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Abstract. In this note, we present a multi-dimensional flocking model rigorously

derived from a vector oscillatory chain model and study the connection between the

Cucker-Smale flocking model and the Kuramoto synchronization model appearing in the

statistical mechanics of nonlinear oscillators. We provide an alternative direct approach

for frequency synchronization to the Kuramoto model as an application of the flocking

estimate for the Cucker-Smale model.

1. Introduction. The purpose of this paper is to unify some popular notions in the

flocking and synchronization of dynamical systems. In particular, we first consider a

theme already addressed by Ha and Slemrod [9]: the relation of two, usually separately

studied, flocking models, i.e. the Cucker-Smale system [4, 5, 12] and the oscillator chain

system [6] pioneered by Erdmann et al. Both systems are known to exhibit flocking

behavior, but until the paper [9] the two models had not been linked. In the original

[9] paper only a simple scalar version was presented, so we use this paper to present

the general vector case where the flock propagates in d-dimensional Euclidean space. Of
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course, the value of such an approach is that it both unifies the theories and provides

a rigorous proof of the flocking phenomena for both Cucker-Smale and the oscillator

chain. As a second application of the flocking estimates, we show that the well-known

Kuramoto synchronization model [10] also falls within our theory and hence a rigorous

“flocking” theorem is immediately derivable.

The paper is divided into two sections after this Introduction. Section 2 is devoted

to the oscillator chain and the application of Tikhonov’s theorem to recover the Cucker-

Smale system. Flocking is then proved for the Cucker-Smale system. Section 3 recalls

Kuramoto’s synchronization model [10] and again derives a rigorous proof of flocking.

2. From mechanical model to flocking model. In this section, we present a new

particle model which reveals the flocking phenomena and can be rigorously derived from

a singularly perturbed mechanical system. This is a multi-dimensional analogue of the

attempt given in [9].

2.1. Formal derivation. Consider a simple mechanical model of mobile agents with a

steep attracting force and a friction coefficient (ε > 0) moving in physical space R
d:

dxi

dt
= vi, (2.1a)

ε
dvi
dt

=
λ

N

N∑

j=1

∇xϕ(xj − xi)− vi, (2.1b)

where λ is the nonnegative coupling constant, and the mobile agents are represented by

point particles with the same mass ε, which will set the time scale for the flocking to

occur. Damping is needed as a self-organizing mechanism to remove energy from the

configuration, a role which may be played by bird wings in flight. The force potential

ϕ is assumed to be isotropic and only dependent on the distance between two mobile

agents: with abuse of notation, we set

ϕ(x) := ϕ(|x|).

Then the equation (2.1b) can be written as

ε
dvi
dt

=
λ

N

N∑

j=1

ϕ′(|xj − xi|)
xj − xi

|xj − xi|
− vi. (2.2)

We now take a time derivative of (2.2) to find the singularly perturbed second-order

ODE system:

ε
d2vi
dt2

=
λ

N

N∑

j=1

[ϕ′(rij)

rij
(vj − vi) +

(ϕ′′(rij)

r2ij
− ϕ′(rij)

r3ij

)
((xj − xi) · (vj − vi))(xj − xi)

]

− dvi
dt

,

(2.3)
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where rij = |xj − xi|. In the formal zero mass limit ε → 0, the combined systems (2.1a)

and (2.3) become

dxi

dt
= vi,

dvi
dt

=
λ

N

N∑

j=1

[ϕ′(rij)

rij
(vj − vi) +

(ϕ′′(rij)

r2ij
− ϕ′(rij)

r3ij

)
((xj − xi) · (vj − vi))(xj − xi)

]

:=
λ

N

N∑

j=1

[
ψ1(rij)(vj − vi) + ψ2(rij)((xj − xi) · (vj − vi))(xj − xi)

]
.

