
Citation: Žalik, B.; Strnad, D.; Kohek,

Š.; Kolingerová, I.; Nerat, A.; Lukač,

N.; Lipuš, B.; Žalik, M.; Podgorelec,

D. FLoCIC: A Few Lines of Code for

Raster Image Compression. Entropy

2023, 25, 533. https://doi.org/

10.3390/e25030533

Academic Editors: Jun Chen and

Sadaf Salehkalaibar

Received: 24 February 2023

Revised: 15 March 2023

Accepted: 18 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

FLoCIC: A Few Lines of Code for Raster Image Compression
Borut Žalik 1,* , Damjan Strnad 1 , Štefan Kohek 1 , Ivana Kolingerová 2 , Andrej Nerat 1 ,
Niko Lukač 1 , Bogdan Lipuš 1 , Mitja Žalik 1 and David Podgorelec 1

1 Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46,
SI-2000 Maribor, Slovenia

2 Department of Computer Science and Engineering, University of West Bohemia, Technická 8,
306 14 Plzen̆, Czech Republic

* Correspondence: borut.zalik@um.si

Abstract: A new approach is proposed for lossless raster image compression employing interpolative
coding. A new multifunction prediction scheme is presented first. Then, interpolative coding, which
has not been applied frequently for image compression, is explained briefly. Its simplification is
introduced in regard to the original approach. It is determined that the JPEG LS predictor reduces the
information entropy slightly better than the multi-functional approach. Furthermore, the interpolative
coding was moderately more efficient than the most frequently used arithmetic coding. Finally, our
compression pipeline is compared against JPEG LS, JPEG 2000 in the lossless mode, and PNG using
24 standard grayscale benchmark images. JPEG LS turned out to be the most efficient, followed by
JPEG 2000, while our approach using simplified interpolative coding was moderately better than
PNG. The implementation of the proposed encoder is extremely simple and can be performed in less
than 60 lines of programming code for the coder and 60 lines for the decoder, which is demonstrated
in the given pseudocodes.

Keywords: computer science; algorithm; predictions; interpolative coding; PNG; JPEG LS; JPEG
2000 lossless

1. Introduction

Data compression is one of the oldest disciplines in computer science [1]. It is present
in many computer applications in a wide variety of domains, where it reduces traffic on
information channels and supports data archiving. Many data compression approaches
have been developed, and reviews of the most important ones can be found in several
books [2–6].

Data compression algorithms can be classified as lossless, near-lossless, or lossy. The
latter are domain-specific and consider the characteristics of humans’ senses for vision and
hearing [7]. Typically, transformations in the frequency domain [8–11] are used to identify
high-frequency components, which are quantized and eliminated permanently. Complete
reconstruction is impossible because of this. Other techniques include, domain-specific
triangulation [12] or color reductions [13,14]. Lossy methods cannot guarantee a distortion
rate below the chosen limit at the level of an individual element (e.g., a pixel), which is
why the near-lossless methods have been developed [15]. They enable users to specify
exactly to what extent the errors in the reconstructed data are acceptable. The lossless
methods [16] reconstruct the original data exactly. In some domains, they are indispensable,
such as compressing text, medical images, or high-quality sound, especially for editing
purposes, to prevent accumulation of compression errors through repetitive compression
and decompression.

This paper introduces a new approach for lossless compression of continuous-tone
raster images (photos). The suitability of interpolative coding for this type of image is
examined after experiments with prediction functions. The main contribution of this paper
can be summarized as follows:

Entropy 2023, 25, 533. https://doi.org/10.3390/e25030533 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25030533
https://doi.org/10.3390/e25030533
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4372-5020
https://orcid.org/0000-0003-4468-0290
https://orcid.org/0000-0002-6210-0889
https://orcid.org/0000-0003-4556-2771
https://orcid.org/0000-0003-1559-9776
https://orcid.org/0000-0002-9517-1157
https://orcid.org/0000-0001-6529-4263
https://orcid.org/0000-0003-0382-8391
https://orcid.org/0000-0002-0701-9201
https://doi.org/10.3390/e25030533
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25030533?type=check_update&version=1

Entropy 2023, 25, 533 2 of 15

• An evaluation of a new local pixel prediction model;
• A simplification of interpolative coding;
• Testing the suitability of interpolative coding for continuous-tone image compression;
• Comparison of the proposed data compression approach with PNG, JPEG LS, and

JPEG 2000 in lossless mode;
• A compact programming code.

This paper consists of five sections. Section 2 explains briefly the backgrounds of
JPEG LS, PNG, and JPEG 2000 in lossless mode. Section 3 introduces the proposed Few
Lines of Code raster Image Compressor (FLoCIC) method. The corresponding pseudocodes
are given in this Section. An evaluation of the method is given in Section 4. Section 5
concludes the paper.

2. Background

Let P = 〈px,y〉, 0 ≤ x < X, 0 ≤ y < Y be a t bit plane, continuous-tone grayscale
raster image (t > 1) with a resolution of X×Y pixels, where px,y ∈ [0, 1, · · · , 2t − 1]. The
lossless image compression methods follow the idea shown schematically in Figure 1.

prediction

modelling

error

correction

entropy

coding

sequence

of

bits

raw

image

data

Figure 1. Typical components of the lossless image compression pipeline.

P should be processed in a predefined order, commonly in the raster-scan way. The
value of the processed pixel px,y ∈ P is estimated first by the prediction function f (Lx,y),
which uses the values of some already-processed pixels, where Lx,y = {pi,j}, j < y or
j = y and i < x. Prediction models where L consists of just the neighboring pixels in the
close proximity of px,y will be considered local predictors.

The predicted value is then subtracted from the value of the processed pixel (see
Equation (1)), and a prediction error εx,y is obtained:

εx,y = px,y − f (Lx,y). (1)

Although the domain of εx,y ∈ [−2t + 1, 2t − 1] is larger than the domain of px,y ∈ P ,
its information entropy is expected to be smaller. Namely, the conventional distribution of
the εx,y values follows the geometric distribution [17], which offers a good opportunity for
information entropy reduction [4].

