
Floating Point Error Analysis of
Recursive Least Squares and Least Means Squares

Adaptive Filters

Sasan H. Ardalan

Center for Communications and Signal Processing
Dept. of Electrical and Computer Engineering

North Carolina State University
Raleigh, NC

April 1985

CCSP-TR-8S/S

Abstract

A floating point err'or analysis of the Recursive Least

Squares algorithm is p r e s e n t e d ~ It is shown that the algorithm

diverges exponentially and cubically with the number of itera­

tions. Divergence occurs after initial convergence, however. The

floating point error introduced by adding the correction to the

weight vector update is seen to be the source of divergence.

Other errors are n o n - c a t a s t r o p h i c ~ The methodology of analysis is

extended to the floating point error analysis of the Least Mean

Squares (LMS) algorithm. It is shown that the variance of the

floating point error increases inversely with loop gaino F u r t h e r ~

more, as the loop gain approaches zero the algorithm diverges

exponentiallyo

TABLE OF CONTENTS

Summary
Algorithm
of Method

1.

2 •

Introduction

Outline and
2.1 The RLS
2.2 Outline

• • • ••••••••••••••••••••••••••• 0 ••••••••••••••• 1

2

2
2

3 • Recursive Least Squares Algorithm: Infinite Precision 5

4.

5 •

Floating Point Roundoff Error Models

Floating Point Implementation of the RLS Algorithm

6

7

5.1
5.2
5.3
5.4

Desired Signal Prediction
Prediction Error Calculation
Weight Vector Update Recursion
Discussion•....•........

7
9
9

•• 11

6. Derivation and Analysis 12

7 • Extension to the Least Mean Squares Algorithm .18

References

8.

9.

Summary ..
. .

.22

• 24

1

1. Introduction

The Recursive Least Squares (RLS) algorithm has found wide

application in adaptive filtering problems [1,2,3J. In particular,

the algorithm offers very fast convergence and tracking capabili­

ty. The convergence is also independent of the signal statistics,

i ~ eo eigenvalue spread of the input signalo This has lead to the

application of the RLS algorithm to many adaptive filtering

p r o b l e m s ~ However, finite wordlength effects on the digital

implementation of this algorithm have not been thoroughly analyzed

until recently. While much analytical work exists for the finite

wordlength analysis of fixed digital filters, there is much work

to be done in the analytical treatment of adaptive filters.

Recently a fixed point and floating point error analysis of the

Least Mean Squares algorithm was presented in [4]0 In [5] a fixed

point roundoff error analysis of the RLS algorithm is presented.

In that paper, a closed form solution to the variance of the

roundoff error is derived. It was found that the algorithm

diverges as the number of iterations increases. The result

parallels that of [4J where it is shown that the roundoff error

increases inversely to the adaptation loop gain for the LMS

algorithmo In this paper the work in [5] is extended to the

floating point error analysis of the RLS algorithmo Furthermore,

Using the same techniques the work is extended to the floating

point error analysis of the LMS algorithrnc It is shown that as

the loop gains approaches zero, the algorithm diverges e x p o n e n ~

tially. This was not predicted in [4].

2

2. Outline a ~ d Summary

2.1 The RLS Algorithm

The RLS algorithm can be summarized as follows The desired

signal d(n) is predicted from the input samples by convolving the

input samples with a weight vector The prediction error is then

calculated as the difference between these two signals. The

prediction error is used to update the weight vector to minimize

the accumulated sum of the square of the resid al error The

weight vector that minimizes this criterion at each iteration is

written recursively. This leads to the Kalman gain vector which

when multiplied by the scalar prediction error forms the weight

vector update The algorithm thus involves two primary calcula­

tions The calculation of the prediction of the desired signal

d(n) through an inner product of the weight vector and the vector

of delayed elements of the input samples and the calculation of

the weight vector update The weight vector update involves the

calculation of the weight vector correction through the multipli­

cation of the Kalman gain vector and the scalar prediction error.

