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Abstract—This article presents a generator of floating-point
exponential operators targeting recent FPGAs with embedded
memories and DSP blocks. A single-precision operator consumes
just one DSP block, 18Kbits of dual-port memory, and 392 slices
on Virtex-4. For larger precisions, a generic approach based on
polynomial approximation is used and proves more resource-
efficient than the literature. For instance a double-precision
operator consumes 5 BlockRAM and 12 DSP48 blocks on Virtex-
5, or 10 M9k and 22 18x18 multipliers on Stratix III. This
approach is flexible and is demonstrated to scale up to quadruple-
precision, while enabling frequencies close to the FPGA’s nominal
frequency. All the proposed architectures are last-bit accurate for
all the floating-point range. They are available in the open-source
FloPoCo framework.

I. INTRODUCTION

The exponential function is, after the basic arithmetic oper-

ators, one of the next most useful building block for floating-

point applications. On FPGAs, it has been used for scientific or

financial Monte-Carlo simulations [1], for SPICE simulation

[2], in phylogenetic tree reconstruction, in quantum chemistry

simulations, and in the implementation of the power function

[3] among others.

A. Previous works

Several publications have described exponential implemen-

tations. We list them here, and will discuss in more details the

choices they made and their performance impact in Section IV.

Earlier works targetted single precision, first by adapting

to FPGAs a software algorithm based on floating-point opera-

tions [4], then by using a more efficient fixed-point architecture

[5]. This architecture was later improved [1], however the

table-based method used there doesn’t scale up to double-

precision, as the size of the tables grows exponentially with

the mantissa size.

As FPGAs are increasingly being used for double-precision

floating-point, iterative architectures that scale better [6], [7],

[8] were adapted for FPGAs [9]. The architecture in [9] was

designed with 5-input LUTs in mind, but is poorly suited to

DSP-enabled FPGAs, as IV-B will show. It was parameterized

in precision, but to our knowledge was never pipelined.

Another pipelined, but double-precision only implementation

was proposed in [10], [11].

In [12], a CORDIC-based approach using several paral-

lel CORDIC cores was proposed. It has a complex control

including input and output FIFOs. Being radix-2 CORDIC,

it computes one digit per iteration and thus has a very

long latency. Moreover, it is based on a floating-point adder,

whereas CORDIC is inherently a fixed-point computation, so

there is probably room for improvement there.

From a user point of view, the current state of the art is

probably the floating-point exponential function ALTFP_EXP
provided with Altera Megawizard since 2008 [13]. This im-

plementation exploits the DSP blocks, is parameterized in

exponent and mantissa size, and is fully pipelined. Being in-

cluded in the standard Quartus releases, it is widely available,

although only for Altera targets.

Many other publications have addressed the computation of

exponential function in ASIC, e.g. [6], [7], [14], [8]. However,

it is difficult to evaluate the relevance of such works on

FPGAs.

B. Contributions

In the present article, we propose yet another architecture

for the floating-point evaluation of the exponential function,

and its implementation in the open-source FloPoCo project 1.

Its main specificities are the following.

• The algorithm, based on the usual multiplicative range

reduction followed by a polynomial approximation, was

chosen with DSP blocks and embedded memories in

mind, so it makes efficient use of these resources. For

instance, the single-precision version now involves just

one 17x17-bit multiplier and 18Kbits of dual-port mem-

ory, and runs at 375MHz on a Virtex-4, which is a large

improvement in all respects over the state of the art [1].

• As we believe that floating-point on FPGA should exploit

the flexibility of the target and therefore not be limited

to IEEE single and double precision, the algorithm and

implementation proposed here are fully parametrized

in exponent and mantissa size. They scale to double-

precision and beyond.

• The implementation is pipelined to a user-specified fre-

quency. It is last-bit accurate for all supported mantissa

sizes.

• The architectures are generated as synthesizable VHDL

portable to any FPGA target. In addition, many target-

specific optimizations are performed by the FloPoCo

framework [15], [16], [17].

1http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/
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• A novel variation of the KCM algorithm, multiplying a

real constant by an integer, was developed.