The prediction values can be corrected further in the second step of the compression
pipeline (see Figure 1) using context-based models [17–19]. Many methods, however, omit
this step and proceed directly with the encoding, where RLE, Huffman, arithmetic, or
dictionary-based encoding is used (or a combination of them) [16].

A very brief overview of JPEG LS and JPEG 2000 in lossless mode and PNG (the
formats used for the comparison in Section 4) is given in the continuation.

Joint Photographic Experts Group—Lossless (JPEG LS): After the success of the JPEG
standard, the same group of experts continued the work on lossless (and the near-lossless)
image compression. JPEG LS was published in 1999 (ISO/IEC 14495-1), and the extensions
followed four years later (ISO/IEC 14495-2) [20]. JPEG LS consists of a regular and RLE
mode. Only the regular mode is considered briefly for the purposes of this paper.

JPEG LS follows the ideas developed in LOCO-I [17] and includes all steps from
Figure 1. Lx,y contains three neighboring pixels as shown in Figure 2a (i.e., Lx,y = {px−1,y,
px−1,y−1, px,y−1}). The prediction function f (Lx,y) is shown in Equation (2).

Entropy 2023, 25, 533 3 of 15

px,y

px-1,y-1

px-1,y

px,y-1

px,y

px-1,y-1

px-1,y

px,y-1 px+1,y-1

(a) (b)

Figure 2. Pixels used in (a) JPEG LS prediction and (b) for context modeling.

fx,y =

min(px−1,y, px,y−1); when px−1,y−1 ≥ max(px−1,y, px,y−1)
max(px−1,y, px,y−1); when px−1,y−1 ≤ min(px−1,y, px,y−1)

px−1,y + px,y−1 − px−1,y−1; otherwise.
(2)

A mechanism for the prediction correction is used after εx,y is determined. For this,
three gradients for ∆i, where i ∈ {1, 2, 3}, are calculated using Equation (3) (see Figure 2b):

∆1 = px+1,y−1 − px,y−1

∆2 = px,y−1 − px−1,y−1

∆3 = px−1,y−1 − px−1,y

(3)

As the number of all possible combinations of the three gradient values for an image
with t = 8 is a huge 5113, it is brought down by a reduction function to a manageable
355 values, which represent the entry points into the context models. These models improve
adaptively during the image compression process and serve for correcting εx,y. Details can
be found in [5,17].

The corrected values εx,y are encoded with Golomb codes [21]. Golomb’s parameter
is also obtained from the context model. However, as this coding lacked efficiency, the
arithmetic coding was added to the standard in 2003. In this way, JPEG LS became the
best lossless compression standard which uses only the local predictors. Unfortunately,
its usage was limited due to patents. This is why the PNG standard has become the most
popular format for lossless raster image compression.

Portable Network Graphics (PNG): This was designed as a replacement for the GIF
format, which contained the patent-protected LZW [22] compression algorithm. The
development started as an open project of many individuals [23]. PNG was soon accepted
by the W3C consortium, which boosted its popularity. In 2004, it became an international
standard (ISO/IEC 15948).

PNG performs the prediction on the level of a raster scan line. It applies five predictors
(named filters), where Lx,y is defined as follows:

None: Lx,y = ∅;

Sub: Lx,y = {px−1,y};
Up: Lx,y = {px,y−1};

Average: Lx,y = {px,y−1, px−1,y};
Paeth: Lx,y = {px,y−1, px−1,y, px−1,y−1}.

The filter average calculates the average values of two pixels in Lx,y, while the Paeth
filter is determined by the algorithm given in [24]. The best predictor is then applied on
the whole line. PNG does not use any context-based corrections for εx,y. The open-source
algorithm Deflate [5] is used in the final step. It is based on the LZ77 algorithm [25], whose
tokens are then compressed by Huffman coding [26]. PNG is still the most popular lossless
image compression format.

Entropy 2023, 25, 533 4 of 15

JPEG 2000 in lossless mode: JPEG 2000 is another standard from the JPEG consortium
whose primary goal was to achieve excellent lossy compression with support for scala-
bility [27]. It is based on the wavelet transform. The Le Gall–Tabatabai wavelet [28] was
used for lossless compression as it operates with integer coefficients only. JPEG 2000 does
not perform any prediction nor any correction of the predicted error. Instead, it explores
the properties of the hierarchical wavelet transform to compress the obtained coefficients
efficiently with the specially designed arithmetic encoder, namely with MQ-coder [29].

There are, however, other prediction models. An overview of them can be found in a
very recent paper by Ulacha and Łazoryszczak [30].

3. Materials and Methods

The new prediction model, used later in experiments, is introduced first. An explana-
tion of interpolative encoding and its simplifications is given after that.

3.1. Multifunction Local Predictions

A new prediction mechanism was tried, although the prediction suggested in JPEG LS
(Equation (2)) has been proven to work well. Let us have a set of predictors
Fx,y = { fi(Lx,y)}, 0 ≤ i < I, where I is the number of functions fi and Lx,y is a set of
some already-seen neighboring pixels. Function MinF, given by Equation (4), returns the
index i of fi(Lx,y), which achieves the minimal prediction error:

MinF(Fx,y) = argmini{|px,y − fi(Lx,y)|} (4)

We supposed that if the ith predictor achieved the smallest |εx,y| for px,y, then most of
the time, the same predictor was also the best one for the neighboring pixel, (i.e., for the
next right px+1,y or for the next bottom pixel px,y+1).

Table 1 shows a set of the predictors used in our case, when Lx,y = {px−1,y, px−1,y−1,
px,y−1, px+1,y−1} and I = 12. The first pixel p0,0 cannot be predicted, while the function
f0 is applied only for the remaining pixels px,0 (i.e., for the pixels in the first row of P).
Similarly, the function f1 is used for pixels p0,y.