2.2 Outline of Method

For the purposes of analysis we assume that the Kalman gain is

calculated with infinite precision and a floating point quantized

version is available. This assumption is based on the fact that

the Kalman gain can be calculated using different algorithms and

that as a preliminary step we are attempting to isolate the causes

of error in the floating point implementation of the algorithm.

3

As in the case with the floating point analysis of fixed

digital filters [6,7J and the LMS algorithm in [4] the errors

introduced by floating point operations are modeled as follows:

For summation fl(x+y)=(x+y)(l+e) and for multiplication

fl(xy)=xy(l+q)o The relative error terms e and q are zero mean

white independent random numbers. They are uncorrelated with x+y

and xy. Using the above models the errors introduced by floating

point implementation are incorporated into the algorithmQ Where

appropriate the error sequences are written as vectors and

matrices.

We show as in [4] that the floating point errors in the

calculation of the prediction of the desired signal (vector inner

product) can be represented as an additive noise sequence to the

infinite precision calculation. This sequence is a zero mean

white independent random process which has a variance related to

signal statistics, the weight vector covariance, and the floating

point errorso The calculation of the prediction error also

introduces a relative error term. More significantly are the

errors introduced by the weight vector update recursion. The

desired signal is represented in terms of a convolution of the

input signal and an optimum weight vector. The prediction error

is written in terms of this desired signal and the the predicted

desired signal including the additive noise term due to finite

precision and SUbstituted into the weight update equationo The

weight vector is then translated in coordinates by the optimum

weight vector. Starting from the initial condition an exact

relationship between the floating point translated weight vector

4

and the driving signal,the Kalman gain, and the floating point

noise sources is derived.

Observing this equation we find that two terms are immediately

separable. One term involves a weight vector error that includes

the floating point noise sources. The other term describes the

evolution of the translated weight vector using infinite precision

but including error terms to be described. If these error terms

are removed, this term will converge to the null vector. In other

words the weight vector will converge to the optimum weight

vector. It describes the evolution of the infinite precision

weight vector neglecting the error terms. However, the floating

point error terms are present and their effects are analyzed. The

analysis is done in terms of t h ~ weight vector covariance matrix.

This matrix is derived. Neglecting the cross-correlation between

the two vectors the matrix is seen to be the sum of two matrices.

One is the covariance of the weight error vector. We derive the

exact equation for this matrix and using some approximations

simplify the result.

If we define an error between the infinite precision calcula-

tion of the prediction of the desired signal and the floating

point calculation, then the variance of this error is related to

the trace of the covariance of the weight error vector. It is

shown that the floating point error variance is related to the

cube of the number of iterations multiplied by the exponent of the

number of iterations. In other words the algorithm diverges as

the n u m b e ~ of iterations increase. If the noise sources in the

translated weight vector are taken into consideration, then

5

another term related to exponential growth with the, number of

iterations is introduced This also leads to divergence_

Finally the methodology is applied to the LMS algorithm It is

shown that the floating point errors increase inversely to loop

gain In fact as the loop gain approaches zero the LMS

algorithm diverges exponentially

Infinite Precision

Consider a linear system with sampled input signal x(n) and

output d(n) Suppose that the samples x(n) and d(n) can be

related by the system impulse response coeffients W*i

N-l
d(n) = ';

i=O
x(n-i) = w*Tx(n)

where the underscore denotes N ~ l e n g t h vectors Further, we have

assumed that the impulse response has insignificant terms beyond N

samples- The notation x(n) signifies the vector of the last N

samples of the input:

x (n) = [x (n) x (n.,..l) ~. x (n - N+1)] T (3. 2)

This paper considers the systems identification problemw that is

we are interested in . . *estJ.matJ.ng ~ from the sequence x(n) and

d (n) 0 The Recursive Least Squares (Kalman) algorithm achieves

this by updating a current coefficient estimate w(n-l) through the

following recursion,

w(n) = w(n-l) + JS.(n) e(n)

where

e(n) = d(n) - d(n)

and

d(n) = wT(n-l)~(n)