(2.4)

Note that for a simple choice of ϕ(x) = |x|2
2 (which corresponds to the potential in the

harmonic oscillator problem with a unit spring constant), the coefficients in the second

equation of (2.4) become

ψ1 = 1, ψ2 = 0;

hence we can recover the Cucker-Smale system with all-to-all communication rate. The

new component in the system (2.4),

ψ2(rij)((xj − xi) · (vj − vi))(xj − xi),

seems to be related with the rotational motion of the flocking group. On the other hand,

in the one-dimensional case d = 1, the two terms in the R.H.S. of the second equation of

(2.4) can be combined to result in the corresponding term in the Cucker-Smale system,

i.e.,

λ

N

N∑

j=1

[
ψ1(rij)(vj − vi) + ψ2(rij)((xj − xi) · (vj − vi))(xj − xi)

]

=
λ

N

N∑

j=1

(
ψ1(rij) + ψ2(rij)r

2
ij

)
(vj − vi).

This is why we do not see this new component in Ha and Slemrod’s one-dimensional

analysis in [9].

We next look for an admissible class of potentials ϕ which guarantees the nonnegativity

of the coefficients ψ1 and ψ2, i.e.,

ψ1(r) =
ϕ′(r)

r
≥ 0, ψ2(r) =

1

r

(ϕ′(r)

r

)′
≥ 0. (2.5)

By the direct observation of (2.5), we classify a potential ϕ:

ϕ(r) :=

∫ r

0

sψ1(s)ds,

where ψ1 satisfies

(i) ψ1 > 0, ψ′
1 > 0,

(ii) lim
r→0+

ψ1(r) = R1 > 0.
(2.6)
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The second condition (ii) in (2.6) is imposed for the strict dissipativity of the total energy

(see Lemma 2.1 and Theorem 2.3). Note that once ψ1 is determined in the above process,

then the communication rate ψ2 is determined by the relation

ψ2(r) =
1

r
ψ′
1(r).

On the other hand, the admissible conditions (2.6) can be expressed in terms of the

potential ϕ:

ϕ′ > 0, ϕ′′ ≥ ϕ′

r
,

ϕ′

r
→ R1 as r → 0+. (2.7)

It is easy to see that the conditions (2.6) and (2.7) are equivalent to each other. Below,

we present two admissible cases:

Examples. (i) Consider

ψ1(r) = e−
1

1+r .

Then it is easy to see that this special choice satisfies the condition (2.6).

(ii) Consider

ϕ(r) = r2 + r4.

Again, this potential satisfies (2.7).

2.2. Rigorous justification. In this section, we provide a rigorous justification for the

passage from the singularly perturbed system (2.1a) and (2.3) to the system (2.4) as a

direct application of Tikhonov’s theorem.

We first rewrite the particle system (2.1a) and (2.3) as a first-order system:

dxi

dt
= vi, 1 ≤ i ≤ N, (2.8a)

dvi
dt

= zi, (2.8b)

ε
dzi
dt

=
λ

N

N∑

j=1

(
ψ1(rij)(vj − vi) + ψ2(rij)((xj − xi) · (vj − vi))(xj − xi)

)
− zi. (2.8c)

For the reader’s convenience, we recall the classical theorem on the singular perturbation

limit due to A. N. Tikhonov.

Consider the slow–fast dynamical system:

dyi
dt

= fi(y, z, t), i = 1, . . . , n,

μj
dzj
dt

= Fj(y, z, t), j = 1, . . . ,m,

(2.9)

where y = (y1, . . . , yn), z = (z1, . . . , zm), and μj are small positive parameters depending

on a parameter μ in such a way that

lim
μ→0

μj(μ) = 0, lim
μ→0

μj+1

μj
= 0 or 1.

Theorem 2.1 (Tikhonov [13]). Suppose the following conditions hold.
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(1) The degenerate systems obtained by setting all μj = 0,

dyi
dt

= fi(y, z, t), Fj(y, z, t) = 0,

have continuous solutions.

(2) The roots zj = ψj(y, t) of Fj(y, z, t) = 0 have continuous first partial derivatives

and are stable; i.e., the expression
∑

j(zj − ψj(y, t))Fj(y, z, t) is negative in a

suitable deleted neighborhood N of the roots.