Table 1. Set of predictors F .

f0 = px−1,y f6 = b0.5 · (px−1,y−1 + px,y−1)c
f1 = px,y−1 f7 = b0.5 · (px,y−1 + px+1,y−1)c
f2 = px−1,y−1 f8 = b0.5 · (px−1,y + px+1,y−1)c
f3 = px+1,y−1 f9 = b0.5 · (px−1,y−1 + px+1,y−1)c
f4 = px−1,y + px,y−1 − px−1,y−1 f10 = px,y−1 + px−1,y−1 − px+1,y−1
f5 = b0.5 · (px−1,y + px−1,y−1)c f11 = px,y−1 + px−1,y−1 − px−1,y

3.2. Interpolative Coding

The idea of interpolative coding (IC), proposed by Moffat and Stuiver in 2000 [31],
differs drastically from other compression methods. For example, the statistically based
approaches, such as Huffman or arithmetic coding, assign a unique prefix code to each
symbol of the message [5]. Dictionary-based approaches (i.e., LZ family compression
algorithms) construct phrases from the messages and assign them unique tokens [6]. The
symbols from the input message are processed in the given sequence in both cases. On the
other hand, IC processes the input message in an arbitrary yet predefined way, where the
code of a particular symbol depends more on its position than on its value.

The message was, in our case, obtained from the prediction step of the compression
pipeline (see Figure 1); in other words, it is sequence is E = 〈εi〉, 0 ≤ i < n, εi ∈
{−2t + 1, 2t − 1}, where t is the bit plane depth (see Section 2). The raster scan traversal
transforms (x, y)→ i = y · X + x, and therefore n = X ·Y.

IC works in two steps: initialization and encoding.

Entropy 2023, 25, 533 5 of 15

Initialization: E is transformed first into a sequence of non-negative integers N = 〈ε+i 〉,
ε+i ∈ {0, 2t+1 − 1}, 0 ≤ i < n by Equation (5), which interleaves the input positive and
negative values:

ε+i =

εi; when i = 0,

2εi; when i > 0 and εi ≥ 0,
2|εi| − 1; when i > 0 and εi < 0.

(5)

N is then used to obtain a strictly increasing cumulative sequence C = 〈ci〉, 0 ≤ i < n
with Equation (6):

ci =

{
ε+0 ; when i = 0,

1 + ε+i + ci−1; when 0 < i < n.
(6)

Encoding: The original IC mechanism, as described in [31], is given first, and our
modification, which simplifies the encoding process, is explained after that. IC works
through a recursive dividing of C in half according to Equation (7), where L denotes the
low guard and H is the high guard of the considered part of C:

m =

⌊
L + H

2

⌋
(7)

Then, cm is encoded in three steps:

1. A range G = [gL, gH] of all possible values is determined first (see Equation (8)) by
taking into account that C is strictly monotone:

gL = cL + (m− L),

gH = cH − (H −m).
(8)

2. The number of bits g needed to encode all possible values from G is then calculated
with Equation (9):

g = dlog2(gH − gL + 1)e. (9)

3. Finally, the value v = cm − gL is encoded in binary with g bits and sent to the output
B = 〈bi〉, where bi ∈ {0, 1} and 0 ≤ i < |B| are bits and |B| is the total number of bits.

IC also has a special (i.e., the best) case, which may increase its efficiency drastically.
When H − L = cH − cL, IC does not need to send any bits at all to B. In particular, this
case is trivially detectable by a decoder. The interval between L and H is filled simply
by incrementing the value gL. A similar case was recognized in [32,33]. If H − L =
D · (cH − cL), where D is the maximal value of the domain, then the encoder also does not
emit any bits. However, this case is extremely rare in image compression after applying a
prediction. Therefore, it is not worth using it in this application.

The encoding in step 3 can be completed in different ways: classical binary codes,
truncated binary code [5], FELICS codes [34], and Ψ codes (in the case of a small alphabet),
as suggested in [32].

Simplifying the interpolative encoding process: IC, as described above and pro-
posed in [31], can be simplified further. Specifically, if the requirement of a strictly increasing
cumulative sequence of integers is released, then the whole procedure becomes simpler
as follows:

• C is obtained from N with Equation (10):

ci =

{
ε+0 ; when i = 0,

ε+i + ci−1; otherwise.
(10)

Entropy 2023, 25, 533 6 of 15

• Calculation of guards gL and gH is not needed, as the range containing the value cm is
simply G = [cL, cH].

• Detection of the optimal case is simplified to check whether cH = cL.

Finally, it should be noted that the simplified version does not shorten B. Indeed, the
original and simplified versions of IC generate the same stream of bits.

In [35] it was reported that IC can be a good alternative to arithmetic coding for
bi-level image compression. IC was also successful at chain code compression [32,33,36].
The characteristic of both domains is a small alphabet. However, to the best of our knowl-
edge, IC has not been used for compression of continuous-tone images, as is the case in
this application.

3.2.1. An Example

A short example is given to clarify the encoding process. Let us suppose that a
prediction model has a generated matrix A containing error values εx,y (see Figure 3). The
first element in the matrix represents the absolute pixel value which, of course, cannot be
predicted. A is then used to obtain E , shown in Figure 4a, with the raster scan traversal.
Applying Equation (5) yieldsN (see Figure 4b), from which C is obtained with Equation (10)
(see Figure 4c). The indices of all the sequences are shown at the top of Figure 4.

A =

23 −1 1 −3 2
0 0 0 0 0
0 4 −2 3 1
0 0 −4 0 1

Figure 3. Example: The matrix contains the values of ε after the prediction process.

i 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
(a) E = 〈23, −1, 1, −3, 2, 0, 0, 0, 0, 0, 0, 4, −2, 3, 1, 0, 0, −4, 0, 1〉
(b) N= 〈23, 1, 2, 5, 4, 0, 0, 0, 0, 0, 0, 8, 3, 6, 2, 0, 0, 7, 0, 2〉
(c) C = 〈23, 24, 26, 31, 35, 35, 35, 35, 35, 35, 35, 43, 46, 52, 54, 54, 54, 61, 61, 63〉

Figure 4. Example: (a) A sequence of prediction errors. (b) A sequence of interleaved values. (c) The
running sum sequence of cumulative integer values.