• All this work is freely available as the FPExp operator

of the FloPoCo project, since version 2.1.0. It comes

with test vector generation [15]. In general, it should be

immediately usable for application designers.

Section II gives an overview of the algorithm used, and

Section III discusses some implementation choices. Section IV

compares implementation results with the literature, and Sec-

tion V concludes.

II. ALGORITHM AND ARCHITECTURE

A. A flexible floating-point format for FPGAs
We use in this work the FPLibrary/FloPoCo floating-point

format. This format is very similar to the IEEE-754 format

and has two integer parameters:

• wF is the number of bits of the mantissa, and defines the

precision of the format;

• wE is the number of bits of the exponent, and defines the

range of the format.

A floating-point number X is represented as the (3+wE +
wF )-bit vector depicted on Figure 1.

wFwE1

FES

2

exn

exn Value of X

00 0

01 (−1)S · 1.F · 2E−E0 where E0 = 2wF−1 − 1

10 (−1)S · ∞
11 NaN (Not a Number)

Fig. 1. The FloPoCo floating-point format.

B. Extremal values in the exponential
The exponential function is defined on the set of the

reals. However, in this floating-point format, the smallest

representable number is

Xmin = 2−E0

and the largest is

Xmax = (2− 2−wF ) · 22wE−1−E0 .

The exponential should return zero for all input numbers

smaller than log(Xmin), and should return +∞ for all input

numbers larger than log(Xmax). In single precision (wE = 8,

wF = 23), for instance, the set of input numbers on which a

computation will take place is [−88.03, 88.72]. In addition, as

for small x we have ex ≈ 1 + x+ x2/2, the exponential will

return 1 for all the input x smaller that 2−wF−2.
One consequence is that the testing of a floating-point

exponential operator should concentrate on numbers be-

tween Xmin and Xmax. In FloPoCo’s testbench generator for

FPExp, the exponent of the random inputs is restricted to

[−wF − 3, wE − 2].

C. Algorithm overview

The algorithm used is similar to what is typically used in

software [18].
The main idea is to reduce X to an integer E and a fixed-

point number Y such as

X ≈ E · log 2 + Y (1)

where Y ∈ [−1/2, 1/2) – we will see below in II-D how to

ensure this enclosure.

We may then use the identity

eX ≈ 2E · eY (2)

so E is almost the exponent of the result, and eY almost the

mantissa. Indeed, if Y ∈ [−1/2, 1/2), we have eY ∈ [0.6, 1.7],
and a mantissa must be 1.F ∈ [1, 2). Thus the exponent and

mantissa of the result may be obtained as{
R = 2E · eY if eY ≥ 1)
R = 2E−1 · (2eY ) if eY < 1)

(3)

This test boils-down in testing the most significant bit of eY ,

and the multiplication by 2 is just a shift.

The architecture of this operator is given on Figure 2. This

figure also explicits the alignment of the fixed-point data.

D. Range reduction

To implement equation (1), we have to implement an

approximation of

E =

⌊
X

log 2

⌉
(4)

where �x� denotes the rounding of x to the nearest integer.

Then,

Y = X − E × log 2. (5)

If computed infinitely accurately, this would ensure Y ∈
[− log 2

2 , log 2
2 ]. On one hand, this is not ideal from an architec-

tural point of view, as Y will later be input to a table and log 2
2

is not a power of two (as log 2 ≈ 0.34, the next power of 2 is

1/2, so only 69% of the table would be used). On the other

hand, implementing (4) and (5) accurately enough would be

expensive. A solution to both problems is therefore a relaxed

implementation of (4) that will save on the computation of (4)

and (5) while ensuring Y ∈ [−1/2, 1/2). The idea is that the

computation of E can be grossly approximate, as long as (5)

is accurately implemented. The normalization process (3) will

take care of the cases where E was not directly computed as

the exact result exponent.

As (4) and (5) are inherently fixed-point computations, the

first task is to build a fixed-point representation Xfix of the

input X . The most significant bit (MSB) of this representation

is provided by the condition X > log(Xmax) ⇒ exp(X) =
+∞, from which we deduce X > 2wE+1 ⇒ exp(X) = +∞.