(3 3)

(3 4)

(3 5)

6

is the prediction of den) based on N previous samples of x(n). The

Kalman gain can be shown [1] to be

n
K(n) = [L x(i)xT(i)]-lx(n)

i=O
(3 • 6)

The derivation leading to (383) with the Kalman gain given by

(3.6) is based on minimizing the accumulated sum of the square of

the residual errors up to time n with respect to the weight vector

wen) and writing wen) recursively.

4. Floating Point Roundoff Error Models

In this paper the errors introduced by floating point o p e r a ~

tions are modeled as follows:

For multiplication

fl[x-y] = x.y[l+e] (4.1)

were e is the relative error and is modeled as a zero mean random

variable independent of x,y and (x.y) · It has been found [6,8]

that a 2 = E(g2) ~ (O.18)2- 2 B where B is the number of bits used
e

to represent the mantissa.

For addition

fl[x+y] = (x+y) [1+5J

where 6 is the relative error modeled as a zero mean random

variable with variance crl· The actual distribution of 0 and € is

not important as long as the assumptions of zero mean independent

random variables is valid.

Note that in floating point operations, addition also intro-

duces an error in contrast to fixed point operations (assuming no

overflow) ·

7

5. Floating Point Implementation of the RLS Algorithm

For this section we incorporate the errors introduced by the

floating point implementation of the RLS algorithm into the

algorithmo

501 Desired Signal Prediction

Consider the calculation of the prediciton of the desired

signal through the inner product (3 0 5) ~ Let ~ (n) denote the error

introduced by floating point operations in the calculation of the

inner productQ Then,

d'(n) = xT(n)w~(n-l) + ~(n) (5.1)

For the above equation dR(n) is the prediction of the desired

signal using the floating point RLS algorithm and w' (n.) is the

floating point weight vector 0 The primes denote the floating

point variables as opposed to the infinite precision variables of

(3.1-3.6)0

Figure 1 illustrates the error introduced by floating point

operations. From the figure,

n(n) = xo(n)w6(n)EO(n) + ••• + xN_1(n)wN_
1

(n)EN_1(n) +

[xo(n)w6(n)+x1(n)wi(n)1
v1(n) + •.. +

[xo(n)w~(n) +... + xN_1(n)wN_1(n)1
vN_1(n)

Since Ei(n) and vi(n), i=O,ooo,N-! are zero mean white random

sequences then ~ (n) is a zero mean white random sequence 0 We have

N-l

a ~ = E[n
2(n)] = a~ kl

o
a~ E[wi2(k)]+a~{E[xo(n)w6(n)+xl(n)wi(n)]2 +

... + E[x(n)w6(n)+ ... +x
N_1(n)wN_1(n)]2}

x (n)
1

xN_1(n)----

W' (ri)
1

I
I

~
I 1,

l+e:l(n) 1

-----,
1,
,
11+\1 (n)"
1 1

1
I

1+e:2(n) I

I,
I
~

I
I

l+e:N_l(n)~

1

~ 1+vN_1(n)

,
I A

+ t d'(n)

8

xT(n)w'(n-l) T1(n)

Figure 1. Floating Point Errors Due to Inner Product
A

Calculation of d'(n).