The simplified interpolative coding initializes L = 0 and H = 19. The interval
G = [cL = 23, cH = 63] is set, and m = 9 is calculated using Equation (7). The number
of bits g = dlog2(63− 23 + 1)e = 6 for encoding all possible values from G. The value
v is then calculated as v = cm − cL = 35− 23 = 12 and binary encoded with g = 6 bits.
The algorithm now proceeds recursively as demonstrated in Table 2, while the resulting
sequence B is given in Figure 5. Binary encoding was used in this example for v due to
clarity. Applying truncated binary codes or FELICS codes would yield a shorter B.

Entropy 2023, 25, 533 7 of 15

Table 2. An example of simplified interpolative coding.

L H m cm G = [cL, cH] 1 g v 2 Code

0 19 9 35 [23, 63] 6 12 001100
0 9 4 35 [23, 35] 4 12 1100
0 4 2 26 [23, 35] 4 3 0011
0 2 1 24 [23, 26] 2 1 01
4 9 / / [35, 35] / / / 3

9 19 14 54 [35, 63] 5 19 10011
9 14 11 43 [35, 54] 5 8 01000
9 11 10 35 [35, 43] 4 0 0000

11 14 12 46 [43, 54] 4 3 0011
12 14 13 52 [46, 54] 4 6 0110
14 19 16 54 [54, 63] 4 0 0000
14 16 / / [54, 54] / / / 3

16 19 17 61 [54, 63] 4 7 0111
17 19 18 61 [61, 63] 2 0 00

1 The calculation of the interval’s guards according to Equation (8) is not needed in the simplified version.
2 Remember that v = cm − cL. 3 As cL = cH , the coder does not output any bits.

B = 〈001100 1100 0011 01 10011 01000 0000 0011 0110 0000 0111 00〉
Figure 5. Example: Result of encoding.

Finally, the pseudocodes are given for FLoCIC: Algorithm 1 performs the initial-
ization, Algorithm 2 implements the JPEG LS prediction, and Algorithm 3 presents the
interpolative coder.

Algorithm 1 Lossless image compression with FLoCIC

1: function COMPRESSWITHFLOCIC(P , X, Y) . returns binary sequence B
2: . P : raw image; X, Y: image resolution
3: E ← Predict(P , X, Y)
4: n← X×Y
5: N0 ← E0
6: for i← 1, n− 1 do . turns εi ∈ E to non-negative values
7: if εi ≥ 0 then
8: Ni ← 2× εi
9: else

10: Ni ← 2× abs(εi)− 1
11: end if
12: end for
13: C0 ← N0
14: for i← 1, n− 1 do . forms the cumulative sequence
15: Ci ← Ci−1 +Ni
16: end for
17: B ← SetHeader(X, c0, cn−1, n)
18: B ← IC(B, C, 0, n− 1) . call simplified interpolative coding
19: return B
20: end function

Entropy 2023, 25, 533 8 of 15

Algorithm 2 JPEG LS prediction

1: function PREDICT(P , X, Y) . return a sequence of predicted values
2: for x ← 0, X− 1 do . P : raw image; X, Y: image resolution
3: for y← 0, Y− 1 do
4: if x = 0 and y = 0 then . first element is not predicted
5: Ey∗X+x ← p0,0
6: else if y = 0 then . first row
7: Ey∗X+x ← px−1,0 − px,0
8: else if x = 0 then . left column
9: Ey∗X+x ← p0,y−1 − p0,y

10: else if px−1,y−1 ≥ max(px−1,y, px,y−1) then . for all remaining rows
11: Ey∗X+x ←min(px−1,y, px,y−1)− px,y
12: else if px−1,y−1 ≤ max(px−1,y, px,y−1)− px,y then
13: Ey∗X+x ←max(px−1,y, px,y−1)− px,y
14: else
15: Ey∗X+x ← px−1,y + px,y−1 − px−1,y−1 − px,y
16: end if
17: end for
18: end for
19: return E
20: end function

Algorithm 3 Simplified interpolative coding

1: function IC(B, C, L, H) . B: sequence of bits; C: cumulative sequence; L, H: guards
2: if H − L > 1 then
3: if cH 6= cL then
4: m← b0.5× (H + L)c . position of the coded element
5: g← dlog2(cH − cL + 1)e . number of needed bits
6: B ← Encode(B, g, cm − cL) . insert ordinary, truncated, or FELICS codes
7: if L < m then
8: IC(B, C, L, m)
9: end if

10: if m < R then
11: IC(B, C, m, R)
12: end if
13: end if
14: end if
15: end function

3.2.2. Decoding

The decoder needs the following data to restore C:

• The values of the first c0 and the last element cn−1;
• The length n;
• The sequence of bits B.

The first three items form the header, while B is stored after it. In our case, 8 bits
were reserved for c0, while for cn−1 and n, 32 bits were allocated (i.e., the header occupied
72 bits in total). The content of the header for the example from Ssection 3.2.1 is in Figure 6
and given in decimals. When coding raster images, its resolution in the X direction should
be added to the header, as Y can be obtained by Y = n/X.

Entropy 2023, 25, 533 9 of 15

8 32 32

20 001100..

Header Bits

...01110023 63

Figure 6. Example: Storing the results of interpolative coding.

Decoding starts with reading the header, allocating the n = 20 memory units for
sequence C, and initializing c0 = 23 and cn−1 = 63 (see Figure 7a). The decoder sets L = 0
and H = n− 1 = 19. As c0 6= c19, m = 9 is calculated with Equation (7). The number of
bits g, which were used for encoding c9, is then calculated as g = dlog2(63− 23 + 1)e = 6.
Therefore, the first 6 bits are read from B (i.e., bits 001100, corresponding to v = 12).
Finally, cL + v reconstructs 35, which is written at c9 (see Figure 7b). The decoder now
operates recursively, mirroring the coding process. If cL = cH , then the decoder sets ci = cL,
L < i < H and does not read any bit from B. Algorithm 4 shows the FLoCIC decoder,
while Algorithms 5 and 6 contain the inverse simplified interpolative decoder and the
inverse JPEG LS predictor, respectively. From all the pseudocodes, it is evident that the
FLoCIC’s coder and decoder were completely symmetrical. FLoCIC’s programming code
is accessible in [37].

i 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
(a) C = 〈23, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, 63〉
(b) C = 〈23, _, _, _, _, _, _, _, _, 35, _, _, _, _, _, _, _, _, _, 63〉

Figure 7. Example of decoding. (a) Situation after initialization. (b) Decoded element at m = 9.