The MSB of Xfix should therefore have weight wE . The least

significant bit is provided by the condition X < 2−wF−2 ⇒
exp(x) = 1, which defines a LSB of weight −wF − 2.

Actually, we will improve this accuracy to −wF−g with g = 3
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Shift to fixed−point

ss s

normalize / round

binary weights

×1/ log(2)

× log(2)

eA eZ − Z − 1

Z

eZ − 1

eZ − Z − 1
+

SX EX FX

wE + wF + g + 1

ER FR

k

wF + g − k

wF + g − k + 1

MSBwF + g − k + 3

2 + wF + g

eA truncated
eZ − 1×

wF + g

k

wE + wF + g + 1

Xfix (Fixed-point X)

Y
A Z

Xfix

−
w

F
−

g

−
k

0w
E

+
1

wF + g − k + 1

eA × (eZ − 1)
(truncated)

−
2
k

eY

eA
eA × (eZ − 1)

+

eA

0

− Xfix

A Z
Y = A + Z

E × log 2

E

1 + wF + g

wE + 1

wE + wF + g + 1

wF + g − 2k

Fig. 2. Architecture and fixed-point data alignment

(see below in III-B) to allow for rounding error accumulation

in these g guard bits.

Thus the shift to fixed point box on Figure 2 shifts the

mantissa by the value of the exponent. More specifically, if the

exponent is positive, it shifts to the left by up to wE positions

(more means overflow). If the exponent is negative, it shifts to

the right by up to wF + g positions. This box also generates

out-of-range signals (not shown on the figure).

Let us now turn to the relaxed computation of E. E is an

integer. Since it is almost the result’s exponent (of size wE),

its size in bits will be wE +1, including one sign bit, the +1
preventing overflow in the second case of (3).

An absolute error of ε in the computation of Xfix

log 2 before

rounding means that E may be misrounded (off by 1 with

respect to the ideal
⌊

X
log 2

⌉
) when X is within ε of the middle

between two multiples of log 2. As a consequence the bound

on Y will be Y ∈ [− log 2
2 − ε log 2, log 2

2 + ε log 2]. As we

want to ensure Y ∈ (−1/2, 1/2), we deduce the bound ε <
1−log 2
2 log 2 ≈ 0.22.

One way to ensure this bound is to implement (4) as

E =

⌊
�Xfix	−3 ×

⌊
1

log 2

⌉
−3

⌉
(6)

where �x	−3 and �x�−3 respectively mean a truncation and

a rounding such that the LSB of the result is 2−3. Thus the

product is computed with an absolute error ε < (1 + 0.5) ×
2−3 = 0.1875 with respect to Xfix

log 2 (Section III-A below

introduces a small improvement on this computation that leads

to the same error). This leaves margin for the error of Xfix

with respect to X , and for the errors on the computation of

(5), the sum of which will be smaller than 2−wF as the sequel

will show.

Then, (5) may be implemented as

Y = Xfix − E × log 2. (7)

This fixed-point subtraction cancels the integer part and the

first bit of the fractional part.

In this work, we have also considered reducing to Y ∈ [0, 1)
instead of Y ∈ [−1/2, 1/2). It turns out that guaranteeing this

enclosure, especially Y ≥ 0, is more expensive.

E. Computation of eY

Let us now turn to the computation of eY . We use a second

range reduction, splitting Y as

Y = A+ Z (8)
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where A consists of the k most significant bits of Y , and Z
consists of the wF +g−k least significant bits. Then we have

eY = eA+Z = eA · eZ . (9)

Here eA will be tabulated in a table indexed by A, and Z
is small enough to enable us to use the Taylor formula

eZ ≈ 1 + Z + Z2/2 + ... (10)

This formula has the advantage that the three first co-

efficients are powers of two, therefore the corresponding

multiplications can be mere shifts. Actually we define

f(Z) = eZ − Z − 1 (11)

From 0 ≤ Z < 2−k and eZ − Z − 1 ≈ Z2/2 + ..., we

know that the MSB of f(Z) has weight −2k − 1. As f(Z)
will be added to Z, its LSB should have the same weight

−wF − g. The useful size of f(Z) is therefore wF + g − 2k.