The expression (5 . 3) for

9

a 2 can be written in terms of the
Tl

autocorrelation matrix Rx and the optimal (Wiener) vector w* as in

[4] ~ But this assumes that w ~ (n) converges. We will show,

however, that w ~ (n) will diverge and thus a ~ 2 will diverge also

due to floating point errors introduced in the weight vector

update recursion. Nevertheless, the point to consider is that

prior to divergence an 2 depends on the floating point noise

sources and the statistics of x(n) and ~ ' (n) o

5.2 Prediction Error Calculation

Next consider the floating point error introduced in the

computation of the prediction error (304)0 We have,

e'(n) = [d(n) - d'(n)][1+6(n)] (5.4)

where the relative

sequence. If we

error 6(n) is a zero mean white

substitute (301) for d(n) and (Sol) for

random
A

d'(n)

then we can write

e'(n) = xT(n)~* = xT(n)w'(n~l) - n(n) +

o(n)xT(n)w* - o(n)xT(n)~'(n-l) (5.5)

where we have neglected second order noise terms [i.e o l ~(n)6(n)1·

e'(n) = xT(n)[w*-w~(n~l)] + o(n)xT(n)[w*-w~(n~l)J ~ ~(n) (506)

503 Weight Vector Update Recursion

Finally, once the prediction error is computed, the weight

vector is updated by the recursive equation (3 0 3) ~ Assuming the

floating point quantized Kalman gain vector elements are available

at each step, the recursive update equation for each weight vector

element including floating point noise sources is

w:'(n) = {We (n-l) + K. (n)e'(n)[l+l-l. (n)]}[l+a. (n)]
11111

where ~ i (n) and ai(n) are floating point noise sources.

10

Expanding (5.7) and neglecting second order noise terms we

obtain,

W; (n) = w; (n-l) + K.(n)e (n) + w. (n-l)a. (n) +
• •]. 1 1

(5.8)

If we define the diagonal matrices,

diag [a. (n)+u. (n)]
~ ~

then the weight vector update equation becomes

w (n) = w (n-l)+K(n)e (n) + ~ N w (n-l)+uNNK(n)e (n)

(5.9)

(5.10)

(5.11)

SUbstituting for e (n) from (5.6) and neglecting second order

noise terms we obtain,

w (n) = w (n-l) ~ ~ (n) x T (n) rw (n-l)-w*] - ~(n)n(n) ­

o{n)K{n)~T{n)[w (n-I)-~*] + ~N{n)w en-I) +

llNN (n) ~ (n) ~ T(n) fw (n-1) -w* 1 (5.12)

It is convenient to write the recursion (5.12) in terms of the

translated coordinate system

*~ (n) = w (n) - ~

Therefore, subtracting w*from both sides of (5.12) and

substituting (5.13) we obtain,

(5.13)

e en) = ~ en-I) - ~(n)xT{n)~ en-I) - o{n)K{n)~T{n)~ en-I) +
(5.14)

l l N N { n) N K { n) ~ T (n) ~ en-I) +aNN{n) [~ (n-I)+w*] - K{n)n(n)

Collecting terms,

a (n)w* - n(n)K(n)
NN

(5.15)

11

where

U (n) = U (n) + o(n)I
NN NN

Define the matrix

and the vector

Then substituting into (5015) we get

e (n) = rI - ~ (n) ~ T (n) + aNN(n) 1~ (n -1) + 1 (n)

5.4 Discussion

(5.19)

Equation (5.19) represents the recursive update equation of

the translated coordinate weight vector in terms of the noise

sources due to floating point errors. For infinite precision,

BNN(n) + 0

1(n) + 0

and

e (n) + ~(n) = l r - K(n)~T(n) l~(n--l) (5.20)

which is the exact recursion for the infinite precision update

equation of the translated coordinate weight vector.

For the next section we will analyze the effects of the

floating point noise sources on the steady state behaviour of the

translated coordinate weight vector S (n).

