

Floating-Point Division Algorithms for an x86 Microprocessor with a
Rectangular Multiplier

Michael J. Schulte Dimitri Tan Carl E. Lemonds

University of Wisconsin Advanced Micro Devices Advanced Micro Devices
Schulte@engr.wisc.edu Dimitri.Tan@amd.com Carl.Lemonds@amd.com

Abstract

Floating-point division is an important operation in
scientific computing and multimedia applications. This
paper presents and compares two division algorithms
for an x86 microprocessor, which utilizes a
rectangular multiplier that is optimized for multimedia
applications. The proposed division algorithms are
based on Goldschmidt’s division algorithm and
provide correctly rounded results for IEEE 754 single,
double, and extended precision floating-point numbers.
Compared to a previous Goldschmidt division
algorithm, the fastest proposed algorithm requires
25% to 37% fewer cycles, while utilizing a multiplier
that is roughly 2.5 times smaller.

1. Introduction

In an x86 microprocessor, the floating-point unit
(FPU) has undergone considerable change in recent
years. Much of this change is due to the advent of
Streaming SIMD Extensions (SSE) [1]. These
extensions, mainly driven by multimedia applications
(3D graphics, video, etc.), have added complexity to
recent FPU designs. Prior to the addition of SSE, the
FPU in x86 microprocessors only had to support x87
scientific floating-point instructions. In x87 mode, the
FPU performs arithmetic operations on 80-bit
extended-precision floating-point numbers, and then
rounds the results to 32-bit single, 64-bit double, or 80-
bit extended precision floating-point numbers [2].
Floating-point arithmetic in x86 microprocessors
complies with the specifications given in the IEEE-754
Standard for Binary Floating-Point Arithmetic [3].

With the growing importance of multimedia
applications, the FPU is now required to support both
x87 instructions and SSE instructions. In 1999, Intel
introduced SSE instructions that perform multiple
floating-point arithmetic operations on single-precision
floating-point data types [1]. For example, a single

SSE instruction, DIVPS, performs four single-
precision floating-point divide operations. A few years
later, SSE2 introduced new instructions for parallel
double-precision operations. Recently, SSE3 added
horizontal arithmetic and asymmetric arithmetic
operations, but no new data formats. Multimedia
applications are placing a greater emphasis on SSE
performance over x87. Hence, the FPU workload is
shifting from engineering and scientific computing to
multimedia applications.

We are designing an FPU that utilizes a 27-bit by
76-bit rectangular multiplier, in which the length of the
multiplier operand is less than the length of the
multiplicand operand. This reduces the area of the
multiplier, but requires multiple passes through the
multiplier to produce a full-precision result.

Our multiplier is optimized for single-precision SSE
instructions, which are widely used in multimedia
applications [1, 4]. The multiplier can perform two
parallel single-precision multiplies each cycle with a
latency of two cycles. It can perform one double-
precision multiply every other cycle with a latency of
three cycles or one extended-precision multiply every
three cycles with a latency of four cycles. Compared to
a fully-pipelined multiplier, the rectangular multiplier
improves the latency of single precision multiplies and
reduces the area of the FPU. It also has the potential to
reduce power dissipation for multimedia applications.
In addition to performing multiplication, the
rectangular multiplier is used to perform division,
square root, and elementary function computations.

Due to its importance in scientific computing and
multimedia applications, several algorithms for
floating-point division have been developed [5].
These algorithms can be divided into three main
categories; digit recurrence, very high-radix, and
functional iteration. Digit recurrence algorithms, such
as restoring division, non-restoring division, and SRT
division, compute a fixed number of quotient bits each
iteration [6]. Very high-radix division algorithms,
including accurate quotient approximations [7], the
short reciprocal algorithm [8, 9, 10], and prescaling

1-4244-1258-7/07/$25.00 ©2007 IEEE 304

and selection by rounding algorithms [11, 12], are digit
recurrence algorithms that compute a large number of
quotient bits (e.g., 8 or more) each iteration. Functional
iteration algorithms, such as Goldschmidt’s algorithm
[13] and Newton-Raphson iteration [14], typically
obtain an estimate of the divisor’s reciprocal, and then
use multiplication and subtraction to double the
number of accurate quotient bits each iteration.