Then as μ → 0, the solutions of (2.9) tend to the corresponding solutions of the degen-

erate system with the initial data (y0i , z
0
j , t

0) ∈ N , and this convergence is uniform in a

closed interval [t1, T∗] for any t1 > t0 and a constant T∗ > t1.

In our case, Fj is the right-hand side of (2.8c). The roots of Fj = 0 are of course the

sum on the right-hand side of (2.8c), and hence the second assertion (2) in Tikhonov’s

theorem above becomes

N∑

i=1

⎛

⎝zi −
λ

N

N∑

j=1

(
ψ1(r)(vj − vi) + ψ2(r)((xj − xi) · (vj − vi))(xj − xi)

)
⎞

⎠

·

⎛

⎝ λ

N

N∑

j=1

(
ψ1(r)(vj − vi) + ψ2(r)((xj − xi) · (vj − vi))(xj − xi)

)
− zi

⎞

⎠ < 0,

which is trivially true in the whole state space, excluding the roots themselves.

Theorem 2.2. Let (xε
i (t), v

ε
i (t), z

ε
i (t)) be the solution to the singularly perturbed system

(2.8a) - (2.8c) with initial data (xi(0), vi(0), zi(0)). Then for any small positive time t1
and a given T∗ > t1, the solutions (xε

i (t), v
ε
i (t), z

ε
i (t)) converge to (x0

i (t), v
0
i (t), z

0
i (t))

uniformly in t ∈ [t1, T∗], where (x0
i (t), v

0
i (t), z

0
i (t)) satisfy the unperturbed system:

dx0
i

dt
= v0i , t ≥ 0, 1 ≤ i ≤ N,

dv0i
dt

= z0i ,

z0i =
λ

N

N∑

j=1

(
ψ1(r

0)(v0j − v0i ) + ψ2(r
0)[(x0

j − x0
i ) · (v0j − v0i )](x

0
j − x0

i )
)
.

Proof. The proof follows from a direct application of Theorem 2.1. A more modern

approach which generalizes Tikhonov’s original idea as well as the method of averaging

is in Artstein and Vigodner [2], and we also refer to [14] for reference. �
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2.3. Flocking estimate. In this part, we study the flocking estimate for the formally

derived new system from the mechanical particle system:

dxi

dt
= vi, (2.11a)

dvi
dt

=
λ

N

N∑

j=1

ψ1(|xj − xi|)(vj − vi) (2.11b)

+
λ

N

N∑

j=1

ψ2(|xj − xi|)((xj − xi) · (vj − vi))(xj − xi).

Lemma 2.1. Let (xi, vi) be the solutions to the system (2.11a)–(2.11b). Then the total

momentum and energy satisfy

(i)
d

dt

N∑

i=1

vi = 0,

(ii)
d

dt

N∑

i=1

|vi|2 = − λ

N

∑

1≤i,j≤N

ψ1(|xj − xi|)|vj − vi|2

− λ

N

∑

1≤i,j≤N

ψ2(|xj − xi|)|(xj − xi) · (vj − vi)|2.

Proof. (i) The conservation of momentum is due to the fact that the right-hand side

of (2.11b) is skew-symmetric under the transformation i ↔ j.

(ii) For the energy dissipation estimate, we take an inner product with (2.11b) and

2vi, and then sum it over i to find the desired result. �
Remark 2.1. Compared to the dissipation estimate for the Cucker-Smale flocking

system [4, 5, 7, 8], we have an extra dissipation term

λ

N

∑

1≤i,j≤N

ψ2(|xj − xi|)|(xj − xi) · (vj − vi)|2,

which enhances the flocking.

For the flocking estimate, we first introduce averaged quantities and fluctuations

around them:

〈x〉 := 1

N

N∑

i=1

xi, 〈v〉 := 1

N

N∑

i=1

vi,

and

x̄i := xi − 〈x〉, v̄i := vi − 〈v〉.