It must be noted that in the infinite precision case, as n + ~ ,

Sen) converges to the null (0) vector and ~ (n) converges to the

optimal (Wiener) weight vector w*

12

6. Derivations and Analysis of Floating Point Roundoff Effects on
the RLS Algorithm

If we write the recursion (5.19) for 9'(n) in terms of the

initial condition !'(O), then we obtain

n
!'(n) = (TI [I - K(i)xT(i) + ~NN(i)])!(O) +

i=l

Note that we define

n
II [.] = 1

j=n+l

Define the weight error vector as

n n
~(n) = L ~T(i) { TI [I - K(j)XT(j) + ~NN(j)]}

i=l j=i+l

Also define
n

A(n) = {TI [I - K(i)xT(i) + ~NN(i)]}e(O)
i=l

Then

9'(n) = A(n) + ~(n)

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

Neglecting the floating point noise sources in the matrix,

~ N N (i) , ~ (n) describes the convergence of the weight vector to-

wards *w • That is A(n) approaches the null vector as n ~ ~ . In

this case ~ (n) represents a weight error vector due to floating

point errors in the algorithm. In the sequel we will neglect the

crosscorrelation between A(n) and ~ (n) .

e ~ (n) becomes,

Thus, the covariance of

(6.6)

13

We now proceed to calculate

n n n-m
R ~ = E {~(n)~T(n)} = E{ I I IT [1 - K(k)xT(k) + ~NN(k)]

- - i=l i=j k=i+l

TnT T
1(i)~ (j) 8 IT [I - x(m)K (m) + ~NN(m)] (608)

m=j+l

A major simplification of (Ge8) results when we note that the

vectors 1(i) and 1(j) are independent zero means for i*jo Thus

i=j

o ~

Hence terms where i*j drop out in (608). Now,

R~(i) = E{1(i)~T(i)} = E{aNN(i)w*w!aNN(i)} + E{n2(i)K(i)~T(i)}
(6010)

where we have substituted (5018) for I(i)o From [5J we show that

E{K(i)KT(i)} = ~2 Ri
1

(6.11)

where

is the autocorrelation matrix of the input

Therefore

R ~ (i) = 02w*w* + 0 2 ! R-1
~ a- - ~ i2 x

Using (6.9) we can write (608) as follows,

n n~l

R~ = I E{~T(i) IT [I - x(k)KT(k) + ~NN(k)]
i=l k=i+l

Define,

sequence x(n)o

(6.13)

(6014)

~ (k) = E{[1 - x (k)KT(k) + ~NN(k)][I - K(k)xT(k} + ~NN(k)]} (6.15)

From [5J we show that

E{x(k)KT(k)K(k)xT(k) }

E {X (k) KT (k}} = ~

~1+2
= kT

14

(6.15)

(6.16)

In deriving (6.15) and (6.16) we assume that x(n) is an ergodic,

stationary white zero mean Gaussian random sequence. The results

are valid in the steady state.

Now, from (5.17) the elements of 8NN(k) are zero mean. We

have using (5.17), (5.16), (5.1) and (6.16),

T T
- ex (k)x(k)K (k) u (k)

NN NN

T T T
- u (k)K(k)x (k)a (k)}

NN NN

(6.17)

202

T 2 N+2 2 2 2 ex

E{a (k)B (k)}=oI+ (o+o+o)I- I (6.18)

NN NN a k2 a u 0 k

Substituting (6.15), (6.16) and (6.18) into (6014) we obtain
202

ex
---]r (6.19)

k

2 N+2 2 N+2 2

:::(k) = [1 + + 0 + a

k k 2 ex k 2 T

In the above equations we have defined

2 2 2 2

(J =a +a +0

T ex U 0
We note that =(k) is a diagonal matrix.

follows,

(6.20)

Thus, we can write R ~ as

R =
llJ

n n-l

IT

T

_ (k) E {~ (i)~(i)} (6.21)

i=1 k=i+l

Finally we obtain,
n n

i=l k=i+l

R =
1IJ

,
L.