As a consequence, we do not need to compute it out of all the

bits of Z. Truncating Z to its wF + g − 2k MSBs will entail

an error of roughly the same weight as the error entailed by

the fixed-point format of f(Z).

Out of Z and f(Z), we compute eZ − 1 = f(Z)+Z. This

addition may overflow, so the result is on wF +g−k+1 bits,

one more bit than Z.

If 1 + wF + g < 17, the final multiplication eY = eA · eZ
may be computed directly as a single DSP block. For larger

precisions, the cost of this multiplication is reduced by imple-

menting it as

eA · (1 + Z + f(Z))
= eA + eA · (Z + f(Z))

(12)

Again, the two addends have LSB weight −wF −g. Again,

the multiplier inputs need not be more accurate than their

output, so we truncate eA to its LSB wF + g − k + 1 bits.

As we need to truncate the result of this multiplier, we may

as well use, for large precisions, truncated multipliers [19], to

save DSP and latency.

A final normalization step possibly shifts left the mantissa

by one bit, then performs the final rounding. The rounding

consists in possibly adding one bit, then truncating. The IEEE-

754 format has the nice property that we may use an adder of

size wE +wF +1 to add the rounding bit to the concatenated

exponent and mantissa: carry propagation from mantissa to

exponent will handle the possible exponent change due to

rounding up.

III. IMPLEMENTATION ISSUES

This computation involves several approximation and

rounding errors. The purpose of this section is to guarantee

faithful rounding, ie. an error of less than one unit in the last
place (ulp) of the result. Here the ulp has the value 2−wF , the

weight of the last bit of the mantissa 1.F of the result.

A. Constant multiplications

As both constant multiplications (by 1/ log 2 and log 2)

multiply a large constant by a small input, it is natural to

use the KCM algorithm [20]. For the larger multiplication by

the real value log 2, we actually use a variation that is original

to our knowledge and that we briefly present now.

Assume we need to multiply a n-bit integer E by a real
constant K (here K = log 2), and we want an m-bit result

with m ≥ n. The usual techique is to first round the constant

to precision m, then use a fixed-point multiplier (that returns

an n+m-bit result), then again round the result to m bits. We

have two rounding to m bits that each introduce one half-ulp of

error on the result, so the final result is accurate to 1 ulp. This

accuracy can be improved by rounding the constant to more

than m bits. On the implementation side, the multiplication

by a constant can use the KCM algorithm [20], and the final

rounding costs one addition (truncation is also possible, but

then the total error is above 1 ulp). The following technique

attains the same accuracy, saving hardware in the KCM, and

without needing this final adder.

Let α be the LUT input size of the target FPGA. The input

E is split into chunks of size α:

E =

p∑
i=0

2iαEi

therefore

KE =

p∑
i=0

2iαKEi .

We tabulate in LUTs each product 2iαKEi on just the required

precision, so that its LSB has value 2−γu where u is the ulp

of the result, and γ is again a number of guard bits. Each table

may hold the correctly rounded value of the product of Ei by

the real value log 2 to this precision, so entails an error of

2−γ−1 ulp. In the first table, we actually store KE0+u/2, so

that the truncation of the sum will correspond to a rounding of

the product. Finally, the value of γ is chosen to ensure 1-ulp

accuracy.

This operator is implemented generically as the

FixRealKCM operator in FloPoCo. Back to the exponential,

as α ∈ {4..6} for current FPGAs, and practical values of E
are smaller than 15, the value γ = 2 is usually enough to

ensure that this multiplier returns a faithful multiplication by

log 2. For the multiplier by 1/ log 2 we manually set γ = 3
to mimick (6).

B. Overall error analysis

In the following, all the errors will be expressed in terms of

unit in the last place of Y , which has the value 2−wF−g . Thus

errors expressed this way can be made as small as required

by increasing g.

First, note that the argument reduction is not exact. As

already stated, numerical errors in the computation (6) of E
mostly impact the range of Y . Concerning the computation of

Y (1), there are two exclusive cases:
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• If X is large (its exponent is larger than −2), its mantissa

is shifted without loss of information, then the computa-

tion of E × log 2 introduces at most one ulp of error in

Y as seen in III-A.