Algorithm 4 Image decompression with FLoCIC

1: function DECOMPRESSWITHFLOCIC(B) . B: sequence of bits
2: . Function returns reconstructed raw image P
3: DecodeHeader(B, X, n, c0, cn−1)
4: Y ← n/X
5: C ← InitialiseC(n, c0, cn−1) . Create C with n elements and set C0 and Cn−1
6: C ← DeIC(B, C, 0, n− 1) . Reconstruct remaining elements of C
7: N0 ← C0
8: for i← 1, n− 1 do . Calculate non-cumulative sequence N
9: Ni ← Ci − Ci−1

10: end for
11: E0 ← N0
12: for i← 1, n− 1 do . Unwrap the values to get the errors in the prediction
13: if Even(Ni) then
14: Ei ← Ni/2
15: else
16: Ei ← −(Ni + 1)/2
17: end if
18: end for
19: P = PredictInverse(E , X, Y)
20: return P
21: end function

Entropy 2023, 25, 533 10 of 15

Algorithm 5 Simplified interpolative decoding

1: function DEIC(B, C, L, H) . B: sequence of bits to be decoded
2: . C: sequence to be reconstructed after all recursive calls are executed
3: . L, H : guards
4: if cL = cH then . cheching for the special case
5: for i← L + 1, H − 1 do
6: Ci ← cL
7: end for
8: else
9: m← b0.5× (H + L)c . position of the element to be decoded

10: g← dlog2(cH − cL + 1)e . get number of bits
11: B← GetBits(B, g) . read g bits from B
12: Cm ← Decode(B) . Decode ordirani, trunacated, or FELICS binary code
13: if L < m then . proceed recursively with the reconstruction of C
14: DeIC(B, C, L, m)
15: end if
16: if m < H then
17: DeIC(B, C, m, H)
18: end if
19: end if
20: end function

Algorithm 6 Inverted JPEG LS predictor

1: function PREDICTINVERSE(E , X, Y) . return reconstructed raw image data in P
2: for x ← 0, X− 1 do . E : sequence of prediction errors; X, Y: image resolution
3: for y← 0, Y− 1 do
4: if x = 0 and y = 0 then . first element is not predicted
5: p0,0 ← E0
6: else if y = 0 then . first row
7: px,0 ← px−1,0 + Ey∗X+x
8: else if x = 0 then . left column
9: p0,y ← p0,y−1 + Ey∗X+x

10: else if px−1,y−1 ≥ max(px−1,y, px,y−1) then . for all remaining rows
11: px,y ←min(px−1,y, px,y−1) + Ey∗X+x
12: else if px−1,y−1 ≤ max(px−1,y, px,y−1) then
13: px,y ←max(px−1,y, px,y−1) + Ey∗X+x
14: else
15: px,y ← px−1,y + px,y−1 − px−1,y−1 + Ey∗X+x
16: end if
17: end for
18: end for
19: return P
20: end function

4. Experiments

Twenty-four popular benchmark grayscale images with t = 8 were used in the experi-
ments (see Figure 8). Table 3 introduces in the first three columns the information about
these images, including their resolutions, raw sizes in bytes, and the values of the raw
data information entropy (Hraw) [4]. The remaining three columns show the effect of the
information entropy reduction after applying three different predictors: the first two are
the multifunction predictors (see Section 3.1), (HNR is the information entropy when the
next right pixel is predicted, and HNB stands for the next bottom pixel.) while HJPEGLS is
the predictor used in JPEG LS (see Equation (2)). The last column contains the average
absolute prediction error E obtained when the JPEG LS predictor was used. Although the
differences between the obtained information entropies were small, it can be concluded

Entropy 2023, 25, 533 11 of 15

that the JPEG LS predictor is better. Indeed, in all cases except for the Peppers image, it
reduced the information entropy the best. The JPEG LS predictor was therefore used in
the continuation.

Baboon Balloon Barbara Barb2

Board Boats Cameraman Flower

Fruits Girl Gold Hotel

Lena Malamute Man Monarch

Mushrooms Parrots Pens Peppers

Rainier Sun Yachts Zelda

Figure 8. Testing raster images.

Entropy 2023, 25, 533 12 of 15

Table 3. Information about the images’ resolutions and raw sizes in bytes, entropy of the raw images,
entropies for three prediction models, and average absolute prediction errors for JPEG LS predictor.

Image Resolution Raw Size Hraw
1 HNR

2 HNB
3 HJPEGLS

4 E

Baboon 512× 512 262,144 7.357 6.499 6.414 6.275 14.342
Balloon 720× 576 414,720 7.346 3.282 3.204 3.120 1.608
Barbara 512× 512 262,144 7.343 5.794 5.890 5.758 12.031
Barb2 720× 576 414,720 7.484 5.490 5.238 5.181 6.895
Board 720× 576 414,720 6.828 4.073 4.013 3.947 2.927
Boats 720× 576 414,720 7.088 4.527 4.394 4.307 3.707
Cameraman 256× 256 65,536 6.904 5.200 5.273 5.150 8.214
Flower 512× 480 245,760 7.410 3.881 3.889 3.866 2.755
Fruits 512× 480 245,760 7.366 4.173 4.170 4.014 3.062
Girl 720× 576 414,720 7.288 4.354 4.153 4.207 3.391
Gold 720× 576 414,720 7.530 4.959 4.951 4.716 4.716
Hotel 720× 576 414,720 7.546 4.861 4.854 4.732 4.987
Lena 512× 512 262,144 7.348 4.374 4.467 4.342 3.849
Malamute 1616× 1080 1,745,280 7.792 4.783 4.714 4.620 4.711
Man 1024× 1024 1,048,576 7.524 5.058 5.084 4.936 5.711
Monarch 768× 512 393,216 7.18 4.143 4.1442 4.095 3.887
Mushrooms 321× 481 154,401 7.585 5.129 5.161 5.067 8.078
Parrots 768× 512 393,216 7.256 3.945 3.988 3.828 2.884
Pens 512× 480 245,760 7.482 4.368 4.268 4.188 3.393
Peppers 512× 512 262,144 7.594 4.828 4.859 4.942 5.747
Rainier 1920× 1080 2,073,600 7.088 4.499 4.466 4.298 7.699
Sun 2100× 2034 4,271,400 6.950 3.295 3.577 2.736 1.274
Yachts 512× 480 245,760 7.560 4.369 4.302 4.148 3.423
Zelda 720× 576 414,720 7.334 4.265 4.127 4.112 3.226

