf ) 
Operations    Cycles  
X0 = recip_estimate(B)          1-3  
D0 = itermul_76x76(X0, B), R0 = comp1(D0) 4-7 
N0 = itermul_76x76(X0, A)          5-8 
if (PC == 24)  
     {Nf = N0, Rf = R0, goto END DIVISION } 
D1 = itermul_76x76(D0, R0), R1 = comp1(D1)       8-11 
N1 = itermul_76x76(N0, R0)          9-12 
if (PC == 53)  
     {Nf = R1, Rf = R1, goto END DIVISION } 
D2 = itermmul_76x76(D1, R1), R2 = comp1(D2) 12-15 
N2 = itermmul_76x76 (N1, R1)   13-16 
Rf = N2, Rf = R2  
END DIVISION: 
Qi = lastmul_76x76(Nf, Rf, PC+1)             See + 
REM = backmul_76x76(Qi, B, A),  
Qf = round(Qi, REM, PC, RC)  See * 
 
+ 9-12 (PC = 24), 13-16 (PC = 53), 17-20 (PC = 64/68) 
* 13-16 (PC = 24), 17-20 (PC = 53), 21-24 (PC = 64/68) 
Figure 2: Goldschmidt’s algorithm in the AMD-K7 

  
The algorithm shown in Figure 2 includes several 

operations, which are discussed in detail by Oberman 
[15]. The recip_estimate operation uses 210-entry by 
16-bit and 210-entry by 7-bit bipartite tables to provide 
a reciprocal estimate that is accurate to at least 14.94 
bits [15, 25]. The itermul_76x76 operation corresponds 
to a 76-bit by 76-bit multiply in which the result is 
rounded to 76 bits using round-to-nearest-even. The 
comp1 operation produces the one’s complement of Di, 
which is a 76-bit value. The lastmul_76x76 operation 
is a 76-bit by 76-bit multiply, which rounds its result to 
PC+1 bits of precision using round-to-nearest-even. 
PC+1 bits of precision are required in order to 
implement the AMD-K7 rounding technique [15]. The 
backmul_76x76 operation performs a 76-bit by 76-bit 
multiplication of Qi × B and subtracts A to determine 
the sign of the remainder and if the remainder is equal 
to zero. The round operation produces the correctly 
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rounded quotient using the AMD-K7 rounding 
technique [15]. 

To more efficiently implement Goldschmidt’s 
division algorithm with a rectangular multiplier, our 
first version of Goldschmidt’s algorithm (GS-1) uses a 
truncated version of Ri, in which the required precision 
of Ri is determined from a detailed error analysis. This 
analysis indicates correctly rounded results are still 
produced, when R0 is truncated to 30 bits and R1 is 
truncated to 60 bits. Since R0 must be longer than 27 
bits, it needs two passes through the 27-bit by 76-bit 
multiplier, so R0 is instead truncated to 54 bits. 
Similarly, since R1 is longer than 54 bits, it needs three 
passes through the multiplier, so all 76 bits are used.  

 
Program: Goldschmidt’s Division Algorithm with Truncated 
Ri on a 27 x 76 Multiplier (GS-1) 
 
Input = (A,B,OT, PC, RC) Output = (Qf ) 
Operations    Cycles  
X0 = recip_estimate(B)   1-3 
D0 = itermul_27x76(X0, B), R0 = comp1(D0) 4-5 
N0 = itermul_27x76(X0, A)   5-6 
if (OT = = SINGLE) { 
    Qi = lastmul_54x76(R0[0:53], N0, 25) 7-9  
    REM = backmul_25x24(Qi, B, A),  
    Qf = round(Qi, REM, 24, RC)  10-11 
    goto END DIVISION } 
if (OT = = X87 and PC = = 24) goto X87 DIV 
D1 = itermul_54x76(R0[0:53], D0),  
R1 = comp1(D1)    6-8 
N1 = itermul_54x76(R0[0:53], N0)  8-10 
if (OT = = DOUBLE ) {    
     Qi = lastmul_76x76(R1, N1, 54)  11-14  
     REM = backmul_54x53(Qi, B, A),  
     Qf = round(Qi, REM, 53, RC)  15-17 
     goto END DIVISION } 
X87 DIV:   
if (PC == 24) { 
     Qi = lastmul_54x76(R0[0:53], N0, 25) 7-9 
else if (PC == 53) 
     Qi = lastmul_76x76(R1, N1, 54)  11-14 
else {  
     D2 = itermul_76x76(R1, D1),  
     R2 = comp1(D2)    11-14 
     N2 = itermul_76x76(R1, N1)  14-17 
     Qi = lastmul_76x76(R2, N2, PC+1) } 18-21    REM = 
backmul_76x76(Qi, B, A),  
Qf = round(Qi, REM, PC, RC)  See * 
END DIVISION:  
 
* 10-13 (PC=24), 15-18 (PC=53), 22-25 (PC = 64/68) 
Figure 3: Goldschmidt’s algorithm with truncated 

Ri on a 27 x 76 multiplier (GS-1) 
 

Utilizing a truncated version of R0 allows some of 
the multiplications to be performed with fewer passes 
through the rectangular multiplier. The GS-1 algorithm 

also examines the operand type, OT, since SSE 
requires support for single and double precision input 
operands and operations on these types of operands 
require fewer passes through the rectangular multiplier 
than extended precision operands. 