• Or, X is small, its mantissa is shifted right beyond the

ulp, so its LSBs are lost, which also entails one error

of one ulp in Y . However, in this case E = 0, so the

computation of E × log 2 is exact.

In both cases we may thus have an error of at most one ulp

on Y . Let us now see how it propagates to eY .

eA is tabulated rounded to the nearest, thus with an error

of 1/2 ulp.

eZ−Z−1 is either tabulated (1/2 ulp) or evaluated through

polynomial approximation (1 ulp). As the higher order bits of

Z are used, the error on Y (which is the error on Z) is scaled

down and becomes negligible.

Then eY −1 adds the error on Z and the error on eZ−Z−1,

and thus holds an error of 1.5 or 2 ulps.

The error on the other input to the multiplier (eA truncated)

is of one ulp. The product adds these error as (a+ε)×(b+ε′) =
ab + bε + aε′ + εε′. Here is another subtlety. This formula

shows that the error on eZ − Z − 1 is scaled by the value of

eA. Fortunately, the worst case error will occur for eA < 1,

since in this case the result will be shifted left by one bit. In

the case eA > 1 the error on eZ − Z − 1 may be scaled up

(by up to 1.6) but we will have in this case the extra bit of

precision needed for the other case, so it doesn’t matter.

Truncating the multiplier result would yields another error

of one ulp, however we may instead round it (1/2 ulp only)

at very little cost by adding its round bit to the right of eA,

so the addition of eA will also compute the rounding of the

product.

Finally the product holds an error of 3 or 3.5 ulps.

Adding the error on eA, we deduce that the error on eY

may be up to 3.5 ulp in the dual table case, and 4 ulp in the

polynomial case.

If eY < 1 the final 1-bit shift will multiply this error by 2,

so we need g = 3 guard bits.

Previous works need more guard bits for the same final

accuracy (5 guard bits in [5], 8 in [12] for instance), hence a

wider datapath. This improvement in the present work is partly

due to a finer error analysis, partly to a refined implementation,

in particular of the multiplication by log 2. It is proportionnally

more important for lower precisions.

However, our implementation also allows increasing the

parameter g beyond this minimal value of 3. More guard bits

will mean a larger percentage of correctly rounded results. This

possibility is also useful when building larger faithful operator

based on the exponential, for instance the power function [3]

(under development in FloPoCo).

C. The case study of single precision

Setting wF = 23 and g = 3 in the previous architecture, it

turns out that k = 9 allows for a highly efficient architecture

on recent FPGAs.

Firstly, we need altogether 29 × 27 bits of RAM for eA

and 29 × 9 bits for eZ − Z − 1. We can group both tables

in a single 29 × 36 table with dual-port access. This perfectly

matches one Xilinx BlockRAM, or two Altera M9K.

Secondly, the multiplication is now 18x18 bits, unsigned.

This perfectly matches the DSP blocks of Altera chips. On

Xilinx chips up to Virtex-4, the multipliers are able of 17x17

unsigned, so the cost is one DSP block plus two 18-bit addi-

tions. On Virtex-5 the DSP block is able of 17x24 unsigned,

so we only need one addition. One more trick allows us to

hide the latency of this addition. We choose to input eA on 17

bits only instead of 18. To keep the same error bound of one

ulp, we now need to round it to 17 bits. This rounding requires

an addition (so there is no saving compared to extending the

multiplier input to 18 bit), but this addition is now before the

multiplier, in parallel to the addition of Z to eZ − Z − 1.

D. Polynomial approximation for large precisions

For larger values of wF , a generic polynomial evaluator [21]

is used as a black box. It inputs a function of [0, 1] → [0, 1]

(here e2
−kx − 2−kx− 1) with its input and output precisions

(given on Figure 2) and a degree, and implements a piecewise

polynomial approximation. The input interval is decomposed

into smaller intervals, and the number of such intervals is

computed so that the generated architecture returns a faithfully

rounded result. The architectures are optimized for the target

FPGA (currently Xilinx Virtex-4, Virtex-5 and Virtex-6, and

Altera Stratix II to IV), making efficient use of the DSP blocks

to attain high frequencies.