In this paper, we present and compare two division
algorithms for an x86 microprocessor with a
rectangular multiplier. These algorithms are based on
Goldschmidt’s division algorithm and provide support
for single, double, and extended precision floating-
point numbers. The algorithms are also compared to
the algorithm and implementation used on the AMD-
K7 FPU [15], which employ Goldschmidt’s algorithm
to perform division, but uses a fully pipelined
multiplier.

Some of our goals in developing these algorithms
include (1) the algorithms should have a small impact
on the architecture and performance of the multiplier,
(2) they should be able to efficiently utilize the
rectangular multiplier and high-speed reciprocal
approximations, (3) they should have low latencies and
not require unnecessary passes through the rectangular
multiplier, (4) they should be optimized for single-
precision numbers, but also be able to efficiently
support double and extended-precision numbers, and
(5) they should produce correctly rounded results, as
specified in the IEEE 754 Standard for Binary
Floating-Point Arithmetic.

The main contribution of this paper is the
presentation of two new division algorithms that are
designed to be implemented with a rectangular
multiplier and provide support for x87 and SSE
datatypes. The algorithms presented in this paper are
based on Goldschmidt’s division algorithm and are
able to utilize the rectangular multiplier and high-speed
reciprocal approximations. Our algorithms have low
latencies, especially for single-precision numbers.
Compared to very high-radix algorithms, our
algorithms require fewer modifications to the
multiplier architecture. They have lower latencies than
equivalent Newton-Raphson-based division
algorithms, since there are fewer dependencies
between multiplications.

The remainder of this paper is organized as follows:
Section 2 gives an overview of Goldschmidt’s division
algorithm. Section 3 presents the design of a 27-bit by
76-bit rectangular multiplier that provides high-
performance single-precision multiplications and is
extended to implement the proposed division
algorithms. Section 4 discusses a previous
implementation of Goldschmidt’s division algorithm
on the AMD-K7 FPU, and describes our proposed

division algorithms. Section 5 compares the division
algorithms, and Section 6 gives our conclusions.

In the following sections, upper case variables
denote operands and lower-case variables denote bits
within those operands. Individual bits are indexed by
their bit position with the more significant bits having
lower indices. For example, X = x0.x1… xn-1 has the
value:

∑
−

=

−=
1

0
2

n

i

i
ixVX

When bits i through j of X are accessed, we use the
notation X[i:j], where X[i:j] = xixi+1 … xj-1xj for i < j.

2. Goldschmidt’s division algorithm

Goldschmidt’s division algorithm is also known as
division by multiplicative normalization, division by
convergence, and division by series expansion. It has
been implemented in the IBM 360/91 [16], the
TMS390C602A [17], the IBM S/390 G4 [18], and the
AMD-K7 microprocessor [15]. Various publications
describe Goldschmidt’s division algorithm [19, 20,
21], its error analysis [22], and its implementation
using pipelined multipliers [23, 24].

Goldschmidt’s division algorithm, computes the
quotient Q = A/B by starting with an initial
approximation to the divisor’s reciprocal; X0 ≈ 1/B. It
then multiplies X0 by the dividend, A, and divisor, B, to
obtain:

)3(2
)2(

)1(

00

00

00

DR
BXD
AXN

−=
×=
×=

After this, m iterations are performed, where:

)6(2
)5(
)4(

11

1

1

++

+

+

−=
×=
×=

ii

iii

iii

DR
DRD
NRN

Finally, Nm is multiplied by Rm to obtain Q. Each
iteration requires two multiplications and one
subtraction (or complement operation) and
approximately doubles the number of accurate bits.