Then it easy to see that the dynamics for the averaged quantities and fluctuations are

completely decoupled so that

〈v(t)〉 = 〈v(0)〉, 〈x(t)〉 = 〈x(0)〉+ t〈v(0)〉,
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and

dx̄i

dt
= v̄i, (2.12a)

dv̄i
dt

=
λ

N

N∑

j=1

ψ1(|x̄j − x̄i|)(v̄j , v̄i) (2.12b)

+
λ

N

N∑

j=1

ψ2(|x̄j − x̄i|)((x̄j − x̄i) · (v̄j − v̄i))(x̄j − x̄i).

For the flocking estimate, it suffices to get the dissipation estimate for the system (2.12a)–

(2.12b).

Theorem 2.3. The limit system (2.11a)–(2.11b) admits flocking in the time-asymptotic

limit. More precisely, for any solution (xi, vi) with a finite initial energy for perturbation,

we have

(i)
( N∑

i=1

|v̄i(t)|2
)
≤ e−2λR1t

( N∑

i=1

|v̄i(0)|2
)
, t > 0,

(ii) max
1≤i≤N

|x̄i(t)| ≤ max
1≤i≤N

|x̄i0|+
1

λR1

( N∑

i=1

|v̄i(0)|2
) 1

2

,

where R1 is a positive constant appearing in (2.6).

Proof. (i) As in Lemma 2.1, we have

d

dt

N∑

i=1

|v̄i|2 = − λ

N

∑

1≤i,j≤N

ψ1(|x̄j − x̄i|)|v̄j − v̄i|2

− λ

N

∑

1≤i,j≤N

ψ2(|x̄j − x̄i|)|(x̄j − x̄i) · (v̄j − v̄i)|2

≤ − λ

N

∑

1≤i,j≤N

ψ1(|x̄j − x̄i|)|v̄j − v̄i|2

≤ −2λR1

N∑

i=1

|v̄i|2.

We now integrate the above Gronwall’s inequality to get the desired result.

(ii) It follows from the result in (i) that

|v̄i(t)| ≤ e−λR1t
( N∑

i=1

|v̄i(0)|2
) 1

2

.

We now use the above estimate to find

|x̄i(t)− x̄i0| ≤
∫ t

0

|v̄i(s)|ds ≤
1

λR1

( N∑

i=1

|v̄i(0)|2
) 1

2

(1− e−λR1t).

This yields the desired result. �
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Remark 2.2. For the flocking estimates for the particle and kinetic Cucker-Smale

model, we refer to [3, 4, 5, 7, 8, 12].

As a corollary of Theorem 2.2 and Theorem 2.3, we obtain estimates for relative

velocities and the flocking group’s spatial diameter for the singularly perturbed system

(2.8a)-(2.8c).

Corollary 2.1. Let ε > 0 be sufficiently small. Then for any small positive time t1
and a given T∗ > t1, there exists a positive constant C such that the perturbed solutions

(xε
i , v

ε
i ) to (2.8a)–(2.8c) satisfy

(i) |vεi (t)− vεj (t)| < 2ε+ Ce−λR1t, t ∈ [t1, T∗],

(ii) |xε
i (t)− xε

j(t)| ≤ 2ε+ C.

Here (x0
i (0), v

0
i (0)) is the initial datum corresponding to the unperturbed solution

(x0
i (t), v

0
i (t)), and the constant C depends only on the initial datum of the unperturbed

solution.

Proof. It follows from Theorem 2.2 that ∃ t1, T∗ > 0 such that

max
1≤i≤N

|vεi (t)− v0i (t)| < ε, max
1≤i≤N

|xε
i (t)− x0

i (t)| < ε, t ∈ [t1, T∗].

On the other hand, we use Theorem 2.3 to estimate

max
1≤i,j≤N

|v0i (t)− v0j (t)| ≤
(
2

N∑

i=1

|v̄0i (t)|2
) 1

2 ≤
(
2

N∑

i=1

|v̄0i (0)|2
) 1

2

e−λR1t, t ∈ [0,∞).