Average 4.646 4.666 4.516
1 Information entropy of the raw data. 2 Information entropy obtained by the multifunction local predictor
(next-right). 3 Information entropy gained by the multifunction local predictor (next-bottom). 4 Information
entropy achieved by the JPEG LS predictor.

FLoCIC was compared against JPEG LS, JPEG 2000 in lossless mode, and PNG. The
results are given in Table 4. The JPEG LS images were generated by IrfanView’s JPEG LS
plug-in [38], while the JPEG 2000 in lossless mode and PNG images were obtained by
ImageMagick [39]. FLoCIC was, of course, coded by ourselves. Our implementation of the
arithmetic coding (AC) based on the E1, E2 and E3 transforms [40] was used to confront it
with IC.

JPEG LS performed the best, and JPEG 2000 in lossless mode was second. FLoCIC
outperformed PNG slightly, either when IC or AC was used in the final step. Surprisingly,
IC combined with the FELICS codes [34] turned out to be moderately better than AC on
average. However, it should be stressed that the most basic implementation of AC was
used. For example, context-based adaptive binary arithmetic coding [41] would yield
better results.

As can be seen, FLoCIC worked successfully with images of different resolutions. Just
for the reader’s information, the largest image, Sun, was compressed in 0.793 s, while the
more than 64 times smaller image, Cameraman, was compressed in 0.018 s on a very modest
computer: an Intel i5-2500K processor with 3.3 GHz with 16 GB of RAM running Windows
10. FLoCIC was implemented in C++ and compiled with Visual Studio 19. Decompression
was approximately 15% faster, as decoding the FELICS codes was faster than encoding
them.

Entropy 2023, 25, 533 13 of 15

Table 4. Compression achieved with different methods.

Image JPEG LS JPEG 2000 PNG FLoCIC-IC FLoCIC-AC
Size 1 bpp Size 1 bpp Size 1 bpp Size 1 bpp Size 1 bpp

Baboon 196,391 5.99 200,243 6.11 203,848 6.22 206,403 6.30 206,500 6.30
Balloon 149,322 2.88 157,296 3.03 177,426 3.42 170,141 3.28 162,094 3.13
Barbara 165,590 5.05 168,083 5.13 186,008 5.68 178,745 5.46 189,943 5.80
Barb2 241,027 4.65 248,400 4.79 266,756 5.15 265,877 5.13 269,352 5.20
Board 188,814 4.65 195,656 4.79 208,722 5.15 213,550 5.13 205,134 5.20
Boats 202,388 3.90 210,879 4.07 224,294 4.33 226,595 4.37 223,740 4.32
Cam. 38,137 4.66 40,850 4.99 42,403 5.18 41,142 5.02 43,310 5.29
Flower 106,946 3.48 108,459 3.53 124,291 4.05 120,787 3.93 119,130 3.88
Fruits 113,000 3.68 114,440 3.73 129,596 4.22 123,800 4.03 123,770 4.03
Girl 201,917 3.90 210,696 4.06 224,736 4.34 226,619 4.37 218,513 4.22
Gold 230,562 4.45 238,785 4.61 243,019 4.69 249,535 4.81 245,006 4.73
Hotel 225,316 4.35 237,861 4.59 248,916 4.80 248,076 4.79 246,013 4.75
Lena 130,704 4.00 134,417 4.10 145,634 4.44 143,259 4.37 142,789 4.36
Malamut 2,234,680 4.14 2,225,757 4.06 2,394,883 4.65 2,467,192 4.43 2,295,195 4.62
Man 611,909 4.67 632,163 4.82 650,599 4.96 658,921 5.03 649,298 4.95
Monarch 180,141 3.67 187,507 3.82 208,813 4.25 202,592 4.12 202,121 4.11
Mush. 84,815 4.40 87,818 4.55 98,581 5.11 91,161 4.72 98,716 5.12
Parrots 170,184 3.46 172,913 3.52 193,340 3.93 190,019 3.87 188,968 3.85
Pens 119,155 3.88 121,308 3.95 133,358 4.34 130,957 4.26 129,120 4.20
Peppers 146,630 4.48 151,739 4.63 160,465 4.90 166,822 5.01 162,562 4.96
Rainier 878,701 3.39 891,800 3.44 933,263 3.60 890,090 3.43 1,115,931 4.30
Sun 1,336,035 2.50 1,727,103 3.24 1,595,790 2.99 1,499,305 2.81 1,463,057 2.74
Yachts 115,183 3.75 120,225 3.91 132,198 4.30 126,798 4.13 127,960 4.17
Zelda 200,142 3.86 201,273 3.88 214,799 4.14 226,216 4.36 213,569 4.12

Average 4.03 4.18 4.49 4.43 4.46
1 Size is given in bytes.

At this point, it should be stressed that none of these methods are competitive with
the modern lossless image compression approaches, such as JPEG XL [42] or WebP [43] in
lossless mode. They do not perform a local prediction but instead investigate larger areas
of pixels.