If X0 has an absolute error of
0Xε and computations

are performed without rounding error then:

)9(1)1(22

)8(11

)7(1

0000

0000

0000

XX

XX

XX

BDR

BB
B

BXD

A
B
AA

B
AXN

εε

εε

εε

−=+−=−=

+=×

 +=×=

+=×

 +=×=

In the next iteration:

305

()

()
)12(1)1(22

)11(1)1(1

)10(1

2222
11

22
00001

2
00001

00

0

0

XX

X

X

BBDR

BBBDRD

AB
B
AA

B
ABNRN

XX

XX

εε

εεε

εεε

+=−−=−=

−=+×−=×=

−=

 +×−=×=

In general, when Ni is close to A/B, Di+1 and Ri+1
converge towards 1.0 and Ni+1 converges towards A/B.
Each iteration roughly doubles the number of accurate
bits in the quotient approximation, Ni.

Since Ri is close to 1.0, not all of the bits of Ri are
needed to compute Ni and Di. If k

Ri

−<≤ 20 ε , Ri has

the form 1.0…0rk+1rk+2 … rn-1. If 02 <≤− −
iR

k ε , Ri
has the form 0.1…1rk+1rk+2 … rn-1. Consequently, the k
most significant bits of Ri are not needed when
computing Ni and Di. Using the substitution R’i = Ri -
1, Equations (4) to (6) can be rewritten as:

)15(1
)14(
)13(

11

1

1

++

+

+

−=′
×′+=
×′+=

ii

iiii

iiii

DR
DRDD
NRNN

Although this approach requires extra additions to
implement Equation (13) and (14), it has the advantage
that '

iR is close to zero, which lets ii NR ×' and

ii DR ×' be computed with less precision. Instead of
computing 1

'
1 1 ++ −= ii DR directly, hardware computes

Ri as the one’s complement of 1+iD and then computes:

)17(]:[},'0{
2]:[

)16(]:[},'0{
2]:[

1

1

jkRDkD
jkRDDD

jkRNkN
jkRNNN

iii

k
iiii

iii

k
iiii

×+=
××+=

×+=
××+=

−
+

−
+

These computations multiply the appropriate bits from
Ri by Ni or Di right shifted by k bits and then adds this
product to Ni or Di, respectively.

3. Rectangular multiplier

The rectangular floating-point multiplier used to
implement our proposed division algorithms has two
pipeline stages, as shown in Figure 1. The first stage,
EX1, consists of a 27-bit by 76-bit tree multiplier that
accepts the two numbers to be multiplied, along with a
76-bit feedback term in carry-save format, and
produces a 103-bit product in carry-save format. The
second stage, EX2, consists of combined addition and
rounding, result multiplexing, and forwarding to the
register file and bypass networks.

The multiplier supports a range of precisions with
wider precision multiplies achieved by multiple passes
through the first stage, EX1. It supports operations on
single precision numbers with 24-bit significands,

double precision numbers with 53-bit significands, and
extended precision numbers with 64-bit significands.
Similar to the AMD-K7 multiplier design [15], our
multiplier also provides a variety of other
multiplication sizes to facilitate accurate division,
square root, and elementary function computations.
The multiplication sizes supported include 24x24,
25x24, 27x76, 53x53, 54x53, 54x76, 64x64, 68x68 and
76x76. The multiplier also performs two single
precision (dual 24x24) multiplications in parallel,
which is frequently used in multimedia applications.

 Figure 1. 27-bit by 76-bit multiplier

For each pass through the multiplier, the appropriate

27-bits of the multiplier operand are selected by the
Unpack/Align Multiplexers. Two sets of radix-4 Booth
encoders are required to support the dual 24x24
multiply. The Booth multiplexers produce fourteen
81-bit partial products, which are reduced, along with
the two 76-bit feedback terms, using a partial product
reduction tree implemented using three levels of 4-2
compressors. For the first pass, the feedback terms are
all zeros. For subsequent passes, the feedback terms

306

are obtained from the upper 76-bits of the carry-save
product from the previous pass.

The rounding scheme implemented in the second
stage, EX2, involves adding rounding constants to the
carry-save product using 3-2 carry-save adders (CSAs)
prior to the final addition [15]. The rounding is
performed prior to normalization using two additions,
with one addition assuming rounding overflow occurs
and one addition assuming rounding overflow does not
occur. A third addition computes the un-rounded
significand [15]. An appropriate rounding constant is
provided for each of the first two additions and is
omitted for the un-rounded significand. Since for wider
precision multiplies, the product generation is split
over multiple cycles, the lower 27-bits are processed
after each pass to compute the sticky bit and the carry-
in for the next pass. Table 1 shows the multiplier
passes, latencies, and throughputs for supported
multiplication sizes.