One advantage of this approach is that it is based on DSPs

and memory blocks. Another one is its genericity, as future

improvements to the polynomial evaluator will immediately

benefit to the exponential. This includes the adaptation of the

polynomial evaluator to newer FPGAs, but also performance

improvements. For instance, we are improving the polynomial

evaluator so that it can make use of truncated multipliers to

reduce the DSP count, and this will improve FPExp.

More specifically, the function evaluated here is easy to

approximate by a low-degree polynomial approximations. It

turns out that degree 2 is enough for precision up to double-

extended precision.

E. Parameter selection

We now have two parameters to set: k, that fixes the input

to the eA table, and the degree d of the polynomial, that fixes

the trade-off between area of the coefficient table and DSP

count/latency. We have varied these parameters to obtain the

best trade-offs, that is a an architecture well balanced between

DSP and memory consumption, with memories as full as

possible and multipliers used as fully as possible. For instance,

for double precision, on all targets the best choice is k = 9
and a degree-2 approximation on 512 intervals. The FPExp

operator provides a good default choice of these parameters,

and an expert mode allows the user to set them manually for

a different trade-off.
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Fig. 3. The architecture evaluating eZ − Z − 1 for Virtex-5/Virtex-6

Figure 3 details one instance of this architecture for

Virtex-5.

F. Pipeline tuning

This work was also an in-depth case study for the pipeline

generator framework of FloPoCo [15]. This framework enables

easy composition and synchronization of components that

pipeline themselves to run at a user-provided frequency. While

details are out of scope of this article, this explains how

we obtain results for different frequencies. For illustration,

Figure 4 shows one example of the obtained component

hierarchy, with the pipeline information. It also details the

sizes of the various multipliers on this example.

IV. RESULTS

A. Synthesis results

Table I provides synthesis results for several precisions

and several FPGA targets, and compares with results from

previous papers. Our approach is clearly the most efficient of

the literature for all the precisions. It combines very high fre-

quency (close to the nominal DSP block frequency), the lowest

DSP and memory consumption, portability to both Xilinx and

Altera targets, last-bit accuracy, flexibility in precision, and

also flexibility in terms of latency versus frequency.

Note that the synthesis on Stratix III reports 2 DSP blocks

for single precision. One is actually unused. The coarse-grain

|---Entity LeftShifter_53_by_max_65:
| Pipeline depth = 1
|---Entity IntAdder_67:
| Pipeline depth = 2
| |---Entity KCMTable_6_11818_unsigned:
| | Not pipelined
| |---Entity KCMTable_6_11818_signed:
| | Not pipelined
| | |---Entity IntAdder_22:
| | | Pipeline depth = 1
| |---Entity IntCompressorTree_22_3:
| | Pipeline depth = 2
|---Entity IntIntKCM_14_11818_signed:
| Pipeline depth = 2
| |---Entity KCMTable_6_51145234580810622639_unsigned:
| | Not pipelined
| |---Entity KCMTable_6_51145234580810622639_signed:
| | Not pipelined
| | |---Entity IntAdder_72:
| | | Pipeline depth = 2
| |---Entity IntCompressorTree_72_2:
| | Pipeline depth = 2
|---Entity IntIntKCM_12_51145234580810622639_signed:
| Pipeline depth = 3
|---Entity IntAdder_67:
| Pipeline depth = 2
|---Entity firstExpTable_11_56:
| Not pipelined
| |---Entity TableGenerator_7_89:
| | Not pipelined
| | |---Entity SignedIntMultiplier_25_23:
| | | Pipeline depth = 2
| | |---Entity IntAdder_31:
| | | Pipeline depth = 1
| | | | |---Entity IntAdder_60:
| | | | | Pipeline depth = 1
| | | |---Entity IntCompressorTree_60_2:
| | | | Pipeline depth = 1
| | |---Entity SignedIntMultiplier_27_31:
| | | Pipeline depth = 4
| | |---Entity IntAdder_64:
| | | Pipeline depth = 2
| |---Entity PolynomialEvaluator_d2:
| | Pipeline depth = 10
| |---Entity IntAdder_35:
| | Pipeline depth = 1
|---Entity FunctionEvaluator:
| Pipeline depth = 14
| | |---Entity IntAdder_75:
| | | Pipeline depth = 2
| |---Entity IntCompressorTree_75_2:
| | Pipeline depth = 2
|---Entity IntMultiplier_45_45:
| Pipeline depth = 6
|---Entity IntAdder_57:
| Pipeline depth = 1
|---Entity IntAdder_65:
| Pipeline depth = 2
Entity FPExp_11_52:

Pipeline depth = 38

Fig. 4. Component hierarchy for double-precision exponential on Virtex-6

DSP block structure of Altera chips since Stratix III prevent

using the 18×18-bit multipliers completely independently.

Of special interest is the last line of this table, which

shows that even a quadruple-precision exponential function

will consume only one tenth of the resources of a high-end

FPGA while still running at a very high frequency.

B. Comparison with other works

In [9], a double-precision combinatorial operator consumes,

on VirtexII, 2045 slices for a delay of 229 ns. To our

knowledge, it was never pipelined, but we estimate that a high-

frequency pipelined would require a doubling of the area and
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TABLE I
SYNTHESIS RESULTS FOR VARIOUS INSTANCES OF THE FLOATING-POINT EXPONENTIAL OPERATOR.

Precision FPGA Tool
Performance Resource Usage

f (MHz) Latency
Logic Usage

DSPs Memory
(A)LUTs Reg. Slice

(8,23)

StratixIII
Altera MegaWizard 274 17 527 900 19 18-bit elem. 0

ours 315 10 515 476 2 18-bit elem.
3 M9K

187 3 670 187 1 M9K
VirtexII 1000 [9] 1/123ns 0 728 0 0

Virtex-4
[9] (see Note 1) 21 0 545 7 0
ours fT = 330 334 16 399 1 DSP48 1 BRAMours fT = 200 261 8 365

Virtex-5
ours fT = 380 384 17 561 531 1 DSP48E 1 BRAMours fT = 200 360 9 545 231

Virtex-6 ours fT = 600 493 23 603 602 1 DSP48E1 1 BRAM
(see Note 2) ours fT = 50 179 5 452 189

(10,40)
Virtex-5 ours (k=5,d=2) 310 30 1377 1141 - 10 DSP48E 4 BRAM
Virtex-6 ours (k=5,d=2) 488 32 1469 1344 - 10 DSP48E1 3 BRAM

(11,52)

StratixIII
Altera MegaWizard 213 25 2941 1476 - 58 18-bit elem. 0

ours 327 29 1307 3757 - 22 18-bit elem. 10 M9K
256 15 1437 1984 -

VirtexII 1000 [9] 1/229ns 0 2045 0 0

Virtex-4

[10] ? 0 1293 105 71 DSP48 6 BRAM
[11] 200 30 13614 19704 0 29 BRAM

[12] (CORDIC) 5.25 cycles@100Mhz > 23455 36 DSP48

ours
319 38 2249 1964 1393

17 DSP48 5 BRAM178 24 2128 1361 1154
97 14 2034 926 1096

Virtex-5 ours
310 35 1867 1456 -

12 DSP48E 5 BRAM204 18 1604 1018 -
119 12 1601 806 -

Virtex-6 ours
488 38 1928 1791 -

12 DSP48E1 5 BRAM221 22 1642 1184 -
125 10 1547 629 -

(15,64) Virtex-6 ours (k=11, d=2) 486 41 2894 2539 - 20 DSP48E1 11 BRAM

(15,112) Virtex-6 ours (k=14, d=3) 395 69 8071 7725 - 71 DSP48E1 123 BRAM

We used QuartusII v9.0 for StratixIII EPSL50F484C2 and ISE 11.5 for Virtex-4 XC4VFX100-12-ff1152, Virtex-5 XC5VFX100T-3-ff1738
and Virtex-6 XC6VHX380T-3-ff1923. fT is the target frequency provided to FloPoCo.
Note 1: we used the (unpipelined) FPExp operator in FloPoCo until 2.0.0, which is based on the code from [9].
Note 2: the current timing model of Virtex-6 in FloPoCo is very preliminary.

roughly 40 cycles.
In addition, this architecture was based on tables inputting

α bits and rectangular multipliers where one dimension was

also α (an integer parameter) and the other dimension varied

from α to the mantissa size. This was a good design choice for

LUT-based FPGAs, but it poorly matches the capabilities of

the DSP blocks and embedded memories of modern FPGAs.