We simply apply the triangle inequalities:

|vεi (t)− vεj (t)| ≤ |vεi (t)− v0i (t)|+ |vεj (t)− v0j (t)|+ |v0i (t)− v0j (t)|, t ∈ [t1, T∗]

≤ 2ε+
(
2

N∑

i=1

|v̄0i (0)|2
) 1

2

e−λR1t.

We use Theorem 2.3 to find

|x0
i (t)− x0

j(t)| = |x̄0
i (t)− x̄0

j (t)|

≤ |x̄0
i (0)− x̄0

j (0)|+
∫ t

0

|v̄i(s)− v̄j(s)|ds

≤ |x̄0
i (0)− x̄0

j (0)|+
1

λR1

(
2

N∑

i=1

|v̄0i (0)|2
) 1

2

.

Similarly, we have

|xε
i (t)− xε

j(t)| ≤ |xε
i (t)− x0

i (t)|+ |xε
j(t)− x0

j(t)|+ |x0
i (t)− x0

j(t)|, t ∈ [t1, T∗]

≤ 2ε+ |x̄0
i (0)− x̄0

j (0)|+
1

λR1

(
2

N∑

i=1

|v̄0i (0)|2
) 1

2

.

�
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3. From the Kuramoto model to the Cucker-Smale model. In this section, we

present a rather interesting bridge between the Kuramoto phase model and the Cucker-

Smale flocking model.

Consider the Kuramoto phase model describing the dynamics of nonlinear oscillators

{xk = eiθk} moving on the circle with randomly distributed natural frequency Ωk and

sinusoidal coupling between oscillators:

dθk
dt

= Ωk +
λ

N

N∑

h=1

sin(θh − θk), t > 0, k = 1, . . . , N,

subject to the initial phase

θk(0) = θk0, k = 1, . . . , N.

The Kuramoto model has been extensively studied in the last thirty years after Ku-

ramoto’s seminal work [10] and is still a popular subject for the modeling of synchroniza-

tion phenomena arising from statistical physics (see a review article [1]). In particular,

Kuramoto [10] observed that for the model in the N → ∞ limit, there is a continuous

dynamical phase transition at a critical value of the coupling strength λc. In particu-

lar, for λ > λc, the system shows the phase and frequency synchronization. We now

differentiate the Kuramoto model to derive the dynamics of the frequency ωi = θ̇i:

dωi

dt
=

λ

N

N∑

j=1

cos(θj − θi)(ωj − ωi), t > 0, i = 1, . . . , N.

We take the initial frequency of oscillators to be the natural frequency of oscillators, i.e.,

ωi(0) = Ωi, i = 1, . . . , N.

3.1. Dynamics of standard deviations. In this part, we present the dynamics of stan-

dard deviations for physical variables. We introduce averaged natural frequency, phase

and frequency:

〈Ω〉 := 1

N

N∑

i=1

Ωi, 〈θ〉 := 1

N

N∑

i=1

θi, 〈ω〉 := 1

N

N∑

i=1

ωi.

Note that 〈Ω〉 is a stationary random variable, and 〈θ〉, 〈ω〉 satisfy

〈θ(t)〉 = 〈θ0〉+ t〈Ω〉, 〈ω(t)〉 = 〈Ω〉.

We next introduce fluctuations of the state variables around the averaged quantities:

Ω̄i := Ωi − 〈Ω〉, θ̄i := θi − 〈θ〉, ω̄i = ωi − 〈ω〉.

Then the fluctuations θ̄i and ω̄i satisfy

dθ̄i
dt

= Ω̄i +
λ

N

N∑

j=1

sin(θ̄j − θ̄i), (3.1a)

dω̄i

dt
=

λ

N

N∑

j=1

cos(θ̄j − θ̄i)(ω̄j − ω̄i). (3.1b)
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Note that the equation (3.1b) takes the form of the Cucker-Smale model in the regime

cos(θj − θi) > 0. At this point, we denote with σθ, σω and σΩ the standard deviations

of θi, ωi and Ωi respectively:

σ2
θ :=

1

N

N∑

i=1

|θ̄i|2, σ2
ω :=

1

N

N∑

i=1

|ω̄i|2, σ2
Ω :=

1

N

N∑

i=1

|Ω̄i|2.