Table 1. Multiplier passes, latencies, and
throughput for supported multiplication sizes
Multiplication

Sizes
Multiplier

Passes
Latencies
(cycles)

Throughputs
(mults/cycle)

Dual 24x24 1 2 2
24x24, 25x24, 27x76 1 2 1

53x53, 54x53, 54x76 2 3 1/2
64x64, 68x68, 76x76 3 4 1/3

4. Floating-point division algorithms

The division algorithms presented in this paper are
derived from the AMD-K7 Goldschmidt division
algorithm [15], which was designed for a fully-
pipelined 76-bit by 76-bit multiplier. This section gives
an overview of the AMD-K7 division algorithm [15].
It then presents our variations of Goldschmidt’s
division algorithm that are designed for an x86
microprocessor with the 76-bit by 27-bit rectangular
multiplier presented in Section 3. The algorithms can
be modified for other multiplier sizes.

Figure 2 shows the version of Goldschmidt’s
division algorithm implemented on the AMD-K7 and
presented in [15]. This division algorithm only
supports extended precision input operands with results
rounded to single, double, extended, or internal
precision. In Figure 2, A and B are the input operands.
PC is the significand precision control, where PC is 24
for single precision, 53 for double precision, 64 for
extend precision, and 68 for internal precision.
Division with an internal precision of 68 bits is used to
compute certain elementary functions. RC is the
rounding control, which indicates if the final result is
rounded to nearest even, toward zero, toward minus

infinity, or toward plus infinity. Qi is the initial
quotient approximation and Qf is the final correctly
rounded quotient. REM is a 2-bit variable that indicates
the sign of the remainder and if the remainder is zero.
The cycles shown on the right assume that the initial
reciprocal estimate takes three cycles and each
multiplication takes four cycles [15]. The division
algorithm takes 16 cycles for single precision (PC =
24), 20 cycles for double precision (PC = 53), and 24
cycles for extended and internal precision (PC = 64
and 68, respectively).

Program: Goldschmidt’s Division Algorithm in the AMD-K7
with a 76 by 76 Multiplier [15]

Input = (A, B, PC, RC), Output = (Qf)
Operations Cycles
X0 = recip_estimate(B) 1-3
D0 = itermul_76x76(X0, B), R0 = comp1(D0) 4-7
N0 = itermul_76x76(X0, A) 5-8
if (PC == 24)
 {Nf = N0, Rf = R0, goto END DIVISION }
D1 = itermul_76x76(D0, R0), R1 = comp1(D1) 8-11
N1 = itermul_76x76(N0, R0) 9-12
if (PC == 53)
 {Nf = R1, Rf = R1, goto END DIVISION }
D2 = itermmul_76x76(D1, R1), R2 = comp1(D2) 12-15
N2 = itermmul_76x76 (N1, R1) 13-16
Rf = N2, Rf = R2
END DIVISION:
Qi = lastmul_76x76(Nf, Rf, PC+1) See +
REM = backmul_76x76(Qi, B, A),
Qf = round(Qi, REM, PC, RC) See *

+ 9-12 (PC = 24), 13-16 (PC = 53), 17-20 (PC = 64/68)
* 13-16 (PC = 24), 17-20 (PC = 53), 21-24 (PC = 64/68)
Figure 2: Goldschmidt’s algorithm in the AMD-K7

The algorithm shown in Figure 2 includes several

operations, which are discussed in detail by Oberman
[15]. The recip_estimate operation uses 210-entry by
16-bit and 210-entry by 7-bit bipartite tables to provide
a reciprocal estimate that is accurate to at least 14.94
bits [15, 25]. The itermul_76x76 operation corresponds
to a 76-bit by 76-bit multiply in which the result is
rounded to 76 bits using round-to-nearest-even. The
comp1 operation produces the one’s complement of Di,
which is a 76-bit value. The lastmul_76x76 operation
is a 76-bit by 76-bit multiply, which rounds its result to
PC+1 bits of precision using round-to-nearest-even.
PC+1 bits of precision are required in order to
implement the AMD-K7 rounding technique [15]. The
backmul_76x76 operation performs a 76-bit by 76-bit
multiplication of Qi × B and subtracts A to determine
the sign of the remainder and if the remainder is equal
to zero. The round operation produces the correctly

307

rounded quotient using the AMD-K7 rounding
technique [15].