5. Discussion

This paper introduces a new, very simple algorithm for lossless image compression
named few lines of code raster image compression (FLoCIC). Indeed, as shown in the given
pseudocode, less than 60 lines of programming code are needed for it. The code is, however,
even shorter when coded in, for example, C++. The compression pipeline is classical,
consisting of only two parts: the prediction (the JPEG LS predictor turned out to be the
most successful) and the entropy encoder. Interpolative coding, a technique developed by
Moffat and Stuiver [31], is less known and has not been used in image compression, except
for bi-level images [32,33,35]. It turned out to be as good as the widely used arithmetic
coding for images with continuous tones as well. In this paper, we simplified interpolative
coding, leading to further shortening of the programming code.

Twenty-four classical benchmark 8 bit grayscale images were used to evaluate the
effectiveness of FLoCIC. They had different resolutions, ranging from 256× 256 up to
2100× 2034 pixels. Concerning the compression ratio achieved, FLoCIC can cope with
PNG, the most widely used lossless image compression standard. In the given set of
testing images, FLoCIC turned to actually be slightly better and moderately worse than
JPEG 2000. JPEG LS was, however, better by almost 10 %. It is the only one of the considered
approaches that incorporates the correction of prediction errors. Despite being efficient,
JPEG LS is rarely found in practice. It should be noted, however, that none of the mentioned
approaches are competitive according to the compression ratio with the state-of-the-art

Entropy 2023, 25, 533 14 of 15

JPEG XL or WebP. However, they do not use the simple and fast local prediction techniques
and instead employ the wider pixel’s surroundings.

FLoCIC is an interesting alternative to PNG. It is extremely easy to implement, and
as such, it could be applied in an environment with modest computational power, such
as in embedded systems [44]. It is also suitable for programming training for students of
computer science, similar to, for example, Delaunay triangulation [45,46].

Author Contributions: Conceptualization, B.Ž.; methodology, D.S. and N.L.; software, B.Ž. and
M.Ž.; validation, I.K. and A.N.; formal analysis, D.P. and I.K.; investigation, B.Ž., D.P., I.K. and A.N.;
resources, I.K.; data curation, Š.K.; writing—original draft preparation, B.Ž.; writing—review and
editing, D.S., I.K., Š.K., N.L., B.L. and M.Ž.; visualization, A.N. and B.L.; supervision, I.K. and B.Ž.;
project administration, I.K. and D.P.; funding acquisition, I.K. and B.Ž. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Slovene Research Agency under Research Project J2-
4458 and Research Programme P2-0041 and the Czech Science Foundation under Research Project
23-04622L.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shannon, C.E. A Mathematical Theory of Communication. AT&T Tech. J. 1948, 27, 379–423.
2. Nelson, M.; Gailly, J.-L. The Data Compression Book, 2nd ed.; M&T Books: New York, NY, USA, 1991.
3. Moffat, A.; Turpin, A. Compression and Coding Algorithms; Kluwer Academic: New York, NY, USA, 2002.
4. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006.
5. Salomon, D.; Motta, G. Handbook of Data Compression, 5th ed.; Springer: London, UK, 2010.
6. Sayood, K. Introduction to Data Compression, 4th ed.; Morgan Kaufman: Waltham, MA, USA; Elsevier: Waltham, MA, USA, 2012.
7. Richardson, I.E.G. H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia; Wiley: Chichester, UK, 2003.
8. Rao, K.R.; Yip, P. Discrete Cosine Transform; Academic Press: Boston, MA, USA, 1990.
9. Sridhar, S.; Kumar, P.R.; Ramanalah, K.V. Wavelet Transform Techniques for Image Compression—An Evaluation. Int. J. Image

Graph Sig Process. 2014, 6, 54–67. [CrossRef]
10. Starosolski, R. Hybrid Adaptive Lossless Image Compression Based on Discrete Wavelet Transform. Entropy 2020, 22, 751.

[CrossRef]
11. Qin, Q.; Liang, Z.; Liu, S.; Wang, X.; Zhou, C. A Dual-Domain Image Encryption Algorithm Based on Hyperchaos and Dynamic

Wavelet Decomposition. IEEE Access 2022, 10, 122726–122744. [CrossRef]
12. Demaret, L.; Dyn, N.; Iske, A. Image compression by linear splines over adaptive triangulations. Signal Process 2020, 22, 1604–1616.

[CrossRef]
13. Papamarkos, N.; Atsalakis, A.E. ; Strouthopoulos, C.P. Adaptive color reduction. IEEE Trans. Syst. Man Cybern. 2002, 32, 44–56.

[CrossRef] [PubMed]
14. Jeromel, A.; Žalik, B. An efficient lossy cartoon image compression method. Multimed. Tools Appl. 2020, 79, 433–451. [CrossRef]
15. Ansari, R.; Momon, N.; Ceran, E. Near-lossless image compression techniques. J. Electron. Imaging 1998, 7, 486–494.
16. Rahman, M.A.; Hamada, M. Lossless Image Compression Techniques: A State-of-the-Art Survey. Symmetry 2019, 11, 1274.

[CrossRef]
17. Weinberger, M. J.; Seroussi, G.; Sapiro, G. The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization

into JPEG-LS. IEEE T Image Process 2000, 9, 1309–1324. [CrossRef]
18. Xiaolin, W.; Memon, N. Context-based lossless interband compression-extending CALIC. IEEE Trans. Image Process 2000, 9,

994–1001. [CrossRef] [PubMed]
19. Žalik, B.; Mongus, D.; Lukač, N. Can burrows-Wheeler transform be replaced in chain code compression? Inf. Sci. 2020, 525,

109–118. [CrossRef]
20. Overview of JPEG LS. Available online: https://jpeg.org/jpegls/index.html (accessed on 23 January 2023).
21. Golomb, S. W. Run–length encodings. IEEE Trans. Inform. Theory 1966, 12, 399–401. [CrossRef]
22. Welch, T. A Technique for High-Performance Data Compression. Computer 1984, 17, 8–19. [CrossRef]
23. PortableNetwork Graphics. Available online: http://www.libpng.org/pub/png/ (accessed on 23 January 2023).
24. Paeth, A.W. Image File Compression Made Easy; Graphics Gems 2; James, A., Ed.; Academic Press: San Diego, CA, USA, 1991;

pp. 93–100.

