
REFERENCES

FLOATING POINT HOG IMPLEMENTATION
FOR REAL-TIME

MULTIPLE OBJECT DETECTION
Mateusz Komorkiewicz, Maciej Kluczewski, Marek Gorgoń

AGH University of Science and Technology
al. A. Mickiewicza 30, 30-059 Kraków

email: { komorkie,kluczews,mago}@agh.edu.pl

INTRODUCTION FLOATING POINT & FPGA ?!

HOG ALGORITHM

SVM CLASIFIER

WORKING SYSTEM (640x480 @ 60 fps)

RESOURCE UTILIZATION

The design is using almost all slices of FPGA

device, but it was our intent to test the limits and

instantiate as many SVM classification modules

as possible.

Object detection and localization in a video stream is an important requirement for
almost all vision systems. In this work a design embedded into a reconfigurable device
which is using the Histogram of Oriented Gradients for feature extraction and SVM
classification for detecting multiple objects is presented. Superior accuracy is achieved
by making all computations using single precision 32-bit floating point values in all
stages of image processing. The resulting implementation is fully pipelined and there is
no need for external memory. Finally a working system able to detect and localize
three different classes of objects in color images with resolution 640x480 @ 60fps is
presented with a computational performance above 9 GFLOPS.

Sobel operator

-

+

- +

gamma LUT
uchar → float

Sobel operator

grx

gry

-

+

- +

gamma LUT
uchar → float

Sobel operator

ggx

ggy

-

+

- +

gamma LUT
uchar → float

gbx

gby

 α0 α1 m0 m1

red

green

blue

arctg g yg x

 g x2g y2

max g ix
2g iy

2

Histograms of Oriented Gradients [1] is a widely used algorithm for object detection

(especially pedestrians). It uses histograms of oriented gradients for feature

generation and a SVM (Support Vector Machine) classifier for classification.

Unfortunately it has a quite high computational complexity and it is not possible to run

it on CPU in real time. Available C++ implementation from OpenCV library was used

as a reference for porting to FPGA. The first step is the gradient angle and magnitude

computation. In the second stage the histograms of gradients are accumulated.

[1] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Computer

Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1,

June 2005, pp. 886 –893 vol. 1.

[2] V. N. Vapnik, The nature of statistical learning theory. New York, NY, USA: Springer-Verlag New

York, Inc., 1995

MULTIPLE OBJECT DETECTION

Because SVM does a binary classification,

different instances has to be used for

detecting multiple objects. The gradient

and histogram computation modules are

used to process the image, divide it into

cells and blocks and compute the feature

vector for each block. The data is then

streamed to multiple instances of SVM

classifiers. In the first block, a human

Described implementation was tested

using Xilinx ML605 board with Virtex

6 XC6VLX240T device and Avnet

DVI I/O FMC expansion card for

video input. Implemented system

works with 60fps and process a

single 640x480 frame in about 16.6

ms. For comparison, the original

OpenCV implementation in C++

running on Core i7 2600 (3.4 GHz)

process the same image in single

scale with an average processing

time of 50 ms when MMX and SSE

instructions are used and 130 ms

without them. The achieved speedup

is 3.0x (with SIMD usage) or 7.8x (no

SIMD)

detection is performed. In the second block heads are detected. In the third block

bicycles are classified. When an object is detected in SVM, the information is sent to

the visualisation module, which is used to draw the rectangles of a specified colour and

size on the screen (to mark object type and location).

PERFORMANCE (9.47 GFLOPS)

The whole design is working with 25 MHz clock,
with separate clock domains for SVM modules.
The computational performance for all blocks
reach the level of 9.47 GFLOPS.

FPGA devices are not consider to be a good platform for implementing the floating point

operations. It is quite an unjust opinion. The FPGA vendors are providing ready to use

IP Cores for floating point arithmetic (addition, subtraction, multiplication, division and

square root), implementing operations like:

is possible. IP Cores are fast, the only tradeoff is longer latency and resource utilization.

The number of resources is increasing very fast (newest Xilinx Virtex 7 device with

more than 1.2 M LUTs) and it is possible to incorporate more than 1000 pairs of single

precision floating point adder and multiplier (MAC) in a single chip.

The Support Vector Machines theory was

presented in the work [2]. The SVM in this

form is based on dividing the data into

hyperplanes and is able to do a binary

classification (negative/positive).

Since the previous research proved that

implementing the SVM using fixed point

arithmetic is reducing the detection rate, in

our implementation we decided to use

single precision floating point

representation

CONTROL UNIT

SVM
values

row
counter

multiplier
(LM)

adder
(LA)

DELAY
(LD)

cedata

SVM
values

row
counter

SVM
values

row
counter

...

DELAY LINE (LDL)

LATENCY COUNTER BLOCK COUNTER RESULT COUNTER
mux mux

0.0 0.0

multiplier
(LM)

multiplier
(LM)

 ...

result

adder
(LA)

adder
(LA)

DELAY
(LD)

DELAY
(LD)

> threshold

Module for computing SVM window value

VISUALIZATION

HISTOGRAM

COMPUTATION

GRADIENT
COMPUTATION

SVM

(human)

SVM

(head)

SVM

(bicycle)

VIDEO INHDMI
VIDEO

OUT
DVI

Module for gradient angle and magnitude computation

Xilinx single precision floating point IP Cores

FPL 2012
29-31 August
Oslo, Norway

Detection system

1

2

3

4

5

6

7

8

9

ADD 1 77 414

ADD 12 (max) 516 447

MUL 1 104 842

MUL 8 (max) 516 668

Operation Latency Clock (MHz) LUTs

Resource Used Available Percentage

FF 75071 301440 24 %

LUT 6 113359 150720 75 %

SLICE 32428 37680 86 %

BRAM 119 416 28 %

DSP48 72 768 9 %

Module IP Cores Clock GFLOPS

Gradient 31 25 MHz 0.775

Histogram 77 25 MHz 1.925

SVM0 15 237 MHz 3.555

SVM1 7 50 MHz 0.350

SVM2 27 106 MHz 2.862

Sum 9.47

v=
v

∥v∥222

	Slajd 1