To more efficiently implement Goldschmidt’s
division algorithm with a rectangular multiplier, our
first version of Goldschmidt’s algorithm (GS-1) uses a
truncated version of Ri, in which the required precision
of Ri is determined from a detailed error analysis. This
analysis indicates correctly rounded results are still
produced, when R0 is truncated to 30 bits and R1 is
truncated to 60 bits. Since R0 must be longer than 27
bits, it needs two passes through the 27-bit by 76-bit
multiplier, so R0 is instead truncated to 54 bits.
Similarly, since R1 is longer than 54 bits, it needs three
passes through the multiplier, so all 76 bits are used.

Program: Goldschmidt’s Division Algorithm with Truncated
Ri on a 27 x 76 Multiplier (GS-1)

Input = (A,B,OT, PC, RC) Output = (Qf)
Operations Cycles
X0 = recip_estimate(B) 1-3
D0 = itermul_27x76(X0, B), R0 = comp1(D0) 4-5
N0 = itermul_27x76(X0, A) 5-6
if (OT = = SINGLE) {
 Qi = lastmul_54x76(R0[0:53], N0, 25) 7-9
 REM = backmul_25x24(Qi, B, A),
 Qf = round(Qi, REM, 24, RC) 10-11
 goto END DIVISION }
if (OT = = X87 and PC = = 24) goto X87 DIV
D1 = itermul_54x76(R0[0:53], D0),
R1 = comp1(D1) 6-8
N1 = itermul_54x76(R0[0:53], N0) 8-10
if (OT = = DOUBLE) {
 Qi = lastmul_76x76(R1, N1, 54) 11-14
 REM = backmul_54x53(Qi, B, A),
 Qf = round(Qi, REM, 53, RC) 15-17
 goto END DIVISION }
X87 DIV:
if (PC == 24) {
 Qi = lastmul_54x76(R0[0:53], N0, 25) 7-9
else if (PC == 53)
 Qi = lastmul_76x76(R1, N1, 54) 11-14
else {
 D2 = itermul_76x76(R1, D1),
 R2 = comp1(D2) 11-14
 N2 = itermul_76x76(R1, N1) 14-17
 Qi = lastmul_76x76(R2, N2, PC+1) } 18-21 REM =
backmul_76x76(Qi, B, A),
Qf = round(Qi, REM, PC, RC) See *
END DIVISION:

* 10-13 (PC=24), 15-18 (PC=53), 22-25 (PC = 64/68)
Figure 3: Goldschmidt’s algorithm with truncated

Ri on a 27 x 76 multiplier (GS-1)

Utilizing a truncated version of R0 allows some of
the multiplications to be performed with fewer passes
through the rectangular multiplier. The GS-1 algorithm

also examines the operand type, OT, since SSE
requires support for single and double precision input
operands and operations on these types of operands
require fewer passes through the rectangular multiplier
than extended precision operands.

Figure 3 shows the GS-1 Algorithm. In this figure,
the size of each multiplication is specified by the
numbers after the “_”. All of the itermul_ operations,
truncate their results to 76 bits, the lastmul_ operations
round their results to the precision specified in the last
argument using round-to-nearest. The rest of the
operations have the same functionality as the
corresponding operations in Figure 2, except for the
size of the input operands. For example,

Qi = lastmul_54x76(R0[0:53], N0, 25)
indicates that the 54 most significant bits of R0 are
multiplied by all 76 bits of N0. The result is rounded to
25 bits using round-to-nearest. Since R0[0:53] is 54
bits, this multiplication is performed with two passes
through the rectangular multiplier.