http://doi.org/10.5815/ijigsp.2014.02.07
http://dx.doi.org/10.3390/e22070751
http://dx.doi.org/10.1109/ACCESS.2022.3212145
http://dx.doi.org/10.1016/j.sigpro.2005.09.003
http://dx.doi.org/10.1109/3477.979959
http://www.ncbi.nlm.nih.gov/pubmed/18238103
http://dx.doi.org/10.1007/s11042-019-08126-7
http://dx.doi.org/10.3390/sym11101274
http://dx.doi.org/10.1109/83.855427
http://dx.doi.org/10.1109/83.846242
http://www.ncbi.nlm.nih.gov/pubmed/18255470
http://dx.doi.org/10.1016/j.ins.2020.03.073
https://jpeg.org/jpegls/index.html
http://dx.doi.org/10.1109/TIT.1966.1053907
http://dx.doi.org/10.1109/MC.1984.1659158
http://www.libpng.org/pub/png/

Entropy 2023, 25, 533 15 of 15

25. Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23, 337–343. [CrossRef]
26. Huffman, D.A. A Method for the Construction of Minimum-Redundancy Codes. Proc. IRE 1952, 40, 1098–1101. [CrossRef]
27. Taubman, D.; Marcellin, M.W. JPEG2000: Image Compression Fundamentals Standards and Practice; Kluwer: Boston, MA, USA, 2002.
28. Le Gall, D.; Tabatabai, A.J. Sub-band coding of digital images using symmetric short kernel filters and arithmetic coding

techniques. In Proceedings of the ICASSP-88: International Conference on Acoustics, Speech, and Signal Processing, New York,
NY, USA, 11–14 April 1988; IEEE Press: Piscataway, NJ, USA, 1988; pp. 761–764.

29. Ko, H.-H. Enhanced Binary MQ Arithmetic Coder with Look-Up Table. Information 2021, 12, 143.
[CrossRef]

30. Ulacha, G.; Łazoryszczak, M. Lossless Image Coding Using Non-MMSE Algorithms to Calculate Linear Prediction Coefficients.
Entropy 2023, 25, 156. [CrossRef]

31. Moffat, A.; Stuiver, L. Binary interpolative coding for effective index compression. Inf. Retr. 2000, 3, 25–47. [CrossRef]
32. Žalik, B.; Mongus, D.; Lukač, N.; Rizman Žalik, K. Efficient chain code compression with interpolative coding. Inf. Sci. 2018, 439,

39–49. [CrossRef]
33. Žalik, B.; Rizman Žalik, K.; Zupančič, E.; Lukač, N.; Žalik, M.; Mongus, D. Chain code compression with modified interpolative

coding. Comput. Electr. Eng. 2019, 77, 27–36. [CrossRef]
34. Howard, P. G.; Vitter, J. Fast and efficient lossless image compression. In Proceedings of the DC’93: Data Compression Conference,

Snowbird, UT, USA, 30 March–2 April 1993; IEEE Computer Society: New York, NY, USA, 1993; pp. 208–215.
35. Niemi, A.; Teuhola, J. Interpolative coding as an alternative to arithmetic coding in bi-level image compression. In Proceedings of

the SCC 2015—10th International ITG Conference on Systems, Communications and Coding, Hamburg, Germany, 2–5 May 2015;
IEEE: New York, NY, USA, 2015; pp. 1–6.

36. Strnad, D.; Kohek, Š.; Nerat, A.; Žalik, B. Efficient representation of geometric tree models with level-of-detail using compressed
3D chain code. IEEE Trans. Vis. Comput. Graph. 2020, 26, 3177–3188.
[CrossRef] [PubMed]

37. FLoCIC. Available online: https://github.com/mitzal/FLoCIC (accessed on 14 March 2023).
38. IrfanView. Available online: https://www.irfanview.com/ (accessed on 23 January 2023).
39. ImageMagick. Available online: https://imagemagick.org/ (accessed on 23 January 2023).
40. Bodden, E.; Clasen, M.; Kneis, J. Arithmetic Coding Revealed; Sable Technical Report No. 2007-5; McGill University: Montreal, QC,

Canada, 2007.
41. Marpe, D.; Scwarz, H.; Wiegand, T. Context-Based Adaptive Binary Arithmetic Coding in the H.264/AVC Video Compression

Standard. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 620–636. [CrossRef]
42. Overview of JPEG XL. Available online: https://jpeg.org/jpegxl/ (accessed on 23 January 2023).
43. An Image Format for Web. Available online: https://developers.google.com/speed/webp/ (accessed on 23 January 2023).
44. Globačnik, T.; Žalik, B. An efficient raster font compression for embedded systems. Pattern Recogn. 2010, 43, 4137–4147. [CrossRef]
45. Špelič, D.; Novak, F.; Žalik, B. Educational support for computational geometry course—The Delaunay triangulation tester. Int. J.

Elec. Eng. Educ. 2009, 25, 93–101.
46. Krivograd, S.; Žalik, B.; Novak, F. TriMeDeC tool for preparing visual teaching materials based on triangular networks. Comput.

Appl. Eng. Educ. 2002, 10, 144–154. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.3390/info12040143
http://dx.doi.org/10.3390/e25010156
http://dx.doi.org/10.1023/A:1013002601898
http://dx.doi.org/10.1016/j.ins.2018.01.045
http://dx.doi.org/10.1016/j.compeleceng.2019.05.001
http://dx.doi.org/10.1109/TVCG.2019.2924430
http://www.ncbi.nlm.nih.gov/pubmed/31247555
https://github.com/mitzal/FLoCIC
https://www.irfanview.com/
https://imagemagick.org/
http://dx.doi.org/10.1109/TCSVT.2003.815173
https://jpeg.org/jpegxl/
https://developers.google.com/speed/webp/
http://dx.doi.org/10.1016/j.patcog.2010.07.018
http://dx.doi.org/10.1002/cae.10031

	Introduction
	Background
	Materials and Methods
	Multifunction Local Predictions
	Interpolative Coding
	An Example
	Decoding

	Experiments
	Discussion
	References