Figure 3 shows the GS-1 Algorithm. In this figure, 
the size of each multiplication is specified by the 
numbers after the “_”. All of the itermul_ operations, 
truncate their results to 76 bits, the lastmul_ operations 
round their results to the precision specified in the last 
argument using round-to-nearest. The rest of the 
operations have the same functionality as the 
corresponding operations in Figure 2, except for the 
size of the input operands. For example,  

Qi = lastmul_54x76(R0[0:53], N0, 25) 
indicates that the 54 most significant bits of R0 are 
multiplied by all 76 bits of N0. The result is rounded to 
25 bits using round-to-nearest. Since R0[0:53] is 54 
bits, this multiplication is performed with two passes 
through the rectangular multiplier. 

For single precision operands (OT = SINGLE), all 
of the multiplications, except for lastmul_54x76, 
require only a single pass through the multiplier tree 
and the division has a latency of 11 cycles. For double 
precision operands, the multiplications require one to 
three passes through the multiplier tree and the division 
has a latency of 17 cycles. For x87 operands, the 
latency depends on the required precision of the final 
result and is 13 cycles for single precision, 18 cycles 
for double precision, and 25 cycles for extended or 
internal precision.     

Our second version of Goldschmidt’s algorithm 
(GS-2), shown in Figure 4, uses a truncated version of 
Ri and takes advantage of the fact that Ri is close to 1.0 
to reduce the number of bits in Ri used for the iterative 
multiplications and reduce the number of passes 
through the multiplier. For example, since 

13
0 2|1| −<−R , the thirteen most significant bits of Ri 

are not needed. Based on Equation (17), this allows the 
computation   

D1 = itermul_54x76(R0[0:53], D0)        (18) 
which requires two passes through the multiplier tree 
in GS-1 to be replaced by the computation  
    D1 = itermuladd_27x76(R0[13:39], D0, 13)      (19) 
which corresponds to  

)20(]39:13[},13'0{
2]39:13[

000

13
0001

RDD
RDDD

×+=
××+= −

. 

This operation requires only a single pass through the 
multiplier with D0 right shifted by 13 bits, the lower 13 
bits of D0 truncated, and the un-shifted value of D0 
added to the product. This operation compensates for 
the fact that 1 - Ri is used instead of Ri, as described in 
Section 2. Similar optimizations are used throughout 
the algorithm to reduce the number of passes through 
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the multiplier and the latency of the division algorithm. 
The operations that use these types of optimizations are 
itermuladd_ and lastmuladd_. They implement 
operand shifting, multiplication, and addition by using 
a modified version of the multiplier described in 
Section 3. The lastmuladdd operation is similar to the 
itermuladd algorithm, except that the result is rounded 
to the number of bits specified by its last argument 
using round-to-nearest.   
 
Program: Goldschmidt’s Division Algorithm with Reduced 
Ri on a 27 x 76 Multiplier (GS-2) 

Input = (A,B,OT, PC,RC), Output = (Qf ) 
Operations        Cycles  
X0 = recip_estimate(B)       1-3 
D0 = itermul_27x76(X0, B), R0 = comp1(D0)     4-5 
N0 = itermul_27x76(X0, A)       5-6 
if (OT == SINGLE) {    
    Qi = lastmuladd_27x76(R0[13:39], N0, 13, 25)     7-8 
    REM = backmul_25x24(Qi, B, A),  
    Qf = round(Qi, REM, 24, RC)         9-10 
    goto END DIVISION } 
if (OT == X87 and PC = 24) goto X87 DIV 
D1 = itermuladd_27x76(R0[13:39], D0, 13), 
R1 = comp1(D1)        6-7 
N1 = itermuladd_27x76(R0[13:39], N0, 13)     7-8 
if (OT == DOUBLE ) {    
   Qi = lastmuladd_54x76({R1[26,75], N1, 26, 54)     9-11 
   REM = backmul_54x53(Qi, B, A),  
   Qf = round(Qi, REM, 53, RC)          12-14 
   goto END DIVISION } 
X87 DIV:   
if (PC == 24) 
    Qi = lastmuladd_27x76(R0[13,39], N0, 13, 25)      7-8  
else if (PC == 53) 
    Qi = lastmuladd_54x76(R1[26,75], N1, 26, 54)      9-11 
else {  
    D2 = itermuladd_27x76(R1[26:52], D1, 26),  
    R2 = comp1(D2)                8-9 
    N2 = itermuladd_27x76(R1[26:52], N1, 26)      9-10 
    Qi = lastmuladd_27x76(R2[52:75], N2, 52, PC+1)}  11-12 
REM = backmul_65x64(Qi, B, A),  
Qf = round(Qi, REM, PC, RC)                See * 
END DIVISION:  
 