For single precision operands (OT = SINGLE), all
of the multiplications, except for lastmul_54x76,
require only a single pass through the multiplier tree
and the division has a latency of 11 cycles. For double
precision operands, the multiplications require one to
three passes through the multiplier tree and the division
has a latency of 17 cycles. For x87 operands, the
latency depends on the required precision of the final
result and is 13 cycles for single precision, 18 cycles
for double precision, and 25 cycles for extended or
internal precision.

Our second version of Goldschmidt’s algorithm
(GS-2), shown in Figure 4, uses a truncated version of
Ri and takes advantage of the fact that Ri is close to 1.0
to reduce the number of bits in Ri used for the iterative
multiplications and reduce the number of passes
through the multiplier. For example, since

13
0 2|1| −<−R , the thirteen most significant bits of Ri

are not needed. Based on Equation (17), this allows the
computation

D1 = itermul_54x76(R0[0:53], D0) (18)
which requires two passes through the multiplier tree
in GS-1 to be replaced by the computation
 D1 = itermuladd_27x76(R0[13:39], D0, 13) (19)
which corresponds to

)20(]39:13[},13'0{
2]39:13[

000

13
0001

RDD
RDDD

×+=
××+= −

.

This operation requires only a single pass through the
multiplier with D0 right shifted by 13 bits, the lower 13
bits of D0 truncated, and the un-shifted value of D0
added to the product. This operation compensates for
the fact that 1 - Ri is used instead of Ri, as described in
Section 2. Similar optimizations are used throughout
the algorithm to reduce the number of passes through

308

the multiplier and the latency of the division algorithm.
The operations that use these types of optimizations are
itermuladd_ and lastmuladd_. They implement
operand shifting, multiplication, and addition by using
a modified version of the multiplier described in
Section 3. The lastmuladdd operation is similar to the
itermuladd algorithm, except that the result is rounded
to the number of bits specified by its last argument
using round-to-nearest.

Program: Goldschmidt’s Division Algorithm with Reduced
Ri on a 27 x 76 Multiplier (GS-2)

Input = (A,B,OT, PC,RC), Output = (Qf)
Operations Cycles
X0 = recip_estimate(B) 1-3
D0 = itermul_27x76(X0, B), R0 = comp1(D0) 4-5
N0 = itermul_27x76(X0, A) 5-6
if (OT == SINGLE) {
 Qi = lastmuladd_27x76(R0[13:39], N0, 13, 25) 7-8
 REM = backmul_25x24(Qi, B, A),
 Qf = round(Qi, REM, 24, RC) 9-10
 goto END DIVISION }
if (OT == X87 and PC = 24) goto X87 DIV
D1 = itermuladd_27x76(R0[13:39], D0, 13),
R1 = comp1(D1) 6-7
N1 = itermuladd_27x76(R0[13:39], N0, 13) 7-8
if (OT == DOUBLE) {
 Qi = lastmuladd_54x76({R1[26,75], N1, 26, 54) 9-11
 REM = backmul_54x53(Qi, B, A),
 Qf = round(Qi, REM, 53, RC) 12-14
 goto END DIVISION }
X87 DIV:
if (PC == 24)
 Qi = lastmuladd_27x76(R0[13,39], N0, 13, 25) 7-8
else if (PC == 53)
 Qi = lastmuladd_54x76(R1[26,75], N1, 26, 54) 9-11
else {
 D2 = itermuladd_27x76(R1[26:52], D1, 26),
 R2 = comp1(D2) 8-9
 N2 = itermuladd_27x76(R1[26:52], N1, 26) 9-10
 Qi = lastmuladd_27x76(R2[52:75], N2, 52, PC+1)} 11-12
REM = backmul_65x64(Qi, B, A),
Qf = round(Qi, REM, PC, RC) See *
END DIVISION:

* 9-12 (PC=24) , 12-15 (PC=53), 13-16 (PC=64/68)
Figure 4: Goldschmidt’s algorithm with reduced Ri

on a 27 x 76 multiplier (GS-2)

