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INTRODUCTION FLOATING POINT & FPGA ?!

HOG  ALGORITHM

SVM  CLASIFIER

WORKING SYSTEM (640x480 @ 60 fps)

RESOURCE  UTILIZATION

The design is using almost all slices of FPGA 

device, but it was our intent to test the limits and 

instantiate as many SVM classification modules 

as possible.

Object detection and localization in a video stream is an important requirement for 
almost all vision systems. In this work a design embedded into a reconfigurable device 
which is using the Histogram of Oriented Gradients for feature extraction and SVM 
classification for detecting multiple objects is presented. Superior accuracy is achieved 
by making all computations using single precision 32-bit floating point values in all 
stages of image processing. The resulting implementation is fully pipelined and there is 
no need for external memory. Finally a working system able to detect and localize 
three different classes of objects in color images with resolution 640x480 @ 60fps is 
presented with a computational performance above 9 GFLOPS.
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Histograms of Oriented Gradients [1] is a widely used algorithm for object detection 

(especially pedestrians). It uses histograms of oriented gradients for feature 

generation and a SVM (Support Vector Machine) classifier for classification. 

Unfortunately it has a quite high computational complexity and it is not possible to run 

it on CPU in real time. Available C++ implementation from OpenCV library was used 

as a reference for porting to FPGA. The first step is the gradient angle and magnitude 

computation. In the second stage the histograms of gradients are accumulated.

[1] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Computer 

Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1, 

June 2005, pp. 886 –893 vol. 1.

[2] V. N. Vapnik, The nature of statistical learning theory. New York, NY, USA: Springer-Verlag New 

York, Inc., 1995

MULTIPLE  OBJECT  DETECTION

Because SVM does a binary classification, 

different instances has to be used for 

detecting multiple objects. The gradient 

and histogram computation modules are 

used to process the image, divide it into 

cells and blocks and compute the feature 

vector for each block. The data is then 

streamed to multiple instances of SVM 

classifiers. In the first block, a human 

Described implementation was tested 

using Xilinx ML605 board with Virtex 

6 XC6VLX240T device and Avnet 

DVI I/O FMC expansion card for 

video input. Implemented system 

works with 60fps and process a 

single 640x480 frame in about 16.6 

ms. For comparison, the original 

OpenCV implementation in C++ 

running on Core i7 2600 (3.4 GHz) 

process the same image in single 

scale with an average processing 

time of 50 ms when MMX and SSE 

instructions are used and 130 ms 

without them. The achieved speedup 

is 3.0x (with SIMD usage) or 7.8x (no 

SIMD) 

detection is performed. In the second block heads are detected. In the third block  

bicycles are classified. When an object is detected in SVM, the information is sent to 

the visualisation module, which is used to draw the rectangles of a specified colour and 

size on the screen (to mark object type and location).

PERFORMANCE (9.47 GFLOPS)

The whole design is working with 25 MHz clock, 
with separate clock domains for SVM modules. 
The computational performance for all blocks 
reach the level of 9.47 GFLOPS.

FPGA devices are not consider to be a good platform for implementing the floating point 

operations. It is quite an unjust opinion. The FPGA vendors are providing ready to use 

IP Cores for floating point arithmetic (addition, subtraction, multiplication, division and 

square root), implementing operations like:

is possible. IP Cores are fast, the only tradeoff is longer latency and resource utilization.

The number of resources is increasing very fast ( newest Xilinx Virtex 7 device with 

more than 1.2 M LUTs ) and it is possible to incorporate more than 1000 pairs of single 

precision floating point adder and multiplier (MAC) in a single chip.

The Support Vector Machines theory was 

presented in the work [2]. The SVM in this 

form is based on dividing the data into 

hyperplanes and is able to do a binary 

classification (negative/positive). 

Since the previous research proved that 

implementing the SVM using fixed point 

arithmetic is reducing the detection rate, in 

our implementation we decided to use 

single precision floating point 

representation
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ADD 1 77 414

ADD 12 (max) 516 447

MUL 1 104 842

MUL 8 (max) 516 668

Operation Latency Clock (MHz) LUTs

Resource Used Available Percentage

FF 75071 301440 24 %

LUT 6 113359 150720 75 %

SLICE 32428 37680 86 %

BRAM 119 416 28 %

DSP48 72 768 9 %

Module IP Cores Clock GFLOPS

Gradient 31 25 MHz 0.775

Histogram 77 25 MHz 1.925

SVM0 15 237 MHz 3.555

SVM1 7 50 MHz 0.350

SVM2 27 106 MHz 2.862

Sum 9.47
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