* 9-12 (PC=24) , 12-15 (PC=53), 13-16 (PC=64/68) 
Figure 4: Goldschmidt’s algorithm with reduced Ri 

on a 27 x 76 multiplier (GS-2) 
 

5. Algorithm comparison 
 

Table 2 compares the latency in cycles for each 
division algorithm, based on the multiplication 
latencies given in Table 1. In Table 2, (S), (D), and (E) 
indicate results are rounded to single, double, or 
extended precision, respectively. For completeness, the 
latency of the original division algorithm [15] on the 
AMD-K7 microprocessor with a 76x76 multiplier is 
also given, and denoted as K7 (76x76). The 76x76 
multiplier is roughly 2.5 times larger than our 27x76 
multiplier. Table 2 also shows the latency for the K7 
division algorithm [15], when it has minor 
modification to work with our rectangular multiplier. 
This modified algorithm is denoted as K7 (27x76). As 
shown in Table 2, the two proposed algorithms have 
better latency than the AMD-K7 (27x76) algorithm for 
all operand types and precisions. The GS-2 (27x76) 
algorithm has the lowest overall latency for all operand 
types and precisions. Compared to the GS-1 (27x76) 
algorithm, the GS-2 (27x76) algorithm reduces the 
latency by one cycle for single precision, three cycles 
for double precision, and nine cycles for extended 
precision, when the input and output operands have the 
same precision.  

Table 3 shows the number of passes through the 
multiplier for each division algorithm, based on the 
number of multiplier passes for the various 
multiplication sizes given in Table 1. For example, a 
27x76 multiplication only requires a single pass 
through the multiplier and a 76x76 multiplication 
requires 3 passes through the multiplier. As shown in 
Table 3, the GS-2 algorithm has the fewest passes 
through the multiplier for all operand types and 
precisions. The number of passes through the 
multiplier is important since it impacts the power 
dissipated by the division algorithm and also indicates 
how available the multiplier is for implementing other 
operations.  

 
Table 2: Latency of division algorithms (cycles) 

Algorithm Single 
(S) 

Double 
(D) 

Ext. 
(S) 

Ext. 
(D) 

Ext. 
(E) 

K7 (76x76) 16 20 16 20 24 
K7 (27x76) 14 20 14 20 26 

GS-1 (27x76) 11 17 13 18 25 
GS-2 (27x76) 10 14 12 15 16 

 
Table 3: Multiplier passes of division algorithms 
Algorithm Single 

(S) 
Double 

(D) 
Ext. 
(S) 

Ext. 
(D) 

Ext. 
(E) 

K7 (76x76) 12 18 12 18 24 
K7 (27x76) 8 14 8 14 20 

GS-1 (27x76) 5 11 7 12 18 
GS-2 (27x76) 4 8 6 9 10 
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Compared to the K7 (27x76) algorithm, the GS-1 

(27x76) algorithm has roughly the same hardware 
complexity, but more complex control logic to handle 
the different multiplication sizes.  The GS-2 algorithm 
has the most complexity, since it has additional 
multiplexers to shift Ri, Ni, and Di and it has 
modifications to the multiplier tree to perform 
multiply-add operations.  For our implementation, the 
relatively small increase in hardware complexity of the 
GS-2 algorithm is less important than the reduced 
latency and passes through the rectangular multiplier. 

 
6. Conclusions  

 
This paper presents and compares variations of 

Goldschmidt’s division algorithm for an x86 
microprocessor that utilizes a rectangular multiplier. Of 
the algorithms presented in this paper, the GS-2 
algorithm has the lowest latency and requires the 
fewest passes through the rectangular multiplier. All of 
the algorithms presented in this paper have been 
verified through extensive error analysis. The GS-2 
algorithm has been modeled in Verilog and simulated 
using over 100 million test vectors for the supported 
operand types and result precisions.  

 
References 
 
[1] S. K. Raman, V. Pentkovski, and   J. Keshava, 

“Implementing Streaming SIMD Extensions on the 
Pentium III Processor,” IEEE Micro, vol. 20, no. 4, pp. 
47-57, July 2000.  

[2] Advanced Micro Devices, AMD64 Architecture 
Programmer’s Manual Volume 5: 64-Bit Media and x87 
Floating-Point Instructions, Revision 3.07, September 
2006.  