5. Algorithm comparison

Table 2 compares the latency in cycles for each
division algorithm, based on the multiplication
latencies given in Table 1. In Table 2, (S), (D), and (E)
indicate results are rounded to single, double, or
extended precision, respectively. For completeness, the
latency of the original division algorithm [15] on the
AMD-K7 microprocessor with a 76x76 multiplier is
also given, and denoted as K7 (76x76). The 76x76
multiplier is roughly 2.5 times larger than our 27x76
multiplier. Table 2 also shows the latency for the K7
division algorithm [15], when it has minor
modification to work with our rectangular multiplier.
This modified algorithm is denoted as K7 (27x76). As
shown in Table 2, the two proposed algorithms have
better latency than the AMD-K7 (27x76) algorithm for
all operand types and precisions. The GS-2 (27x76)
algorithm has the lowest overall latency for all operand
types and precisions. Compared to the GS-1 (27x76)
algorithm, the GS-2 (27x76) algorithm reduces the
latency by one cycle for single precision, three cycles
for double precision, and nine cycles for extended
precision, when the input and output operands have the
same precision.

Table 3 shows the number of passes through the
multiplier for each division algorithm, based on the
number of multiplier passes for the various
multiplication sizes given in Table 1. For example, a
27x76 multiplication only requires a single pass
through the multiplier and a 76x76 multiplication
requires 3 passes through the multiplier. As shown in
Table 3, the GS-2 algorithm has the fewest passes
through the multiplier for all operand types and
precisions. The number of passes through the
multiplier is important since it impacts the power
dissipated by the division algorithm and also indicates
how available the multiplier is for implementing other
operations.

Table 2: Latency of division algorithms (cycles)

Algorithm Single
(S)

Double
(D)

Ext.
(S)

Ext.
(D)

Ext.
(E)

K7 (76x76) 16 20 16 20 24
K7 (27x76) 14 20 14 20 26

GS-1 (27x76) 11 17 13 18 25
GS-2 (27x76) 10 14 12 15 16

Table 3: Multiplier passes of division algorithms
Algorithm Single

(S)
Double

(D)
Ext.
(S)

Ext.
(D)

Ext.
(E)

K7 (76x76) 12 18 12 18 24
K7 (27x76) 8 14 8 14 20

GS-1 (27x76) 5 11 7 12 18
GS-2 (27x76) 4 8 6 9 10

309

Compared to the K7 (27x76) algorithm, the GS-1

(27x76) algorithm has roughly the same hardware
complexity, but more complex control logic to handle
the different multiplication sizes. The GS-2 algorithm
has the most complexity, since it has additional
multiplexers to shift Ri, Ni, and Di and it has
modifications to the multiplier tree to perform
multiply-add operations. For our implementation, the
relatively small increase in hardware complexity of the
GS-2 algorithm is less important than the reduced
latency and passes through the rectangular multiplier.

6. Conclusions

This paper presents and compares variations of

Goldschmidt’s division algorithm for an x86
microprocessor that utilizes a rectangular multiplier. Of
the algorithms presented in this paper, the GS-2
algorithm has the lowest latency and requires the
fewest passes through the rectangular multiplier. All of
the algorithms presented in this paper have been
verified through extensive error analysis. The GS-2
algorithm has been modeled in Verilog and simulated
using over 100 million test vectors for the supported
operand types and result precisions.

References

[1] S. K. Raman, V. Pentkovski, and J. Keshava,

“Implementing Streaming SIMD Extensions on the
Pentium III Processor,” IEEE Micro, vol. 20, no. 4, pp.
47-57, July 2000.

[2] Advanced Micro Devices, AMD64 Architecture
Programmer’s Manual Volume 5: 64-Bit Media and x87
Floating-Point Instructions, Revision 3.07, September
2006.

[3] ANSI and IEEE, IEEE Standard for Binary Floating-
point Arithmetic, 1985.

[4] W.-C. Ma and C.-L. Yang, “Using Intel Streaming
SIMD Extensions for 3D Geometry Processing,”
Proceedings of the 3rd IEEE Pacific-Rim Conference on
Multimedia, pp. 1080-1087, December 2002

[5] S. F. Oberman and M. J. Flynn, "Division Algorithms
and Implementations," IEEE Transactions on
Computers, vol. 46, no. 8, pp. 833-854, August 1997.