II

2 N+2
[1-- +

k k

1 -1
+ (12 - R]

n i 2 x

(N+2) a 2 + a 2]

T a

(6.22)

15

Equation (6.22) describes the exact steady state covariance matrix

of the weight error vector ~ (n) defined in (6.3) In order to

analyze this result, we make use of the fact that as i becomes

large, terms with orders O(k
C

-

1) and O(k-2) become insignificant

compared to other termso Hence,

n,
L

i=l

C(i)
n
IT (l':C1~)R~(i)

k=M

(6.23)

The number M is related to 1- and defines the index at which 0 2
0 2 a

a

becomes significant compared to terms of the order O(k-1)e We

proceed as follows,
n

R = ' C (i) (1+ C1 ~) (n -M) R e (i)
tV i;l ~

Now, since
2

cr a « 1 we make use of the following approximation,

This can be shown as follows,

Let E << 1. Then,

zn(1+ E) - E + E 2 + • 0 0

or,

x = (1 + E) - e E

Now,

x = (l+E)n

or,

Substituting (6.25) into (6024)

16

The term cr ;) can be approximated as follows,

C(i) ". ~~

The justification of (6.28) is that when i<M, the terms

(6.28)

122
k2 (N+2)OT ' and 0a can be neglected

ct i) =

in (6.22). Then (6.28) follows by expanding C(i) as,

M 2 M
II [1 - - + ~2 + ~~l]". II (k-l)2 =

k=i+l k k=i+l k

SUbstituting into (6.27)

(6.29)

R =
llJ

-M 0 2
e a

M2

n

I i 2 R,(i)
i=l ~

(6.30)

SUbstituting for R ~ { i) from (6.13) we obtain,

-Ma 2
ncr 2

[~ 3R =
e ex

o~*w*T + n0 2 / 0 2 I]M2
e a

tV ~- n x

where we have used

(6.31)

n
\ i 2 =

i~l

n(n+l)(2n+1)

6

n

3 (6.32)

An examination of (6.31) shows that the RLS algorithm diverges as

the number of iterations (n) becomes large. This divergence is

exponential and cubic with respect to n. It is observed that the

divergence terms are due to floating point errors in the calcula­

tions of the weight vector update (3.3), i.e., ai(n). Assuming no

errors in the calculation of the update for w(n), a 2 a +O and M ~ .

Thus (6Q31) becomes
1

R = 02/02 I

'¥ n n x
(6.33)

In otherwords, the error due to the floating point calculation of

den) is averaged out by the RLS algorithm. Therefore, n(n) indeed

behaves as an additive noise termo

17

It will not cau se a bias in

() ; t *w n as ~ converges to W 0 However, it will contribute a noise

term with variance a ~ 2 to the prediction error [5]0

We must also consider the covariance of ~ (n) which contains

the information regarding the convergence of the translated weight

vector 0 Define

(6.34)

From (604) substituting for ~ (n)

n n
R~ = ~(O)E(.IT [I-K(i)xT(i)+~NN(i)] IT [I-X(i)KT(i)+~NN(i)])!T(O)

1=1 i ~ l

(6035)

From (6015)
n

R (0) II ~ (,) ~ T (O)~ = ~ _ ..Ao _

i=l

where from (6019),

(6.36)

E(i) = (1- ~
a

As before, consider the index M for which terms of the order

0(k-1)become insignificant compared to 0 2 •
a

Then (6.32) becomes

i) M (6.38)

Hence,

n
(l+a 2) a

T(O)
R ~ = a(O) C

1
II

i=M a -

R~ = a(O) C
1

(1+a 2)n-MaT(O)
a

Cl!T(O)
2

RAw = a(O) e(n-M)Oa

(6.39)

If the floating point noise sources are neglected, 0&+0. In this

case C l ~ O N N the null matrix. In otherwords, the algorithm con-

verges to the optimal weight vector 0

18

7. Extension to the Least Mean Squares Algorithm

In this section, the errors introduced by floating point

operations in the LMS algorithm are derived using the approach for

the RLS algorithm. In the LMS algorithm the weight vector is

(7.1)

updated by first calculating the prediction of the desired

signal:
A T
d(n) = x (n)W(n-l)

From which the error is obtained and used to update the weight

vector,
A

e(n) = d(n) - d(n)

w(n) = w(n-I) + y e(n) x(n)