We study the dynamics of these quantities in the following lemma.

Lemma 3.1. Let (θ̄i, ω̄i) be smooth solutions to the system (3.1a) and (3.1b). Then the

σθ and σω standard deviations satisfy

(i)
d

dt

N∑

i=1

|θ̄i|2 = 2
∑

i

θ̄iΩ̄i −
λ

N

∑

1≤i,j≤N

(θ̄j − θ̄i) sin(θ̄j − θ̄i),

(ii)
d

dt

N∑

i=1

|ω̄i|2 = − λ

N

∑

1≤i,j≤N

cos(θ̄j − θ̄i)|ω̄j − ω̄i|2.

Proof. We only consider the second identity; the first identity can be treated similarly.

We multiply the equation (3.1b) by 2ω̄i, sum over i and use the symmetry trick i ↔ j

to find

d

dt

N∑

i=1

|ω̄i|2 =
2λ

N

∑

i,j

cos(|θ̄j − θ̄i|)ω̄i · (ω̄j − ω̄i)

= −2λ

N

∑

i,j

cos(|θ̄j − θ̄i|)ω̄j · (ω̄j − ω̄i)

= − λ

N

∑

i,j

cos(|θ̄j − θ̄i|)|ω̄j − ω̄i|2.

�
We next proceed with a dissipation estimate for the system (3.1a) and (3.1b). To this

aim, we estimate the dynamics of the standard deviations in the following proposition.

Proposition 3.1. For given T > 0, let (θ̄i, ω̄i) ∈ C1([0, T )) be solutions to the system

(3.1a) and (3.1b) satisfying the following stability condition:

sup
0≤t<T

σθ(t) <
π

4
√
N

. (3.2)

Then the standard deviations σθ and σω satisfy the system of differential inequalities:

(i)
∣∣∣
dσθ

dt

∣∣∣ ≤ σω,

(ii)
dσω

dt
≤ −λ cos(2

√
Nσθ)σω.

Proof. (i) We use the definitions of variances σ2
θ , σ

2
ω and dθ̄i

dt = ω̄i to find

∣∣∣
dσ2

θ

dt

∣∣∣ =
1

N

∣∣∣
d

dt

N∑

i=1

(θ̄i)
2
∣∣∣ ≤

2

N

N∑

i=1

|θ̄i||ω̄i| ≤
2

N

( N∑

i=1

|θ̄i|2
) 1

2
( N∑

i=1

|ω̄i|2
) 1

2

, (3.3)

where we used Cauchy-Schwarz’s inequality.
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On the other hand, note that

∣∣∣
dσ2

θ

dt

∣∣∣ = 2σθ

∣∣∣
dσθ

dt

∣∣∣,
N∑

i=1

|θ̄i|2 = Nσ2
θ ,

N∑

i=1

|ω̄i|2 = Nσ2
ω.

Thus in (3.3) we have

2σθ

∣∣∣
dσθ

dt

∣∣∣ ≤ 2σθσω,

and we divide the above inequality by σθ to find the desired result.

(ii) We use |θ̄j − θ̄i| ≤ 2
√
Nσθ ≤ π

2 and the nonincreasing property of cos(θ) in the

interval [0, π
2 ] to find

cos(θ̄j − θ̄i) ≥ cos(2
√
Nσθ).

On the other hand, note that

2σω
dσω

dt
=

dσ2
ω

dt
=

1

N

d

dt

N∑

i=1

|ω̄i|2 = − λ

N2

∑

1≤i,j≤N

cos(θ̄j − θ̄i)|ω̄j − ω̄i|2

≤ −2λ cos(2
√
Nσθ)σ

2
ω,

where we used

∑

1≤i,j≤N

|ω̄i − ω̄j |2 = 2N

N∑

i=1

|ω̄i|2 = 2N2σ2
ω.

�
3.2. Frequency synchronization. In this part, we study the dissipation estimate for

standard deviations, which will give the existence of a frequency locked state:

ωi = ωj , i = j.