[6] M. D. Ercegovac and T. Lang, Division and Square
Root: Digit-Recurrence Algorithms and
Implementations, Kluwer Academic Publishers, 1994.

[7] D. Wong and M. Flynn, “Fast Division Using Accurate
Quotient Approximations to Reduce the Number of
Iterations,” IEEE Transactions on Computers, vol. 41,
no. 8, pp. 981-995, August 1992.

[8] W. S. Briggs and D. W. Matula, “A 17 × 69 Bit
Multiply and Add Unit with Redundant Binary
Feedback and Single Cycle Latency,” Proceedings of

the 11th IEEE Symposium on Computer Arithmetic, pp.
163-170, July 1993.

[9] W. S. Briggs and D. W. Matula, “Method and
Apparatus for Performing Division Using a Rectangular
Aspect Ratio, Multiplier,” U.S. Patent No. 5,046,038,
1989.

[10] W. S. Briggs and D. W. Matula, “Method and
Apparatus for Performing Prescaled Division,” U.S.
Patent No. 5,475,630, 1995.

[11] M. D. Ercegovac, T. Lang, and P. Montuschi, “Very
High Radix Division with Prescaling and Selection by
Rounding,” IEEE Transactions on Computers, vol. 43,
no. 8, pp. 909-918, August 1994.

[12] T. Lang and P. Montuschi, “Boosting Very High Radix
Division with Prescaling and Selection by Rounding,”
IEEE Transactions on Computers, vol. 50, no. 1, pp. 13-
27, January 2001.

[13] R. E. Goldschmidt, Applications of Division by
Convergence, M.S. thesis, Dept. of Electrical
Engineering, MIT, Cambridge, MA, June 1964.

[14] M. Flynn, “On Division by Functional Iteration,” IEEE
Transactions on Computers, vol. 19, no. 8, pp. 702-706,
August 1970.

[15] S. F. Oberman, “Floating-point Division and Square
Root Algorithms and Implementation in the AMD-K7
Microprocessor,” In Proceedings of the 14th IEEE
Symposium on Computer Arithmetic, pg. 106-115, 1999.

[16] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D.
M. Powers,“The IBM System/360 Model 91: Floating-
Point Execution Unit,” IBM Journal of Research and
Development, vol. 11, pp. 34-53, Jan. 1967.

[17] H. Darley, M. Gill, D. Earl, D. Ngo, P. Wang, M.
Hipona, and J. Dodrill, “Floating Point/Integer
Processor with Divide and Square Root Functions,”
U.S. Patent No. 4,878,190, 1989.

[18] E. M. Schwarz, L. Sigal, and T. J. McPherson, “CMOS
Floating-point Unit for the S/390 Parallel Enterprise
Server G4,” IBM Journal of Research and Development,
vol. 41, no. 4/5, pp. 475-488, July/September 1997.

[19] M. D. Ercegovac and T. Lang, Digital Arithmetic,
Morgan Kaufmann Publishers, 2004.

[20] B. Parhami, Computer Arithmetic: Algorithms and
Hardware Designs, Oxford University Press, 2000.

[21] I. Koren, Computer Arithmetic Algorithms, A. K. Peters,
2002.

[22] G. Even, P.-M Seidel, and W. E. Ferguson, “A
Parametric Error Analysis of Goldschmidt's Division
Algorithm,” 16th IEEE Symposium on Computer
Arithmetic, pp. 165-171, June 2003.

[23] G. Even and P.-M. Seidel, "Pipelined Multiplicative
Division with IEEE Rounding," IEEE International
Conference on Computer Design, pp. 240-245, 2003.

[24] G. Even and P.-M. Seidel, "Pipelined Multiplicative
Division with IEEE Rounding," U.S. Patent No.
2004/0128338, July, 2004.

[25] S. F. Oberman, “Bipartite Look-up Table with Output
Values Having Minimized Absolute Error,” U.S. Patent
No. 6,223,192, April, 2001.

310