(7.2)

(7.3)

In (7.3) y is the loop gain. It controls the convergence rate of

the LMS algorithm and must satisfy,

2

y <
Amax

where Amax is the maximum eigenvalue of the autocorrelation matrix

Comparing (7.3) to (3.3) we observe that the development leading

to (6.1) in the case of the RLS algorithm can be carried out by

replacing K(n) with yx(n) for the LMS algorithm. Hence, for the

LMS algorithm, the floating point translated wieght vector be-

comes:

e'(n) =

where

n
IT [I - yx{i)xT{i) + ~NN{i)]{O) +

i=l

n n
I ~T{i)[IT [I - yX{j)~T{j) + ~NN{j) 1

i=l j=i+l

(7.5)

~ (i) y x (i) (7.6)

and
~ N N (n) = aNN(i) - ~NN (n)yx{n)~T(n) (7.7)

19

Note that the floating point errors, CIi(n), ~ i (n) , 5(n), ~ (n) now

apply to the LMS algorithm~

We can write

a' (n) = ,,-en) + 'Y(n)

We proceed to calculate

R.!, = E {'!'(n) '!'T(n) }

To evaluate (709) we need to calculate

(7.8)

(7.9)

Thus

R ~ (i)

°NN

i=j

* *
R~(i) = E{aNN(i)w wT aNN(i)} + E {~2(i)y2~(i)~T(i)}

2 2
R~(i) = o w*w*T +0" y2RxCI_ __

As in (6 e 15) for the RLS algorithm define E(k) for the Lt\1S

algorithm

E(k) = E {[I-yx(k)xT(k)+~NN(k)] [I~yx(k)xT(k)+~NN(k)J}

To evaluate (7013) note that [5]

Also,

(7 • 12)

(7014)

E { ~ N N (k) ~ N N T (k) } = aa2I+(N+2)y2ax4(aa2+a~2+a&2)I-2aa2yax21 (7.15)

Hence (7013) becomes

E(k) = [1-2yax2+(N+2)ax4y2+aa2-2aCI2yax2+(N+2)y2ax4a~21I

E(k) = vI

where we -have defined

(7 0 16)

a~2 = aa 2 + a~2 + a y
2 (7.17)

Note that E(k) is diagonal. Hence,

R'l' =
n

L
i=l

n-l

IT 3(k) E{1T
(i)I (i) }

k=i+l (7 e 18)

20

Or,

n
n-i

n
R = L R~ \I R~ L

n-i
'1'

= v
i=1 i=1

n-l
k

R'l' = R~ L Rc:
-1

v = (I-v)
k=O

where we have used
1

I+E + E2 •••' l-E = E<l

1
(Note \1<1 since y« ~ for practical purposes).

(7.19)

(7.20)

(7.21)

Hence,

Trace R = (cr 2 nw* n 2 + y2 cr 2N cr 2]
'1' a - ~ x

For y small, v ~ 1-2 y crx 2

From (7.16)

1

I-v
(7.22)

cr 2 nw * 1I 2 1
Trace R = --- + vNcr 2

'l' 2ycr~ 2 J n
x

(7.23)

If we neglect the floating point errors in A(n) in (7.8) then

defining,

C(n) = e Cn) - e~(n) (7.24)

where e(n) is the infinite precision prediction error and e ~ (n) is

the floating point error we can show that

(7.25)

We can interpret crC 2 as the mean square error between the floating

point and infinite precision LMS algorithm. Substituting for

Trace R'l' from (7.23),

(7.24)

21

Consider now the floating point errors introduced in A(n).