The Lyapunov approach employed in this section was introduced in [7] in the context

of the Cucker-Smale system with general communication rates. Consider the following

system of differential inequalities:

∣∣∣
dσθ

dt

∣∣∣ ≤ σω,
dσω

dt
≤ −λ cos(2

√
Nσθ)σω (3.4)

and define Lyapunov functionals

H±[σθ(t), σω(t)] := σω(t)± λ

∫ σθ(t)

σθ(0)

cos(2
√
Ns)ds.

Proposition 3.2 (Dissipation estimate). For given T > 0, let (σθ, σω) ∈ C1([0, T )) be

solutions to the system (3.1a) and (3.1b) satisfying the stability condition (3.2). Then

the following stability estimate holds. For t ≥ 0,

(i) H±[σθ(t), σω(t)] ≤ H±[σθ(0), σω(0)],

(ii) σω(t) + λ
∣∣∣
∫ σθ(t)

σθ(0)

cos(2
√
Ns)ds

∣∣∣ ≤ σω(0).
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Proof. (i) We use Proposition 3.1, that is, relations (3.4), to show that

d

dt
H±[t] =

d

dt
σω(t)± λ cos(2

√
Nσθ(t))

d

dt
σθ(t)

≤ −λ cos(2
√
Nσθ)σω ± λ cos(2

√
Nσθ(t))

d

dt
σθ(t)

= λ cos(2
√
Nσθ)

(
− σω ± d

dt
σθ(t)

)

≤ 0.

(ii) It follows from the result in (i) that we have

σω(t) + λ

∫ σθ(t)

σθ(0)

cos(2
√
Ns)ds ≤ σω(0),

σω(t) + λ

∫ σθ(0)

σθ(t)

cos(2
√
Ns)ds ≤ σω(0),

which concludes the proof. �
Finally we can prove our main result.

Theorem 3.1 (Frequency synchronization). Suppose the standard deviations of the ini-

tial configurations σθ(0) and σω(0) satisfy

σθ(0) <
π

16
√
N

, σω(0) <
λπ

16
√
2N

.

Then we have

(i) σω(t) ≤ σω(0)e
− λt√

2 , t ≥ 0,

(ii) lim
t→∞

|ωi(t)− ωj(t)| = 0, 1 ≤ i, j ≤ N.

Proof. The proof for (ii) directly follows from the estimate in (i):

|ωi(t)− ωj(t)| ≤ 2
√
Nσω(t) ≤ 2

√
Nσω(0)e

− λt√
2 → 0, as t → ∞.

We now consider the estimate (i). Since σθ(0) <
π

16
√
N

and σθ is a continuous function

of t, there exists a maximal time T∗ ∈ (0,∞] such that

sup
0≤t≤T∗

σθ(t) ≤
π

8
√
N

. (3.5)

Step A (Decay estimate in the time zone [0,T∗)): In this time zone, the

condition (3.5) and relation (3.4) through Proposition 3.1 imply

σω(t) ≤ σω(0)e
− λt√

2 .

On the other hand, the first inequality in (3.4) yields

|σθ(t)− σθ(0)| ≤
∫ t

0

∣∣∣
dσθ(s)

ds

∣∣∣ds ≤
∫ t

0

σω(s)ds ≤
√
2

λ
σω(0) <

π

16
√
N

.

Hence we have

σθ(t) < σθ(0) +
π

16
√
N

<
π

8
√
N

, t ∈ [0, T∗].
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Step B (T∗ = ∞): Suppose the maximal time T∗ is finite, i.e., T∗ < ∞. Then by

the estimate given in Step A, we have

σθ(T∗) <
π

8
√
N

, σω(T∗) ≤ σω(0) <
λπ

16
√
2N

.

Hence by the same argument given in Step A, we can find a δ > 0 such that

sup
0≤t≤T∗+δ

σθ(t) ≤
π

8
√
N

.

This contradicts the maximality of T∗. Hence T∗ = ∞ and the proof is complete.

�
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