For a short latency, and to use the DSP blocks optimally, one

should choose α = 17, but then the tables would be much too

large (217 entries). Or, one should chose α ≈ 10, but then the

DSPs would be underutilized.
As Altera Megawizard produces readable source files, we

analysed the algorithm used for double precision. The range

reduction is the usual one, and the architecture diverges only

for the computation of eY . Altera’s architecture is based on

a decomposition of the input as Y = Y0 + Y1 + Y2 + YL

where Y0 consists of the 9 leading bits, Y1 and Y2 consist

of the two following 9-bit chunks, and YL consists of the

remaining lower bits. The exponential is computed as eY =
(ey0 × ey1)× (ey2eyL), where the three first terms are simply

read from tables with 29 entries, and eyL is approximated as

the Taylor polynomial eYL ≈ 1 + YL. This is very similar to

the method proposed by Wielgosz et al [10], [11], and both

were probably designed independently. However the Altera

implementation is generic in precision.
This approach has a potential of lower latency, as the

multipliers are organized in tree, and not in sequence as in our

proposal. Its drawback is that it doesn’t exploit the structure

of the numbers. Indeed, the three multiplications are of size

roughly 60×60 bits. However, ey1 , ey2 , and eyL are all of the

form 1 + ε, so at the bit level, we have a lot of predictible

multiplications by 0, for which the hardware could be saved.

Table I illustrates this waste of resource compared to our

approach.
We also remark in Table I that the Altera ALTFP EXP

operators do not use 9Kbit embedded memories, although this

design would be a perfect match for them (it should consume

(61 + 51 + 42)/18 = 9 of them, with a corresponding huge

reduction in logic resources).
A final remark is that the two references by Wielgosz et al.

[10], [11] seem to use the same architecture, however the first

one reports results using DSP blocks, while the second one

replaces all the DSPs with logic. This actually makes sense,

since in this case the parts of the large multipliers that multiply
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by zero will indeed be optimized out by the synthesizer.

C. Comparison with microprocessors

This table allows us to compare the theoretical peak per-

formance, in terms of floating-point exponentials, of a large

FPGA and a high-end processor. These numbers, of course,

should be taken for what they are, as they ignore the critical

issue of data movements [11].

The largest Virtex-6 FPGA (XC6VSX475T) could acco-

modate 168 double-precision exponential cores running above

400 MHz, thus providing a theoretical peak performance over

60 giga double-precision exponentials per second (GDPexp/s).

For a fair comparison, we have to compare to the highest

performance software implementation currently available, one

which was tuned with comparable effort. To our knowledge, it

is the Intel Vector Math Library (VML), which can achieve a

peak of 6 cycles/DPExp on Itanium-2 or Core i7. On an 8-core

processor running at 3GHz, we obtain a peak performance of

4 GFPExp/s, with a speed-up of 15 in favor of the FPGA. On

single precision, the numbers are in excess of 400GSPExp/s

for the FPGA while the performance of VML is only improved

to 6GSPExp/s. The FPGA speed-up is now above 60.

V. CONCLUSION AND FUTURE WORK

We have presented a state-of-the-art floating-point exponen-

tial operator generator. It produces last-bit accurate architec-

tures for a wide range of FPGA targets, for a wide range of

precisions up to IEEE-754-2008 quadruple precision, and for

a wide range of latency/frequency trade-offs. It is designed

to make good use of the DSP blocks and embedded memo-

ries of high-end FPGAs, and outperforms previous works in

performance and resources consumption.

Hopefully, other elementary function of the same quality

will join the exponential, forming a complete open-source

mathematical library for FPGAs. To this purpose, the case

study of the exponential has already lead to improvements in

the pipeline framework and the generic polynomial approxi-

mator. These will be improved further. This work also suggests

that the FloPoCo framework could be enhanced by attaching

an optional fixed-point semantics to the signals, which is being

investigated.
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