From (6.15) we obtain for the LMS algorithm,

n
R~(n)= ~(O) IT E(i)~T(O)

i=l
where ~ (i) is defined by (7.13). From, (7.16)

R{n) = ~(O)~T(O)vn

where

(7.25)

(7.26)

(7.27)

Examining (7.27) we note that in the absence of floating point

errors, limvn+O must hold for the algorithm to converge. Assuming
n+c:o

Y to be very small (this is the case in many applications of the

LMS algorithm) we can write (7.27) as

For stability

2 y Ox2 << 1

Hence,

(7.28)

(7.29)

'V -

2
-2yo

e x (7.30)

Substituting into (7.26)

2

R~(n) = ~(O)~T(o)e-2yaxn
2

ncr
• e ex- (7.31)

Hence, the algorithm diverges exponentially for y ~ o.

22

80 Summary

An examination of the results for the RLS algorithm shows that

the algorithm is not sensitive to floating point errors in the

calculation of the desired si.gnal. The error here leads to an

additive noise term. The errors that lead to algorithm divergence

(cubic and exponential) are those involved in the calculation of

the weight vector update recursion; in particular, the floating

point errors due to adding the correction term to the weight

vector.

It must be pointed out that the algorithm initially converges,

but as the number of iterations becomes large compared to the

inverse of the variance of the floating point errors, the

algorithm diverges. The initial assumption on the availability of

the quantized Kalman gain vector is seen to be justified since the

algorithm diverges even with infinite precision calculation of the

Kalman gain" Thus independent of the algorithm for efficient

computation of the Kalman gain the RLS algorithm will diverge.

Furthermore, using our analysis we are able to pin point the

floating point operations that lead to divergence and those that

only degrade performance in a non-catastrophic m a n n e r ~ These

results point to tradeoffs and design issues in the digital

implementation of the RLS algorithm.

For the LMS algorithm, the floating point errors increase

inversely to the loop gaino As the loop gain approaches zero, the

errors increase exponentially with the number of iterations (if

y(n) = ~ for example). This was not predicted in [4]. Increasing

the loop gain causes the errors due to the desired signal

prediction to increase. In many

chosen small in order to reduce

applications the loop

the variance of the error

23

gain is

in the

weight vector estimate and the variance of the error due to

additive noise (these errors are averaged out by the RLS algo­

rithm). Decreasing the loop gain, however, increases the floating

point errors.

24

References

(1) D.Do Falconer and L. Ljung, "Application of Fast Kalman
Estimation to Adaptive Equalization," IEEE Trans. on Comrnel

Volo COM-26, NOolO, October 1978, pp 1436-1446.

(2) Bo Friedlander, I·System Identification Techniques for Adaptive
Noise Cancelling," IEEE Transo on Acouso,5peech, and 5igo
Processing, Volu ASSP-30, October 19820

(3) EoHo Satorius and JoDc Pack, "Application of Least Squares
Lattice Algorithms to Adaptive Equalization," IEEE Trans. on
Commo l Vol~ COM~29, No.2, February 19810

(4) CoCaraiscos, and B. Liu , "A Roundoff Error Analysis of the LMS
Adaptive Algorithm," IEEE Transo on Acoustics, Speech and 5ig.
Praco, Vol. ASSP-32, N o ~ 1, February 1984, ppo34-41. ------

(5) Sasan Ardalan 6 SoT. Alexander, "Finite Wordlength Analysis of
the Recursive Least Squares Algorithm", Proceedings Eighteenth
Annual Asilomar Conference on Circuits, Systems and Computers,
Monterey , CA ,November 4, 19840

(6) Bede Liu, To Kaneko, "Error Analysis of Digital Filters
Realized with Floating=Point Arithmetic," Proceedings of the
IEEE, Vol 57, Noo 10, October 19690 - - - - ~

(7) Ao Vo Oppenheim and Ro Wo Shafer, Digital Signal Processing
Englewood Cliffs, NJ: Prentice-Hall, 1975.

(8) AeBo Spirad and DoLo Snyder, Quantization Errors in
Floating-Point Arithmetic," IEEE Trans ACOUSe Speech, and
Sigo Pracel vol. A S S P ~ 2 6 , ppe 456-463, Octo 1978.