[3] ANSI and IEEE, IEEE Standard for Binary Floating-
point Arithmetic, 1985.  

[4] W.-C. Ma and C.-L. Yang, “Using Intel Streaming 
SIMD Extensions for 3D Geometry Processing,” 
Proceedings of the 3rd IEEE Pacific-Rim Conference on 
Multimedia, pp. 1080-1087, December 2002 

[5] S. F. Oberman and M. J. Flynn, "Division Algorithms 
and Implementations," IEEE Transactions on 
Computers, vol. 46, no. 8, pp. 833-854, August 1997. 

[6] M. D. Ercegovac and T. Lang, Division and Square 
Root: Digit-Recurrence Algorithms and 
Implementations, Kluwer Academic Publishers, 1994. 

[7] D. Wong and M. Flynn, “Fast Division Using Accurate 
Quotient Approximations to Reduce the Number of 
Iterations,” IEEE Transactions on Computers, vol. 41, 
no. 8, pp. 981-995, August 1992. 

[8] W. S. Briggs and D. W. Matula, “A 17 × 69 Bit 
Multiply and Add Unit with Redundant Binary 
Feedback and Single Cycle Latency,” Proceedings of 

the 11th IEEE Symposium on Computer Arithmetic, pp. 
163-170, July 1993. 

[9] W. S. Briggs and D. W. Matula, “Method and 
Apparatus for Performing Division Using a Rectangular 
Aspect Ratio, Multiplier,” U.S. Patent No. 5,046,038, 
1989.  

[10] W. S. Briggs and D. W. Matula, “Method and 
Apparatus for Performing Prescaled Division,” U.S. 
Patent No. 5,475,630, 1995.  

[11] M. D. Ercegovac, T. Lang, and P. Montuschi, “Very 
High Radix Division with Prescaling and Selection by 
Rounding,” IEEE Transactions on Computers, vol. 43, 
no. 8, pp. 909-918,   August 1994. 

[12] T. Lang and P. Montuschi, “Boosting Very High Radix 
Division with Prescaling and Selection by Rounding,” 
IEEE Transactions on Computers, vol. 50, no. 1, pp. 13-
27,   January 2001.  

[13] R. E. Goldschmidt, Applications of Division by 
Convergence, M.S. thesis, Dept. of Electrical 
Engineering, MIT, Cambridge, MA, June 1964. 

[14] M. Flynn, “On Division by Functional Iteration,” IEEE 
Transactions on Computers, vol. 19, no. 8, pp. 702-706, 
August 1970. 

[15] S. F. Oberman, “Floating-point Division and Square 
Root Algorithms and Implementation in the AMD-K7 
Microprocessor,” In Proceedings of the 14th IEEE 
Symposium on Computer Arithmetic, pg. 106-115, 1999. 

[16] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D. 
M. Powers,“The IBM System/360 Model 91: Floating-
Point Execution Unit,” IBM Journal of Research and 
Development, vol. 11, pp. 34-53, Jan. 1967. 

[17] H. Darley, M. Gill, D. Earl, D. Ngo, P. Wang, M. 
Hipona, and J. Dodrill, “Floating Point/Integer 
Processor with Divide and Square Root Functions,” 
U.S. Patent No. 4,878,190, 1989.  

[18] E. M. Schwarz, L. Sigal, and T. J. McPherson, “CMOS 
Floating-point Unit for the S/390 Parallel Enterprise 
Server G4,” IBM Journal of Research and Development, 
vol. 41, no. 4/5, pp. 475-488, July/September 1997.  

[19] M. D. Ercegovac and T. Lang, Digital Arithmetic, 
Morgan Kaufmann Publishers, 2004.  

[20] B. Parhami, Computer Arithmetic: Algorithms and 
Hardware Designs, Oxford University Press, 2000. 

[21] I. Koren, Computer Arithmetic Algorithms, A. K. Peters, 
2002.  

[22] G. Even, P.-M Seidel, and W. E. Ferguson, “A 
Parametric Error Analysis of Goldschmidt's Division 
Algorithm,” 16th IEEE Symposium on Computer 
Arithmetic, pp. 165-171, June 2003. 

[23] G. Even and P.-M. Seidel, "Pipelined Multiplicative 
Division with IEEE Rounding," IEEE International 
Conference on Computer Design, pp. 240-245, 2003. 

[24] G. Even and P.-M. Seidel, "Pipelined Multiplicative 
Division with IEEE Rounding," U.S. Patent No. 
2004/0128338, July, 2004.  

[25] S. F. Oberman, “Bipartite Look-up Table with Output 
Values Having Minimized Absolute Error,” U.S. Patent 
No. 6,223,192, April, 2001. 

310


